linux/drivers/net/can/xilinx_can.c
<<
>>
Prefs
   1/* Xilinx CAN device driver
   2 *
   3 * Copyright (C) 2012 - 2014 Xilinx, Inc.
   4 * Copyright (C) 2009 PetaLogix. All rights reserved.
   5 * Copyright (C) 2017 Sandvik Mining and Construction Oy
   6 *
   7 * Description:
   8 * This driver is developed for Axi CAN IP and for Zynq CANPS Controller.
   9 * This program is free software: you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation, either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 */
  19
  20#include <linux/clk.h>
  21#include <linux/errno.h>
  22#include <linux/init.h>
  23#include <linux/interrupt.h>
  24#include <linux/io.h>
  25#include <linux/kernel.h>
  26#include <linux/module.h>
  27#include <linux/netdevice.h>
  28#include <linux/of.h>
  29#include <linux/of_device.h>
  30#include <linux/platform_device.h>
  31#include <linux/skbuff.h>
  32#include <linux/spinlock.h>
  33#include <linux/string.h>
  34#include <linux/types.h>
  35#include <linux/can/dev.h>
  36#include <linux/can/error.h>
  37#include <linux/can/led.h>
  38#include <linux/pm_runtime.h>
  39
  40#define DRIVER_NAME     "xilinx_can"
  41
  42/* CAN registers set */
  43enum xcan_reg {
  44        XCAN_SRR_OFFSET         = 0x00, /* Software reset */
  45        XCAN_MSR_OFFSET         = 0x04, /* Mode select */
  46        XCAN_BRPR_OFFSET        = 0x08, /* Baud rate prescaler */
  47        XCAN_BTR_OFFSET         = 0x0C, /* Bit timing */
  48        XCAN_ECR_OFFSET         = 0x10, /* Error counter */
  49        XCAN_ESR_OFFSET         = 0x14, /* Error status */
  50        XCAN_SR_OFFSET          = 0x18, /* Status */
  51        XCAN_ISR_OFFSET         = 0x1C, /* Interrupt status */
  52        XCAN_IER_OFFSET         = 0x20, /* Interrupt enable */
  53        XCAN_ICR_OFFSET         = 0x24, /* Interrupt clear */
  54        XCAN_TXFIFO_ID_OFFSET   = 0x30,/* TX FIFO ID */
  55        XCAN_TXFIFO_DLC_OFFSET  = 0x34, /* TX FIFO DLC */
  56        XCAN_TXFIFO_DW1_OFFSET  = 0x38, /* TX FIFO Data Word 1 */
  57        XCAN_TXFIFO_DW2_OFFSET  = 0x3C, /* TX FIFO Data Word 2 */
  58        XCAN_RXFIFO_ID_OFFSET   = 0x50, /* RX FIFO ID */
  59        XCAN_RXFIFO_DLC_OFFSET  = 0x54, /* RX FIFO DLC */
  60        XCAN_RXFIFO_DW1_OFFSET  = 0x58, /* RX FIFO Data Word 1 */
  61        XCAN_RXFIFO_DW2_OFFSET  = 0x5C, /* RX FIFO Data Word 2 */
  62};
  63
  64/* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
  65#define XCAN_SRR_CEN_MASK               0x00000002 /* CAN enable */
  66#define XCAN_SRR_RESET_MASK             0x00000001 /* Soft Reset the CAN core */
  67#define XCAN_MSR_LBACK_MASK             0x00000002 /* Loop back mode select */
  68#define XCAN_MSR_SLEEP_MASK             0x00000001 /* Sleep mode select */
  69#define XCAN_BRPR_BRP_MASK              0x000000FF /* Baud rate prescaler */
  70#define XCAN_BTR_SJW_MASK               0x00000180 /* Synchronous jump width */
  71#define XCAN_BTR_TS2_MASK               0x00000070 /* Time segment 2 */
  72#define XCAN_BTR_TS1_MASK               0x0000000F /* Time segment 1 */
  73#define XCAN_ECR_REC_MASK               0x0000FF00 /* Receive error counter */
  74#define XCAN_ECR_TEC_MASK               0x000000FF /* Transmit error counter */
  75#define XCAN_ESR_ACKER_MASK             0x00000010 /* ACK error */
