linux/drivers/gpu/drm/vc4/vc4_dsi.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2016 Broadcom
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms of the GNU General Public License version 2 as published by
   6 * the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * You should have received a copy of the GNU General Public License along with
  14 * this program.  If not, see <http://www.gnu.org/licenses/>.
  15 */
  16
  17/**
  18 * DOC: VC4 DSI0/DSI1 module
  19 *
  20 * BCM2835 contains two DSI modules, DSI0 and DSI1.  DSI0 is a
  21 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
  22 * controller.
  23 *
  24 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
  25 * while the compute module brings both DSI0 and DSI1 out.
  26 *
  27 * This driver has been tested for DSI1 video-mode display only
  28 * currently, with most of the information necessary for DSI0
  29 * hopefully present.
  30 */
  31
  32#include <drm/drm_atomic_helper.h>
  33#include <drm/drm_crtc_helper.h>
  34#include <drm/drm_edid.h>
  35#include <drm/drm_mipi_dsi.h>
  36#include <drm/drm_of.h>
  37#include <drm/drm_panel.h>
  38#include <linux/clk.h>
  39#include <linux/clk-provider.h>
  40#include <linux/completion.h>
  41#include <linux/component.h>
  42#include <linux/dmaengine.h>
  43#include <linux/i2c.h>
  44#include <linux/of_address.h>
  45#include <linux/of_platform.h>
  46#include <linux/pm_runtime.h>
  47#include "vc4_drv.h"
  48#include "vc4_regs.h"
  49
  50#define DSI_CMD_FIFO_DEPTH  16
  51#define DSI_PIX_FIFO_DEPTH 256
  52#define DSI_PIX_FIFO_WIDTH   4
  53
  54#define DSI0_CTRL               0x00
  55
  56/* Command packet control. */
  57#define DSI0_TXPKT1C            0x04 /* AKA PKTC */
  58#define DSI1_TXPKT1C            0x04
  59# define DSI_TXPKT1C_TRIG_CMD_MASK      VC4_MASK(31, 24)
  60# define DSI_TXPKT1C_TRIG_CMD_SHIFT     24
  61# define DSI_TXPKT1C_CMD_REPEAT_MASK    VC4_MASK(23, 10)
  62# define DSI_TXPKT1C_CMD_REPEAT_SHIFT   10
  63
  64# define DSI_TXPKT1C_DISPLAY_NO_MASK    VC4_MASK(9, 8)
  65# define DSI_TXPKT1C_DISPLAY_NO_SHIFT   8
  66/* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
  67# define DSI_TXPKT1C_DISPLAY_NO_SHORT           0
  68/* Primary display where cmdfifo provides part of the payload and
  69 * pixelvalve the rest.
  70 */
  71# define DSI_TXPKT1C_DISPLAY_NO_PRIMARY         1
  72/* Secondary display where cmdfifo provides part of the payload and
  73 * pixfifo the rest.
  74 */
  75# define DSI_TXPKT1C_DISPLAY_NO_SECONDARY       2
  76
  77# define DSI_TXPKT1C_CMD_TX_TIME_MASK   VC4_MASK(7, 6)
  78# define DSI_TXPKT1C_CMD_TX_TIME_SHIFT  6
  79
  80# define DSI_TXPKT1C_CMD_CTRL_MASK      VC4_MASK(5, 4)
  81# define DSI_TXPKT1C_CMD_CTRL_SHIFT     4
  82/* Command only.  Uses TXPKT1H and DISPLAY_NO */
  83# define DSI_TXPKT1C_CMD_CTRL_TX        0
  84/* Command with BTA for either ack or read data. */
  85# define DSI_TXPKT1C_CMD_CTRL_RX        1
  86/* Trigger according to TRIG_CMD */
  87# define DSI_TXPKT1C_CMD_CTRL_TRIG      2
  88/* BTA alone for getting error status after a command, or a TE trigger
  89 * without a previous command.
  90 */
  91# define DSI_TXPKT1C_CMD_CTRL_BTA       3
  92
  93# define DSI_TXPKT1C_CMD_MODE_LP        BIT(3)
  94# define DSI_TXPKT1C_CMD_TYPE_LONG      BIT(2)
  95# define DSI_TXPKT1C_CMD_TE_EN          BIT(1)
  96# define DSI_TXPKT1C_CMD_EN             BIT(0)
  97
  98/* Command packet header. */
  99#define DSI0_TXPKT1H            0x08 /* AKA PKTH */
 100#define DSI1_TXPKT1H            0x08
 101# define DSI_TXPKT1H_BC_CMDFIFO_MASK    VC4_MASK(31, 24)
 102# define DSI_TXPKT1H_BC_CMDFIFO_SHIFT   24
 103# define DSI_TXPKT1H_BC_PARAM_MASK      VC4_MASK(23, 8)
 104# define DSI_TXPKT1H_BC_PARAM_SHIFT     8
 105# define DSI_TXPKT1H_BC_DT_MASK         VC4_MASK(7, 0)
 106# define DSI_TXPKT1H_BC_DT_SHIFT        0
 107
 108#define DSI0_RXPKT1H            0x0c /* AKA RX1_PKTH */
 109#define DSI1_RXPKT1H            0x14
 110# define DSI_RXPKT1H_CRC_ERR            BIT(31)
 111# define DSI_RXPKT1H_DET_ERR            BIT(30)
 112# define DSI_RXPKT1H_ECC_ERR            BIT(29)
 113# define DSI_RXPKT1H_COR_ERR            BIT(28)
 114# define DSI_RXPKT1H_INCOMP_PKT         BIT(25)
 115# define DSI_RXPKT1H_PKT_TYPE_LONG      BIT(24)
 116/* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
 117# define DSI_RXPKT1H_BC_PARAM_MASK      VC4_MASK(23, 8)
 118# define DSI_RXPKT1H_BC_PARAM_SHIFT     8
 119/* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
 120# define DSI_RXPKT1H_SHORT_1_MASK       VC4_MASK(23, 16)
 121# define DSI_RXPKT1H_SHORT_1_SHIFT      16
 122# define DSI_RXPKT1H_SHORT_0_MASK       VC4_MASK(15, 8)
 123# define DSI_RXPKT1H_SHORT_0_SHIFT      8
 124# define DSI_RXPKT1H_DT_LP_CMD_MASK     VC4_MASK(7, 0)
 125# define DSI_RXPKT1H_DT_LP_CMD_SHIFT    0
 126
 127#define DSI0_RXPKT2H            0x10 /* AKA RX2_PKTH */
 128#define DSI1_RXPKT2H            0x18
 129# define DSI_RXPKT1H_DET_ERR            BIT(30)
 130# define DSI_RXPKT1H_ECC_ERR            BIT(29)
 131# define DSI_RXPKT1H_COR_ERR            BIT(28)
 132# define DSI_RXPKT1H_INCOMP_PKT         BIT(25)
 133# define DSI_RXPKT1H_BC_PARAM_MASK      VC4_MASK(23, 8)
 134# define DSI_RXPKT1H_BC_PARAM_SHIFT     8
 135# define DSI_RXPKT1H_DT_MASK            VC4_MASK(7, 0)
 136# define DSI_RXPKT1H_DT_SHIFT           0
 137
 138#define DSI0_TXPKT_CMD_FIFO     0x14 /* AKA CMD_DATAF */
 139#define DSI1_TXPKT_CMD_FIFO     0x1c
 140
 141#define DSI0_DISP0_CTRL         0x18
 142# define DSI_DISP0_PIX_CLK_DIV_MASK     VC4_MASK(21, 13)
 143# define DSI_DISP0_PIX_CLK_DIV_SHIFT    13
 144# define DSI_DISP0_LP_STOP_CTRL_MASK    VC4_MASK(12, 11)
 145# define DSI_DISP0_LP_STOP_CTRL_SHIFT   11
 146# define DSI_DISP0_LP_STOP_DISABLE      0
 147# define DSI_DISP0_LP_STOP_PERLINE      1
 148# define DSI_DISP0_LP_STOP_PERFRAME     2
 149
 150/* Transmit RGB pixels and null packets only during HACTIVE, instead
 151 * of going to LP-STOP.
