linux/drivers/mtd/nand/raw/fsmc_nand.c
<<
>>
Prefs
   1/*
   2 * ST Microelectronics
   3 * Flexible Static Memory Controller (FSMC)
   4 * Driver for NAND portions
   5 *
   6 * Copyright © 2010 ST Microelectronics
   7 * Vipin Kumar <vipin.kumar@st.com>
   8 * Ashish Priyadarshi
   9 *
  10 * Based on drivers/mtd/nand/nomadik_nand.c (removed in v3.8)
  11 *  Copyright © 2007 STMicroelectronics Pvt. Ltd.
  12 *  Copyright © 2009 Alessandro Rubini
  13 *
  14 * This file is licensed under the terms of the GNU General Public
  15 * License version 2. This program is licensed "as is" without any
  16 * warranty of any kind, whether express or implied.
  17 */
  18
  19#include <linux/clk.h>
  20#include <linux/completion.h>
  21#include <linux/dmaengine.h>
  22#include <linux/dma-direction.h>
  23#include <linux/dma-mapping.h>
  24#include <linux/err.h>
  25#include <linux/init.h>
  26#include <linux/module.h>
  27#include <linux/resource.h>
  28#include <linux/sched.h>
  29#include <linux/types.h>
  30#include <linux/mtd/mtd.h>
  31#include <linux/mtd/rawnand.h>
  32#include <linux/mtd/nand_ecc.h>
  33#include <linux/platform_device.h>
  34#include <linux/of.h>
  35#include <linux/mtd/partitions.h>
  36#include <linux/io.h>
  37#include <linux/slab.h>
  38#include <linux/amba/bus.h>
  39#include <mtd/mtd-abi.h>
  40
  41/* fsmc controller registers for NOR flash */
  42#define CTRL                    0x0
  43        /* ctrl register definitions */
  44        #define BANK_ENABLE             (1 << 0)
  45        #define MUXED                   (1 << 1)
  46        #define NOR_DEV                 (2 << 2)
  47        #define WIDTH_8                 (0 << 4)
  48        #define WIDTH_16                (1 << 4)
  49        #define RSTPWRDWN               (1 << 6)
  50        #define WPROT                   (1 << 7)
  51        #define WRT_ENABLE              (1 << 12)
  52        #define WAIT_ENB                (1 << 13)
  53
  54#define CTRL_TIM                0x4
  55        /* ctrl_tim register definitions */
  56
  57#define FSMC_NOR_BANK_SZ        0x8
  58#define FSMC_NOR_REG_SIZE       0x40
  59
  60#define FSMC_NOR_REG(base, bank, reg)           (base + \
  61                                                FSMC_NOR_BANK_SZ * (bank) + \
  62                                                reg)
  63
  64/* fsmc controller registers for NAND flash */
  65#define PC                      0x00
  66        /* pc register definitions */
  67        #define FSMC_RESET              (1 << 0)
  68        #define FSMC_WAITON             (1 << 1)
  69        #define FSMC_ENABLE             (1 << 2)
  70        #define FSMC_DEVTYPE_NAND       (1 << 3)
  71        #define FSMC_DEVWID_8           (0 << 4)
  72        #define FSMC_DEVWID_16          (1 << 4)
  73        #define FSMC_ECCEN              (1 << 6)
  74        #define FSMC_ECCPLEN_512        (0 << 7)
  75        #define FSMC_ECCPLEN_256        (1 << 7)
  76        #define FSMC_TCLR_1             (1)
  77        #define FSMC_TCLR_SHIFT         (9)
  78        #define FSMC_TCLR_MASK          (0xF)
  79        #define FSMC_TAR_1              (1)
  80        #define FSMC_TAR_SHIFT          (13)
  81        #define FSMC_TAR_MASK           (0xF)
  82#define STS                     0x04
  83        /* sts register definitions */
  84        #define FSMC_CODE_RDY           (1 << 15)
  85#define COMM                    0x08
  86        /* comm register definitions */
  87        #define FSMC_TSET_0             0
  88        #define FSMC_TSET_SHIFT         0
  89        #define FSMC_TSET_MASK          0xFF
  90        #define FSMC_TWAIT_6            6
  91        #define FSMC_TWAIT_SHIFT        8
  92        #define FSMC_TWAIT_MASK         0xFF
  93        #define FSMC_THOLD_4            4
  94        #define FSMC_THOLD_SHIFT        16
  95        #define FSMC_THOLD_MASK         0xFF
  96        #define FSMC_THIZ_1             1
  97        #define FSMC_THIZ_SHIFT         24
  98        #define FSMC_THIZ_MASK          0xFF
  99#define ATTRIB                  0x0C
 100#define IOATA                   0x10
 101#define ECC1                    0x14
 102#define ECC2                    0x18
 103#define ECC3                    0x1C
 104#define FSMC_NAND_BANK_SZ       0x20
 105
 106#define FSMC_BUSY_WAIT_TIMEOUT  (1 * HZ)
 107
 108struct fsmc_nand_timings {
 109        uint8_t tclr;
 110        uint8_t tar;
 111        uint8_t thiz;
 112        uint8_t thold;
 113        uint8_t twait;
 114        uint8_t tset;
 115};
 116
 117enum access_mode {
 118        USE_DMA_ACCESS = 1,
 119        USE_WORD_ACCESS,
 120};
 121
 122/**
 123 * struct fsmc_nand_data - structure for FSMC NAND device state
 124 *
 125 * @pid:                Part ID on the AMBA PrimeCell format
 126 * @mtd:                MTD info for a NAND flash.
 127 * @nand:               Chip related info for a NAND flash.
