linux/drivers/md/bcache/super.c
<<
>>
Prefs
   1/*
   2 * bcache setup/teardown code, and some metadata io - read a superblock and
   3 * figure out what to do with it.
   4 *
   5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
   6 * Copyright 2012 Google, Inc.
   7 */
   8
   9#include "bcache.h"
  10#include "btree.h"
  11#include "debug.h"
  12#include "extents.h"
  13#include "request.h"
  14#include "writeback.h"
  15
  16#include <linux/blkdev.h>
  17#include <linux/buffer_head.h>
  18#include <linux/debugfs.h>
  19#include <linux/genhd.h>
  20#include <linux/idr.h>
  21#include <linux/kthread.h>
  22#include <linux/module.h>
  23#include <linux/random.h>
  24#include <linux/reboot.h>
  25#include <linux/sysfs.h>
  26
  27MODULE_LICENSE("GPL");
  28MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
  29
  30static const char bcache_magic[] = {
  31        0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
  32        0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
  33};
  34
  35static const char invalid_uuid[] = {
  36        0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
  37        0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
  38};
  39
  40static struct kobject *bcache_kobj;
  41struct mutex bch_register_lock;
  42LIST_HEAD(bch_cache_sets);
  43static LIST_HEAD(uncached_devices);
  44
  45static int bcache_major;
  46static DEFINE_IDA(bcache_device_idx);
  47static wait_queue_head_t unregister_wait;
  48struct workqueue_struct *bcache_wq;
  49
  50#define BTREE_MAX_PAGES         (256 * 1024 / PAGE_SIZE)
  51/* limitation of partitions number on single bcache device */
  52#define BCACHE_MINORS           128
  53/* limitation of bcache devices number on single system */
  54#define BCACHE_DEVICE_IDX_MAX   ((1U << MINORBITS)/BCACHE_MINORS)
  55
  56/* Superblock */
  57
  58static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
  59                              struct page **res)
  60{
  61        const char *err;
  62        struct cache_sb *s;
  63        struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
  64        unsigned i;
  65
  66        if (!bh)
  67                return "IO error";
  68
  69        s = (struct cache_sb *) bh->b_data;
  70
  71        sb->offset              = le64_to_cpu(s->offset);
  72        sb->version             = le64_to_cpu(s->version);
  73
  74        memcpy(sb->magic,       s->magic, 16);
  75        memcpy(sb->uuid,        s->uuid, 16);
  76        memcpy(sb->set_uuid,    s->set_uuid, 16);
  77        memcpy(sb->label,       s->label, SB_LABEL_SIZE);
  78
  79        sb->flags               = le64_to_cpu(s->flags);
  80        sb->seq                 = le64_to_cpu(s->seq);
  81        sb->last_mount          = le32_to_cpu(s->last_mount);
  82        sb->first_bucket        = le16_to_cpu(s->first_bucket);
  83        sb->keys                = le16_to_cpu(s->keys);
  84
  85        for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
  86                sb->d[i] = le64_to_cpu(s->d[i]);
  87
  88        pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
  89                 sb->version, sb->flags, sb->seq, sb->keys);
  90
  91        err = "Not a bcache superblock";
  92        if (sb->offset != SB_SECTOR)
  93                goto err;
  94
  95        if (memcmp(sb->magic, bcache_magic, 16))
  96                goto err;
  97
  98        err = "Too many journal buckets";
  99        if (sb->keys > SB_JOURNAL_BUCKETS)
 100                goto err;
 101
 102        err = "Bad checksum";
 103        if (s->csum != csum_set(s))
 104                goto err;
 105
 106        err = "Bad UUID";
 107        if (bch_is_zero(sb->uuid, 16))
 108                goto err;
 109
 110        sb->block_size  = le16_to_cpu(s->block_size);
 111
 112        err = "Superblock block size smaller than device block size";
 113        if (sb->block_size << 9 < bdev_logical_block_size(bdev))
 114                goto err;
 115
 116        switch (sb->version) {
 117        case BCACHE_SB_VERSION_BDEV:
 118                sb->data_offset = BDEV_DATA_START_DEFAULT;
 119                break;
 120        case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
 121                sb->data_offset = le64_to_cpu(s->data_offset);
 122
 123                err = "Bad data offset";
 124                if (sb->data_offset < BDEV_DATA_START_DEFAULT)
 125                        goto err;
 126
 127                break;
 128        case BCACHE_SB_VERSION_CDEV:
 129        case BCACHE_SB_VERSION_CDEV_WITH_UUID:
 130                sb->nbuckets    = le64_to_cpu(s->nbuckets);
 131                sb->bucket_size = le16_to_cpu(s->bucket_size);
 132
 133                sb->nr_in_set   = le16_to_cpu(s->nr_in_set);
 134                sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
 135
 136                err = "Too many buckets";
 137                if (sb->nbuckets > LONG_MAX)
 138                        goto err;
 139
 140                err = "Not enough buckets";
 141                if (sb->nbuckets < 1 << 7)
 142                        goto err;
 143
 144                err = "Bad block/bucket size";
 145                if (!is_power_of_2(sb->block_size) ||
 146                    sb->block_size > PAGE_SECTORS ||
 147                    !is_power_of_2(sb->bucket_size) ||
 148                    sb->bucket_size < PAGE_SECTORS)
 149                        goto err;
 150
 151                err = "Invalid superblock: device too small";
 152                if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
 153                        goto err;
 154
 155                err = "Bad UUID";
 156                if (bch_is_zero(sb->set_uuid, 16))
 157                        goto err;
 158
 159                err = "Bad cache device number in set";
 160                if (!sb->nr_in_set ||
 161                    sb->nr_in_set <= sb->nr_this_dev ||
 162                    sb->nr_in_set > MAX_CACHES_PER_SET)
 163                        goto err;
 164
 165                err = "Journal buckets not sequential";
 166                for (i = 0; i < sb->keys; i++)
 167                        if (sb->d[i] != sb->first_bucket + i)
 168                                goto err;
 169
 170                err = "Too many journal buckets";
 171                if (sb->first_bucket + sb->keys > sb->nbuckets)
 172                        goto err;
 173
 174                err = "Invalid superblock: first bucket comes before end of super";
 175                if (sb->first_bucket * sb->bucket_size < 16)
 176                        goto err;
 177
 178                break;
 179        default:
 180                err = "Unsupported superblock version";
 181                goto err;
 182        }
 183
 184        sb->last_mount = get_seconds();
 185        err = NULL;
 186
 187        get_page(bh->b_page);
 188        *res = bh->b_page;
 189err:
 190        put_bh(bh);
 191        return err;
 192}
 193
 194static void write_bdev_super_endio(struct bio *bio)
 195{
 196        struct cached_dev *dc = bio->bi_private;
 197        /* XXX: error checking */
 198
 199        closure_put(&dc->sb_write);
 200}
 201
 202static void __write_super(struct cache_sb *sb, struct bio *bio)
 203{
 204        struct cache_sb *out = page_address(bio_first_page_all(bio));
 205        unsigned i;
 206
 207        bio->bi_iter.bi_sector  = SB_SECTOR;
 208        bio->bi_iter.bi_size    = SB_SIZE;
 209        bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC|REQ_META);
 210        bch_bio_map(bio, NULL);
 211
 212        out->offset             = cpu_to_le64(sb->offset);
 213        out->version            = cpu_to_le64(sb->version);
 214
 215        memcpy(out->uuid,       sb->uuid, 16);
 216        memcpy(out->set_uuid,   sb->set_uuid, 16);
 217        memcpy(out->label,      sb->label, SB_LABEL_SIZE);
 218
 219        out->flags              = cpu_to_le64(sb->flags);
 220        out->seq                = cpu_to_le64(sb->seq);
 221
 222        out->last_mount         = cpu_to_le32(sb->last_mount);
 223        out->first_bucket       = cpu_to_le16(sb->first_bucket);
 224        out->keys               = cpu_to_le16(sb->keys);
 225
 226        for (i = 0; i < sb->keys; i++)
 227                out->d[i] = cpu_to_le64(sb->d[i]);
 228
 229        out->csum = csum_set(out);
 230
 231        pr_debug("ver %llu, flags %llu, seq %llu",
 232                 sb->version, sb->flags, sb->seq);
 233
 234        submit_bio(bio);