 152 */
 153# define DSI_DISP_HACTIVE_NULL          BIT(10)
 154/* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
 155# define DSI_DISP_VBLP_CTRL             BIT(9)
 156/* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
 157# define DSI_DISP_HFP_CTRL              BIT(8)
 158/* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
 159# define DSI_DISP_HBP_CTRL              BIT(7)
 160# define DSI_DISP0_CHANNEL_MASK         VC4_MASK(6, 5)
 161# define DSI_DISP0_CHANNEL_SHIFT        5
 162/* Enables end events for HSYNC/VSYNC, not just start events. */
 163# define DSI_DISP0_ST_END               BIT(4)
 164# define DSI_DISP0_PFORMAT_MASK         VC4_MASK(3, 2)
 165# define DSI_DISP0_PFORMAT_SHIFT        2
 166# define DSI_PFORMAT_RGB565             0
 167# define DSI_PFORMAT_RGB666_PACKED      1
 168# define DSI_PFORMAT_RGB666             2
 169# define DSI_PFORMAT_RGB888             3
 170/* Default is VIDEO mode. */
 171# define DSI_DISP0_COMMAND_MODE         BIT(1)
 172# define DSI_DISP0_ENABLE               BIT(0)
 173
 174#define DSI0_DISP1_CTRL         0x1c
 175#define DSI1_DISP1_CTRL         0x2c
 176/* Format of the data written to TXPKT_PIX_FIFO. */
 177# define DSI_DISP1_PFORMAT_MASK         VC4_MASK(2, 1)
 178# define DSI_DISP1_PFORMAT_SHIFT        1
 179# define DSI_DISP1_PFORMAT_16BIT        0
 180# define DSI_DISP1_PFORMAT_24BIT        1
 181# define DSI_DISP1_PFORMAT_32BIT_LE     2
 182# define DSI_DISP1_PFORMAT_32BIT_BE     3
 183
 184/* DISP1 is always command mode. */
 185# define DSI_DISP1_ENABLE               BIT(0)
 186
 187#define DSI0_TXPKT_PIX_FIFO             0x20 /* AKA PIX_FIFO */
 188
 189#define DSI0_INT_STAT           0x24
 190#define DSI0_INT_EN             0x28
 191# define DSI1_INT_PHY_D3_ULPS           BIT(30)
 192# define DSI1_INT_PHY_D3_STOP           BIT(29)
 193# define DSI1_INT_PHY_D2_ULPS           BIT(28)
 194# define DSI1_INT_PHY_D2_STOP           BIT(27)
 195# define DSI1_INT_PHY_D1_ULPS           BIT(26)
 196# define DSI1_INT_PHY_D1_STOP           BIT(25)
 197# define DSI1_INT_PHY_D0_ULPS           BIT(24)
 198# define DSI1_INT_PHY_D0_STOP           BIT(23)
 199# define DSI1_INT_FIFO_ERR              BIT(22)
 200# define DSI1_INT_PHY_DIR_RTF           BIT(21)
 201# define DSI1_INT_PHY_RXLPDT            BIT(20)
 202# define DSI1_INT_PHY_RXTRIG            BIT(19)
 203# define DSI1_INT_PHY_D0_LPDT           BIT(18)
 204# define DSI1_INT_PHY_DIR_FTR           BIT(17)
 205
 206/* Signaled when the clock lane enters the given state. */
 207# define DSI1_INT_PHY_CLOCK_ULPS        BIT(16)
 208# define DSI1_INT_PHY_CLOCK_HS          BIT(15)
 209# define DSI1_INT_PHY_CLOCK_STOP        BIT(14)
 210
 211/* Signaled on timeouts */
 212# define DSI1_INT_PR_TO                 BIT(13)
 213# define DSI1_INT_TA_TO                 BIT(12)
 214# define DSI1_INT_LPRX_TO               BIT(11)
 215# define DSI1_INT_HSTX_TO               BIT(10)
 216
 217/* Contention on a line when trying to drive the line low */
 218# define DSI1_INT_ERR_CONT_LP1          BIT(9)
 219# define DSI1_INT_ERR_CONT_LP0          BIT(8)
 220
 221/* Control error: incorrect line state sequence on data lane 0. */
 222# define DSI1_INT_ERR_CONTROL           BIT(7)
 223/* LPDT synchronization error (bits received not a multiple of 8. */
 224
 225# define DSI1_INT_ERR_SYNC_ESC          BIT(6)
 226/* Signaled after receiving an error packet from the display in
 227 * response to a read.
 228 */
 229# define DSI1_INT_RXPKT2                BIT(5)
 230/* Signaled after receiving a packet.  The header and optional short
 231 * response will be in RXPKT1H, and a long response will be in the
 232 * RXPKT_FIFO.
 233 */
 234# define DSI1_INT_RXPKT1                BIT(4)
 235# define DSI1_INT_TXPKT2_DONE           BIT(3)
 236# define DSI1_INT_TXPKT2_END            BIT(2)
 237/* Signaled after all repeats of TXPKT1 are transferred. */
 238# define DSI1_INT_TXPKT1_DONE           BIT(1)
 239/* Signaled after each TXPKT1 repeat is scheduled. */
 240# define DSI1_INT_TXPKT1_END            BIT(0)
 241
 242#define DSI1_INTERRUPTS_ALWAYS_ENABLED  (DSI1_INT_ERR_SYNC_ESC | \
 243                                         DSI1_INT_ERR_CONTROL |  \
 244                                         DSI1_INT_ERR_CONT_LP0 | \
 245                                         DSI1_INT_ERR_CONT_LP1 | \
 246                                         DSI1_INT_HSTX_TO |      \
 247                                         DSI1_INT_LPRX_TO |      \
 248                                         DSI1_INT_TA_TO |        \
 249                                         DSI1_INT_PR_TO)
 250
 251#define DSI0_STAT               0x2c
 252#define DSI0_HSTX_TO_CNT        0x30
 253#define DSI0_LPRX_TO_CNT        0x34
 254#define DSI0_TA_TO_CNT          0x38
 255#define DSI0_PR_TO_CNT          0x3c
 256#define DSI0_PHYC               0x40
 257# define DSI1_PHYC_ESC_CLK_LPDT_MASK    VC4_MASK(25, 20)
 258# define DSI1_PHYC_ESC_CLK_LPDT_SHIFT   20
 259# define DSI1_PHYC_HS_CLK_CONTINUOUS    BIT(18)
 260# define DSI0_PHYC_ESC_CLK_LPDT_MASK    VC4_MASK(17, 12)
 261# define DSI0_PHYC_ESC_CLK_LPDT_SHIFT   12
 262# define DSI1_PHYC_CLANE_ULPS           BIT(17)
 263# define DSI1_PHYC_CLANE_ENABLE         BIT(16)
 264# define DSI_PHYC_DLANE3_ULPS           BIT(13)
 265# define DSI_PHYC_DLANE3_ENABLE         BIT(12)
 266# define DSI0_PHYC_HS_CLK_CONTINUOUS    BIT(10)
 267# define DSI0_PHYC_CLANE_ULPS           BIT(9)
 268# define DSI_PHYC_DLANE2_ULPS           BIT(9)
 269# define DSI0_PHYC_CLANE_ENABLE         BIT(8)
 270# define DSI_PHYC_DLANE2_ENABLE         BIT(8)
 271# define DSI_PHYC_DLANE1_ULPS           BIT(5)
 272# define DSI_PHYC_DLANE1_ENABLE         BIT(4)
 273# define DSI_PHYC_DLANE0_FORCE_STOP     BIT(2)
 274# define DSI_PHYC_DLANE0_ULPS           BIT(1)
 275# define DSI_PHYC_DLANE0_ENABLE         BIT(0)
 276
 277#define DSI0_HS_CLT0            0x44
 278#define DSI0_HS_CLT1            0x48
 279#define DSI0_HS_CLT2            0x4c
 280#define DSI0_HS_DLT3            0x50
 281#define DSI0_HS_DLT4            0x54
 282#define DSI0_HS_DLT5            0x58
 283#define DSI0_HS_DLT6            0x5c
 284#define DSI0_HS_DLT7            0x60
 285
 286#define DSI0_PHY_AFEC0          0x64
 287# define DSI0_PHY_AFEC0_DDR2CLK_EN              BIT(26)
 288# define DSI0_PHY_AFEC0_DDRCLK_EN               BIT(25)
 289# define DSI0_PHY_AFEC0_LATCH_ULPS              BIT(24)
 290# define DSI1_PHY_AFEC0_IDR_DLANE3_MASK         VC4_MASK(31, 29)
 291# define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT        29
 292# define DSI1_PHY_AFEC0_IDR_DLANE2_MASK         VC4_MASK(28, 26)
 293# define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT        26
 294# define DSI1_PHY_AFEC0_IDR_DLANE1_MASK         VC4_MASK(27, 23)
 295# define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT        23
 296# define DSI1_PHY_AFEC0_IDR_DLANE0_MASK         VC4_MASK(22, 20)
 297# define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT        20
 298# define DSI1_PHY_AFEC0_IDR_CLANE_MASK          VC4_MASK(19, 17)
 299# define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT         17
 300# define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK       VC4_MASK(23, 20)
 301# define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT      20
 302# define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK       VC4_MASK(19, 16)
 303# define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT      16
 304# define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK        VC4_MASK(15, 12)
 305# define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT       12
 306# define DSI1_PHY_AFEC0_DDR2CLK_EN              BIT(16)
 307# define DSI1_PHY_AFEC0_DDRCLK_EN               BIT(15)
 308# define DSI1_PHY_AFEC0_LATCH_ULPS              BIT(14)
 309# define DSI1_PHY_AFEC0_RESET                   BIT(13)
 310# define DSI1_PHY_AFEC0_PD                      BIT(12)
 311# define DSI0_PHY_AFEC0_RESET                   BIT(11)
 312# define DSI1_PHY_AFEC0_PD_BG                   BIT(11)
 313# define DSI0_PHY_AFEC0_PD                      BIT(10)
