linux/drivers/firmware/efi/libstub/arm-stub.c
<<
>>
Prefs
   1/*
   2 * EFI stub implementation that is shared by arm and arm64 architectures.
   3 * This should be #included by the EFI stub implementation files.
   4 *
   5 * Copyright (C) 2013,2014 Linaro Limited
   6 *     Roy Franz <roy.franz@linaro.org
   7 * Copyright (C) 2013 Red Hat, Inc.
   8 *     Mark Salter <msalter@redhat.com>
   9 *
  10 * This file is part of the Linux kernel, and is made available under the
  11 * terms of the GNU General Public License version 2.
  12 *
  13 */
  14
  15#include <linux/efi.h>
  16#include <linux/sort.h>
  17#include <asm/efi.h>
  18
  19#include "efistub.h"
  20
  21/*
  22 * This is the base address at which to start allocating virtual memory ranges
  23 * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use
  24 * any allocation we choose, and eliminate the risk of a conflict after kexec.
  25 * The value chosen is the largest non-zero power of 2 suitable for this purpose
  26 * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
  27 * be mapped efficiently.
  28 * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
  29 * map everything below 1 GB. (512 MB is a reasonable upper bound for the
  30 * entire footprint of the UEFI runtime services memory regions)
  31 */
  32#define EFI_RT_VIRTUAL_BASE     SZ_512M
  33#define EFI_RT_VIRTUAL_SIZE     SZ_512M
  34
  35#ifdef CONFIG_ARM64
  36# define EFI_RT_VIRTUAL_LIMIT   DEFAULT_MAP_WINDOW_64
  37#else
  38# define EFI_RT_VIRTUAL_LIMIT   TASK_SIZE
  39#endif
  40
  41static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;
  42
  43efi_status_t efi_open_volume(efi_system_table_t *sys_table_arg,
  44                             void *__image, void **__fh)
  45{
  46        efi_file_io_interface_t *io;
  47        efi_loaded_image_t *image = __image;
  48        efi_file_handle_t *fh;
  49        efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID;
  50        efi_status_t status;
  51        void *handle = (void *)(unsigned long)image->device_handle;
  52
  53        status = sys_table_arg->boottime->handle_protocol(handle,
  54                                 &fs_proto, (void **)&io);
  55        if (status != EFI_SUCCESS) {
  56                efi_printk(sys_table_arg, "Failed to handle fs_proto\n");
  57                return status;
  58        }
  59
  60        status = io->open_volume(io, &fh);
  61        if (status != EFI_SUCCESS)
  62                efi_printk(sys_table_arg, "Failed to open volume\n");
  63
  64        *__fh = fh;
  65        return status;
  66}
  67
  68void efi_char16_printk(efi_system_table_t *sys_table_arg,
  69                              efi_char16_t *str)
  70{
  71        struct efi_simple_text_output_protocol *out;
  72
  73        out = (struct efi_simple_text_output_protocol *)sys_table_arg->con_out;
  74        out->output_string(out, str);
  75}
  76
  77static struct screen_info *setup_graphics(efi_system_table_t *sys_table_arg)
  78{
  79        efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
  80        efi_status_t status;
  81        unsigned long size;
  82        void **gop_handle = NULL;
  83        struct screen_info *si = NULL;
  84
  85        size = 0;
  86        status = efi_call_early(locate_handle, EFI_LOCATE_BY_PROTOCOL,
  87                                &gop_proto, NULL, &size, gop_handle);
  88        if (status == EFI_BUFFER_TOO_SMALL) {
  89                si = alloc_screen_info(sys_table_arg);
  90                if (!si)
  91                        return NULL;
  92                efi_setup_gop(sys_table_arg, si, &gop_proto, size);
  93        }
  94        return si;
  95}
  96
  97void install_memreserve_table(efi_system_table_t *sys_table_arg)
  98{
  99        struct linux_efi_memreserve *rsv;
 100        efi_guid_t memreserve_table_guid = LINUX_EFI_MEMRESERVE_TABLE_GUID;
 101        efi_status_t status;
 102
 103        status = efi_call_early(allocate_pool, EFI_LOADER_DATA, sizeof(*rsv),
 104                                (void **)&rsv);
 105        if (status != EFI_SUCCESS) {
 106                pr_efi_err(sys_table_arg, "Failed to allocate memreserve entry!\n");
 107                return;
 108        }
 109
 110        rsv->next = 0;
 111        rsv->size = 0;
 112        atomic_set(&rsv->count, 0);
 113
 114        status = efi_call_early(install_configuration_table,
 115                                &memreserve_table_guid,
 116                                rsv);
 117        if (status != EFI_SUCCESS)
 118                pr_efi_err(sys_table_arg, "Failed to install memreserve config table!\n");
 119}
 120
 121
 122/*
 123 * This function handles the architcture specific differences between arm and
 124 * arm64 regarding where the kernel image must be loaded and any memory that
 125 * must be reserved. On failure it is required to free all
 126 * all allocations it has made.