 235}
 236
 237static void bch_write_bdev_super_unlock(struct closure *cl)
 238{
 239        struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
 240
 241        up(&dc->sb_write_mutex);
 242}
 243
 244void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
 245{
 246        struct closure *cl = &dc->sb_write;
 247        struct bio *bio = &dc->sb_bio;
 248
 249        down(&dc->sb_write_mutex);
 250        closure_init(cl, parent);
 251
 252        bio_reset(bio);
 253        bio_set_dev(bio, dc->bdev);
 254        bio->bi_end_io  = write_bdev_super_endio;
 255        bio->bi_private = dc;
 256
 257        closure_get(cl);
 258        /* I/O request sent to backing device */
 259        __write_super(&dc->sb, bio);
 260
 261        closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
 262}
 263
 264static void write_super_endio(struct bio *bio)
 265{
 266        struct cache *ca = bio->bi_private;
 267
 268        /* is_read = 0 */
 269        bch_count_io_errors(ca, bio->bi_status, 0,
 270                            "writing superblock");
 271        closure_put(&ca->set->sb_write);
 272}
 273
 274static void bcache_write_super_unlock(struct closure *cl)
 275{
 276        struct cache_set *c = container_of(cl, struct cache_set, sb_write);
 277
 278        up(&c->sb_write_mutex);
 279}
 280
 281void bcache_write_super(struct cache_set *c)
 282{
 283        struct closure *cl = &c->sb_write;
 284        struct cache *ca;
 285        unsigned i;
 286
 287        down(&c->sb_write_mutex);
 288        closure_init(cl, &c->cl);
 289
 290        c->sb.seq++;
 291
 292        for_each_cache(ca, c, i) {
 293                struct bio *bio = &ca->sb_bio;
 294
 295                ca->sb.version          = BCACHE_SB_VERSION_CDEV_WITH_UUID;
 296                ca->sb.seq              = c->sb.seq;
 297                ca->sb.last_mount       = c->sb.last_mount;
 298
 299                SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
 300
 301                bio_reset(bio);
 302                bio_set_dev(bio, ca->bdev);
 303                bio->bi_end_io  = write_super_endio;
 304                bio->bi_private = ca;
 305
 306                closure_get(cl);
 307                __write_super(&ca->sb, bio);
 308        }
 309
 310        closure_return_with_destructor(cl, bcache_write_super_unlock);
 311}
 312
 313/* UUID io */
 314
 315static void uuid_endio(struct bio *bio)
 316{
 317        struct closure *cl = bio->bi_private;
 318        struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
 319
 320        cache_set_err_on(bio->bi_status, c, "accessing uuids");
 321        bch_bbio_free(bio, c);
 322        closure_put(cl);
 323}
 324
 325static void uuid_io_unlock(struct closure *cl)
 326{
 327        struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
 328
 329        up(&c->uuid_write_mutex);
 330}
 331
 332static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
 333                    struct bkey *k, struct closure *parent)
 334{
 335        struct closure *cl = &c->uuid_write;
 336        struct uuid_entry *u;
 337        unsigned i;
 338        char buf[80];
 339
 340        BUG_ON(!parent);
 341        down(&c->uuid_write_mutex);
 342        closure_init(cl, parent);
 343
 344        for (i = 0; i < KEY_PTRS(k); i++) {
 345                struct bio *bio = bch_bbio_alloc(c);
 346
 347                bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
 348                bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
 349
 350                bio->bi_end_io  = uuid_endio;
 351                bio->bi_private = cl;
 352                bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
 353                bch_bio_map(bio, c->uuids);
 354
 355                bch_submit_bbio(bio, c, k, i);
 356
 357                if (op != REQ_OP_WRITE)
 358                        break;
 359        }
 360
 361        bch_extent_to_text(buf, sizeof(buf), k);
 362        pr_debug("%s UUIDs at %s", op == REQ_OP_WRITE ? "wrote" : "read", buf);
 363
 364        for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
 365                if (!bch_is_zero(u->uuid, 16))
 366                        pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
 367                                 u - c->uuids, u->uuid, u->label,
 368                                 u->first_reg, u->last_reg, u->invalidated);
 369
 370        closure_return_with_destructor(cl, uuid_io_unlock);
 371}
 372
 373static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
 374{
 375        struct bkey *k = &j->uuid_bucket;
 376
 377        if (__bch_btree_ptr_invalid(c, k))
 378                return "bad uuid pointer";
 379
 380        bkey_copy(&c->uuid_bucket, k);
 381        uuid_io(c, REQ_OP_READ, 0, k, cl);
 382
 383        if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
 384                struct uuid_entry_v0    *u0 = (void *) c->uuids;
 385                struct uuid_entry       *u1 = (void *) c->uuids;
 386                int i;
 387
 388                closure_sync(cl);
 389
 390                /*
 391                 * Since the new uuid entry is bigger than the old, we have to
 392                 * convert starting at the highest memory address and work down
 393                 * in order to do it in place
 394                 */
 395
 396                for (i = c->nr_uuids - 1;
 397                     i >= 0;
 398                     --i) {
 399                        memcpy(u1[i].uuid,      u0[i].uuid, 16);
 400                        memcpy(u1[i].label,     u0[i].label, 32);
 401
 402                        u1[i].first_reg         = u0[i].first_reg;
 403                        u1[i].last_reg          = u0[i].last_reg;
 404                        u1[i].invalidated       = u0[i].invalidated;
 405
 406                        u1[i].flags     = 0;
 407                        u1[i].sectors   = 0;
 408                }
 409        }
 410
 411        return NULL;
 412}
 413
 414static int __uuid_write(struct cache_set *c)
 415{
 416        BKEY_PADDED(key) k;
 417        struct closure cl;
 418        closure_init_stack(&cl);
 419
 420        lockdep_assert_held(&bch_register_lock);
 421
 422        if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
 423                return 1;
 424
 425        SET_KEY_SIZE(&k.key, c->sb.bucket_size);
 426        uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
 427        closure_sync(&cl);
 428
 429        bkey_copy(&c->uuid_bucket, &k.key);
 430        bkey_put(c, &k.key);
 431        return 0;
 432}
 433
 434int bch_uuid_write(struct cache_set *c)
 435{
 436        int ret = __uuid_write(c);
 437
 438        if (!ret)
 439                bch_journal_meta(c, NULL);
 440
 441        return ret;
 442}
 443
 444static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
 445{
 446        struct uuid_entry *u;
 447
 448        for (u = c->uuids;
 449             u < c->uuids + c->nr_uuids; u++)
 450                if (!memcmp(u->uuid, uuid, 16))
 451                        return u;
 452
 453        return NULL;
 454}
 455
 456static struct uuid_entry *uuid_find_empty(struct cache_set *c)
 457{
 458        static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
 459        return uuid_find(c, zero_uuid);
 460}
 461
 462/*
 463 * Bucket priorities/gens:
 464 *
 465 * For each bucket, we store on disk its
 466   * 8 bit gen
 467   * 16 bit priority
 468 *
 469 * See alloc.c for an explanation of the gen. The priority is used to implement
 470 * lru (and in the future other) cache replacement policies; for most purposes
 471 * it's just an opaque integer.
 472 *
 473 * The gens and the priorities don't have a whole lot to do with each other, and
 474 * it's actually the gens that must be written out at specific times - it's no
 475 * big deal if the priorities don't get written, if we lose them we just reuse
 476 * buckets in suboptimal order.
 477 *
 478 * On disk they're stored in a packed array, and in as many buckets are required
 479 * to fit them all. The buckets we use to store them form a list; the journal
 480 * header points to the first bucket, the first bucket points to the second
 481 * bucket, et cetera.
 482 *
 483 * This code is used by the allocation code; periodically (whenever it runs out
 484 * of buckets to allocate from) the allocation code will invalidate some
 485 * buckets, but it can't use those buckets until their new gens are safely on
 486 * disk.