 128 * @partitions:         Partition info for a NAND Flash.
 129 * @nr_partitions:      Total number of partition of a NAND flash.
 130 *
 131 * @bank:               Bank number for probed device.
 132 * @clk:                Clock structure for FSMC.
 133 *
 134 * @read_dma_chan:      DMA channel for read access
 135 * @write_dma_chan:     DMA channel for write access to NAND
 136 * @dma_access_complete: Completion structure
 137 *
 138 * @data_pa:            NAND Physical port for Data.
 139 * @data_va:            NAND port for Data.
 140 * @cmd_va:             NAND port for Command.
 141 * @addr_va:            NAND port for Address.
 142 * @regs_va:            Registers base address for a given bank.
 143 */
 144struct fsmc_nand_data {
 145        u32                     pid;
 146        struct nand_chip        nand;
 147
 148        unsigned int            bank;
 149        struct device           *dev;
 150        enum access_mode        mode;
 151        struct clk              *clk;
 152
 153        /* DMA related objects */
 154        struct dma_chan         *read_dma_chan;
 155        struct dma_chan         *write_dma_chan;
 156        struct completion       dma_access_complete;
 157
 158        struct fsmc_nand_timings *dev_timings;
 159
 160        dma_addr_t              data_pa;
 161        void __iomem            *data_va;
 162        void __iomem            *cmd_va;
 163        void __iomem            *addr_va;
 164        void __iomem            *regs_va;
 165};
 166
 167static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section,
 168                                   struct mtd_oob_region *oobregion)
 169{
 170        struct nand_chip *chip = mtd_to_nand(mtd);
 171
 172        if (section >= chip->ecc.steps)
 173                return -ERANGE;
 174
 175        oobregion->offset = (section * 16) + 2;
 176        oobregion->length = 3;
 177
 178        return 0;
 179}
 180
 181static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section,
 182                                    struct mtd_oob_region *oobregion)
 183{
 184        struct nand_chip *chip = mtd_to_nand(mtd);
 185
 186        if (section >= chip->ecc.steps)
 187                return -ERANGE;
 188
 189        oobregion->offset = (section * 16) + 8;
 190
 191        if (section < chip->ecc.steps - 1)
 192                oobregion->length = 8;
 193        else
 194                oobregion->length = mtd->oobsize - oobregion->offset;
 195
 196        return 0;
 197}
 198
 199static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = {
 200        .ecc = fsmc_ecc1_ooblayout_ecc,
 201        .free = fsmc_ecc1_ooblayout_free,
 202};
 203
 204/*
 205 * ECC placement definitions in oobfree type format.
 206 * There are 13 bytes of ecc for every 512 byte block and it has to be read
 207 * consecutively and immediately after the 512 byte data block for hardware to
 208 * generate the error bit offsets in 512 byte data.
 209 */
 210static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section,
 211                                   struct mtd_oob_region *oobregion)
 212{
 213        struct nand_chip *chip = mtd_to_nand(mtd);
 214
 215        if (section >= chip->ecc.steps)
 216                return -ERANGE;
 217
 218        oobregion->length = chip->ecc.bytes;
 219
 220        if (!section && mtd->writesize <= 512)
 221                oobregion->offset = 0;
 222        else
 223                oobregion->offset = (section * 16) + 2;
 224
 225        return 0;
 226}
 227
 228static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section,
 229                                    struct mtd_oob_region *oobregion)
 230{
 231        struct nand_chip *chip = mtd_to_nand(mtd);
 232
 233        if (section >= chip->ecc.steps)
 234                return -ERANGE;
 235
 236        oobregion->offset = (section * 16) + 15;
 237
 238        if (section < chip->ecc.steps - 1)
 239                oobregion->length = 3;
 240        else
 241                oobregion->length = mtd->oobsize - oobregion->offset;
 242
 243        return 0;
 244}
 245
 246static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = {
 247        .ecc = fsmc_ecc4_ooblayout_ecc,
 248        .free = fsmc_ecc4_ooblayout_free,
 249};
 250
 251static inline struct fsmc_nand_data *mtd_to_fsmc(struct mtd_info *mtd)
 252{
 253        return container_of(mtd_to_nand(mtd), struct fsmc_nand_data, nand);
 254}
 255
 256/*
 257 * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
 258 *
 259 * This routine initializes timing parameters related to NAND memory access in
 260 * FSMC registers
 261 */
 262static void fsmc_nand_setup(struct fsmc_nand_data *host,
 263                            struct fsmc_nand_timings *tims)
 264{
 265        uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
 266        uint32_t tclr, tar, thiz, thold, twait, tset;
 267
 268        tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
 269        tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
 270        thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
 271        thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
 272        twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
 273        tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
 274
 275        if (host->nand.options & NAND_BUSWIDTH_16)
 276                writel_relaxed(value | FSMC_DEVWID_16, host->regs_va + PC);
 277        else
 278                writel_relaxed(value | FSMC_DEVWID_8, host->regs_va + PC);
 279
 280        writel_relaxed(readl(host->regs_va + PC) | tclr | tar,
 281                       host->regs_va + PC);
 282        writel_relaxed(thiz | thold | twait | tset, host->regs_va + COMM);
 283        writel_relaxed(thiz | thold | twait | tset, host->regs_va + ATTRIB);
 284}
 285
 286static int fsmc_calc_timings(struct fsmc_nand_data *host,
 287                             const struct nand_sdr_timings *sdrt,
 288                             struct fsmc_nand_timings *tims)
 289{
 290        unsigned long hclk = clk_get_rate(host->clk);