  76#define XCAN_ESR_BERR_MASK              0x00000008 /* Bit error */
  77#define XCAN_ESR_STER_MASK              0x00000004 /* Stuff error */
  78#define XCAN_ESR_FMER_MASK              0x00000002 /* Form error */
  79#define XCAN_ESR_CRCER_MASK             0x00000001 /* CRC error */
  80#define XCAN_SR_TXFLL_MASK              0x00000400 /* TX FIFO is full */
  81#define XCAN_SR_ESTAT_MASK              0x00000180 /* Error status */
  82#define XCAN_SR_ERRWRN_MASK             0x00000040 /* Error warning */
  83#define XCAN_SR_NORMAL_MASK             0x00000008 /* Normal mode */
  84#define XCAN_SR_LBACK_MASK              0x00000002 /* Loop back mode */
  85#define XCAN_SR_CONFIG_MASK             0x00000001 /* Configuration mode */
  86#define XCAN_IXR_TXFEMP_MASK            0x00004000 /* TX FIFO Empty */
  87#define XCAN_IXR_WKUP_MASK              0x00000800 /* Wake up interrupt */
  88#define XCAN_IXR_SLP_MASK               0x00000400 /* Sleep interrupt */
  89#define XCAN_IXR_BSOFF_MASK             0x00000200 /* Bus off interrupt */
  90#define XCAN_IXR_ERROR_MASK             0x00000100 /* Error interrupt */
  91#define XCAN_IXR_RXNEMP_MASK            0x00000080 /* RX FIFO NotEmpty intr */
  92#define XCAN_IXR_RXOFLW_MASK            0x00000040 /* RX FIFO Overflow intr */
  93#define XCAN_IXR_RXOK_MASK              0x00000010 /* Message received intr */
  94#define XCAN_IXR_TXFLL_MASK             0x00000004 /* Tx FIFO Full intr */
  95#define XCAN_IXR_TXOK_MASK              0x00000002 /* TX successful intr */
  96#define XCAN_IXR_ARBLST_MASK            0x00000001 /* Arbitration lost intr */
  97#define XCAN_IDR_ID1_MASK               0xFFE00000 /* Standard msg identifier */
  98#define XCAN_IDR_SRR_MASK               0x00100000 /* Substitute remote TXreq */
  99#define XCAN_IDR_IDE_MASK               0x00080000 /* Identifier extension */
 100#define XCAN_IDR_ID2_MASK               0x0007FFFE /* Extended message ident */
 101#define XCAN_IDR_RTR_MASK               0x00000001 /* Remote TX request */
 102#define XCAN_DLCR_DLC_MASK              0xF0000000 /* Data length code */
 103
 104#define XCAN_INTR_ALL           (XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |\
 105                                 XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK | \
 106                                 XCAN_IXR_RXNEMP_MASK | XCAN_IXR_ERROR_MASK | \
 107                                 XCAN_IXR_RXOFLW_MASK | XCAN_IXR_ARBLST_MASK)
 108
 109/* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
 110#define XCAN_BTR_SJW_SHIFT              7  /* Synchronous jump width */
 111#define XCAN_BTR_TS2_SHIFT              4  /* Time segment 2 */
 112#define XCAN_IDR_ID1_SHIFT              21 /* Standard Messg Identifier */
 113#define XCAN_IDR_ID2_SHIFT              1  /* Extended Message Identifier */
 114#define XCAN_DLCR_DLC_SHIFT             28 /* Data length code */
 115#define XCAN_ESR_REC_SHIFT              8  /* Rx Error Count */
 116
 117/* CAN frame length constants */
 118#define XCAN_FRAME_MAX_DATA_LEN         8
 119#define XCAN_TIMEOUT                    (1 * HZ)
 120
 121/**
 122 * struct xcan_priv - This definition define CAN driver instance
 123 * @can:                        CAN private data structure.