 487 */
 488
 489static void prio_endio(struct bio *bio)
 490{
 491        struct cache *ca = bio->bi_private;
 492
 493        cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
 494        bch_bbio_free(bio, ca->set);
 495        closure_put(&ca->prio);
 496}
 497
 498static void prio_io(struct cache *ca, uint64_t bucket, int op,
 499                    unsigned long op_flags)
 500{
 501        struct closure *cl = &ca->prio;
 502        struct bio *bio = bch_bbio_alloc(ca->set);
 503
 504        closure_init_stack(cl);
 505
 506        bio->bi_iter.bi_sector  = bucket * ca->sb.bucket_size;
 507        bio_set_dev(bio, ca->bdev);
 508        bio->bi_iter.bi_size    = bucket_bytes(ca);
 509
 510        bio->bi_end_io  = prio_endio;
 511        bio->bi_private = ca;
 512        bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
 513        bch_bio_map(bio, ca->disk_buckets);
 514
 515        closure_bio_submit(ca->set, bio, &ca->prio);
 516        closure_sync(cl);
 517}
 518
 519void bch_prio_write(struct cache *ca)
 520{
 521        int i;
 522        struct bucket *b;
 523        struct closure cl;
 524
 525        closure_init_stack(&cl);
 526
 527        lockdep_assert_held(&ca->set->bucket_lock);
 528
 529        ca->disk_buckets->seq++;
 530
 531        atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
 532                        &ca->meta_sectors_written);
 533
 534        //pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
 535        //       fifo_used(&ca->free_inc), fifo_used(&ca->unused));
 536
 537        for (i = prio_buckets(ca) - 1; i >= 0; --i) {
 538                long bucket;
 539                struct prio_set *p = ca->disk_buckets;
 540                struct bucket_disk *d = p->data;
 541                struct bucket_disk *end = d + prios_per_bucket(ca);
 542
 543                for (b = ca->buckets + i * prios_per_bucket(ca);
 544                     b < ca->buckets + ca->sb.nbuckets && d < end;
 545                     b++, d++) {
 546                        d->prio = cpu_to_le16(b->prio);
 547                        d->gen = b->gen;
 548                }
 549
 550                p->next_bucket  = ca->prio_buckets[i + 1];
 551                p->magic        = pset_magic(&ca->sb);
 552                p->csum         = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
 553
 554                bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true);
 555                BUG_ON(bucket == -1);
 556
 557                mutex_unlock(&ca->set->bucket_lock);
 558                prio_io(ca, bucket, REQ_OP_WRITE, 0);
 559                mutex_lock(&ca->set->bucket_lock);
 560
 561                ca->prio_buckets[i] = bucket;
 562                atomic_dec_bug(&ca->buckets[bucket].pin);
 563        }
 564
 565        mutex_unlock(&ca->set->bucket_lock);
 566
 567        bch_journal_meta(ca->set, &cl);
 568        closure_sync(&cl);
 569
 570        mutex_lock(&ca->set->bucket_lock);
 571
 572        /*
 573         * Don't want the old priorities to get garbage collected until after we
 574         * finish writing the new ones, and they're journalled
 575         */
 576        for (i = 0; i < prio_buckets(ca); i++) {
 577                if (ca->prio_last_buckets[i])
 578                        __bch_bucket_free(ca,
 579                                &ca->buckets[ca->prio_last_buckets[i]]);
 580
 581                ca->prio_last_buckets[i] = ca->prio_buckets[i];
 582        }
 583}
 584
 585static void prio_read(struct cache *ca, uint64_t bucket)
 586{
 587        struct prio_set *p = ca->disk_buckets;
 588        struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
 589        struct bucket *b;
 590        unsigned bucket_nr = 0;
 591
 592        for (b = ca->buckets;
 593             b < ca->buckets + ca->sb.nbuckets;
 594             b++, d++) {
 595                if (d == end) {
 596                        ca->prio_buckets[bucket_nr] = bucket;
 597                        ca->prio_last_buckets[bucket_nr] = bucket;
 598                        bucket_nr++;
 599
 600                        prio_io(ca, bucket, REQ_OP_READ, 0);
 601
 602                        if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
 603                                pr_warn("bad csum reading priorities");
 604
 605                        if (p->magic != pset_magic(&ca->sb))
 606                                pr_warn("bad magic reading priorities");
 607
 608                        bucket = p->next_bucket;
 609                        d = p->data;
 610                }
 611
 612                b->prio = le16_to_cpu(d->prio);
 613                b->gen = b->last_gc = d->gen;
 614        }
 615}
 616
 617/* Bcache device */
 618
 619static int open_dev(struct block_device *b, fmode_t mode)
 620{
 621        struct bcache_device *d = b->bd_disk->private_data;
 622        if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
 623                return -ENXIO;
 624
 625        closure_get(&d->cl);
 626        return 0;
 627}
 628
 629static void release_dev(struct gendisk *b, fmode_t mode)
 630{
 631        struct bcache_device *d = b->private_data;
 632        closure_put(&d->cl);
 633}
 634
 635static int ioctl_dev(struct block_device *b, fmode_t mode,
 636                     unsigned int cmd, unsigned long arg)
 637{
 638        struct bcache_device *d = b->bd_disk->private_data;
 639        struct cached_dev *dc = container_of(d, struct cached_dev, disk);
 640
 641        if (dc->io_disable)
 642                return -EIO;
 643
 644        return d->ioctl(d, mode, cmd, arg);
 645}
 646
 647static const struct block_device_operations bcache_ops = {
 648        .open           = open_dev,
 649        .release        = release_dev,
 650        .ioctl          = ioctl_dev,
 651        .owner          = THIS_MODULE,
 652};
 653
 654void bcache_device_stop(struct bcache_device *d)
 655{
 656        if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
 657                closure_queue(&d->cl);
 658}
 659
 660static void bcache_device_unlink(struct bcache_device *d)
 661{
 662        lockdep_assert_held(&bch_register_lock);
 663
 664        if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
 665                unsigned i;
 666                struct cache *ca;
 667
 668                sysfs_remove_link(&d->c->kobj, d->name);
 669                sysfs_remove_link(&d->kobj, "cache");
 670
 671                for_each_cache(ca, d->c, i)
 672                        bd_unlink_disk_holder(ca->bdev, d->disk);
 673        }
 674}
 675
 676static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
 677                               const char *name)
 678{
 679        unsigned i;
 680        struct cache *ca;
 681
 682        for_each_cache(ca, d->c, i)
 683                bd_link_disk_holder(ca->bdev, d->disk);
 684
 685        snprintf(d->name, BCACHEDEVNAME_SIZE,
 686                 "%s%u", name, d->id);
 687
 688        WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
 689             sysfs_create_link(&c->kobj, &d->kobj, d->name),
 690             "Couldn't create device <-> cache set symlinks");
 691
 692        clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
 693}
 694
 695static void bcache_device_detach(struct bcache_device *d)
 696{
 697        lockdep_assert_held(&bch_register_lock);
 698
 699        if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
 700                struct uuid_entry *u = d->c->uuids + d->id;
 701
 702                SET_UUID_FLASH_ONLY(u, 0);
 703                memcpy(u->uuid, invalid_uuid, 16);
 704                u->invalidated = cpu_to_le32(get_seconds());
 705                bch_uuid_write(d->c);
 706        }
 707
 708        bcache_device_unlink(d);
 709
 710        d->c->devices[d->id] = NULL;
 711        closure_put(&d->c->caching);
 712        d->c = NULL;
 713}
 714
 715static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
 716                                 unsigned id)
 717{
 718        d->id = id;
 719        d->c = c;
 720        c->devices[id] = d;
 721
 722        if (id >= c->devices_max_used)
 723                c->devices_max_used = id + 1;
 724
 725        closure_get(&c->caching);
 726}
 727
 728static inline int first_minor_to_idx(int first_minor)
 729{
 730        return (first_minor/BCACHE_MINORS);
 731}
 732
 733static inline int idx_to_first_minor(int idx)
 734{
 735        return (idx * BCACHE_MINORS);
 736}
 737
 738static void bcache_device_free(struct bcache_device *d)
 739{
 740        lockdep_assert_held(&bch_register_lock);
 741
 742        pr_info("%s stopped", d->disk->disk_name);
 743
 744        if (d->c)
 745                bcache_device_detach(d);
 746        if (d->disk && d->disk->flags & GENHD_FL_UP)
 747                del_gendisk(d->disk);
 748        if (d->disk && d->disk->queue)
 749                blk_cleanup_queue(d->disk->queue);
 750        if (d->disk) {
 751                ida_simple_remove(&bcache_device_idx,
 752                                  first_minor_to_idx(d->disk->first_minor));
 753                put_disk(d->disk);
 754        }
 755
 756        bioset_exit(&d->bio_split);
 757        kvfree(d->full_dirty_stripes);
 758        kvfree(d->stripe_sectors_dirty);
 759
 760        closure_debug_destroy(&d->cl);
 761}
 762
 763static int bcache_device_init(struct bcache_device *d, unsigned block_size,
 764                              sector_t sectors)
 765{
 766        struct request_queue *q;
 767        const size_t max_stripes = min_t(size_t, INT_MAX,
 768                                         SIZE_MAX / sizeof(atomic_t));
 769        size_t n;
 770        int idx;
 771
 772        if (!d->stripe_size)
 773                d->stripe_size = 1 << 31;
 774
 775        d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
 776
 777        if (!d->nr_stripes || d->nr_stripes > max_stripes) {
 778                pr_err("nr_stripes too large or invalid: %u (start sector beyond end of disk?)",
 779                        (unsigned)d->nr_stripes);
 780                return -ENOMEM;
 781        }
 782
 783        n = d->nr_stripes * sizeof(atomic_t);
 784        d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
 785        if (!d->stripe_sectors_dirty)
 786                return -ENOMEM;
 787
 788        n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
 789        d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
 790        if (!d->full_dirty_stripes)
 791                return -ENOMEM;
 792
 793        idx = ida_simple_get(&bcache_device_idx, 0,
 794                                BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
 795        if (idx < 0)
 796                return idx;
 797
 798        if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
 799                        BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER) ||
 800            !(d->disk = alloc_disk(BCACHE_MINORS))) {
 801                ida_simple_remove(&bcache_device_idx, idx);
 802                return -ENOMEM;
 803        }
 804
 805        set_capacity(d->disk, sectors);
 806        snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
 807
 808        d->disk->major          = bcache_major;
 809        d->disk->first_minor    = idx_to_first_minor(idx);
 810        d->disk->fops           = &bcache_ops;
 811        d->disk->private_data   = d;
 812
 813        q = blk_alloc_queue(GFP_KERNEL);
 814        if (!q)
 815                return -ENOMEM;
 816
 817        blk_queue_make_request(q, NULL);
 818        d->disk->queue                  = q;
 819        q->queuedata                    = d;
 820        q->backing_dev_info->congested_data = d;
 821        q->limits.max_hw_sectors        = UINT_MAX;
 822        q->limits.max_sectors           = UINT_MAX;
 823        q->limits.max_segment_size      = UINT_MAX;
 824        q->limits.max_segments          = BIO_MAX_PAGES;
 825        blk_queue_max_discard_sectors(q, UINT_MAX);
 826        q->limits.discard_granularity   = 512;
 827        q->limits.io_min                = block_size;
 828        q->limits.logical_block_size    = block_size;
 829        q->limits.physical_block_size   = block_size;
 830        blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
 831        blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
 832        blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue);
 833
 834        blk_queue_write_cache(q, true, true);
 835
 836        return 0;
 837}
 838
 839/* Cached device */
 840
 841static void calc_cached_dev_sectors(struct cache_set *c)
 842{
 843        uint64_t sectors = 0;
 844        struct cached_dev *dc;
 845
 846        list_for_each_entry(dc, &c->cached_devs, list)
 847                sectors += bdev_sectors(dc->bdev);
 848
 849        c->cached_dev_sectors = sectors;
 850}
 851
 852#define BACKING_DEV_OFFLINE_TIMEOUT 5
 853static int cached_dev_status_update(void *arg)
 854{
 855        struct cached_dev *dc = arg;
 856        struct request_queue *q;
 857
 858        /*
 859         * If this delayed worker is stopping outside, directly quit here.