 314# define DSI1_PHY_AFEC0_PD_DLANE3               BIT(10)
 315# define DSI0_PHY_AFEC0_PD_BG                   BIT(9)
 316# define DSI1_PHY_AFEC0_PD_DLANE2               BIT(9)
 317# define DSI0_PHY_AFEC0_PD_DLANE1               BIT(8)
 318# define DSI1_PHY_AFEC0_PD_DLANE1               BIT(8)
 319# define DSI_PHY_AFEC0_PTATADJ_MASK             VC4_MASK(7, 4)
 320# define DSI_PHY_AFEC0_PTATADJ_SHIFT            4
 321# define DSI_PHY_AFEC0_CTATADJ_MASK             VC4_MASK(3, 0)
 322# define DSI_PHY_AFEC0_CTATADJ_SHIFT            0
 323
 324#define DSI0_PHY_AFEC1          0x68
 325# define DSI0_PHY_AFEC1_IDR_DLANE1_MASK         VC4_MASK(10, 8)
 326# define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT        8
 327# define DSI0_PHY_AFEC1_IDR_DLANE0_MASK         VC4_MASK(6, 4)
 328# define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT        4
 329# define DSI0_PHY_AFEC1_IDR_CLANE_MASK          VC4_MASK(2, 0)
 330# define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT         0
 331
 332#define DSI0_TST_SEL            0x6c
 333#define DSI0_TST_MON            0x70
 334#define DSI0_ID                 0x74
 335# define DSI_ID_VALUE           0x00647369
 336
 337#define DSI1_CTRL               0x00
 338# define DSI_CTRL_HS_CLKC_MASK          VC4_MASK(15, 14)
 339# define DSI_CTRL_HS_CLKC_SHIFT         14
 340# define DSI_CTRL_HS_CLKC_BYTE          0
 341# define DSI_CTRL_HS_CLKC_DDR2          1
 342# define DSI_CTRL_HS_CLKC_DDR           2
 343
 344# define DSI_CTRL_RX_LPDT_EOT_DISABLE   BIT(13)
 345# define DSI_CTRL_LPDT_EOT_DISABLE      BIT(12)
 346# define DSI_CTRL_HSDT_EOT_DISABLE      BIT(11)
 347# define DSI_CTRL_SOFT_RESET_CFG        BIT(10)
 348# define DSI_CTRL_CAL_BYTE              BIT(9)
 349# define DSI_CTRL_INV_BYTE              BIT(8)
 350# define DSI_CTRL_CLR_LDF               BIT(7)
 351# define DSI0_CTRL_CLR_PBCF             BIT(6)
 352# define DSI1_CTRL_CLR_RXF              BIT(6)
 353# define DSI0_CTRL_CLR_CPBCF            BIT(5)
 354# define DSI1_CTRL_CLR_PDF              BIT(5)
 355# define DSI0_CTRL_CLR_PDF              BIT(4)
 356# define DSI1_CTRL_CLR_CDF              BIT(4)
 357# define DSI0_CTRL_CLR_CDF              BIT(3)
 358# define DSI0_CTRL_CTRL2                BIT(2)
 359# define DSI1_CTRL_DISABLE_DISP_CRCC    BIT(2)
 360# define DSI0_CTRL_CTRL1                BIT(1)
 361# define DSI1_CTRL_DISABLE_DISP_ECCC    BIT(1)
 362# define DSI0_CTRL_CTRL0                BIT(0)
 363# define DSI1_CTRL_EN                   BIT(0)
 364# define DSI0_CTRL_RESET_FIFOS          (DSI_CTRL_CLR_LDF | \
 365                                         DSI0_CTRL_CLR_PBCF | \
 366                                         DSI0_CTRL_CLR_CPBCF |  \
 367                                         DSI0_CTRL_CLR_PDF | \
 368                                         DSI0_CTRL_CLR_CDF)
 369# define DSI1_CTRL_RESET_FIFOS          (DSI_CTRL_CLR_LDF | \
 370                                         DSI1_CTRL_CLR_RXF | \
 371                                         DSI1_CTRL_CLR_PDF | \
 372                                         DSI1_CTRL_CLR_CDF)
 373
 374#define DSI1_TXPKT2C            0x0c
 375#define DSI1_TXPKT2H            0x10
 376#define DSI1_TXPKT_PIX_FIFO     0x20
 377#define DSI1_RXPKT_FIFO         0x24
 378#define DSI1_DISP0_CTRL         0x28
 379#define DSI1_INT_STAT           0x30
 380#define DSI1_INT_EN             0x34
 381/* State reporting bits.  These mostly behave like INT_STAT, where
 382 * writing a 1 clears the bit.
 383 */
 384#define DSI1_STAT               0x38
 385# define DSI1_STAT_PHY_D3_ULPS          BIT(31)
 386# define DSI1_STAT_PHY_D3_STOP          BIT(30)
 387# define DSI1_STAT_PHY_D2_ULPS          BIT(29)
 388# define DSI1_STAT_PHY_D2_STOP          BIT(28)
 389# define DSI1_STAT_PHY_D1_ULPS          BIT(27)
 390# define DSI1_STAT_PHY_D1_STOP          BIT(26)
 391# define DSI1_STAT_PHY_D0_ULPS          BIT(25)
 392# define DSI1_STAT_PHY_D0_STOP          BIT(24)
 393# define DSI1_STAT_FIFO_ERR             BIT(23)
 394# define DSI1_STAT_PHY_RXLPDT           BIT(22)
 395# define DSI1_STAT_PHY_RXTRIG           BIT(21)
 396# define DSI1_STAT_PHY_D0_LPDT          BIT(20)
 397/* Set when in forward direction */
 398# define DSI1_STAT_PHY_DIR              BIT(19)
 399# define DSI1_STAT_PHY_CLOCK_ULPS       BIT(18)
 400# define DSI1_STAT_PHY_CLOCK_HS         BIT(17)
 401# define DSI1_STAT_PHY_CLOCK_STOP       BIT(16)
 402# define DSI1_STAT_PR_TO                BIT(15)
 403# define DSI1_STAT_TA_TO                BIT(14)
 404# define DSI1_STAT_LPRX_TO              BIT(13)
 405# define DSI1_STAT_HSTX_TO              BIT(12)
 406# define DSI1_STAT_ERR_CONT_LP1         BIT(11)
 407# define DSI1_STAT_ERR_CONT_LP0         BIT(10)
 408# define DSI1_STAT_ERR_CONTROL          BIT(9)
 409# define DSI1_STAT_ERR_SYNC_ESC         BIT(8)
 410# define DSI1_STAT_RXPKT2               BIT(7)
 411# define DSI1_STAT_RXPKT1               BIT(6)
 412# define DSI1_STAT_TXPKT2_BUSY          BIT(5)
 413# define DSI1_STAT_TXPKT2_DONE          BIT(4)
 414# define DSI1_STAT_TXPKT2_END           BIT(3)
 415# define DSI1_STAT_TXPKT1_BUSY          BIT(2)
 416# define DSI1_STAT_TXPKT1_DONE          BIT(1)
 417# define DSI1_STAT_TXPKT1_END           BIT(0)
 418
 419#define DSI1_HSTX_TO_CNT        0x3c
 420#define DSI1_LPRX_TO_CNT        0x40
 421#define DSI1_TA_TO_CNT          0x44
 422#define DSI1_PR_TO_CNT          0x48
 423#define DSI1_PHYC               0x4c
 424
 425#define DSI1_HS_CLT0            0x50
 426# define DSI_HS_CLT0_CZERO_MASK         VC4_MASK(26, 18)
 427# define DSI_HS_CLT0_CZERO_SHIFT        18
 428# define DSI_HS_CLT0_CPRE_MASK          VC4_MASK(17, 9)
 429# define DSI_HS_CLT0_CPRE_SHIFT         9
 430# define DSI_HS_CLT0_CPREP_MASK         VC4_MASK(8, 0)
 431# define DSI_HS_CLT0_CPREP_SHIFT        0
 432
 433#define DSI1_HS_CLT1            0x54
 434# define DSI_HS_CLT1_CTRAIL_MASK        VC4_MASK(17, 9)
 435# define DSI_HS_CLT1_CTRAIL_SHIFT       9
 436# define DSI_HS_CLT1_CPOST_MASK         VC4_MASK(8, 0)
 437# define DSI_HS_CLT1_CPOST_SHIFT        0
 438
 439#define DSI1_HS_CLT2            0x58
 440# define DSI_HS_CLT2_WUP_MASK           VC4_MASK(23, 0)
 441# define DSI_HS_CLT2_WUP_SHIFT          0
 442
 443#define DSI1_HS_DLT3            0x5c
 444# define DSI_HS_DLT3_EXIT_MASK          VC4_MASK(26, 18)
 445# define DSI_HS_DLT3_EXIT_SHIFT         18
 446# define DSI_HS_DLT3_ZERO_MASK          VC4_MASK(17, 9)
 447# define DSI_HS_DLT3_ZERO_SHIFT         9
 448# define DSI_HS_DLT3_PRE_MASK           VC4_MASK(8, 0)
 449# define DSI_HS_DLT3_PRE_SHIFT          0
 450
 451#define DSI1_HS_DLT4            0x60
 452# define DSI_HS_DLT4_ANLAT_MASK         VC4_MASK(22, 18)
 453# define DSI_HS_DLT4_ANLAT_SHIFT        18
 454# define DSI_HS_DLT4_TRAIL_MASK         VC4_MASK(17, 9)
 455# define DSI_HS_DLT4_TRAIL_SHIFT        9
 456# define DSI_HS_DLT4_LPX_MASK           VC4_MASK(8, 0)
 457# define DSI_HS_DLT4_LPX_SHIFT          0
 458
 459#define DSI1_HS_DLT5            0x64
 460# define DSI_HS_DLT5_INIT_MASK          VC4_MASK(23, 0)
 461# define DSI_HS_DLT5_INIT_SHIFT         0
 462
 463#define DSI1_HS_DLT6            0x68
 464# define DSI_HS_DLT6_TA_GET_MASK        VC4_MASK(31, 24)
 465# define DSI_HS_DLT6_TA_GET_SHIFT       24
 466# define DSI_HS_DLT6_TA_SURE_MASK       VC4_MASK(23, 16)
 467# define DSI_HS_DLT6_TA_SURE_SHIFT      16
 468# define DSI_HS_DLT6_TA_GO_MASK         VC4_MASK(15, 8)
 469# define DSI_HS_DLT6_TA_GO_SHIFT        8
 470# define DSI_HS_DLT6_LP_LPX_MASK        VC4_MASK(7, 0)
 471# define DSI_HS_DLT6_LP_LPX_SHIFT       0
 472
 473#define DSI1_HS_DLT7            0x6c
 474# define DSI_HS_DLT7_LP_WUP_MASK        VC4_MASK(23, 0)
 475# define DSI_HS_DLT7_LP_WUP_SHIFT       0
 476
 477#define DSI1_PHY_AFEC0          0x70
 478
 479#define DSI1_PHY_AFEC1          0x74
 480# define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK       VC4_MASK(19, 16)
 481# define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT      16
 482# define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK       VC4_MASK(15, 12)
 483# define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT      12