 291        unsigned long hclkn = NSEC_PER_SEC / hclk;
 292        uint32_t thiz, thold, twait, tset;
 293
 294        if (sdrt->tRC_min < 30000)
 295                return -EOPNOTSUPP;
 296
 297        tims->tar = DIV_ROUND_UP(sdrt->tAR_min / 1000, hclkn) - 1;
 298        if (tims->tar > FSMC_TAR_MASK)
 299                tims->tar = FSMC_TAR_MASK;
 300        tims->tclr = DIV_ROUND_UP(sdrt->tCLR_min / 1000, hclkn) - 1;
 301        if (tims->tclr > FSMC_TCLR_MASK)
 302                tims->tclr = FSMC_TCLR_MASK;
 303
 304        thiz = sdrt->tCS_min - sdrt->tWP_min;
 305        tims->thiz = DIV_ROUND_UP(thiz / 1000, hclkn);
 306
 307        thold = sdrt->tDH_min;
 308        if (thold < sdrt->tCH_min)
 309                thold = sdrt->tCH_min;
 310        if (thold < sdrt->tCLH_min)
 311                thold = sdrt->tCLH_min;
 312        if (thold < sdrt->tWH_min)
 313                thold = sdrt->tWH_min;
 314        if (thold < sdrt->tALH_min)
 315                thold = sdrt->tALH_min;
 316        if (thold < sdrt->tREH_min)
 317                thold = sdrt->tREH_min;
 318        tims->thold = DIV_ROUND_UP(thold / 1000, hclkn);
 319        if (tims->thold == 0)
 320                tims->thold = 1;
 321        else if (tims->thold > FSMC_THOLD_MASK)
 322                tims->thold = FSMC_THOLD_MASK;
 323
 324        twait = max(sdrt->tRP_min, sdrt->tWP_min);
 325        tims->twait = DIV_ROUND_UP(twait / 1000, hclkn) - 1;
 326        if (tims->twait == 0)
 327                tims->twait = 1;
 328        else if (tims->twait > FSMC_TWAIT_MASK)
 329                tims->twait = FSMC_TWAIT_MASK;
 330
 331        tset = max(sdrt->tCS_min - sdrt->tWP_min,
 332                   sdrt->tCEA_max - sdrt->tREA_max);
 333        tims->tset = DIV_ROUND_UP(tset / 1000, hclkn) - 1;
 334        if (tims->tset == 0)
 335                tims->tset = 1;
 336        else if (tims->tset > FSMC_TSET_MASK)
 337                tims->tset = FSMC_TSET_MASK;
 338
 339        return 0;
 340}
 341
 342static int fsmc_setup_data_interface(struct mtd_info *mtd, int csline,
 343                                     const struct nand_data_interface *conf)
 344{
 345        struct nand_chip *nand = mtd_to_nand(mtd);
 346        struct fsmc_nand_data *host = nand_get_controller_data(nand);
 347        struct fsmc_nand_timings tims;
 348        const struct nand_sdr_timings *sdrt;
 349        int ret;
 350
 351        sdrt = nand_get_sdr_timings(conf);
 352        if (IS_ERR(sdrt))
 353                return PTR_ERR(sdrt);
 354
 355        ret = fsmc_calc_timings(host, sdrt, &tims);
 356        if (ret)
 357                return ret;
 358
 359        if (csline == NAND_DATA_IFACE_CHECK_ONLY)
 360                return 0;
 361
 362        fsmc_nand_setup(host, &tims);
 363
 364        return 0;
 365}
 366
 367/*
 368 * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
 369 */
 370static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
 371{
 372        struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
 373
 374        writel_relaxed(readl(host->regs_va + PC) & ~FSMC_ECCPLEN_256,
 375                       host->regs_va + PC);
 376        writel_relaxed(readl(host->regs_va + PC) & ~FSMC_ECCEN,
 377                       host->regs_va + PC);
 378        writel_relaxed(readl(host->regs_va + PC) | FSMC_ECCEN,
 379                       host->regs_va + PC);
 380}
 381
 382/*
 383 * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
 384 * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
 385 * max of 8-bits)
 386 */
 387static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data,
 388                                uint8_t *ecc)
 389{
 390        struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
 391        uint32_t ecc_tmp;
 392        unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
 393
 394        do {
 395                if (readl_relaxed(host->regs_va + STS) & FSMC_CODE_RDY)
 396                        break;
 397                else
 398                        cond_resched();
 399        } while (!time_after_eq(jiffies, deadline));
 400
 401        if (time_after_eq(jiffies, deadline)) {
 402                dev_err(host->dev, "calculate ecc timed out\n");
 403                return -ETIMEDOUT;
 404        }
 405
 406        ecc_tmp = readl_relaxed(host->regs_va + ECC1);
 407        ecc[0] = (uint8_t) (ecc_tmp >> 0);
 408        ecc[1] = (uint8_t) (ecc_tmp >> 8);
 409        ecc[2] = (uint8_t) (ecc_tmp >> 16);
 410        ecc[3] = (uint8_t) (ecc_tmp >> 24);
 411
 412        ecc_tmp = readl_relaxed(host->regs_va + ECC2);
 413        ecc[4] = (uint8_t) (ecc_tmp >> 0);
 414        ecc[5] = (uint8_t) (ecc_tmp >> 8);
 415        ecc[6] = (uint8_t) (ecc_tmp >> 16);
 416        ecc[7] = (uint8_t) (ecc_tmp >> 24);
 417
 418        ecc_tmp = readl_relaxed(host->regs_va + ECC3);
 419        ecc[8] = (uint8_t) (ecc_tmp >> 0);
 420        ecc[9] = (uint8_t) (ecc_tmp >> 8);
 421        ecc[10] = (uint8_t) (ecc_tmp >> 16);
 422        ecc[11] = (uint8_t) (ecc_tmp >> 24);
 423
 424        ecc_tmp = readl_relaxed(host->regs_va + STS);
 425        ecc[12] = (uint8_t) (ecc_tmp >> 16);
 426
 427        return 0;
 428}
 429
 430/*
 431 * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
 432 * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
 433 * max of 1-bit)
 434 */
 435static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data,
 436                                uint8_t *ecc)
 437{
 438        struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
 439        uint32_t ecc_tmp;
 440
 441        ecc_tmp = readl_relaxed(host->regs_va + ECC1);
 442        ecc[0] = (uint8_t) (ecc_tmp >> 0);
 443        ecc[1] = (uint8_t) (ecc_tmp >> 8);
 444        ecc[2] = (uint8_t) (ecc_tmp >> 16);
 445
 446        return 0;
 447}
 448
 449/* Count the number of 0's in buff upto a max of max_bits */
 450static int count_written_bits(uint8_t *buff, int size, int max_bits)
 451{
 452        int k, written_bits = 0;
 453
 454        for (k = 0; k < size; k++) {