 860         * dc->io_disable might be set via sysfs interface, so check it
 861         * here too.
 862         */
 863        while (!kthread_should_stop() && !dc->io_disable) {
 864                q = bdev_get_queue(dc->bdev);
 865                if (blk_queue_dying(q))
 866                        dc->offline_seconds++;
 867                else
 868                        dc->offline_seconds = 0;
 869
 870                if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
 871                        pr_err("%s: device offline for %d seconds",
 872                               dc->backing_dev_name,
 873                               BACKING_DEV_OFFLINE_TIMEOUT);
 874                        pr_err("%s: disable I/O request due to backing "
 875                               "device offline", dc->disk.name);
 876                        dc->io_disable = true;
 877                        /* let others know earlier that io_disable is true */
 878                        smp_mb();
 879                        bcache_device_stop(&dc->disk);
 880                        break;
 881                }
 882                schedule_timeout_interruptible(HZ);
 883        }
 884
 885        wait_for_kthread_stop();
 886        return 0;
 887}
 888
 889
 890void bch_cached_dev_run(struct cached_dev *dc)
 891{
 892        struct bcache_device *d = &dc->disk;
 893        char buf[SB_LABEL_SIZE + 1];
 894        char *env[] = {
 895                "DRIVER=bcache",
 896                kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
 897                NULL,
 898                NULL,
 899        };
 900
 901        memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
 902        buf[SB_LABEL_SIZE] = '\0';
 903        env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
 904
 905        if (atomic_xchg(&dc->running, 1)) {
 906                kfree(env[1]);
 907                kfree(env[2]);
 908                return;
 909        }
 910
 911        if (!d->c &&
 912            BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
 913                struct closure cl;
 914                closure_init_stack(&cl);
 915
 916                SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
 917                bch_write_bdev_super(dc, &cl);
 918                closure_sync(&cl);
 919        }
 920
 921        add_disk(d->disk);
 922        bd_link_disk_holder(dc->bdev, dc->disk.disk);
 923        /* won't show up in the uevent file, use udevadm monitor -e instead
 924         * only class / kset properties are persistent */
 925        kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
 926        kfree(env[1]);
 927        kfree(env[2]);
 928
 929        if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
 930            sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
 931                pr_debug("error creating sysfs link");
 932
 933        dc->status_update_thread = kthread_run(cached_dev_status_update,
 934                                               dc, "bcache_status_update");
 935        if (IS_ERR(dc->status_update_thread)) {
 936                pr_warn("failed to create bcache_status_update kthread, "
 937                        "continue to run without monitoring backing "
 938                        "device status");
 939        }
 940}
 941
 942/*
 943 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
 944 * work dc->writeback_rate_update is running. Wait until the routine
 945 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
 946 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
 947 * seconds, give up waiting here and continue to cancel it too.
 948 */
 949static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
 950{
 951        int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
 952
 953        do {
 954                if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
 955                              &dc->disk.flags))
 956                        break;
 957                time_out--;
 958                schedule_timeout_interruptible(1);
 959        } while (time_out > 0);
 960
 961        if (time_out == 0)
 962                pr_warn("give up waiting for dc->writeback_write_update to quit");
 963
 964        cancel_delayed_work_sync(&dc->writeback_rate_update);
 965}
 966
 967static void cached_dev_detach_finish(struct work_struct *w)
 968{
 969        struct cached_dev *dc = container_of(w, struct cached_dev, detach);
 970        struct closure cl;
 971        closure_init_stack(&cl);
 972
 973        BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
 974        BUG_ON(refcount_read(&dc->count));
 975
 976        mutex_lock(&bch_register_lock);
 977
 978        if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
 979                cancel_writeback_rate_update_dwork(dc);
 980
 981        if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
 982                kthread_stop(dc->writeback_thread);
 983                dc->writeback_thread = NULL;
 984        }
 985
 986        memset(&dc->sb.set_uuid, 0, 16);
 987        SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
 988
 989        bch_write_bdev_super(dc, &cl);
 990        closure_sync(&cl);
 991
 992        bcache_device_detach(&dc->disk);
 993        list_move(&dc->list, &uncached_devices);
 994
 995        clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
 996        clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
 997
 998        mutex_unlock(&bch_register_lock);
 999
1000        pr_info("Caching disabled for %s", dc->backing_dev_name);
1001
1002        /* Drop ref we took in cached_dev_detach() */
1003        closure_put(&dc->disk.cl);
1004}
1005
1006void bch_cached_dev_detach(struct cached_dev *dc)
1007{
1008        lockdep_assert_held(&bch_register_lock);
1009
1010        if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1011                return;
1012
1013        if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1014                return;
1015
1016        /*
1017         * Block the device from being closed and freed until we're finished
1018         * detaching
1019         */
1020        closure_get(&dc->disk.cl);
1021
1022        bch_writeback_queue(dc);
1023
1024        cached_dev_put(dc);
1025}
1026
1027int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1028                          uint8_t *set_uuid)
1029{
1030        uint32_t rtime = cpu_to_le32(get_seconds());
1031        struct uuid_entry *u;
1032        struct cached_dev *exist_dc, *t;
1033
1034        if ((set_uuid && memcmp(set_uuid, c->sb.set_uuid, 16)) ||
1035            (!set_uuid && memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16)))
1036                return -ENOENT;
1037
1038        if (dc->disk.c) {
1039                pr_err("Can't attach %s: already attached",
1040                       dc->backing_dev_name);
1041                return -EINVAL;
1042        }
1043
1044        if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1045                pr_err("Can't attach %s: shutting down",
1046                       dc->backing_dev_name);
1047                return -EINVAL;
1048        }
1049
1050        if (dc->sb.block_size < c->sb.block_size) {
1051                /* Will die */
1052                pr_err("Couldn't attach %s: block size less than set's block size",
1053                       dc->backing_dev_name);
1054                return -EINVAL;
1055        }
1056
1057        /* Check whether already attached */
1058        list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1059                if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1060                        pr_err("Tried to attach %s but duplicate UUID already attached",
1061                                dc->backing_dev_name);
1062
1063                        return -EINVAL;
1064                }
1065        }
1066
1067        u = uuid_find(c, dc->sb.uuid);
1068
1069        if (u &&
1070            (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1071             BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1072                memcpy(u->uuid, invalid_uuid, 16);
1073                u->invalidated = cpu_to_le32(get_seconds());
1074                u = NULL;
1075        }
1076
1077        if (!u) {
1078                if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1079                        pr_err("Couldn't find uuid for %s in set",
1080                               dc->backing_dev_name);
1081                        return -ENOENT;
1082                }
1083
1084                u = uuid_find_empty(c);
1085                if (!u) {
1086                        pr_err("Not caching %s, no room for UUID",
1087                               dc->backing_dev_name);
1088                        return -EINVAL;
1089                }
1090        }
1091
1092        /* Deadlocks since we're called via sysfs...