 484# define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK       VC4_MASK(11, 8)
 485# define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT      8
 486# define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK       VC4_MASK(7, 4)
 487# define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT      4
 488# define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK        VC4_MASK(3, 0)
 489# define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT       0
 490
 491#define DSI1_TST_SEL            0x78
 492#define DSI1_TST_MON            0x7c
 493#define DSI1_PHY_TST1           0x80
 494#define DSI1_PHY_TST2           0x84
 495#define DSI1_PHY_FIFO_STAT      0x88
 496/* Actually, all registers in the range that aren't otherwise claimed
 497 * will return the ID.
 498 */
 499#define DSI1_ID                 0x8c
 500
 501/* General DSI hardware state. */
 502struct vc4_dsi {
 503        struct platform_device *pdev;
 504
 505        struct mipi_dsi_host dsi_host;
 506        struct drm_encoder *encoder;
 507        struct drm_bridge *bridge;
 508
 509        void __iomem *regs;
 510
 511        struct dma_chan *reg_dma_chan;
 512        dma_addr_t reg_dma_paddr;
 513        u32 *reg_dma_mem;
 514        dma_addr_t reg_paddr;
 515
 516        /* Whether we're on bcm2835's DSI0 or DSI1. */
 517        int port;
 518
 519        /* DSI channel for the panel we're connected to. */
 520        u32 channel;
 521        u32 lanes;
 522        u32 format;
 523        u32 divider;
 524        u32 mode_flags;
 525
 526        /* Input clock from CPRMAN to the digital PHY, for the DSI
 527         * escape clock.
 528         */
 529        struct clk *escape_clock;
 530
 531        /* Input clock to the analog PHY, used to generate the DSI bit
 532         * clock.
 533         */
 534        struct clk *pll_phy_clock;
 535
 536        /* HS Clocks generated within the DSI analog PHY. */
 537        struct clk_fixed_factor phy_clocks[3];
 538
 539        struct clk_hw_onecell_data *clk_onecell;
 540
 541        /* Pixel clock output to the pixelvalve, generated from the HS
 542         * clock.
 543         */
 544        struct clk *pixel_clock;
 545
 546        struct completion xfer_completion;
 547        int xfer_result;
 548};
 549
 550#define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
 551
 552static inline void
 553dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
 554{
 555        struct dma_chan *chan = dsi->reg_dma_chan;
 556        struct dma_async_tx_descriptor *tx;
 557        dma_cookie_t cookie;
 558        int ret;
 559
 560        /* DSI0 should be able to write normally. */
 561        if (!chan) {
 562                writel(val, dsi->regs + offset);
 563                return;
 564        }
 565
 566        *dsi->reg_dma_mem = val;
 567
 568        tx = chan->device->device_prep_dma_memcpy(chan,
 569                                                  dsi->reg_paddr + offset,
 570                                                  dsi->reg_dma_paddr,
 571                                                  4, 0);
 572        if (!tx) {
 573                DRM_ERROR("Failed to set up DMA register write\n");
 574                return;
 575        }
 576
 577        cookie = tx->tx_submit(tx);
 578        ret = dma_submit_error(cookie);
 579        if (ret) {
 580                DRM_ERROR("Failed to submit DMA: %d\n", ret);
 581                return;
 582        }
 583        ret = dma_sync_wait(chan, cookie);
 584        if (ret)
 585                DRM_ERROR("Failed to wait for DMA: %d\n", ret);
 586}
 587
 588#define DSI_READ(offset) readl(dsi->regs + (offset))
 589#define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
 590#define DSI_PORT_READ(offset) \
 591        DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset)
 592#define DSI_PORT_WRITE(offset, val) \
 593        DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val)
 594#define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit)
 595
 596/* VC4 DSI encoder KMS struct */
 597struct vc4_dsi_encoder {
 598        struct vc4_encoder base;
 599        struct vc4_dsi *dsi;
 600};
 601
 602static inline struct vc4_dsi_encoder *
 603to_vc4_dsi_encoder(struct drm_encoder *encoder)
 604{
 605        return container_of(encoder, struct vc4_dsi_encoder, base.base);
 606}
 607
 608#define DSI_REG(reg) { reg, #reg }
 609static const struct {
 610        u32 reg;
 611        const char *name;
 612} dsi0_regs[] = {
 613        DSI_REG(DSI0_CTRL),
 614        DSI_REG(DSI0_STAT),
 615        DSI_REG(DSI0_HSTX_TO_CNT),
 616        DSI_REG(DSI0_LPRX_TO_CNT),
 617        DSI_REG(DSI0_TA_TO_CNT),
 618        DSI_REG(DSI0_PR_TO_CNT),
 619        DSI_REG(DSI0_DISP0_CTRL),
 620        DSI_REG(DSI0_DISP1_CTRL),
 621        DSI_REG(DSI0_INT_STAT),
 622        DSI_REG(DSI0_INT_EN),
 623        DSI_REG(DSI0_PHYC),
 624        DSI_REG(DSI0_HS_CLT0),
 625        DSI_REG(DSI0_HS_CLT1),
 626        DSI_REG(DSI0_HS_CLT2),
 627        DSI_REG(DSI0_HS_DLT3),
 628        DSI_REG(DSI0_HS_DLT4),
 629        DSI_REG(DSI0_HS_DLT5),
 630        DSI_REG(DSI0_HS_DLT6),
 631        DSI_REG(DSI0_HS_DLT7),
 632        DSI_REG(DSI0_PHY_AFEC0),
 633        DSI_REG(DSI0_PHY_AFEC1),
 634        DSI_REG(DSI0_ID),
 635};
 636
 637static const struct {
 638        u32 reg;
 639        const char *name;
 640} dsi1_regs[] = {
 641        DSI_REG(DSI1_CTRL),
 642        DSI_REG(DSI1_STAT),
 643        DSI_REG(DSI1_HSTX_TO_CNT),
 644        DSI_REG(DSI1_LPRX_TO_CNT),
 645        DSI_REG(DSI1_TA_TO_CNT),
 646        DSI_REG(DSI1_PR_TO_CNT),
 647        DSI_REG(DSI1_DISP0_CTRL),
 648        DSI_REG(DSI1_DISP1_CTRL),
 649        DSI_REG(DSI1_INT_STAT),
 650        DSI_REG(DSI1_INT_EN),
 651        DSI_REG(DSI1_PHYC),
 652        DSI_REG(DSI1_HS_CLT0),
 653        DSI_REG(DSI1_HS_CLT1),
 654        DSI_REG(DSI1_HS_CLT2),
 655        DSI_REG(DSI1_HS_DLT3),
 656        DSI_REG(DSI1_HS_DLT4),
 657        DSI_REG(DSI1_HS_DLT5),
 658        DSI_REG(DSI1_HS_DLT6),
 659        DSI_REG(DSI1_HS_DLT7),
 660        DSI_REG(DSI1_PHY_AFEC0),
 661        DSI_REG(DSI1_PHY_AFEC1),
 662        DSI_REG(DSI1_ID),
 663};
 664
 665static void vc4_dsi_dump_regs(struct vc4_dsi *dsi)
 666{
 667        int i;
 668
 669        if (dsi->port == 0) {
 670                for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
 671                        DRM_INFO("0x%04x (%s): 0x%08x\n",
 672                                 dsi0_regs[i].reg, dsi0_regs[i].name,
 673                                 DSI_READ(dsi0_regs[i].reg));
 674                }
 675        } else {
 676                for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
 677                        DRM_INFO("0x%04x (%s): 0x%08x\n",
 678                                 dsi1_regs[i].reg, dsi1_regs[i].name,
 679                                 DSI_READ(dsi1_regs[i].reg));
 680                }
 681        }
 682}
 683
 684#ifdef CONFIG_DEBUG_FS
 685int vc4_dsi_debugfs_regs(struct seq_file *m, void *unused)
 686{
 687        struct drm_info_node *node = (struct drm_info_node *)m->private;
 688        struct drm_device *drm = node->minor->dev;
 689        struct vc4_dev *vc4 = to_vc4_dev(drm);
 690        int dsi_index = (uintptr_t)node->info_ent->data;
 691        struct vc4_dsi *dsi = (dsi_index == 1 ? vc4->dsi1 : NULL);
 692        int i;
 693
 694        if (!dsi)
 695                return 0;
 696
 697        if (dsi->port == 0) {
 698                for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
 699                        seq_printf(m, "0x%04x (%s): 0x%08x\n",
 700                                   dsi0_regs[i].reg, dsi0_regs[i].name,
 701                                   DSI_READ(dsi0_regs[i].reg));
 702                }
 703        } else {
 704                for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
 705                        seq_printf(m, "0x%04x (%s): 0x%08x\n",
 706                                   dsi1_regs[i].reg, dsi1_regs[i].name,
 707                                   DSI_READ(dsi1_regs[i].reg));
 708                }