 455                written_bits += hweight8(~buff[k]);
 456                if (written_bits > max_bits)
 457                        break;
 458        }
 459
 460        return written_bits;
 461}
 462
 463static void dma_complete(void *param)
 464{
 465        struct fsmc_nand_data *host = param;
 466
 467        complete(&host->dma_access_complete);
 468}
 469
 470static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
 471                enum dma_data_direction direction)
 472{
 473        struct dma_chan *chan;
 474        struct dma_device *dma_dev;
 475        struct dma_async_tx_descriptor *tx;
 476        dma_addr_t dma_dst, dma_src, dma_addr;
 477        dma_cookie_t cookie;
 478        unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
 479        int ret;
 480        unsigned long time_left;
 481
 482        if (direction == DMA_TO_DEVICE)
 483                chan = host->write_dma_chan;
 484        else if (direction == DMA_FROM_DEVICE)
 485                chan = host->read_dma_chan;
 486        else
 487                return -EINVAL;
 488
 489        dma_dev = chan->device;
 490        dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
 491
 492        if (direction == DMA_TO_DEVICE) {
 493                dma_src = dma_addr;
 494                dma_dst = host->data_pa;
 495        } else {
 496                dma_src = host->data_pa;
 497                dma_dst = dma_addr;
 498        }
 499
 500        tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
 501                        len, flags);
 502        if (!tx) {
 503                dev_err(host->dev, "device_prep_dma_memcpy error\n");
 504                ret = -EIO;
 505                goto unmap_dma;
 506        }
 507
 508        tx->callback = dma_complete;
 509        tx->callback_param = host;
 510        cookie = tx->tx_submit(tx);
 511
 512        ret = dma_submit_error(cookie);
 513        if (ret) {
 514                dev_err(host->dev, "dma_submit_error %d\n", cookie);
 515                goto unmap_dma;
 516        }
 517
 518        dma_async_issue_pending(chan);
 519
 520        time_left =
 521        wait_for_completion_timeout(&host->dma_access_complete,
 522                                msecs_to_jiffies(3000));
 523        if (time_left == 0) {
 524                dmaengine_terminate_all(chan);
 525                dev_err(host->dev, "wait_for_completion_timeout\n");
 526                ret = -ETIMEDOUT;
 527                goto unmap_dma;
 528        }
 529
 530        ret = 0;
 531
 532unmap_dma:
 533        dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
 534
 535        return ret;
 536}
 537
 538/*
 539 * fsmc_write_buf - write buffer to chip
 540 * @mtd:        MTD device structure
 541 * @buf:        data buffer
 542 * @len:        number of bytes to write
 543 */
 544static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 545{
 546        struct fsmc_nand_data *host  = mtd_to_fsmc(mtd);
 547        int i;
 548
 549        if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
 550                        IS_ALIGNED(len, sizeof(uint32_t))) {
 551                uint32_t *p = (uint32_t *)buf;
 552                len = len >> 2;
 553                for (i = 0; i < len; i++)
 554                        writel_relaxed(p[i], host->data_va);
 555        } else {
 556                for (i = 0; i < len; i++)
 557                        writeb_relaxed(buf[i], host->data_va);
 558        }
 559}
 560
 561/*
 562 * fsmc_read_buf - read chip data into buffer
 563 * @mtd:        MTD device structure
 564 * @buf:        buffer to store date
 565 * @len:        number of bytes to read
 566 */
 567static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 568{
 569        struct fsmc_nand_data *host  = mtd_to_fsmc(mtd);
 570        int i;
 571
 572        if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
 573                        IS_ALIGNED(len, sizeof(uint32_t))) {
 574                uint32_t *p = (uint32_t *)buf;
 575                len = len >> 2;
 576                for (i = 0; i < len; i++)
 577                        p[i] = readl_relaxed(host->data_va);
 578        } else {
 579                for (i = 0; i < len; i++)
 580                        buf[i] = readb_relaxed(host->data_va);
 581        }
 582}
 583
 584/*
 585 * fsmc_read_buf_dma - read chip data into buffer
 586 * @mtd:        MTD device structure
 587 * @buf:        buffer to store date
 588 * @len:        number of bytes to read
 589 */
 590static void fsmc_read_buf_dma(struct mtd_info *mtd, uint8_t *buf, int len)
 591{
 592        struct fsmc_nand_data *host  = mtd_to_fsmc(mtd);
 593
 594        dma_xfer(host, buf, len, DMA_FROM_DEVICE);
 595}
 596
 597/*
 598 * fsmc_write_buf_dma - write buffer to chip
 599 * @mtd:        MTD device structure
 600 * @buf:        data buffer
 601 * @len:        number of bytes to write
 602 */
 603static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf,
 604                int len)
 605{
 606        struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
 607
 608        dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
 609}
 610
 611/* fsmc_select_chip - assert or deassert nCE */
 612static void fsmc_select_chip(struct mtd_info *mtd, int chipnr)
 613{
 614        struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
 615        u32 pc;
 616
 617        /* Support only one CS */
 618        if (chipnr > 0)
 619                return;
 620
 621        pc = readl(host->regs_va + PC);
 622        if (chipnr < 0)
 623                writel_relaxed(pc & ~FSMC_ENABLE, host->regs_va + PC);
 624        else
 625                writel_relaxed(pc | FSMC_ENABLE, host->regs_va + PC);
 626
 627        /* nCE line must be asserted before starting any operation */
 628        mb();
 629}
 630
 631/*
 632 * fsmc_exec_op - hook called by the core to execute NAND operations
 633 *
 634 * This controller is simple enough and thus does not need to use the parser
 635 * provided by the core, instead, handle every situation here.