1093        sysfs_remove_file(&dc->kobj, &sysfs_attach);
1094         */
1095
1096        if (bch_is_zero(u->uuid, 16)) {
1097                struct closure cl;
1098                closure_init_stack(&cl);
1099
1100                memcpy(u->uuid, dc->sb.uuid, 16);
1101                memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1102                u->first_reg = u->last_reg = rtime;
1103                bch_uuid_write(c);
1104
1105                memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1106                SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1107
1108                bch_write_bdev_super(dc, &cl);
1109                closure_sync(&cl);
1110        } else {
1111                u->last_reg = rtime;
1112                bch_uuid_write(c);
1113        }
1114
1115        bcache_device_attach(&dc->disk, c, u - c->uuids);
1116        list_move(&dc->list, &c->cached_devs);
1117        calc_cached_dev_sectors(c);
1118
1119        smp_wmb();
1120        /*
1121         * dc->c must be set before dc->count != 0 - paired with the mb in
1122         * cached_dev_get()
1123         */
1124        refcount_set(&dc->count, 1);
1125
1126        /* Block writeback thread, but spawn it */
1127        down_write(&dc->writeback_lock);
1128        if (bch_cached_dev_writeback_start(dc)) {
1129                up_write(&dc->writeback_lock);
1130                return -ENOMEM;
1131        }
1132
1133        if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1134                bch_sectors_dirty_init(&dc->disk);
1135                atomic_set(&dc->has_dirty, 1);
1136                bch_writeback_queue(dc);
1137        }
1138
1139        bch_cached_dev_run(dc);
1140        bcache_device_link(&dc->disk, c, "bdev");
1141
1142        /* Allow the writeback thread to proceed */
1143        up_write(&dc->writeback_lock);
1144
1145        pr_info("Caching %s as %s on set %pU",
1146                dc->backing_dev_name,
1147                dc->disk.disk->disk_name,
1148                dc->disk.c->sb.set_uuid);
1149        return 0;
1150}
1151
1152void bch_cached_dev_release(struct kobject *kobj)
1153{
1154        struct cached_dev *dc = container_of(kobj, struct cached_dev,
1155                                             disk.kobj);
1156        kfree(dc);
1157        module_put(THIS_MODULE);
1158}
1159
1160static void cached_dev_free(struct closure *cl)
1161{
1162        struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1163
1164        mutex_lock(&bch_register_lock);
1165
1166        if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1167                cancel_writeback_rate_update_dwork(dc);
1168
1169        if (!IS_ERR_OR_NULL(dc->writeback_thread))
1170                kthread_stop(dc->writeback_thread);
1171        if (dc->writeback_write_wq)
1172                destroy_workqueue(dc->writeback_write_wq);
1173        if (!IS_ERR_OR_NULL(dc->status_update_thread))
1174                kthread_stop(dc->status_update_thread);
1175
1176        if (atomic_read(&dc->running))
1177                bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1178        bcache_device_free(&dc->disk);
1179        list_del(&dc->list);
1180
1181        mutex_unlock(&bch_register_lock);
1182
1183        if (!IS_ERR_OR_NULL(dc->bdev))
1184                blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1185
1186        wake_up(&unregister_wait);
1187
1188        kobject_put(&dc->disk.kobj);
1189}
1190
1191static void cached_dev_flush(struct closure *cl)
1192{
1193        struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1194        struct bcache_device *d = &dc->disk;
1195
1196        mutex_lock(&bch_register_lock);
1197        bcache_device_unlink(d);
1198        mutex_unlock(&bch_register_lock);
1199
1200        bch_cache_accounting_destroy(&dc->accounting);
1201        kobject_del(&d->kobj);
1202
1203        continue_at(cl, cached_dev_free, system_wq);
1204}
1205
1206static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1207{
1208        int ret;
1209        struct io *io;
1210        struct request_queue *q = bdev_get_queue(dc->bdev);
1211
1212        __module_get(THIS_MODULE);
1213        INIT_LIST_HEAD(&dc->list);
1214        closure_init(&dc->disk.cl, NULL);
1215        set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1216        kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1217        INIT_WORK(&dc->detach, cached_dev_detach_finish);
1218        sema_init(&dc->sb_write_mutex, 1);
1219        INIT_LIST_HEAD(&dc->io_lru);
1220        spin_lock_init(&dc->io_lock);
1221        bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1222
1223        dc->sequential_cutoff           = 4 << 20;
1224
1225        for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1226                list_add(&io->lru, &dc->io_lru);
1227                hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1228        }
1229
1230        dc->disk.stripe_size = q->limits.io_opt >> 9;
1231
1232        if (dc->disk.stripe_size)
1233                dc->partial_stripes_expensive =
1234                        q->limits.raid_partial_stripes_expensive;
1235
1236        ret = bcache_device_init(&dc->disk, block_size,
1237                         dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1238        if (ret)
1239                return ret;
1240
1241        dc->disk.disk->queue->backing_dev_info->ra_pages =
1242                max(dc->disk.disk->queue->backing_dev_info->ra_pages,
1243                    q->backing_dev_info->ra_pages);
1244
1245        atomic_set(&dc->io_errors, 0);
1246        dc->io_disable = false;
1247        dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1248        /* default to auto */
1249        dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1250
1251        bch_cached_dev_request_init(dc);
1252        bch_cached_dev_writeback_init(dc);
1253        return 0;
1254}
1255
1256/* Cached device - bcache superblock */
1257
1258static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1259                                 struct block_device *bdev,
1260                                 struct cached_dev *dc)
1261{
1262        const char *err = "cannot allocate memory";
1263        struct cache_set *c;
1264
1265        bdevname(bdev, dc->backing_dev_name);
1266        memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1267        dc->bdev = bdev;
1268        dc->bdev->bd_holder = dc;
1269
1270        bio_init(&dc->sb_bio, dc->sb_bio.bi_inline_vecs, 1);
1271        bio_first_bvec_all(&dc->sb_bio)->bv_page = sb_page;
1272        get_page(sb_page);
1273
1274
1275        if (cached_dev_init(dc, sb->block_size << 9))
1276                goto err;
1277
1278        err = "error creating kobject";
1279        if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1280                        "bcache"))
1281                goto err;
1282        if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1283                goto err;
1284
1285        pr_info("registered backing device %s", dc->backing_dev_name);
1286
1287        list_add(&dc->list, &uncached_devices);
1288        list_for_each_entry(c, &bch_cache_sets, list)
1289                bch_cached_dev_attach(dc, c, NULL);
1290
1291        if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1292            BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1293                bch_cached_dev_run(dc);
1294
1295        return;
1296err:
1297        pr_notice("error %s: %s", dc->backing_dev_name, err);
1298        bcache_device_stop(&dc->disk);
1299}
1300
1301/* Flash only volumes */
1302
1303void bch_flash_dev_release(struct kobject *kobj)
1304{
1305        struct bcache_device *d = container_of(kobj, struct bcache_device,
1306                                               kobj);
1307        kfree(d);
1308}
1309
1310static void flash_dev_free(struct closure *cl)
1311{
1312        struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1313        mutex_lock(&bch_register_lock);
1314        bcache_device_free(d);
1315        mutex_unlock(&bch_register_lock);
1316        kobject_put(&d->kobj);
1317}
1318
1319static void flash_dev_flush(struct closure *cl)
1320{
1321        struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1322
1323        mutex_lock(&bch_register_lock);
1324        bcache_device_unlink(d);
1325        mutex_unlock(&bch_register_lock);
1326        kobject_del(&d->kobj);
1327        continue_at(cl, flash_dev_free, system_wq);
1328}
1329
1330static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1331{
1332        struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1333                                          GFP_KERNEL);
1334        if (!d)
1335                return -ENOMEM;
1336
1337        closure_init(&d->cl, NULL);
1338        set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1339
1340        kobject_init(&d->kobj, &bch_flash_dev_ktype);
1341
1342        if (bcache_device_init(d, block_bytes(c), u->sectors))
1343                goto err;
1344
1345        bcache_device_attach(d, c, u - c->uuids);
1346        bch_sectors_dirty_init(d);
1347        bch_flash_dev_request_init(d);
1348        add_disk(d->disk);
1349
1350        if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1351                goto err;
1352
1353        bcache_device_link(d, c, "volume");
1354
1355        return 0;
1356err:
1357        kobject_put(&d->kobj);
1358        return -ENOMEM;
1359}
1360
1361static int flash_devs_run(struct cache_set *c)
1362{
1363        int ret = 0;
1364        struct uuid_entry *u;
1365
1366        for (u = c->uuids;
1367             u < c->uuids + c->nr_uuids && !ret;
1368             u++)
1369                if (UUID_FLASH_ONLY(u))
1370                        ret = flash_dev_run(c, u);
1371
1372        return ret;
1373}
1374
1375int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1376{
1377        struct uuid_entry *u;
1378
1379        if (test_bit(CACHE_SET_STOPPING, &c->flags))
1380                return -EINTR;
1381
1382        if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1383                return -EPERM;
1384
1385        u = uuid_find_empty(c);
1386        if (!u) {
1387                pr_err("Can't create volume, no room for UUID");
1388                return -EINVAL;
1389        }
1390
1391        get_random_bytes(u->uuid, 16);
1392        memset(u->label, 0, 32);
1393        u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1394
1395        SET_UUID_FLASH_ONLY(u, 1);
1396        u->sectors = size >> 9;
1397
1398        bch_uuid_write(c);
1399
1400        return flash_dev_run(c, u);
1401}
1402
1403bool bch_cached_dev_error(struct cached_dev *dc)
1404{
1405        struct cache_set *c;
1406
1407        if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1408                return false;
1409
1410        dc->io_disable = true;
1411        /* make others know io_disable is true earlier */
1412        smp_mb();
1413
1414        pr_err("stop %s: too many IO errors on backing device %s\n",
1415                dc->disk.disk->disk_name, dc->backing_dev_name);
1416
1417        /*
1418         * If the cached device is still attached to a cache set,
1419         * even dc->io_disable is true and no more I/O requests
1420         * accepted, cache device internal I/O (writeback scan or
1421         * garbage collection) may still prevent bcache device from
1422         * being stopped. So here CACHE_SET_IO_DISABLE should be
1423         * set to c->flags too, to make the internal I/O to cache
1424         * device rejected and stopped immediately.
1425         * If c is NULL, that means the bcache device is not attached
1426         * to any cache set, then no CACHE_SET_IO_DISABLE bit to set.