 127 */
 128efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
 129                                 unsigned long *image_addr,
 130                                 unsigned long *image_size,
 131                                 unsigned long *reserve_addr,
 132                                 unsigned long *reserve_size,
 133                                 unsigned long dram_base,
 134                                 efi_loaded_image_t *image);
 135/*
 136 * EFI entry point for the arm/arm64 EFI stubs.  This is the entrypoint
 137 * that is described in the PE/COFF header.  Most of the code is the same
 138 * for both archictectures, with the arch-specific code provided in the
 139 * handle_kernel_image() function.
 140 */
 141unsigned long efi_entry(void *handle, efi_system_table_t *sys_table,
 142                               unsigned long *image_addr)
 143{
 144        efi_loaded_image_t *image;
 145        efi_status_t status;
 146        unsigned long image_size = 0;
 147        unsigned long dram_base;
 148        /* addr/point and size pairs for memory management*/
 149        unsigned long initrd_addr;
 150        u64 initrd_size = 0;
 151        unsigned long fdt_addr = 0;  /* Original DTB */
 152        unsigned long fdt_size = 0;
 153        char *cmdline_ptr = NULL;
 154        int cmdline_size = 0;
 155        unsigned long new_fdt_addr;
 156        efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
 157        unsigned long reserve_addr = 0;
 158        unsigned long reserve_size = 0;
 159        enum efi_secureboot_mode secure_boot;
 160        struct screen_info *si;
 161
 162        /* Check if we were booted by the EFI firmware */
 163        if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
 164                goto fail;
 165
 166        status = check_platform_features(sys_table);
 167        if (status != EFI_SUCCESS)
 168                goto fail;
 169
 170        /*
 171         * Get a handle to the loaded image protocol.  This is used to get
 172         * information about the running image, such as size and the command
 173         * line.
 174         */
 175        status = sys_table->boottime->handle_protocol(handle,
 176                                        &loaded_image_proto, (void *)&image);
 177        if (status != EFI_SUCCESS) {
 178                pr_efi_err(sys_table, "Failed to get loaded image protocol\n");
 179                goto fail;
 180        }
 181
 182        dram_base = get_dram_base(sys_table);
 183        if (dram_base == EFI_ERROR) {
 184                pr_efi_err(sys_table, "Failed to find DRAM base\n");
 185                goto fail;
 186        }
 187
 188        /*
 189         * Get the command line from EFI, using the LOADED_IMAGE
 190         * protocol. We are going to copy the command line into the
 191         * device tree, so this can be allocated anywhere.
 192         */
 193        cmdline_ptr = efi_convert_cmdline(sys_table, image, &cmdline_size);
 194        if (!cmdline_ptr) {
 195                pr_efi_err(sys_table, "getting command line via LOADED_IMAGE_PROTOCOL\n");
 196                goto fail;
 197        }
 198
 199        if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) ||
 200            IS_ENABLED(CONFIG_CMDLINE_FORCE) ||
 201            cmdline_size == 0)
 202                efi_parse_options(CONFIG_CMDLINE);
 203
 204        if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0)
 205                efi_parse_options(cmdline_ptr);
 206
 207        pr_efi(sys_table, "Booting Linux Kernel...\n");
 208
 209        si = setup_graphics(sys_table);
 210
 211        status = handle_kernel_image(sys_table, image_addr, &image_size,
 212                                     &reserve_addr,
 213                                     &reserve_size,
 214                                     dram_base, image);
 215        if (status != EFI_SUCCESS) {
 216                pr_efi_err(sys_table, "Failed to relocate kernel\n");
 217                goto fail_free_cmdline;
 218        }
 219
 220        /* Ask the firmware to clear memory on unclean shutdown */
 221        efi_enable_reset_attack_mitigation(sys_table);
 222
 223        secure_boot = efi_get_secureboot(sys_table);
 224
 225        /*
 226         * Unauthenticated device tree data is a security hazard, so ignore
 227         * 'dtb=' unless UEFI Secure Boot is disabled.  We assume that secure
 228         * boot is enabled if we can't determine its state.