 124 * @tx_lock:                    Lock for synchronizing TX interrupt handling
 125 * @tx_head:                    Tx CAN packets ready to send on the queue
 126 * @tx_tail:                    Tx CAN packets successfully sended on the queue
 127 * @tx_max:                     Maximum number packets the driver can send
 128 * @napi:                       NAPI structure
 129 * @read_reg:                   For reading data from CAN registers
 130 * @write_reg:                  For writing data to CAN registers
 131 * @dev:                        Network device data structure
 132 * @reg_base:                   Ioremapped address to registers
 133 * @irq_flags:                  For request_irq()
 134 * @bus_clk:                    Pointer to struct clk
 135 * @can_clk:                    Pointer to struct clk
 136 */
 137struct xcan_priv {
 138        struct can_priv can;
 139        spinlock_t tx_lock;
 140        unsigned int tx_head;
 141        unsigned int tx_tail;
 142        unsigned int tx_max;
 143        struct napi_struct napi;
 144        u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
 145        void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
 146                        u32 val);
 147        struct device *dev;
 148        void __iomem *reg_base;
 149        unsigned long irq_flags;
 150        struct clk *bus_clk;
 151        struct clk *can_clk;
 152};
 153
 154/* CAN Bittiming constants as per Xilinx CAN specs */
 155static const struct can_bittiming_const xcan_bittiming_const = {
 156        .name = DRIVER_NAME,
 157        .tseg1_min = 1,
 158        .tseg1_max = 16,
 159        .tseg2_min = 1,
 160        .tseg2_max = 8,
 161        .sjw_max = 4,
 162        .brp_min = 1,
 163        .brp_max = 256,
 164        .brp_inc = 1,
 165};
 166
 167#define XCAN_CAP_WATERMARK      0x0001
 168struct xcan_devtype_data {
 169        unsigned int caps;
 170};
 171
 172/**
 173 * xcan_write_reg_le - Write a value to the device register little endian
 174 * @priv:       Driver private data structure
 175 * @reg:        Register offset
 176 * @val:        Value to write at the Register offset
 177 *
 178 * Write data to the paricular CAN register
 179 */
 180static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
 181                        u32 val)
 182{
 183        iowrite32(val, priv->reg_base + reg);
 184}
 185
 186/**
 187 * xcan_read_reg_le - Read a value from the device register little endian
 188 * @priv:       Driver private data structure
 189 * @reg:        Register offset
 190 *
 191 * Read data from the particular CAN register
 192 * Return: value read from the CAN register
 193 */
 194static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
 195{
 196        return ioread32(priv->reg_base + reg);
 197}
 198
 199/**
 200 * xcan_write_reg_be - Write a value to the device register big endian
 201 * @priv:       Driver private data structure
 202 * @reg:        Register offset
 203 * @val:        Value to write at the Register offset
 204 *
 205 * Write data to the paricular CAN register
 206 */
 207static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
 208                        u32 val)
 209{
 210        iowrite32be(val, priv->reg_base + reg);
 211}
 212
 213/**
 214 * xcan_read_reg_be - Read a value from the device register big endian
 215 * @priv:       Driver private data structure
 216 * @reg:        Register offset
 217 *
 218 * Read data from the particular CAN register
 219 * Return: value read from the CAN register
 220 */
 221static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
 222{
 223        return ioread32be(priv->reg_base + reg);
 224}
 225
 226/**
 227 * set_reset_mode - Resets the CAN device mode
 228 * @ndev:       Pointer to net_device structure
 229 *
 230 * This is the driver reset mode routine.The driver
 231 * enters into configuration mode.
 232 *
 233 * Return: 0 on success and failure value on error
 234 */
 235static int set_reset_mode(struct net_device *ndev)
 236{
 237        struct xcan_priv *priv = netdev_priv(ndev);
 238        unsigned long timeout;
 239
 240        priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
 241
 242        timeout = jiffies + XCAN_TIMEOUT;
 243        while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
 244                if (time_after(jiffies, timeout)) {
 245                        netdev_warn(ndev, "timed out for config mode\n");
 246                        return -ETIMEDOUT;
 247                }
 248                usleep_range(500, 10000);
 249        }
 250
 251        /* reset clears FIFOs */
 252        priv->tx_head = 0;
 253        priv->tx_tail = 0;
 254
 255        return 0;
 256}
 257
 258/**
 259 * xcan_set_bittiming - CAN set bit timing routine
 260 * @ndev:       Pointer to net_device structure
 261 *
 262 * This is the driver set bittiming  routine.