1427         */
1428        c = dc->disk.c;
1429        if (c && test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1430                pr_info("CACHE_SET_IO_DISABLE already set");
1431
1432        bcache_device_stop(&dc->disk);
1433        return true;
1434}
1435
1436/* Cache set */
1437
1438__printf(2, 3)
1439bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1440{
1441        va_list args;
1442
1443        if (c->on_error != ON_ERROR_PANIC &&
1444            test_bit(CACHE_SET_STOPPING, &c->flags))
1445                return false;
1446
1447        if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1448                pr_info("CACHE_SET_IO_DISABLE already set");
1449
1450        /* XXX: we can be called from atomic context
1451        acquire_console_sem();
1452        */
1453
1454        printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1455
1456        va_start(args, fmt);
1457        vprintk(fmt, args);
1458        va_end(args);
1459
1460        printk(", disabling caching\n");
1461
1462        if (c->on_error == ON_ERROR_PANIC)
1463                panic("panic forced after error\n");
1464
1465        bch_cache_set_unregister(c);
1466        return true;
1467}
1468
1469void bch_cache_set_release(struct kobject *kobj)
1470{
1471        struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1472        kfree(c);
1473        module_put(THIS_MODULE);
1474}
1475
1476static void cache_set_free(struct closure *cl)
1477{
1478        struct cache_set *c = container_of(cl, struct cache_set, cl);
1479        struct cache *ca;
1480        unsigned i;
1481
1482        if (!IS_ERR_OR_NULL(c->debug))
1483                debugfs_remove(c->debug);
1484
1485        bch_open_buckets_free(c);
1486        bch_btree_cache_free(c);
1487        bch_journal_free(c);
1488
1489        for_each_cache(ca, c, i)
1490                if (ca) {
1491                        ca->set = NULL;
1492                        c->cache[ca->sb.nr_this_dev] = NULL;
1493                        kobject_put(&ca->kobj);
1494                }
1495
1496        bch_bset_sort_state_free(&c->sort);
1497        free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1498
1499        if (c->moving_gc_wq)
1500                destroy_workqueue(c->moving_gc_wq);
1501        bioset_exit(&c->bio_split);
1502        mempool_exit(&c->fill_iter);
1503        mempool_exit(&c->bio_meta);
1504        mempool_exit(&c->search);
1505        kfree(c->devices);
1506
1507        mutex_lock(&bch_register_lock);
1508        list_del(&c->list);
1509        mutex_unlock(&bch_register_lock);
1510
1511        pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1512        wake_up(&unregister_wait);
1513
1514        closure_debug_destroy(&c->cl);
1515        kobject_put(&c->kobj);
1516}
1517
1518static void cache_set_flush(struct closure *cl)
1519{
1520        struct cache_set *c = container_of(cl, struct cache_set, caching);
1521        struct cache *ca;
1522        struct btree *b;
1523        unsigned i;
1524
1525        bch_cache_accounting_destroy(&c->accounting);
1526
1527        kobject_put(&c->internal);
1528        kobject_del(&c->kobj);
1529
1530        if (c->gc_thread)
1531                kthread_stop(c->gc_thread);
1532
1533        if (!IS_ERR_OR_NULL(c->root))
1534                list_add(&c->root->list, &c->btree_cache);
1535
1536        /* Should skip this if we're unregistering because of an error */
1537        list_for_each_entry(b, &c->btree_cache, list) {
1538                mutex_lock(&b->write_lock);
1539                if (btree_node_dirty(b))
1540                        __bch_btree_node_write(b, NULL);
1541                mutex_unlock(&b->write_lock);
1542        }
1543
1544        for_each_cache(ca, c, i)
1545                if (ca->alloc_thread)
1546                        kthread_stop(ca->alloc_thread);
1547
1548        if (c->journal.cur) {
1549                cancel_delayed_work_sync(&c->journal.work);
1550                /* flush last journal entry if needed */
1551                c->journal.work.work.func(&c->journal.work.work);
1552        }
1553
1554        closure_return(cl);
1555}
1556
1557/*
1558 * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1559 * cache set is unregistering due to too many I/O errors. In this condition,
1560 * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1561 * value and whether the broken cache has dirty data:
1562 *
1563 * dc->stop_when_cache_set_failed    dc->has_dirty   stop bcache device
1564 *  BCH_CACHED_STOP_AUTO               0               NO
1565 *  BCH_CACHED_STOP_AUTO               1               YES
1566 *  BCH_CACHED_DEV_STOP_ALWAYS         0               YES
1567 *  BCH_CACHED_DEV_STOP_ALWAYS         1               YES
1568 *
1569 * The expected behavior is, if stop_when_cache_set_failed is configured to
1570 * "auto" via sysfs interface, the bcache device will not be stopped if the
1571 * backing device is clean on the broken cache device.
1572 */
1573static void conditional_stop_bcache_device(struct cache_set *c,
1574                                           struct bcache_device *d,
1575                                           struct cached_dev *dc)
1576{
1577        if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1578                pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.",
1579                        d->disk->disk_name, c->sb.set_uuid);
1580                bcache_device_stop(d);
1581        } else if (atomic_read(&dc->has_dirty)) {
1582                /*
1583                 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1584                 * and dc->has_dirty == 1
1585                 */
1586                pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.",
1587                        d->disk->disk_name);
1588                        /*
1589                         * There might be a small time gap that cache set is
1590                         * released but bcache device is not. Inside this time
1591                         * gap, regular I/O requests will directly go into
1592                         * backing device as no cache set attached to. This
1593                         * behavior may also introduce potential inconsistence
1594                         * data in writeback mode while cache is dirty.
1595                         * Therefore before calling bcache_device_stop() due
1596                         * to a broken cache device, dc->io_disable should be
1597                         * explicitly set to true.
1598                         */
1599                        dc->io_disable = true;
1600                        /* make others know io_disable is true earlier */
1601                        smp_mb();
1602                        bcache_device_stop(d);
1603        } else {
1604                /*
1605                 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1606                 * and dc->has_dirty == 0
1607                 */
1608                pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.",
1609                        d->disk->disk_name);
1610        }
1611}
1612
1613static void __cache_set_unregister(struct closure *cl)
1614{
1615        struct cache_set *c = container_of(cl, struct cache_set, caching);
1616        struct cached_dev *dc;
1617        struct bcache_device *d;
1618        size_t i;
1619
1620        mutex_lock(&bch_register_lock);
1621
1622        for (i = 0; i < c->devices_max_used; i++) {
1623                d = c->devices[i];
1624                if (!d)
1625                        continue;
1626
1627                if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1628                    test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1629                        dc = container_of(d, struct cached_dev, disk);
1630                        bch_cached_dev_detach(dc);
1631                        if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1632                                conditional_stop_bcache_device(c, d, dc);
1633                } else {
1634                        bcache_device_stop(d);
1635                }
1636        }
1637
1638        mutex_unlock(&bch_register_lock);
1639
1640        continue_at(cl, cache_set_flush, system_wq);
1641}
1642
1643void bch_cache_set_stop(struct cache_set *c)
1644{
1645        if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1646                closure_queue(&c->caching);
1647}
1648
1649void bch_cache_set_unregister(struct cache_set *c)
1650{
1651        set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1652        bch_cache_set_stop(c);
1653}
1654
1655#define alloc_bucket_pages(gfp, c)                      \
1656        ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1657
1658struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1659{
1660        int iter_size;
1661        struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1662        if (!c)
1663                return NULL;
1664
1665        __module_get(THIS_MODULE);
1666        closure_init(&c->cl, NULL);
1667        set_closure_fn(&c->cl, cache_set_free, system_wq);
1668
1669        closure_init(&c->caching, &c->cl);
1670        set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1671
1672        /* Maybe create continue_at_noreturn() and use it here? */
1673        closure_set_stopped(&c->cl);
1674        closure_put(&c->cl);
1675
1676        kobject_init(&c->kobj, &bch_cache_set_ktype);
1677        kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1678
1679        bch_cache_accounting_init(&c->accounting, &c->cl);
1680
1681        memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1682        c->sb.block_size        = sb->block_size;
1683        c->sb.bucket_size       = sb->bucket_size;
1684        c->sb.nr_in_set         = sb->nr_in_set;
1685        c->sb.last_mount        = sb->last_mount;
1686        c->bucket_bits          = ilog2(sb->bucket_size);
1687        c->block_bits           = ilog2(sb->block_size);
1688        c->nr_uuids             = bucket_bytes(c) / sizeof(struct uuid_entry);
1689        c->devices_max_used     = 0;
1690        c->btree_pages          = bucket_pages(c);
1691        if (c->btree_pages > BTREE_MAX_PAGES)
1692                c->btree_pages = max_t(int, c->btree_pages / 4,
1693                                       BTREE_MAX_PAGES);
1694
1695        sema_init(&c->sb_write_mutex, 1);
1696        mutex_init(&c->bucket_lock);
1697        init_waitqueue_head(&c->btree_cache_wait);
1698        init_waitqueue_head(&c->bucket_wait);
1699        init_waitqueue_head(&c->gc_wait);
1700        sema_init(&c->uuid_write_mutex, 1);
1701
1702        spin_lock_init(&c->btree_gc_time.lock);
1703        spin_lock_init(&c->btree_split_time.lock);
1704        spin_lock_init(&c->btree_read_time.lock);
1705
1706        bch_moving_init_cache_set(c);
1707
1708        INIT_LIST_HEAD(&c->list);
1709        INIT_LIST_HEAD(&c->cached_devs);
1710        INIT_LIST_HEAD(&c->btree_cache);
1711        INIT_LIST_HEAD(&c->btree_cache_freeable);
1712        INIT_LIST_HEAD(&c->btree_cache_freed);
1713        INIT_LIST_HEAD(&c->data_buckets);
1714
1715        iter_size = (sb->bucket_size / sb->block_size + 1) *
1716                sizeof(struct btree_iter_set);
1717
1718        if (!(c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL)) ||
1719            mempool_init_slab_pool(&c->search, 32, bch_search_cache) ||
1720            mempool_init_kmalloc_pool(&c->bio_meta, 2,
1721                                      sizeof(struct bbio) + sizeof(struct bio_vec) *
1722                                      bucket_pages(c)) ||
1723            mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) ||
1724            bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1725                        BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER) ||
1726            !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1727            !(c->moving_gc_wq = alloc_workqueue("bcache_gc",
1728                                                WQ_MEM_RECLAIM, 0)) ||
1729            bch_journal_alloc(c) ||
1730            bch_btree_cache_alloc(c) ||
1731            bch_open_buckets_alloc(c) ||
1732            bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1733                goto err;
1734
1735        c->congested_read_threshold_us  = 2000;
1736        c->congested_write_threshold_us = 20000;
1737        c->error_limit  = DEFAULT_IO_ERROR_LIMIT;
1738        WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1739
1740        return c;
1741err:
1742        bch_cache_set_unregister(c);
1743        return NULL;
1744}
1745
1746static void run_cache_set(struct cache_set *c)
1747{
1748        const char *err = "cannot allocate memory";
1749        struct cached_dev *dc, *t;
1750        struct cache *ca;
1751        struct closure cl;
1752        unsigned i;
1753
1754        closure_init_stack(&cl);
1755
1756        for_each_cache(ca, c, i)
1757                c->nbuckets += ca->sb.nbuckets;
1758        set_gc_sectors(c);
1759
1760        if (CACHE_SYNC(&c->sb)) {
1761                LIST_HEAD(journal);
1762                struct bkey *k;
1763                struct jset *j;
1764
1765                err = "cannot allocate memory for journal";
1766                if (bch_journal_read(c, &journal))
1767                        goto err;
1768
1769                pr_debug("btree_journal_read() done");
1770
1771                err = "no journal entries found";
1772                if (list_empty(&journal))
1773                        goto err;
1774
1775                j = &list_entry(journal.prev, struct journal_replay, list)->j;
1776
1777                err = "IO error reading priorities";
1778                for_each_cache(ca, c, i)
1779                        prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1780
1781                /*
1782                 * If prio_read() fails it'll call cache_set_error and we'll
1783                 * tear everything down right away, but if we perhaps checked
1784                 * sooner we could avoid journal replay.