 709        }
 710
 711        return 0;
 712}
 713#endif
 714
 715static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder)
 716{
 717        drm_encoder_cleanup(encoder);
 718}
 719
 720static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
 721        .destroy = vc4_dsi_encoder_destroy,
 722};
 723
 724static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
 725{
 726        u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
 727
 728        if (latch)
 729                afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
 730        else
 731                afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
 732
 733        DSI_PORT_WRITE(PHY_AFEC0, afec0);
 734}
 735
 736/* Enters or exits Ultra Low Power State. */
 737static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
 738{
 739        bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
 740        u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
 741                         DSI_PHYC_DLANE0_ULPS |
 742                         (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
 743                         (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
 744                         (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
 745        u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
 746                         DSI1_STAT_PHY_D0_ULPS |
 747                         (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
 748                         (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
 749                         (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
 750        u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
 751                         DSI1_STAT_PHY_D0_STOP |
 752                         (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
 753                         (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
 754                         (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
 755        int ret;
 756        bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) &
 757                                       DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS));
 758
 759        if (ulps == ulps_currently_enabled)
 760                return;
 761
 762        DSI_PORT_WRITE(STAT, stat_ulps);
 763        DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
 764        ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
 765        if (ret) {
 766                dev_warn(&dsi->pdev->dev,
 767                         "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
 768                         DSI_PORT_READ(STAT));
 769                DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
 770                vc4_dsi_latch_ulps(dsi, false);
 771                return;
 772        }
 773
 774        /* The DSI module can't be disabled while the module is
 775         * generating ULPS state.  So, to be able to disable the
 776         * module, we have the AFE latch the ULPS state and continue
 777         * on to having the module enter STOP.
 778         */
 779        vc4_dsi_latch_ulps(dsi, ulps);
 780
 781        DSI_PORT_WRITE(STAT, stat_stop);
 782        DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
 783        ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
 784        if (ret) {
 785                dev_warn(&dsi->pdev->dev,
 786                         "Timeout waiting for DSI STOP entry: STAT 0x%08x",
 787                         DSI_PORT_READ(STAT));
 788                DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
 789                return;
 790        }
 791}
 792
 793static u32
 794dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
 795{
 796        /* The HS timings have to be rounded up to a multiple of 8
 797         * because we're using the byte clock.
 798         */
 799        return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
 800}
 801
 802/* ESC always runs at 100Mhz. */
 803#define ESC_TIME_NS 10
 804
 805static u32
 806dsi_esc_timing(u32 ns)
 807{
 808        return DIV_ROUND_UP(ns, ESC_TIME_NS);
 809}
 810
 811static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
 812{
 813        struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
 814        struct vc4_dsi *dsi = vc4_encoder->dsi;
 815        struct device *dev = &dsi->pdev->dev;
 816
 817        vc4_dsi_ulps(dsi, true);
 818
 819        clk_disable_unprepare(dsi->pll_phy_clock);
 820        clk_disable_unprepare(dsi->escape_clock);
 821        clk_disable_unprepare(dsi->pixel_clock);
 822
 823        pm_runtime_put(dev);
 824}
 825
 826/* Extends the mode's blank intervals to handle BCM2835's integer-only
 827 * DSI PLL divider.
 828 *
 829 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
 830 * driver since most peripherals are hanging off of the PLLD_PER
 831 * divider.  PLLD_DSI1, which drives our DSI bit clock (and therefore
 832 * the pixel clock), only has an integer divider off of DSI.
 833 *
 834 * To get our panel mode to refresh at the expected 60Hz, we need to
 835 * extend the horizontal blank time.  This means we drive a
 836 * higher-than-expected clock rate to the panel, but that's what the
 837 * firmware does too.
 838 */
 839static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
 840                                       const struct drm_display_mode *mode,
 841                                       struct drm_display_mode *adjusted_mode)
 842{
 843        struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
 844        struct vc4_dsi *dsi = vc4_encoder->dsi;
 845        struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
 846        unsigned long parent_rate = clk_get_rate(phy_parent);
 847        unsigned long pixel_clock_hz = mode->clock * 1000;
 848        unsigned long pll_clock = pixel_clock_hz * dsi->divider;
 849        int divider;
 850
 851        /* Find what divider gets us a faster clock than the requested
 852         * pixel clock.
 853         */
 854        for (divider = 1; divider < 8; divider++) {
 855                if (parent_rate / divider < pll_clock) {
 856                        divider--;
 857                        break;
 858                }
 859        }
 860
 861        /* Now that we've picked a PLL divider, calculate back to its
 862         * pixel clock.
 863         */
 864        pll_clock = parent_rate / divider;
 865        pixel_clock_hz = pll_clock / dsi->divider;
 866
 867        adjusted_mode->clock = pixel_clock_hz / 1000;
 868
 869        /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
 870        adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
 871                                mode->clock;
 872        adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
 873        adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
 874
 875        return true;
 876}
 877
 878static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
 879{
 880        struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
 881        struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
 882        struct vc4_dsi *dsi = vc4_encoder->dsi;
 883        struct device *dev = &dsi->pdev->dev;
 884        bool debug_dump_regs = false;
 885        unsigned long hs_clock;
 886        u32 ui_ns;
 887        /* Minimum LP state duration in escape clock cycles. */
 888        u32 lpx = dsi_esc_timing(60);
 889        unsigned long pixel_clock_hz = mode->clock * 1000;
 890        unsigned long dsip_clock;
 891        unsigned long phy_clock;
 892        int ret;
 893
 894        ret = pm_runtime_get_sync(dev);
 895        if (ret) {
 896                DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port);
 897                return;
 898        }
 899
 900        if (debug_dump_regs) {
 901                DRM_INFO("DSI regs before:\n");
 902                vc4_dsi_dump_regs(dsi);
 903        }
 904
 905        /* Round up the clk_set_rate() request slightly, since
 906         * PLLD_DSI1 is an integer divider and its rate selection will
 907         * never round up.