 263 * Return: 0 on success and failure value on error
 264 */
 265static int xcan_set_bittiming(struct net_device *ndev)
 266{
 267        struct xcan_priv *priv = netdev_priv(ndev);
 268        struct can_bittiming *bt = &priv->can.bittiming;
 269        u32 btr0, btr1;
 270        u32 is_config_mode;
 271
 272        /* Check whether Xilinx CAN is in configuration mode.
 273         * It cannot set bit timing if Xilinx CAN is not in configuration mode.
 274         */
 275        is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
 276                                XCAN_SR_CONFIG_MASK;
 277        if (!is_config_mode) {
 278                netdev_alert(ndev,
 279                     "BUG! Cannot set bittiming - CAN is not in config mode\n");
 280                return -EPERM;
 281        }
 282
 283        /* Setting Baud Rate prescalar value in BRPR Register */
 284        btr0 = (bt->brp - 1);
 285
 286        /* Setting Time Segment 1 in BTR Register */
 287        btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
 288
 289        /* Setting Time Segment 2 in BTR Register */
 290        btr1 |= (bt->phase_seg2 - 1) << XCAN_BTR_TS2_SHIFT;
 291
 292        /* Setting Synchronous jump width in BTR Register */
 293        btr1 |= (bt->sjw - 1) << XCAN_BTR_SJW_SHIFT;
 294
 295        priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
 296        priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
 297
 298        netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
 299                        priv->read_reg(priv, XCAN_BRPR_OFFSET),
 300                        priv->read_reg(priv, XCAN_BTR_OFFSET));
 301
 302        return 0;
 303}
 304
 305/**
 306 * xcan_chip_start - This the drivers start routine
 307 * @ndev:       Pointer to net_device structure
 308 *
 309 * This is the drivers start routine.
 310 * Based on the State of the CAN device it puts
 311 * the CAN device into a proper mode.
 312 *
 313 * Return: 0 on success and failure value on error
 314 */
 315static int xcan_chip_start(struct net_device *ndev)
 316{
 317        struct xcan_priv *priv = netdev_priv(ndev);
 318        u32 reg_msr, reg_sr_mask;
 319        int err;
 320        unsigned long timeout;
 321
 322        /* Check if it is in reset mode */
 323        err = set_reset_mode(ndev);
 324        if (err < 0)
 325                return err;
 326
 327        err = xcan_set_bittiming(ndev);
 328        if (err < 0)
 329                return err;
 330
 331        /* Enable interrupts */
 332        priv->write_reg(priv, XCAN_IER_OFFSET, XCAN_INTR_ALL);
 333
 334        /* Check whether it is loopback mode or normal mode  */
 335        if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
 336                reg_msr = XCAN_MSR_LBACK_MASK;
 337                reg_sr_mask = XCAN_SR_LBACK_MASK;
 338        } else {
 339                reg_msr = 0x0;
 340                reg_sr_mask = XCAN_SR_NORMAL_MASK;
 341        }
 342
 343        priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
 344        priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
 345
 346        timeout = jiffies + XCAN_TIMEOUT;
 347        while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & reg_sr_mask)) {
 348                if (time_after(jiffies, timeout)) {
 349                        netdev_warn(ndev,
 350                                "timed out for correct mode\n");
 351                        return -ETIMEDOUT;
 352                }
 353        }
 354        netdev_dbg(ndev, "status:#x%08x\n",
 355                        priv->read_reg(priv, XCAN_SR_OFFSET));
 356
 357        priv->can.state = CAN_STATE_ERROR_ACTIVE;
 358        return 0;
 359}
 360
 361/**
 362 * xcan_do_set_mode - This sets the mode of the driver
 363 * @ndev:       Pointer to net_device structure
 364 * @mode:       Tells the mode of the driver
 365 *
 366 * This check the drivers state and calls the
 367 * the corresponding modes to set.