 229         */
 230        if (secure_boot != efi_secureboot_mode_disabled &&
 231            strstr(cmdline_ptr, "dtb=")) {
 232                pr_efi(sys_table, "Ignoring DTB from command line.\n");
 233        } else {
 234                status = handle_cmdline_files(sys_table, image, cmdline_ptr,
 235                                              "dtb=",
 236                                              ~0UL, &fdt_addr, &fdt_size);
 237
 238                if (status != EFI_SUCCESS) {
 239                        pr_efi_err(sys_table, "Failed to load device tree!\n");
 240                        goto fail_free_image;
 241                }
 242        }
 243
 244        if (fdt_addr) {
 245                pr_efi(sys_table, "Using DTB from command line\n");
 246        } else {
 247                /* Look for a device tree configuration table entry. */
 248                fdt_addr = (uintptr_t)get_fdt(sys_table, &fdt_size);
 249                if (fdt_addr)
 250                        pr_efi(sys_table, "Using DTB from configuration table\n");
 251        }
 252
 253        if (!fdt_addr)
 254                pr_efi(sys_table, "Generating empty DTB\n");
 255
 256        status = handle_cmdline_files(sys_table, image, cmdline_ptr, "initrd=",
 257                                      efi_get_max_initrd_addr(dram_base,
 258                                                              *image_addr),
 259                                      (unsigned long *)&initrd_addr,
 260                                      (unsigned long *)&initrd_size);
 261        if (status != EFI_SUCCESS)
 262                pr_efi_err(sys_table, "Failed initrd from command line!\n");
 263
 264        efi_random_get_seed(sys_table);
 265
 266        /* hibernation expects the runtime regions to stay in the same place */
 267        if (!IS_ENABLED(CONFIG_HIBERNATION) && !nokaslr()) {
 268                /*
 269                 * Randomize the base of the UEFI runtime services region.
 270                 * Preserve the 2 MB alignment of the region by taking a
 271                 * shift of 21 bit positions into account when scaling
 272                 * the headroom value using a 32-bit random value.
 273                 */
 274                static const u64 headroom = EFI_RT_VIRTUAL_LIMIT -
 275                                            EFI_RT_VIRTUAL_BASE -
 276                                            EFI_RT_VIRTUAL_SIZE;
 277                u32 rnd;
 278
 279                status = efi_get_random_bytes(sys_table, sizeof(rnd),
 280                                              (u8 *)&rnd);
 281                if (status == EFI_SUCCESS) {
 282                        virtmap_base = EFI_RT_VIRTUAL_BASE +
 283                                       (((headroom >> 21) * rnd) >> (32 - 21));
 284                }
 285        }
 286
 287        install_memreserve_table(sys_table);
 288
 289        new_fdt_addr = fdt_addr;
 290        status = allocate_new_fdt_and_exit_boot(sys_table, handle,
 291                                &new_fdt_addr, efi_get_max_fdt_addr(dram_base),
 292                                initrd_addr, initrd_size, cmdline_ptr,
 293                                fdt_addr, fdt_size);
 294
 295        /*
 296         * If all went well, we need to return the FDT address to the
 297         * calling function so it can be passed to kernel as part of
 298         * the kernel boot protocol.
 299         */
 300        if (status == EFI_SUCCESS)
 301                return new_fdt_addr;
 302
 303        pr_efi_err(sys_table, "Failed to update FDT and exit boot services\n");
 304
 305        efi_free(sys_table, initrd_size, initrd_addr);
 306        efi_free(sys_table, fdt_size, fdt_addr);
 307
 308fail_free_image:
 309        efi_free(sys_table, image_size, *image_addr);
 310        efi_free(sys_table, reserve_size, reserve_addr);
 311fail_free_cmdline:
 312        free_screen_info(sys_table, si);
 313        efi_free(sys_table, cmdline_size, (unsigned long)cmdline_ptr);
 314fail:
 315        return EFI_ERROR;
 316}
 317
 318static int cmp_mem_desc(const void *l, const void *r)
 319{
 320        const efi_memory_desc_t *left = l, *right = r;
 321
 322        return (left->phys_addr > right->phys_addr) ? 1 : -1;
 323}
 324
 325/*
 326 * Returns whether region @left ends exactly where region @right starts,
 327 * or false if either argument is NULL.