1785                 */
1786
1787                k = &j->btree_root;
1788
1789                err = "bad btree root";
1790                if (__bch_btree_ptr_invalid(c, k))
1791                        goto err;
1792
1793                err = "error reading btree root";
1794                c->root = bch_btree_node_get(c, NULL, k, j->btree_level, true, NULL);
1795                if (IS_ERR_OR_NULL(c->root))
1796                        goto err;
1797
1798                list_del_init(&c->root->list);
1799                rw_unlock(true, c->root);
1800
1801                err = uuid_read(c, j, &cl);
1802                if (err)
1803                        goto err;
1804
1805                err = "error in recovery";
1806                if (bch_btree_check(c))
1807                        goto err;
1808
1809                bch_journal_mark(c, &journal);
1810                bch_initial_gc_finish(c);
1811                pr_debug("btree_check() done");
1812
1813                /*
1814                 * bcache_journal_next() can't happen sooner, or
1815                 * btree_gc_finish() will give spurious errors about last_gc >
1816                 * gc_gen - this is a hack but oh well.
1817                 */
1818                bch_journal_next(&c->journal);
1819
1820                err = "error starting allocator thread";
1821                for_each_cache(ca, c, i)
1822                        if (bch_cache_allocator_start(ca))
1823                                goto err;
1824
1825                /*
1826                 * First place it's safe to allocate: btree_check() and
1827                 * btree_gc_finish() have to run before we have buckets to
1828                 * allocate, and bch_bucket_alloc_set() might cause a journal
1829                 * entry to be written so bcache_journal_next() has to be called
1830                 * first.
1831                 *
1832                 * If the uuids were in the old format we have to rewrite them
1833                 * before the next journal entry is written:
1834                 */
1835                if (j->version < BCACHE_JSET_VERSION_UUID)
1836                        __uuid_write(c);
1837
1838                bch_journal_replay(c, &journal);
1839        } else {
1840                pr_notice("invalidating existing data");
1841
1842                for_each_cache(ca, c, i) {
1843                        unsigned j;
1844
1845                        ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1846                                              2, SB_JOURNAL_BUCKETS);
1847
1848                        for (j = 0; j < ca->sb.keys; j++)
1849                                ca->sb.d[j] = ca->sb.first_bucket + j;
1850                }
1851
1852                bch_initial_gc_finish(c);
1853
1854                err = "error starting allocator thread";
1855                for_each_cache(ca, c, i)
1856                        if (bch_cache_allocator_start(ca))
1857                                goto err;
1858
1859                mutex_lock(&c->bucket_lock);
1860                for_each_cache(ca, c, i)
1861                        bch_prio_write(ca);
1862                mutex_unlock(&c->bucket_lock);
1863
1864                err = "cannot allocate new UUID bucket";
1865                if (__uuid_write(c))
1866                        goto err;
1867
1868                err = "cannot allocate new btree root";
1869                c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
1870                if (IS_ERR_OR_NULL(c->root))
1871                        goto err;
1872
1873                mutex_lock(&c->root->write_lock);
1874                bkey_copy_key(&c->root->key, &MAX_KEY);
1875                bch_btree_node_write(c->root, &cl);
1876                mutex_unlock(&c->root->write_lock);
1877
1878                bch_btree_set_root(c->root);
1879                rw_unlock(true, c->root);
1880
1881                /*
1882                 * We don't want to write the first journal entry until
1883                 * everything is set up - fortunately journal entries won't be
1884                 * written until the SET_CACHE_SYNC() here:
1885                 */
1886                SET_CACHE_SYNC(&c->sb, true);
1887
1888                bch_journal_next(&c->journal);
1889                bch_journal_meta(c, &cl);
1890        }
1891
1892        err = "error starting gc thread";
1893        if (bch_gc_thread_start(c))
1894                goto err;
1895
1896        closure_sync(&cl);
1897        c->sb.last_mount = get_seconds();
1898        bcache_write_super(c);
1899
1900        list_for_each_entry_safe(dc, t, &uncached_devices, list)
1901                bch_cached_dev_attach(dc, c, NULL);
1902
1903        flash_devs_run(c);
1904
1905        set_bit(CACHE_SET_RUNNING, &c->flags);
1906        return;
1907err:
1908        closure_sync(&cl);
1909        /* XXX: test this, it's broken */
1910        bch_cache_set_error(c, "%s", err);
1911}
1912
1913static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1914{
1915        return ca->sb.block_size        == c->sb.block_size &&
1916                ca->sb.bucket_size      == c->sb.bucket_size &&
1917                ca->sb.nr_in_set        == c->sb.nr_in_set;
1918}
1919
1920static const char *register_cache_set(struct cache *ca)
1921{
1922        char buf[12];
1923        const char *err = "cannot allocate memory";
1924        struct cache_set *c;
1925
1926        list_for_each_entry(c, &bch_cache_sets, list)
1927                if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1928                        if (c->cache[ca->sb.nr_this_dev])
1929                                return "duplicate cache set member";
1930
1931                        if (!can_attach_cache(ca, c))
1932                                return "cache sb does not match set";
1933
1934                        if (!CACHE_SYNC(&ca->sb))
1935                                SET_CACHE_SYNC(&c->sb, false);
1936
1937                        goto found;
1938                }
1939
1940        c = bch_cache_set_alloc(&ca->sb);
1941        if (!c)
1942                return err;
1943
1944        err = "error creating kobject";
1945        if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1946            kobject_add(&c->internal, &c->kobj, "internal"))
1947                goto err;
1948
1949        if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1950                goto err;
1951
1952        bch_debug_init_cache_set(c);
1953
1954        list_add(&c->list, &bch_cache_sets);
1955found:
1956        sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1957        if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1958            sysfs_create_link(&c->kobj, &ca->kobj, buf))
1959                goto err;
1960
1961        if (ca->sb.seq > c->sb.seq) {
1962                c->sb.version           = ca->sb.version;
1963                memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1964                c->sb.flags             = ca->sb.flags;
1965                c->sb.seq               = ca->sb.seq;
1966                pr_debug("set version = %llu", c->sb.version);
1967        }
1968
1969        kobject_get(&ca->kobj);
1970        ca->set = c;
1971        ca->set->cache[ca->sb.nr_this_dev] = ca;
1972        c->cache_by_alloc[c->caches_loaded++] = ca;
1973
1974        if (c->caches_loaded == c->sb.nr_in_set)
1975                run_cache_set(c);
1976
1977        return NULL;
1978err:
1979        bch_cache_set_unregister(c);
1980        return err;
1981}
1982
1983/* Cache device */
1984
1985void bch_cache_release(struct kobject *kobj)
1986{
1987        struct cache *ca = container_of(kobj, struct cache, kobj);
1988        unsigned i;
1989
1990        if (ca->set) {
1991                BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
1992                ca->set->cache[ca->sb.nr_this_dev] = NULL;
1993        }
1994
1995        free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1996        kfree(ca->prio_buckets);
1997        vfree(ca->buckets);
1998
1999        free_heap(&ca->heap);
2000        free_fifo(&ca->free_inc);
2001
2002        for (i = 0; i < RESERVE_NR; i++)
2003                free_fifo(&ca->free[i]);
2004
2005        if (ca->sb_bio.bi_inline_vecs[0].bv_page)
2006                put_page(bio_first_page_all(&ca->sb_bio));
2007
2008        if (!IS_ERR_OR_NULL(ca->bdev))
2009                blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2010
2011        kfree(ca);
2012        module_put(THIS_MODULE);
2013}
2014
2015static int cache_alloc(struct cache *ca)
2016{
2017        size_t free;
2018        size_t btree_buckets;
2019        struct bucket *b;
2020
2021        __module_get(THIS_MODULE);
2022        kobject_init(&ca->kobj, &bch_cache_ktype);
2023
2024        bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
2025
2026        /*
2027         * when ca->sb.njournal_buckets is not zero, journal exists,
2028         * and in bch_journal_replay(), tree node may split,
2029         * so bucket of RESERVE_BTREE type is needed,
2030         * the worst situation is all journal buckets are valid journal,
2031         * and all the keys need to replay,
2032         * so the number of  RESERVE_BTREE type buckets should be as much
2033         * as journal buckets
2034         */
2035        btree_buckets = ca->sb.njournal_buckets ?: 8;
2036        free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2037
2038        if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets, GFP_KERNEL) ||
2039            !init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), GFP_KERNEL) ||
2040            !init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL) ||
2041            !init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL) ||
2042            !init_fifo(&ca->free_inc,   free << 2, GFP_KERNEL) ||
2043            !init_heap(&ca->heap,       free << 3, GFP_KERNEL) ||
2044            !(ca->buckets       = vzalloc(array_size(sizeof(struct bucket),
2045                                                     ca->sb.nbuckets))) ||
2046            !(ca->prio_buckets  = kzalloc(array3_size(sizeof(uint64_t),
2047                                                      prio_buckets(ca), 2),
2048                                          GFP_KERNEL)) ||
2049            !(ca->disk_buckets  = alloc_bucket_pages(GFP_KERNEL, ca)))