 908         */
 909        phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
 910        ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
 911        if (ret) {
 912                dev_err(&dsi->pdev->dev,
 913                        "Failed to set phy clock to %ld: %d\n", phy_clock, ret);
 914        }
 915
 916        /* Reset the DSI and all its fifos. */
 917        DSI_PORT_WRITE(CTRL,
 918                       DSI_CTRL_SOFT_RESET_CFG |
 919                       DSI_PORT_BIT(CTRL_RESET_FIFOS));
 920
 921        DSI_PORT_WRITE(CTRL,
 922                       DSI_CTRL_HSDT_EOT_DISABLE |
 923                       DSI_CTRL_RX_LPDT_EOT_DISABLE);
 924
 925        /* Clear all stat bits so we see what has happened during enable. */
 926        DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
 927
 928        /* Set AFE CTR00/CTR1 to release powerdown of analog. */
 929        if (dsi->port == 0) {
 930                u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
 931                             VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
 932
 933                if (dsi->lanes < 2)
 934                        afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
 935
 936                if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
 937                        afec0 |= DSI0_PHY_AFEC0_RESET;
 938
 939                DSI_PORT_WRITE(PHY_AFEC0, afec0);
 940
 941                DSI_PORT_WRITE(PHY_AFEC1,
 942                               VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE1) |
 943                               VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE0) |
 944                               VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_CLANE));
 945        } else {
 946                u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
 947                             VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
 948                             VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
 949                             VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
 950                             VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
 951                             VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
 952                             VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
 953
 954                if (dsi->lanes < 4)
 955                        afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
 956                if (dsi->lanes < 3)
 957                        afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
 958                if (dsi->lanes < 2)
 959                        afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
 960
 961                afec0 |= DSI1_PHY_AFEC0_RESET;
 962
 963                DSI_PORT_WRITE(PHY_AFEC0, afec0);
 964
 965                DSI_PORT_WRITE(PHY_AFEC1, 0);
 966
 967                /* AFEC reset hold time */
 968                mdelay(1);
 969        }
 970
 971        ret = clk_prepare_enable(dsi->escape_clock);
 972        if (ret) {
 973                DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
 974                return;
 975        }
 976
 977        ret = clk_prepare_enable(dsi->pll_phy_clock);
 978        if (ret) {
 979                DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
 980                return;
 981        }
 982
 983        hs_clock = clk_get_rate(dsi->pll_phy_clock);
 984
 985        /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
 986         * not the pixel clock rate.  DSIxP take from the APHY's byte,
 987         * DDR2, or DDR4 clock (we use byte) and feed into the PV at
 988         * that rate.  Separately, a value derived from PIX_CLK_DIV
 989         * and HS_CLKC is fed into the PV to divide down to the actual
 990         * pixel clock for pushing pixels into DSI.
 991         */
 992        dsip_clock = phy_clock / 8;
 993        ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
 994        if (ret) {
 995                dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
 996                        dsip_clock, ret);
 997        }
 998
 999        ret = clk_prepare_enable(dsi->pixel_clock);
1000        if (ret) {
1001                DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
1002                return;
1003        }
1004
1005        /* How many ns one DSI unit interval is.  Note that the clock
1006         * is DDR, so there's an extra divide by 2.
1007         */
1008        ui_ns = DIV_ROUND_UP(500000000, hs_clock);
1009
1010        DSI_PORT_WRITE(HS_CLT0,
1011                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
1012                                     DSI_HS_CLT0_CZERO) |
1013                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
1014                                     DSI_HS_CLT0_CPRE) |
1015                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
1016                                     DSI_HS_CLT0_CPREP));
1017
1018        DSI_PORT_WRITE(HS_CLT1,
1019                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
1020                                     DSI_HS_CLT1_CTRAIL) |
1021                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
1022                                     DSI_HS_CLT1_CPOST));
1023
1024        DSI_PORT_WRITE(HS_CLT2,
1025                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
1026                                     DSI_HS_CLT2_WUP));
1027
1028        DSI_PORT_WRITE(HS_DLT3,
1029                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
1030                                     DSI_HS_DLT3_EXIT) |
1031                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
1032                                     DSI_HS_DLT3_ZERO) |
1033                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
1034                                     DSI_HS_DLT3_PRE));
1035
1036        DSI_PORT_WRITE(HS_DLT4,
1037                       VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
1038                                     DSI_HS_DLT4_LPX) |
1039                       VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
1040                                         dsi_hs_timing(ui_ns, 60, 4)),
1041                                     DSI_HS_DLT4_TRAIL) |
1042                       VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
1043
1044        /* T_INIT is how long STOP is driven after power-up to
1045         * indicate to the slave (also coming out of power-up) that
1046         * master init is complete, and should be greater than the
1047         * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE.  The
1048         * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
1049         * T_INIT,SLAVE, while allowing protocols on top of it to give
1050         * greater minimums.  The vc4 firmware uses an extremely
1051         * conservative 5ms, and we maintain that here.
1052         */
1053        DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
1054                                                            5 * 1000 * 1000, 0),
1055                                              DSI_HS_DLT5_INIT));
1056
1057        DSI_PORT_WRITE(HS_DLT6,
1058                       VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
1059                       VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
1060                       VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
1061                       VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1062
1063        DSI_PORT_WRITE(HS_DLT7,
1064                       VC4_SET_FIELD(dsi_esc_timing(1000000),
1065                                     DSI_HS_DLT7_LP_WUP));
1066
1067        DSI_PORT_WRITE(PHYC,
1068                       DSI_PHYC_DLANE0_ENABLE |
1069                       (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1070                       (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1071                       (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1072                       DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1073                       ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1074                        0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1075                       (dsi->port == 0 ?
1076                        VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1077                        VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1078
1079        DSI_PORT_WRITE(CTRL,
1080                       DSI_PORT_READ(CTRL) |
1081                       DSI_CTRL_CAL_BYTE);
1082
1083        /* HS timeout in HS clock cycles: disabled. */
1084        DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1085        /* LP receive timeout in HS clocks. */
1086        DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1087        /* Bus turnaround timeout */
1088        DSI_PORT_WRITE(TA_TO_CNT, 100000);
1089        /* Display reset sequence timeout */
1090        DSI_PORT_WRITE(PR_TO_CNT, 100000);
1091
1092        if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1093                DSI_PORT_WRITE(DISP0_CTRL,
1094                               VC4_SET_FIELD(dsi->divider,
1095                                             DSI_DISP0_PIX_CLK_DIV) |
1096                               VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
1097                               VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1098                                             DSI_DISP0_LP_STOP_CTRL) |
1099                               DSI_DISP0_ST_END |
1100                               DSI_DISP0_ENABLE);
1101        } else {
1102                DSI_PORT_WRITE(DISP0_CTRL,
1103                               DSI_DISP0_COMMAND_MODE |
1104                               DSI_DISP0_ENABLE);
1105        }
1106
1107        /* Set up DISP1 for transferring long command payloads through
1108         * the pixfifo.
1109         */
1110        DSI_PORT_WRITE(DISP1_CTRL,
1111                       VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1112                                     DSI_DISP1_PFORMAT) |
1113                       DSI_DISP1_ENABLE);
1114
1115        /* Ungate the block. */
1116        if (dsi->port == 0)
1117                DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1118        else
1119                DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1120
1121        /* Bring AFE out of reset. */
1122        if (dsi->port == 0) {
1123        } else {
1124                DSI_PORT_WRITE(PHY_AFEC0,
1125                               DSI_PORT_READ(PHY_AFEC0) &
1126                               ~DSI1_PHY_AFEC0_RESET);
1127        }
1128
1129        vc4_dsi_ulps(dsi, false);
1130
1131        if (debug_dump_regs) {
1132                DRM_INFO("DSI regs after:\n");
1133                vc4_dsi_dump_regs(dsi);
1134        }
1135}
1136
1137static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1138                                     const struct mipi_dsi_msg *msg)
1139{
1140        struct vc4_dsi *dsi = host_to_dsi(host);
1141        struct mipi_dsi_packet packet;
1142        u32 pkth = 0, pktc = 0;
1143        int i, ret;
1144        bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1145        u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1146
1147        mipi_dsi_create_packet(&packet, msg);
1148
1149        pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1150        pkth |= VC4_SET_FIELD(packet.header[1] |
1151                              (packet.header[2] << 8),
1152                              DSI_TXPKT1H_BC_PARAM);
1153        if (is_long) {
1154                /* Divide data across the various FIFOs we have available.
1155                 * The command FIFO takes byte-oriented data, but is of
1156                 * limited size. The pixel FIFO (never actually used for
1157                 * pixel data in reality) is word oriented, and substantially
1158                 * larger. So, we use the pixel FIFO for most of the data,
1159                 * sending the residual bytes in the command FIFO at the start.
1160                 *
1161                 * With this arrangement, the command FIFO will never get full.
1162                 */
1163                if (packet.payload_length <= 16) {
1164                        cmd_fifo_len = packet.payload_length;
1165                        pix_fifo_len = 0;
1166                } else {
1167                        cmd_fifo_len = (packet.payload_length %
1168                                        DSI_PIX_FIFO_WIDTH);
1169                        pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1170                                        DSI_PIX_FIFO_WIDTH);
1171                }
1172
1173                WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1174
1175                pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1176        }
1177
1178        if (msg->rx_len) {
1179                pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1180                                      DSI_TXPKT1C_CMD_CTRL);
1181        } else {
1182                pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1183                                      DSI_TXPKT1C_CMD_CTRL);
1184        }
1185
1186        for (i = 0; i < cmd_fifo_len; i++)
1187                DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1188        for (i = 0; i < pix_fifo_len; i++) {
1189                const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1190
1191                DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1192                               pix[0] |
1193                               pix[1] << 8 |
1194                               pix[2] << 16 |
1195                               pix[3] << 24);
1196        }
1197
1198        if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1199                pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1200        if (is_long)
1201                pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1202
1203        /* Send one copy of the packet.  Larger repeats are used for pixel
1204         * data in command mode.