 636 */
 637static int fsmc_exec_op(struct nand_chip *chip, const struct nand_operation *op,
 638                        bool check_only)
 639{
 640        struct mtd_info *mtd = nand_to_mtd(chip);
 641        struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
 642        const struct nand_op_instr *instr = NULL;
 643        int ret = 0;
 644        unsigned int op_id;
 645        int i;
 646
 647        pr_debug("Executing operation [%d instructions]:\n", op->ninstrs);
 648        for (op_id = 0; op_id < op->ninstrs; op_id++) {
 649                instr = &op->instrs[op_id];
 650
 651                switch (instr->type) {
 652                case NAND_OP_CMD_INSTR:
 653                        pr_debug("  ->CMD      [0x%02x]\n",
 654                                 instr->ctx.cmd.opcode);
 655
 656                        writeb_relaxed(instr->ctx.cmd.opcode, host->cmd_va);
 657                        break;
 658
 659                case NAND_OP_ADDR_INSTR:
 660                        pr_debug("  ->ADDR     [%d cyc]",
 661                                 instr->ctx.addr.naddrs);
 662
 663                        for (i = 0; i < instr->ctx.addr.naddrs; i++)
 664                                writeb_relaxed(instr->ctx.addr.addrs[i],
 665                                               host->addr_va);
 666                        break;
 667
 668                case NAND_OP_DATA_IN_INSTR:
 669                        pr_debug("  ->DATA_IN  [%d B%s]\n", instr->ctx.data.len,
 670                                 instr->ctx.data.force_8bit ?
 671                                 ", force 8-bit" : "");
 672
 673                        if (host->mode == USE_DMA_ACCESS)
 674                                fsmc_read_buf_dma(mtd, instr->ctx.data.buf.in,
 675                                                  instr->ctx.data.len);
 676                        else
 677                                fsmc_read_buf(mtd, instr->ctx.data.buf.in,
 678                                              instr->ctx.data.len);
 679                        break;
 680
 681                case NAND_OP_DATA_OUT_INSTR:
 682                        pr_debug("  ->DATA_OUT [%d B%s]\n", instr->ctx.data.len,
 683                                 instr->ctx.data.force_8bit ?
 684                                 ", force 8-bit" : "");
 685
 686                        if (host->mode == USE_DMA_ACCESS)
 687                                fsmc_write_buf_dma(mtd, instr->ctx.data.buf.out,
 688                                                   instr->ctx.data.len);
 689                        else
 690                                fsmc_write_buf(mtd, instr->ctx.data.buf.out,
 691                                               instr->ctx.data.len);
 692                        break;
 693
 694                case NAND_OP_WAITRDY_INSTR:
 695                        pr_debug("  ->WAITRDY  [max %d ms]\n",
 696                                 instr->ctx.waitrdy.timeout_ms);
 697
 698                        ret = nand_soft_waitrdy(chip,
 699                                                instr->ctx.waitrdy.timeout_ms);
 700                        break;
 701                }
 702        }
 703
 704        return ret;
 705}
 706
 707/*
 708 * fsmc_read_page_hwecc
 709 * @mtd:        mtd info structure
 710 * @chip:       nand chip info structure
 711 * @buf:        buffer to store read data
 712 * @oob_required:       caller expects OOB data read to chip->oob_poi
 713 * @page:       page number to read
 714 *
 715 * This routine is needed for fsmc version 8 as reading from NAND chip has to be
 716 * performed in a strict sequence as follows:
 717 * data(512 byte) -> ecc(13 byte)
 718 * After this read, fsmc hardware generates and reports error data bits(up to a
 719 * max of 8 bits)
 720 */
 721static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
 722                                 uint8_t *buf, int oob_required, int page)
 723{
 724        int i, j, s, stat, eccsize = chip->ecc.size;
 725        int eccbytes = chip->ecc.bytes;
 726        int eccsteps = chip->ecc.steps;
 727        uint8_t *p = buf;
 728        uint8_t *ecc_calc = chip->ecc.calc_buf;
 729        uint8_t *ecc_code = chip->ecc.code_buf;
 730        int off, len, group = 0;
 731        /*
 732         * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we
 733         * end up reading 14 bytes (7 words) from oob. The local array is
 734         * to maintain word alignment
 735         */
 736        uint16_t ecc_oob[7];
 737        uint8_t *oob = (uint8_t *)&ecc_oob[0];
 738        unsigned int max_bitflips = 0;
 739
 740        for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
 741                nand_read_page_op(chip, page, s * eccsize, NULL, 0);
 742                chip->ecc.hwctl(mtd, NAND_ECC_READ);
 743                chip->read_buf(mtd, p, eccsize);
 744
 745                for (j = 0; j < eccbytes;) {
 746                        struct mtd_oob_region oobregion;
 747                        int ret;
 748
 749                        ret = mtd_ooblayout_ecc(mtd, group++, &oobregion);
 750                        if (ret)