2050                return -ENOMEM;
2051
2052        ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2053
2054        for_each_bucket(b, ca)
2055                atomic_set(&b->pin, 0);
2056
2057        return 0;
2058}
2059
2060static int register_cache(struct cache_sb *sb, struct page *sb_page,
2061                                struct block_device *bdev, struct cache *ca)
2062{
2063        const char *err = NULL; /* must be set for any error case */
2064        int ret = 0;
2065
2066        bdevname(bdev, ca->cache_dev_name);
2067        memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2068        ca->bdev = bdev;
2069        ca->bdev->bd_holder = ca;
2070
2071        bio_init(&ca->sb_bio, ca->sb_bio.bi_inline_vecs, 1);
2072        bio_first_bvec_all(&ca->sb_bio)->bv_page = sb_page;
2073        get_page(sb_page);
2074
2075        if (blk_queue_discard(bdev_get_queue(bdev)))
2076                ca->discard = CACHE_DISCARD(&ca->sb);
2077
2078        ret = cache_alloc(ca);
2079        if (ret != 0) {
2080                blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2081                if (ret == -ENOMEM)
2082                        err = "cache_alloc(): -ENOMEM";
2083                else
2084                        err = "cache_alloc(): unknown error";
2085                goto err;
2086        }
2087
2088        if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache")) {
2089                err = "error calling kobject_add";
2090                ret = -ENOMEM;
2091                goto out;
2092        }
2093
2094        mutex_lock(&bch_register_lock);
2095        err = register_cache_set(ca);
2096        mutex_unlock(&bch_register_lock);
2097
2098        if (err) {
2099                ret = -ENODEV;
2100                goto out;
2101        }
2102
2103        pr_info("registered cache device %s", ca->cache_dev_name);
2104
2105out:
2106        kobject_put(&ca->kobj);
2107
2108err:
2109        if (err)
2110                pr_notice("error %s: %s", ca->cache_dev_name, err);
2111
2112        return ret;
2113}
2114
2115/* Global interfaces/init */
2116
2117static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
2118                               const char *, size_t);
2119
2120kobj_attribute_write(register,          register_bcache);
2121kobj_attribute_write(register_quiet,    register_bcache);
2122
2123static bool bch_is_open_backing(struct block_device *bdev) {
2124        struct cache_set *c, *tc;
2125        struct cached_dev *dc, *t;
2126
2127        list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2128                list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2129                        if (dc->bdev == bdev)
2130                                return true;
2131        list_for_each_entry_safe(dc, t, &uncached_devices, list)
2132                if (dc->bdev == bdev)
2133                        return true;
2134        return false;
2135}
2136
2137static bool bch_is_open_cache(struct block_device *bdev) {
2138        struct cache_set *c, *tc;
2139        struct cache *ca;
2140        unsigned i;
2141
2142        list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2143                for_each_cache(ca, c, i)
2144                        if (ca->bdev == bdev)
2145                                return true;
2146        return false;
2147}
2148
2149static bool bch_is_open(struct block_device *bdev) {
2150        return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
2151}
2152
2153static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2154                               const char *buffer, size_t size)
2155{
2156        ssize_t ret = size;
2157        const char *err = "cannot allocate memory";
2158        char *path = NULL;
2159        struct cache_sb *sb = NULL;
2160        struct block_device *bdev = NULL;
2161        struct page *sb_page = NULL;
2162
2163        if (!try_module_get(THIS_MODULE))
2164                return -EBUSY;
2165
2166        if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
2167            !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
2168                goto err;
2169
2170        err = "failed to open device";
2171        bdev = blkdev_get_by_path(strim(path),
2172                                  FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2173                                  sb);
2174        if (IS_ERR(bdev)) {
2175                if (bdev == ERR_PTR(-EBUSY)) {
2176                        bdev = lookup_bdev(strim(path));
2177                        mutex_lock(&bch_register_lock);
2178                        if (!IS_ERR(bdev) && bch_is_open(bdev))
2179                                err = "device already registered";
2180                        else
2181                                err = "device busy";
2182                        mutex_unlock(&bch_register_lock);
2183                        if (!IS_ERR(bdev))
2184                                bdput(bdev);
2185                        if (attr == &ksysfs_register_quiet)
2186                                goto out;
2187                }
2188                goto err;
2189        }
2190
2191        err = "failed to set blocksize";
2192        if (set_blocksize(bdev, 4096))
2193                goto err_close;
2194
2195        err = read_super(sb, bdev, &sb_page);
2196        if (err)
2197                goto err_close;
2198
2199        err = "failed to register device";
2200        if (SB_IS_BDEV(sb)) {
2201                struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2202                if (!dc)
2203                        goto err_close;
2204
2205                mutex_lock(&bch_register_lock);
2206                register_bdev(sb, sb_page, bdev, dc);
2207                mutex_unlock(&bch_register_lock);
2208        } else {
2209                struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2210                if (!ca)
2211                        goto err_close;
2212
2213                if (register_cache(sb, sb_page, bdev, ca) != 0)
2214                        goto err;
2215        }
2216out:
2217        if (sb_page)
2218                put_page(sb_page);
2219        kfree(sb);
2220        kfree(path);
2221        module_put(THIS_MODULE);
2222        return ret;
2223
2224err_close:
2225        blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2226err:
2227        pr_info("error %s: %s", path, err);
2228        ret = -EINVAL;
2229        goto out;
2230}
2231
2232static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2233{
2234        if (code == SYS_DOWN ||
2235            code == SYS_HALT ||
2236            code == SYS_POWER_OFF) {
2237                DEFINE_WAIT(wait);
2238                unsigned long start = jiffies;
2239                bool stopped = false;
2240
2241                struct cache_set *c, *tc;
2242                struct cached_dev *dc, *tdc;
2243
2244                mutex_lock(&bch_register_lock);
2245
2246                if (list_empty(&bch_cache_sets) &&
2247                    list_empty(&uncached_devices))
2248                        goto out;
2249
2250                pr_info("Stopping all devices:");
2251
2252                list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2253                        bch_cache_set_stop(c);
2254
2255                list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2256                        bcache_device_stop(&dc->disk);
2257
2258                /* What's a condition variable? */
2259                while (1) {
2260                        long timeout = start + 2 * HZ - jiffies;
2261
2262                        stopped = list_empty(&bch_cache_sets) &&
2263                                list_empty(&uncached_devices);
2264
2265                        if (timeout < 0 || stopped)
2266                                break;
2267
2268                        prepare_to_wait(&unregister_wait, &wait,
2269                                        TASK_UNINTERRUPTIBLE);
2270
2271                        mutex_unlock(&bch_register_lock);
2272                        schedule_timeout(timeout);
2273                        mutex_lock(&bch_register_lock);
2274                }
2275
2276                finish_wait(&unregister_wait, &wait);
2277
2278                if (stopped)
2279                        pr_info("All devices stopped");
2280                else
2281                        pr_notice("Timeout waiting for devices to be closed");
2282out:
2283                mutex_unlock(&bch_register_lock);
2284        }
2285
2286        return NOTIFY_DONE;
2287}
2288
2289static struct notifier_block reboot = {
2290        .notifier_call  = bcache_reboot,
2291        .priority       = INT_MAX, /* before any real devices */
2292};
2293
2294static void bcache_exit(void)
2295{
2296        bch_debug_exit();
2297        bch_request_exit();
2298        if (bcache_kobj)
2299                kobject_put(bcache_kobj);
2300        if (bcache_wq)
2301                destroy_workqueue(bcache_wq);
2302        if (bcache_major)
2303                unregister_blkdev(bcache_major, "bcache");
2304        unregister_reboot_notifier(&reboot);
2305        mutex_destroy(&bch_register_lock);
2306}
2307
2308static int __init bcache_init(void)
2309{
2310        static const struct attribute *files[] = {
2311                &ksysfs_register.attr,
2312                &ksysfs_register_quiet.attr,
2313                NULL
2314        };
2315
2316        mutex_init(&bch_register_lock);
2317        init_waitqueue_head(&unregister_wait);
2318        register_reboot_notifier(&reboot);
2319
2320        bcache_major = register_blkdev(0, "bcache");
2321        if (bcache_major < 0) {
2322                unregister_reboot_notifier(&reboot);
2323                mutex_destroy(&bch_register_lock);
2324                return bcache_major;
2325        }
2326
2327        if (!(bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0)) ||
2328            !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
2329            bch_request_init() ||
2330            bch_debug_init(bcache_kobj) || closure_debug_init() ||
2331            sysfs_create_files(bcache_kobj, files))
2332                goto err;
2333
2334        return 0;
2335err:
2336        bcache_exit();
2337        return -ENOMEM;
2338}
2339
2340module_exit(bcache_exit);
2341module_init(bcache_init);
2342