1205         */
1206        pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1207
1208        pktc |= DSI_TXPKT1C_CMD_EN;
1209        if (pix_fifo_len) {
1210                pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1211                                      DSI_TXPKT1C_DISPLAY_NO);
1212        } else {
1213                pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1214                                      DSI_TXPKT1C_DISPLAY_NO);
1215        }
1216
1217        /* Enable the appropriate interrupt for the transfer completion. */
1218        dsi->xfer_result = 0;
1219        reinit_completion(&dsi->xfer_completion);
1220        DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1221        if (msg->rx_len) {
1222                DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1223                                        DSI1_INT_PHY_DIR_RTF));
1224        } else {
1225                DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1226                                        DSI1_INT_TXPKT1_DONE));
1227        }
1228
1229        /* Send the packet. */
1230        DSI_PORT_WRITE(TXPKT1H, pkth);
1231        DSI_PORT_WRITE(TXPKT1C, pktc);
1232
1233        if (!wait_for_completion_timeout(&dsi->xfer_completion,
1234                                         msecs_to_jiffies(1000))) {
1235                dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1236                dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1237                        DSI_PORT_READ(INT_STAT));
1238                ret = -ETIMEDOUT;
1239        } else {
1240                ret = dsi->xfer_result;
1241        }
1242
1243        DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1244
1245        if (ret)
1246                goto reset_fifo_and_return;
1247
1248        if (ret == 0 && msg->rx_len) {
1249                u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1250                u8 *msg_rx = msg->rx_buf;
1251
1252                if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1253                        u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1254                                                  DSI_RXPKT1H_BC_PARAM);
1255
1256                        if (rxlen != msg->rx_len) {
1257                                DRM_ERROR("DSI returned %db, expecting %db\n",
1258                                          rxlen, (int)msg->rx_len);
1259                                ret = -ENXIO;
1260                                goto reset_fifo_and_return;
1261                        }
1262
1263                        for (i = 0; i < msg->rx_len; i++)
1264                                msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1265                } else {
1266                        /* FINISHME: Handle AWER */
1267
1268                        msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1269                                                  DSI_RXPKT1H_SHORT_0);
1270                        if (msg->rx_len > 1) {
1271                                msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1272                                                          DSI_RXPKT1H_SHORT_1);
1273                        }
1274                }
1275        }
1276
1277        return ret;
1278
1279reset_fifo_and_return:
1280        DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
1281
1282        DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1283        udelay(1);
1284        DSI_PORT_WRITE(CTRL,
1285                       DSI_PORT_READ(CTRL) |
1286                       DSI_PORT_BIT(CTRL_RESET_FIFOS));
1287
1288        DSI_PORT_WRITE(TXPKT1C, 0);
1289        DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1290        return ret;
1291}
1292
1293static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1294                               struct mipi_dsi_device *device)
1295{
1296        struct vc4_dsi *dsi = host_to_dsi(host);
1297
1298        dsi->lanes = device->lanes;
1299        dsi->channel = device->channel;
1300        dsi->mode_flags = device->mode_flags;
1301
1302        switch (device->format) {
1303        case MIPI_DSI_FMT_RGB888:
1304                dsi->format = DSI_PFORMAT_RGB888;
1305                dsi->divider = 24 / dsi->lanes;
1306                break;
1307        case MIPI_DSI_FMT_RGB666:
1308                dsi->format = DSI_PFORMAT_RGB666;
1309                dsi->divider = 24 / dsi->lanes;
1310                break;
1311        case MIPI_DSI_FMT_RGB666_PACKED:
1312                dsi->format = DSI_PFORMAT_RGB666_PACKED;
1313                dsi->divider = 18 / dsi->lanes;
1314                break;
1315        case MIPI_DSI_FMT_RGB565:
1316                dsi->format = DSI_PFORMAT_RGB565;
1317                dsi->divider = 16 / dsi->lanes;
1318                break;
1319        default:
1320                dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
1321                        dsi->format);
1322                return 0;
1323        }
1324
1325        if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1326                dev_err(&dsi->pdev->dev,
1327                        "Only VIDEO mode panels supported currently.\n");
1328                return 0;
1329        }
1330
1331        return 0;
1332}
1333
1334static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1335                               struct mipi_dsi_device *device)
1336{
1337        return 0;
1338}
1339
1340static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1341        .attach = vc4_dsi_host_attach,
1342        .detach = vc4_dsi_host_detach,
1343        .transfer = vc4_dsi_host_transfer,
1344};
1345
1346static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
1347        .disable = vc4_dsi_encoder_disable,
1348        .enable = vc4_dsi_encoder_enable,
1349        .mode_fixup = vc4_dsi_encoder_mode_fixup,
1350};
1351
1352static const struct of_device_id vc4_dsi_dt_match[] = {
1353        { .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 },
1354        {}
1355};
1356
1357static void dsi_handle_error(struct vc4_dsi *dsi,
1358                             irqreturn_t *ret, u32 stat, u32 bit,
1359                             const char *type)
1360{
1361        if (!(stat & bit))
1362                return;
1363
1364        DRM_ERROR("DSI%d: %s error\n", dsi->port, type);
1365        *ret = IRQ_HANDLED;
1366}
1367
1368/*
1369 * Initial handler for port 1 where we need the reg_dma workaround.
1370 * The register DMA writes sleep, so we can't do it in the top half.
1371 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
1372 * parent interrupt contrller until our interrupt thread is done.
1373 */
1374static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
1375{
1376        struct vc4_dsi *dsi = data;
1377        u32 stat = DSI_PORT_READ(INT_STAT);
1378
1379        if (!stat)
1380                return IRQ_NONE;
1381
1382        return IRQ_WAKE_THREAD;
1383}
1384
1385/*
1386 * Normal IRQ handler for port 0, or the threaded IRQ handler for port
1387 * 1 where we need the reg_dma workaround.
1388 */
1389static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1390{
1391        struct vc4_dsi *dsi = data;
1392        u32 stat = DSI_PORT_READ(INT_STAT);
1393        irqreturn_t ret = IRQ_NONE;
1394
1395        DSI_PORT_WRITE(INT_STAT, stat);
1396
1397        dsi_handle_error(dsi, &ret, stat,
1398                         DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
1399        dsi_handle_error(dsi, &ret, stat,
1400                         DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
1401        dsi_handle_error(dsi, &ret, stat,
1402                         DSI1_INT_ERR_CONT_LP0, "LP0 contention");
1403        dsi_handle_error(dsi, &ret, stat,
1404                         DSI1_INT_ERR_CONT_LP1, "LP1 contention");
1405        dsi_handle_error(dsi, &ret, stat,
1406                         DSI1_INT_HSTX_TO, "HSTX timeout");
1407        dsi_handle_error(dsi, &ret, stat,
1408                         DSI1_INT_LPRX_TO, "LPRX timeout");
1409        dsi_handle_error(dsi, &ret, stat,
1410                         DSI1_INT_TA_TO, "turnaround timeout");
1411        dsi_handle_error(dsi, &ret, stat,
1412                         DSI1_INT_PR_TO, "peripheral reset timeout");
1413
1414        if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
1415                complete(&dsi->xfer_completion);
1416                ret = IRQ_HANDLED;
1417        } else if (stat & DSI1_INT_HSTX_TO) {
1418                complete(&dsi->xfer_completion);
1419                dsi->xfer_result = -ETIMEDOUT;
1420                ret = IRQ_HANDLED;
1421        }
1422
1423        return ret;
1424}
1425
1426/**
1427 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1428 * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1429 * @dsi: DSI encoder
1430 */
1431static int
1432vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1433{
1434        struct device *dev = &dsi->pdev->dev;
1435        const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1436        static const struct {
1437                const char *dsi0_name, *dsi1_name;
1438                int div;
1439        } phy_clocks[] = {
1440                { "dsi0_byte", "dsi1_byte", 8 },
1441                { "dsi0_ddr2", "dsi1_ddr2", 4 },
1442                { "dsi0_ddr", "dsi1_ddr", 2 },
1443        };
1444        int i;
1445
1446        dsi->clk_onecell = devm_kzalloc(dev,
1447                                        sizeof(*dsi->clk_onecell) +
1448                                        ARRAY_SIZE(phy_clocks) *
1449                                        sizeof(struct clk_hw *),
1450                                        GFP_KERNEL);
1451        if (!dsi->clk_onecell)
1452                return -ENOMEM;
1453        dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
1454
1455        for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1456                struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1457                struct clk_init_data init;
1458                int ret;
1459
1460                /* We just use core fixed factor clock ops for the PHY
1461                 * clocks.  The clocks are actually gated by the
1462                 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1463                 * setting if we use the DDR/DDR2 clocks.  However,
1464                 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1465                 * setting both our parent DSI PLL's rate and this
1466                 * clock's rate, so it knows if DDR/DDR2 are going to
1467                 * be used and could enable the gates itself.