 751                                return ret;
 752
 753                        off = oobregion.offset;
 754                        len = oobregion.length;
 755
 756                        /*
 757                         * length is intentionally kept a higher multiple of 2
 758                         * to read at least 13 bytes even in case of 16 bit NAND
 759                         * devices
 760                         */
 761                        if (chip->options & NAND_BUSWIDTH_16)
 762                                len = roundup(len, 2);
 763
 764                        nand_read_oob_op(chip, page, off, oob + j, len);
 765                        j += len;
 766                }
 767
 768                memcpy(&ecc_code[i], oob, chip->ecc.bytes);
 769                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
 770
 771                stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
 772                if (stat < 0) {
 773                        mtd->ecc_stats.failed++;
 774                } else {
 775                        mtd->ecc_stats.corrected += stat;
 776                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
 777                }
 778        }
 779
 780        return max_bitflips;
 781}
 782
 783/*
 784 * fsmc_bch8_correct_data
 785 * @mtd:        mtd info structure
 786 * @dat:        buffer of read data
 787 * @read_ecc:   ecc read from device spare area
 788 * @calc_ecc:   ecc calculated from read data
 789 *
 790 * calc_ecc is a 104 bit information containing maximum of 8 error
 791 * offset informations of 13 bits each in 512 bytes of read data.
 792 */
 793static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat,
 794                             uint8_t *read_ecc, uint8_t *calc_ecc)
 795{
 796        struct nand_chip *chip = mtd_to_nand(mtd);
 797        struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
 798        uint32_t err_idx[8];
 799        uint32_t num_err, i;
 800        uint32_t ecc1, ecc2, ecc3, ecc4;
 801
 802        num_err = (readl_relaxed(host->regs_va + STS) >> 10) & 0xF;
 803
 804        /* no bit flipping */
 805        if (likely(num_err == 0))
 806                return 0;
 807
 808        /* too many errors */
 809        if (unlikely(num_err > 8)) {
 810                /*
 811                 * This is a temporary erase check. A newly erased page read
 812                 * would result in an ecc error because the oob data is also
 813                 * erased to FF and the calculated ecc for an FF data is not
 814                 * FF..FF.
 815                 * This is a workaround to skip performing correction in case
 816                 * data is FF..FF
 817                 *
 818                 * Logic:
 819                 * For every page, each bit written as 0 is counted until these
 820                 * number of bits are greater than 8 (the maximum correction
 821                 * capability of FSMC for each 512 + 13 bytes)
 822                 */
 823
 824                int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
 825                int bits_data = count_written_bits(dat, chip->ecc.size, 8);
 826
 827                if ((bits_ecc + bits_data) <= 8) {
 828                        if (bits_data)
 829                                memset(dat, 0xff, chip->ecc.size);
 830                        return bits_data;
 831                }
 832
 833                return -EBADMSG;
 834        }
 835
 836        /*
 837         * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
 838         * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
 839         *
 840         * calc_ecc is a 104 bit information containing maximum of 8 error
 841         * offset informations of 13 bits each. calc_ecc is copied into a
 842         * uint64_t array and error offset indexes are populated in err_idx
 843         * array
 844         */
 845        ecc1 = readl_relaxed(host->regs_va + ECC1);
 846        ecc2 = readl_relaxed(host->regs_va + ECC2);
 847        ecc3 = readl_relaxed(host->regs_va + ECC3);
 848        ecc4 = readl_relaxed(host->regs_va + STS);
 849
 850        err_idx[0] = (ecc1 >> 0) & 0x1FFF;
 851        err_idx[1] = (ecc1 >> 13) & 0x1FFF;
 852        err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
 853        err_idx[3] = (ecc2 >> 7) & 0x1FFF;
 854        err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
 855        err_idx[5] = (ecc3 >> 1) & 0x1FFF;
 856        err_idx[6] = (ecc3 >> 14) & 0x1FFF;
 857        err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
 858
 859        i = 0;
 860        while (num_err--) {
 861                change_bit(0, (unsigned long *)&err_idx[i]);
 862                change_bit(1, (unsigned long *)&err_idx[i]);
 863
 864                if (err_idx[i] < chip->ecc.size * 8) {
 865                        change_bit(err_idx[i], (unsigned long *)dat);
 866                        i++;
 867                }
 868        }
 869        return i;
 870}
 871
 872static bool filter(struct dma_chan *chan, void *slave)
 873{
 874        chan->private = slave;
 875        return true;
 876}
 877
 878static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