 368 *
 369 * Return: 0 on success and failure value on error
 370 */
 371static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
 372{
 373        int ret;
 374
 375        switch (mode) {
 376        case CAN_MODE_START:
 377                ret = xcan_chip_start(ndev);
 378                if (ret < 0) {
 379                        netdev_err(ndev, "xcan_chip_start failed!\n");
 380                        return ret;
 381                }
 382                netif_wake_queue(ndev);
 383                break;
 384        default:
 385                ret = -EOPNOTSUPP;
 386                break;
 387        }
 388
 389        return ret;
 390}
 391
 392/**
 393 * xcan_start_xmit - Starts the transmission
 394 * @skb:        sk_buff pointer that contains data to be Txed
 395 * @ndev:       Pointer to net_device structure
 396 *
 397 * This function is invoked from upper layers to initiate transmission. This
 398 * function uses the next available free txbuff and populates their fields to
 399 * start the transmission.
 400 *
 401 * Return: 0 on success and failure value on error
 402 */
 403static int xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 404{
 405        struct xcan_priv *priv = netdev_priv(ndev);
 406        struct net_device_stats *stats = &ndev->stats;
 407        struct can_frame *cf = (struct can_frame *)skb->data;
 408        u32 id, dlc, data[2] = {0, 0};
 409        unsigned long flags;
 410
 411        if (can_dropped_invalid_skb(ndev, skb))
 412                return NETDEV_TX_OK;
 413
 414        /* Check if the TX buffer is full */
 415        if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
 416                        XCAN_SR_TXFLL_MASK)) {
 417                netif_stop_queue(ndev);
 418                netdev_err(ndev, "BUG!, TX FIFO full when queue awake!\n");
 419                return NETDEV_TX_BUSY;
 420        }
 421
 422        /* Watch carefully on the bit sequence */
 423        if (cf->can_id & CAN_EFF_FLAG) {
 424                /* Extended CAN ID format */
 425                id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
 426                        XCAN_IDR_ID2_MASK;
 427                id |= (((cf->can_id & CAN_EFF_MASK) >>
 428                        (CAN_EFF_ID_BITS-CAN_SFF_ID_BITS)) <<
 429                        XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
 430
 431                /* The substibute remote TX request bit should be "1"
 432                 * for extended frames as in the Xilinx CAN datasheet
 433                 */
 434                id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
 435
 436                if (cf->can_id & CAN_RTR_FLAG)
 437                        /* Extended frames remote TX request */
 438                        id |= XCAN_IDR_RTR_MASK;
 439        } else {
 440                /* Standard CAN ID format */
 441                id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
 442                        XCAN_IDR_ID1_MASK;
 443
 444                if (cf->can_id & CAN_RTR_FLAG)
 445                        /* Standard frames remote TX request */
 446                        id |= XCAN_IDR_SRR_MASK;
 447        }
 448
 449        dlc = cf->can_dlc << XCAN_DLCR_DLC_SHIFT;
 450
 451        if (cf->can_dlc > 0)
 452                data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
 453        if (cf->can_dlc > 4)
 454                data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
 455
 456        can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max);
 457
 458        spin_lock_irqsave(&priv->tx_lock, flags);
 459
 460        priv->tx_head++;
 461
 462        /* Write the Frame to Xilinx CAN TX FIFO */
 463        priv->write_reg(priv, XCAN_TXFIFO_ID_OFFSET, id);
 464        /* If the CAN frame is RTR frame this write triggers tranmission */
 465        priv->write_reg(priv, XCAN_TXFIFO_DLC_OFFSET, dlc);
 466        if (!(cf->can_id & CAN_RTR_FLAG)) {
 467                priv->write_reg(priv, XCAN_TXFIFO_DW1_OFFSET, data[0]);
 468                /* If the CAN frame is Standard/Extended frame this
 469                 * write triggers tranmission
 470                 */
 471                priv->write_reg(priv, XCAN_TXFIFO_DW2_OFFSET, data[1]);
 472                stats->tx_bytes += cf->can_dlc;
 473        }
 474
 475        /* Clear TX-FIFO-empty interrupt for xcan_tx_interrupt() */
 476        if (priv->tx_max > 1)
 477                priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXFEMP_MASK);
 478
 479        /* Check if the TX buffer is full */
 480        if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
 481                netif_stop_queue(ndev);
 482
 483        spin_unlock_irqrestore(&priv->tx_lock, flags);
 484
 485        return NETDEV_TX_OK;
 486}
 487
 488/**
 489 * xcan_rx -  Is called from CAN isr to complete the received
 490 *              frame  processing
 491 * @ndev:       Pointer to net_device structure
 492 *
 493 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
 494 * does minimal processing and invokes "netif_receive_skb" to complete further
 495 * processing.