1468                 */
1469                fix->mult = 1;
1470                fix->div = phy_clocks[i].div;
1471                fix->hw.init = &init;
1472
1473                memset(&init, 0, sizeof(init));
1474                init.parent_names = &parent_name;
1475                init.num_parents = 1;
1476                if (dsi->port == 1)
1477                        init.name = phy_clocks[i].dsi1_name;
1478                else
1479                        init.name = phy_clocks[i].dsi0_name;
1480                init.ops = &clk_fixed_factor_ops;
1481
1482                ret = devm_clk_hw_register(dev, &fix->hw);
1483                if (ret)
1484                        return ret;
1485
1486                dsi->clk_onecell->hws[i] = &fix->hw;
1487        }
1488
1489        return of_clk_add_hw_provider(dev->of_node,
1490                                      of_clk_hw_onecell_get,
1491                                      dsi->clk_onecell);
1492}
1493
1494static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1495{
1496        struct platform_device *pdev = to_platform_device(dev);
1497        struct drm_device *drm = dev_get_drvdata(master);
1498        struct vc4_dev *vc4 = to_vc4_dev(drm);
1499        struct vc4_dsi *dsi = dev_get_drvdata(dev);
1500        struct vc4_dsi_encoder *vc4_dsi_encoder;
1501        struct drm_panel *panel;
1502        const struct of_device_id *match;
1503        dma_cap_mask_t dma_mask;
1504        int ret;
1505
1506        match = of_match_device(vc4_dsi_dt_match, dev);
1507        if (!match)
1508                return -ENODEV;
1509
1510        dsi->port = (uintptr_t)match->data;
1511
1512        vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
1513                                       GFP_KERNEL);
1514        if (!vc4_dsi_encoder)
1515                return -ENOMEM;
1516        vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
1517        vc4_dsi_encoder->dsi = dsi;
1518        dsi->encoder = &vc4_dsi_encoder->base.base;
1519
1520        dsi->regs = vc4_ioremap_regs(pdev, 0);
1521        if (IS_ERR(dsi->regs))
1522                return PTR_ERR(dsi->regs);
1523
1524        if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1525                dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1526                        DSI_PORT_READ(ID), DSI_ID_VALUE);
1527                return -ENODEV;
1528        }
1529
1530        /* DSI1 has a broken AXI slave that doesn't respond to writes
1531         * from the ARM.  It does handle writes from the DMA engine,
1532         * so set up a channel for talking to it.
1533         */
1534        if (dsi->port == 1) {
1535                dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1536                                                      &dsi->reg_dma_paddr,
1537                                                      GFP_KERNEL);
1538                if (!dsi->reg_dma_mem) {
1539                        DRM_ERROR("Failed to get DMA memory\n");
1540                        return -ENOMEM;
1541                }
1542
1543                dma_cap_zero(dma_mask);
1544                dma_cap_set(DMA_MEMCPY, dma_mask);
1545                dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1546                if (IS_ERR(dsi->reg_dma_chan)) {
1547                        ret = PTR_ERR(dsi->reg_dma_chan);
1548                        if (ret != -EPROBE_DEFER)
1549                                DRM_ERROR("Failed to get DMA channel: %d\n",
1550                                          ret);
1551                        return ret;
1552                }
1553
1554                /* Get the physical address of the device's registers.  The
1555                 * struct resource for the regs gives us the bus address
1556                 * instead.
1557                 */
1558                dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1559                                                             0, NULL, NULL));
1560        }
1561
1562        init_completion(&dsi->xfer_completion);
1563        /* At startup enable error-reporting interrupts and nothing else. */
1564        DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1565        /* Clear any existing interrupt state. */
1566        DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1567
1568        if (dsi->reg_dma_mem)
1569                ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
1570                                                vc4_dsi_irq_defer_to_thread_handler,
1571                                                vc4_dsi_irq_handler,
1572                                                IRQF_ONESHOT,
1573                                                "vc4 dsi", dsi);
1574        else
1575                ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1576                                       vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1577        if (ret) {
1578                if (ret != -EPROBE_DEFER)
1579                        dev_err(dev, "Failed to get interrupt: %d\n", ret);
1580                return ret;
1581        }
1582
1583        dsi->escape_clock = devm_clk_get(dev, "escape");
1584        if (IS_ERR(dsi->escape_clock)) {
1585                ret = PTR_ERR(dsi->escape_clock);
1586                if (ret != -EPROBE_DEFER)
1587                        dev_err(dev, "Failed to get escape clock: %d\n", ret);
1588                return ret;
1589        }
1590
1591        dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1592        if (IS_ERR(dsi->pll_phy_clock)) {
1593                ret = PTR_ERR(dsi->pll_phy_clock);
1594                if (ret != -EPROBE_DEFER)
1595                        dev_err(dev, "Failed to get phy clock: %d\n", ret);
1596                return ret;
1597        }
1598
1599        dsi->pixel_clock = devm_clk_get(dev, "pixel");
1600        if (IS_ERR(dsi->pixel_clock)) {
1601                ret = PTR_ERR(dsi->pixel_clock);
1602                if (ret != -EPROBE_DEFER)
1603                        dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1604                return ret;
1605        }
1606
1607        ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0,
1608                                          &panel, &dsi->bridge);
1609        if (ret)
1610                return ret;
1611
1612        if (panel) {
1613                dsi->bridge = devm_drm_panel_bridge_add(dev, panel,
1614                                                        DRM_MODE_CONNECTOR_DSI);
1615                if (IS_ERR(dsi->bridge))
1616                        return PTR_ERR(dsi->bridge);
1617        }
1618
1619        /* The esc clock rate is supposed to always be 100Mhz. */
1620        ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1621        if (ret) {
1622                dev_err(dev, "Failed to set esc clock: %d\n", ret);
1623                return ret;
1624        }
1625
1626        ret = vc4_dsi_init_phy_clocks(dsi);
1627        if (ret)
1628                return ret;
1629
1630        if (dsi->port == 1)
1631                vc4->dsi1 = dsi;
1632
1633        drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs,
1634                         DRM_MODE_ENCODER_DSI, NULL);
1635        drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
1636
1637        ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL);
1638        if (ret) {
1639                dev_err(dev, "bridge attach failed: %d\n", ret);
1640                return ret;
1641        }
1642
1643        pm_runtime_enable(dev);
1644
1645        return 0;
1646}
1647
1648static void vc4_dsi_unbind(struct device *dev, struct device *master,
1649                           void *data)
1650{
1651        struct drm_device *drm = dev_get_drvdata(master);
1652        struct vc4_dev *vc4 = to_vc4_dev(drm);
1653        struct vc4_dsi *dsi = dev_get_drvdata(dev);
1654
1655        pm_runtime_disable(dev);
1656
1657        vc4_dsi_encoder_destroy(dsi->encoder);
1658
1659        if (dsi->port == 1)
1660                vc4->dsi1 = NULL;
1661}
1662
1663static const struct component_ops vc4_dsi_ops = {
1664        .bind   = vc4_dsi_bind,
1665        .unbind = vc4_dsi_unbind,
1666};
1667
1668static int vc4_dsi_dev_probe(struct platform_device *pdev)
1669{
1670        struct device *dev = &pdev->dev;
1671        struct vc4_dsi *dsi;
1672        int ret;
1673
1674        dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
1675        if (!dsi)
1676                return -ENOMEM;
1677        dev_set_drvdata(dev, dsi);
1678
1679        dsi->pdev = pdev;
1680
1681        /* Note, the initialization sequence for DSI and panels is
1682         * tricky.  The component bind above won't get past its
1683         * -EPROBE_DEFER until the panel/bridge probes.  The
1684         * panel/bridge will return -EPROBE_DEFER until it has a
1685         * mipi_dsi_host to register its device to.  So, we register
1686         * the host during pdev probe time, so vc4 as a whole can then
1687         * -EPROBE_DEFER its component bind process until the panel
1688         * successfully attaches.
1689         */
1690        dsi->dsi_host.ops = &vc4_dsi_host_ops;
1691        dsi->dsi_host.dev = dev;
1692        mipi_dsi_host_register(&dsi->dsi_host);
1693
1694        ret = component_add(&pdev->dev, &vc4_dsi_ops);
1695        if (ret) {
1696                mipi_dsi_host_unregister(&dsi->dsi_host);
1697                return ret;
1698        }
1699
1700        return 0;
1701}
1702
1703static int vc4_dsi_dev_remove(struct platform_device *pdev)
1704{
1705        struct device *dev = &pdev->dev;
1706        struct vc4_dsi *dsi = dev_get_drvdata(dev);
1707
1708        component_del(&pdev->dev, &vc4_dsi_ops);
1709        mipi_dsi_host_unregister(&dsi->dsi_host);
1710
1711        return 0;
1712}
1713
1714struct platform_driver vc4_dsi_driver = {
1715        .probe = vc4_dsi_dev_probe,
1716        .remove = vc4_dsi_dev_remove,
1717        .driver = {
1718                .name = "vc4_dsi",
1719                .of_match_table = vc4_dsi_dt_match,
1720        },
1721};
1722