 879                                     struct fsmc_nand_data *host,
 880                                     struct nand_chip *nand)
 881{
 882        struct device_node *np = pdev->dev.of_node;
 883        u32 val;
 884        int ret;
 885
 886        nand->options = 0;
 887
 888        if (!of_property_read_u32(np, "bank-width", &val)) {
 889                if (val == 2) {
 890                        nand->options |= NAND_BUSWIDTH_16;
 891                } else if (val != 1) {
 892                        dev_err(&pdev->dev, "invalid bank-width %u\n", val);
 893                        return -EINVAL;
 894                }
 895        }
 896
 897        if (of_get_property(np, "nand-skip-bbtscan", NULL))
 898                nand->options |= NAND_SKIP_BBTSCAN;
 899
 900        host->dev_timings = devm_kzalloc(&pdev->dev,
 901                                sizeof(*host->dev_timings), GFP_KERNEL);
 902        if (!host->dev_timings)
 903                return -ENOMEM;
 904        ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings,
 905                                                sizeof(*host->dev_timings));
 906        if (ret)
 907                host->dev_timings = NULL;
 908
 909        /* Set default NAND bank to 0 */
 910        host->bank = 0;
 911        if (!of_property_read_u32(np, "bank", &val)) {
 912                if (val > 3) {
 913                        dev_err(&pdev->dev, "invalid bank %u\n", val);
 914                        return -EINVAL;
 915                }
 916                host->bank = val;
 917        }
 918        return 0;
 919}
 920
 921/*
 922 * fsmc_nand_probe - Probe function
 923 * @pdev:       platform device structure
 924 */
 925static int __init fsmc_nand_probe(struct platform_device *pdev)
 926{
 927        struct fsmc_nand_data *host;
 928        struct mtd_info *mtd;
 929        struct nand_chip *nand;
 930        struct resource *res;
 931        void __iomem *base;
 932        dma_cap_mask_t mask;
 933        int ret = 0;
 934        u32 pid;
 935        int i;
 936
 937        /* Allocate memory for the device structure (and zero it) */
 938        host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
 939        if (!host)
 940                return -ENOMEM;
 941
 942        nand = &host->nand;
 943
 944        ret = fsmc_nand_probe_config_dt(pdev, host, nand);
 945        if (ret)
 946                return ret;
 947
 948        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
 949        host->data_va = devm_ioremap_resource(&pdev->dev, res);
 950        if (IS_ERR(host->data_va))
 951                return PTR_ERR(host->data_va);
 952
 953        host->data_pa = (dma_addr_t)res->start;
 954
 955        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
 956        host->addr_va = devm_ioremap_resource(&pdev->dev, res);
 957        if (IS_ERR(host->addr_va))
 958                return PTR_ERR(host->addr_va);
 959
 960        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
 961        host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
 962        if (IS_ERR(host->cmd_va))
 963                return PTR_ERR(host->cmd_va);
 964
 965        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
 966        base = devm_ioremap_resource(&pdev->dev, res);
 967        if (IS_ERR(base))
 968                return PTR_ERR(base);
 969
 970        host->regs_va = base + FSMC_NOR_REG_SIZE +
 971                (host->bank * FSMC_NAND_BANK_SZ);
 972
 973        host->clk = devm_clk_get(&pdev->dev, NULL);
 974        if (IS_ERR(host->clk)) {
 975                dev_err(&pdev->dev, "failed to fetch block clock\n");
 976                return PTR_ERR(host->clk);
 977        }
 978
 979        ret = clk_prepare_enable(host->clk);
 980        if (ret)
 981                return ret;
 982
 983        /*
 984         * This device ID is actually a common AMBA ID as used on the
 985         * AMBA PrimeCell bus. However it is not a PrimeCell.
 986         */
 987        for (pid = 0, i = 0; i < 4; i++)
 988                pid |= (readl(base + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8);
 989        host->pid = pid;
 990        dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, "
 991                 "revision %02x, config %02x\n",
 992                 AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
 993                 AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
 994
 995        host->dev = &pdev->dev;
 996
 997        if (host->mode == USE_DMA_ACCESS)
 998                init_completion(&host->dma_access_complete);
 999
1000        /* Link all private pointers */
1001        mtd = nand_to_mtd(&host->nand);
1002        nand_set_controller_data(nand, host);
1003        nand_set_flash_node(nand, pdev->dev.of_node);
1004
1005        mtd->dev.parent = &pdev->dev;
1006        nand->exec_op = fsmc_exec_op;
1007        nand->select_chip = fsmc_select_chip;
1008        nand->chip_delay = 30;
1009
1010        /*
1011         * Setup default ECC mode. nand_dt_init() called from nand_scan_ident()
1012         * can overwrite this value if the DT provides a different value.