 328 */
 329static bool regions_are_adjacent(efi_memory_desc_t *left,
 330                                 efi_memory_desc_t *right)
 331{
 332        u64 left_end;
 333
 334        if (left == NULL || right == NULL)
 335                return false;
 336
 337        left_end = left->phys_addr + left->num_pages * EFI_PAGE_SIZE;
 338
 339        return left_end == right->phys_addr;
 340}
 341
 342/*
 343 * Returns whether region @left and region @right have compatible memory type
 344 * mapping attributes, and are both EFI_MEMORY_RUNTIME regions.
 345 */
 346static bool regions_have_compatible_memory_type_attrs(efi_memory_desc_t *left,
 347                                                      efi_memory_desc_t *right)
 348{
 349        static const u64 mem_type_mask = EFI_MEMORY_WB | EFI_MEMORY_WT |
 350                                         EFI_MEMORY_WC | EFI_MEMORY_UC |
 351                                         EFI_MEMORY_RUNTIME;
 352
 353        return ((left->attribute ^ right->attribute) & mem_type_mask) == 0;
 354}
 355
 356/*
 357 * efi_get_virtmap() - create a virtual mapping for the EFI memory map
 358 *
 359 * This function populates the virt_addr fields of all memory region descriptors
 360 * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
 361 * are also copied to @runtime_map, and their total count is returned in @count.
 362 */
 363void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
 364                     unsigned long desc_size, efi_memory_desc_t *runtime_map,
 365                     int *count)
 366{
 367        u64 efi_virt_base = virtmap_base;
 368        efi_memory_desc_t *in, *prev = NULL, *out = runtime_map;
 369        int l;
 370
 371        /*
 372         * To work around potential issues with the Properties Table feature
 373         * introduced in UEFI 2.5, which may split PE/COFF executable images
 374         * in memory into several RuntimeServicesCode and RuntimeServicesData
 375         * regions, we need to preserve the relative offsets between adjacent
 376         * EFI_MEMORY_RUNTIME regions with the same memory type attributes.
 377         * The easiest way to find adjacent regions is to sort the memory map
 378         * before traversing it.
 379         */
 380        if (IS_ENABLED(CONFIG_ARM64))
 381                sort(memory_map, map_size / desc_size, desc_size, cmp_mem_desc,
 382                     NULL);
 383
 384        for (l = 0; l < map_size; l += desc_size, prev = in) {
 385                u64 paddr, size;
 386
 387                in = (void *)memory_map + l;
 388                if (!(in->attribute & EFI_MEMORY_RUNTIME))
 389                        continue;
 390
 391                paddr = in->phys_addr;
 392                size = in->num_pages * EFI_PAGE_SIZE;
 393
 394                /*
 395                 * Make the mapping compatible with 64k pages: this allows
 396                 * a 4k page size kernel to kexec a 64k page size kernel and
 397                 * vice versa.
 398                 */
 399                if ((IS_ENABLED(CONFIG_ARM64) &&
 400                     !regions_are_adjacent(prev, in)) ||
 401                    !regions_have_compatible_memory_type_attrs(prev, in)) {
 402
 403                        paddr = round_down(in->phys_addr, SZ_64K);
 404                        size += in->phys_addr - paddr;
 405
 406                        /*
 407                         * Avoid wasting memory on PTEs by choosing a virtual
 408                         * base that is compatible with section mappings if this
 409                         * region has the appropriate size and physical
 410                         * alignment. (Sections are 2 MB on 4k granule kernels)
 411                         */
 412                        if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
 413                                efi_virt_base = round_up(efi_virt_base, SZ_2M);
 414                        else
 415                                efi_virt_base = round_up(efi_virt_base, SZ_64K);
 416                }
 417
 418                in->virt_addr = efi_virt_base + in->phys_addr - paddr;
 419                efi_virt_base += size;
 420
 421                memcpy(out, in, desc_size);
 422                out = (void *)out + desc_size;
 423                ++*count;
 424        }
 425}
 426