1013         */
1014        nand->ecc.mode = NAND_ECC_HW;
1015        nand->ecc.hwctl = fsmc_enable_hwecc;
1016        nand->ecc.size = 512;
1017        nand->badblockbits = 7;
1018
1019        if (host->mode == USE_DMA_ACCESS) {
1020                dma_cap_zero(mask);
1021                dma_cap_set(DMA_MEMCPY, mask);
1022                host->read_dma_chan = dma_request_channel(mask, filter, NULL);
1023                if (!host->read_dma_chan) {
1024                        dev_err(&pdev->dev, "Unable to get read dma channel\n");
1025                        goto disable_clk;
1026                }
1027                host->write_dma_chan = dma_request_channel(mask, filter, NULL);
1028                if (!host->write_dma_chan) {
1029                        dev_err(&pdev->dev, "Unable to get write dma channel\n");
1030                        goto release_dma_read_chan;
1031                }
1032        }
1033
1034        if (host->dev_timings)
1035                fsmc_nand_setup(host, host->dev_timings);
1036        else
1037                nand->setup_data_interface = fsmc_setup_data_interface;
1038
1039        if (AMBA_REV_BITS(host->pid) >= 8) {
1040                nand->ecc.read_page = fsmc_read_page_hwecc;
1041                nand->ecc.calculate = fsmc_read_hwecc_ecc4;
1042                nand->ecc.correct = fsmc_bch8_correct_data;
1043                nand->ecc.bytes = 13;
1044                nand->ecc.strength = 8;
1045        }
1046
1047        /*
1048         * Scan to find existence of the device
1049         */
1050        ret = nand_scan_ident(mtd, 1, NULL);
1051        if (ret) {
1052                dev_err(&pdev->dev, "No NAND Device found!\n");
1053                goto release_dma_write_chan;
1054        }
1055
1056        if (AMBA_REV_BITS(host->pid) >= 8) {
1057                switch (mtd->oobsize) {
1058                case 16:
1059                case 64:
1060                case 128:
1061                case 224:
1062                case 256:
1063                        break;
1064                default:
1065                        dev_warn(&pdev->dev, "No oob scheme defined for oobsize %d\n",
1066                                 mtd->oobsize);
1067                        ret = -EINVAL;
1068                        goto release_dma_write_chan;
1069                }
1070
1071                mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops);
1072        } else {
1073                switch (nand->ecc.mode) {
1074                case NAND_ECC_HW:
1075                        dev_info(&pdev->dev, "Using 1-bit HW ECC scheme\n");
1076                        nand->ecc.calculate = fsmc_read_hwecc_ecc1;
1077                        nand->ecc.correct = nand_correct_data;
1078                        nand->ecc.bytes = 3;
1079                        nand->ecc.strength = 1;
1080                        break;
1081
1082                case NAND_ECC_SOFT:
1083                        if (nand->ecc.algo == NAND_ECC_BCH) {
1084                                dev_info(&pdev->dev, "Using 4-bit SW BCH ECC scheme\n");
1085                                break;
1086                        }
1087
1088                case NAND_ECC_ON_DIE:
1089                        break;
1090
1091                default:
1092                        dev_err(&pdev->dev, "Unsupported ECC mode!\n");
1093                        goto release_dma_write_chan;
1094                }
1095
1096                /*
1097                 * Don't set layout for BCH4 SW ECC. This will be
1098                 * generated later in nand_bch_init() later.
1099                 */
1100                if (nand->ecc.mode == NAND_ECC_HW) {
1101                        switch (mtd->oobsize) {
1102                        case 16:
1103                        case 64:
1104                        case 128:
1105                                mtd_set_ooblayout(mtd,
1106                                                  &fsmc_ecc1_ooblayout_ops);
1107                                break;
1108                        default:
1109                                dev_warn(&pdev->dev,
1110                                         "No oob scheme defined for oobsize %d\n",
1111                                         mtd->oobsize);
1112                                ret = -EINVAL;
1113                                goto release_dma_write_chan;
1114                        }
1115                }
1116        }
1117
1118        /* Second stage of scan to fill MTD data-structures */
1119        ret = nand_scan_tail(mtd);
1120        if (ret)
1121                goto release_dma_write_chan;
1122
1123        mtd->name = "nand";
1124        ret = mtd_device_register(mtd, NULL, 0);
1125        if (ret)
1126                goto cleanup_nand;
1127
1128        platform_set_drvdata(pdev, host);
1129        dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
1130
1131        return 0;
1132
1133cleanup_nand:
1134        nand_cleanup(nand);
1135release_dma_write_chan:
1136        if (host->mode == USE_DMA_ACCESS)
1137                dma_release_channel(host->write_dma_chan);
1138release_dma_read_chan:
1139        if (host->mode == USE_DMA_ACCESS)
1140                dma_release_channel(host->read_dma_chan);
1141disable_clk:
1142        clk_disable_unprepare(host->clk);
1143
1144        return ret;
1145}
1146
1147/*
1148 * Clean up routine
1149 */
1150static int fsmc_nand_remove(struct platform_device *pdev)
1151{
1152        struct fsmc_nand_data *host = platform_get_drvdata(pdev);
1153
1154        if (host) {
1155                nand_release(nand_to_mtd(&host->nand));
1156
1157                if (host->mode == USE_DMA_ACCESS) {
1158                        dma_release_channel(host->write_dma_chan);
1159                        dma_release_channel(host->read_dma_chan);
1160                }
1161                clk_disable_unprepare(host->clk);
1162        }
1163
1164        return 0;
1165}
1166
1167#ifdef CONFIG_PM_SLEEP
1168static int fsmc_nand_suspend(struct device *dev)
1169{
1170        struct fsmc_nand_data *host = dev_get_drvdata(dev);
1171        if (host)
1172                clk_disable_unprepare(host->clk);
1173        return 0;
1174}
1175
1176static int fsmc_nand_resume(struct device *dev)
1177{
1178        struct fsmc_nand_data *host = dev_get_drvdata(dev);
1179        if (host) {
1180                clk_prepare_enable(host->clk);
1181                if (host->dev_timings)
1182                        fsmc_nand_setup(host, host->dev_timings);
1183        }
1184        return 0;
1185}
1186#endif
1187
1188static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
1189
1190static const struct of_device_id fsmc_nand_id_table[] = {
1191        { .compatible = "st,spear600-fsmc-nand" },
1192        { .compatible = "stericsson,fsmc-nand" },
1193        {}
1194};
1195MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
1196
1197static struct platform_driver fsmc_nand_driver = {
1198        .remove = fsmc_nand_remove,
1199        .driver = {
1200                .name = "fsmc-nand",
1201                .of_match_table = fsmc_nand_id_table,
1202                .pm = &fsmc_nand_pm_ops,
1203        },
1204};
1205
1206module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
1207
1208MODULE_LICENSE("GPL");
1209MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
1210MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");
1211