 496 * Return: 1 on success and 0 on failure.
 497 */
 498static int xcan_rx(struct net_device *ndev)
 499{
 500        struct xcan_priv *priv = netdev_priv(ndev);
 501        struct net_device_stats *stats = &ndev->stats;
 502        struct can_frame *cf;
 503        struct sk_buff *skb;
 504        u32 id_xcan, dlc, data[2] = {0, 0};
 505
 506        skb = alloc_can_skb(ndev, &cf);
 507        if (unlikely(!skb)) {
 508                stats->rx_dropped++;
 509                return 0;
 510        }
 511
 512        /* Read a frame from Xilinx zynq CANPS */
 513        id_xcan = priv->read_reg(priv, XCAN_RXFIFO_ID_OFFSET);
 514        dlc = priv->read_reg(priv, XCAN_RXFIFO_DLC_OFFSET) >>
 515                                XCAN_DLCR_DLC_SHIFT;
 516
 517        /* Change Xilinx CAN data length format to socketCAN data format */
 518        cf->can_dlc = get_can_dlc(dlc);
 519
 520        /* Change Xilinx CAN ID format to socketCAN ID format */
 521        if (id_xcan & XCAN_IDR_IDE_MASK) {
 522                /* The received frame is an Extended format frame */
 523                cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
 524                cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
 525                                XCAN_IDR_ID2_SHIFT;
 526                cf->can_id |= CAN_EFF_FLAG;
 527                if (id_xcan & XCAN_IDR_RTR_MASK)
 528                        cf->can_id |= CAN_RTR_FLAG;
 529        } else {
 530                /* The received frame is a standard format frame */
 531                cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
 532                                XCAN_IDR_ID1_SHIFT;
 533                if (id_xcan & XCAN_IDR_SRR_MASK)
 534                        cf->can_id |= CAN_RTR_FLAG;
 535        }
 536
 537        /* DW1/DW2 must always be read to remove message from RXFIFO */
 538        data[0] = priv->read_reg(priv, XCAN_RXFIFO_DW1_OFFSET);
 539        data[1] = priv->read_reg(priv, XCAN_RXFIFO_DW2_OFFSET);
 540
 541        if (!(cf->can_id & CAN_RTR_FLAG)) {
 542                /* Change Xilinx CAN data format to socketCAN data format */
 543                if (cf->can_dlc > 0)
 544                        *(__be32 *)(cf->data) = cpu_to_be32(data[0]);
 545                if (cf->can_dlc > 4)
 546                        *(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
 547        }
 548
 549        stats->rx_bytes += cf->can_dlc;
 550        stats->rx_packets++;
 551        netif_receive_skb(skb);
 552
 553        return 1;
 554}
 555
 556/**
 557 * xcan_current_error_state - Get current error state from HW
 558 * @ndev:       Pointer to net_device structure
 559 *
 560 * Checks the current CAN error state from the HW. Note that this
 561 * only checks for ERROR_PASSIVE and ERROR_WARNING.
 562 *
 563 * Return:
 564 * ERROR_PASSIVE or ERROR_WARNING if either is active, ERROR_ACTIVE
 565 * otherwise.
 566 */
 567static enum can_state xcan_current_error_state(struct net_device *ndev)
 568{
 569        struct xcan_priv *priv = netdev_priv(ndev);
 570        u32 status = priv->read_reg(priv, XCAN_SR_OFFSET);
 571
 572        if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK)
 573                return CAN_STATE_ERROR_PASSIVE;
 574        else if (status & XCAN_SR_ERRWRN_MASK)
 575                return CAN_STATE_ERROR_WARNING;
 576        else
 577                return CAN_STATE_ERROR_ACTIVE;
 578}
 579
 580/**
 581 * xcan_set_error_state - Set new CAN error state
 582 * @ndev:       Pointer to net_device structure
 583 * @new_state:  The new CAN state to be set
 584 * @cf:         Error frame to be populated or NULL
 585 *
 586 * Set new CAN error state for the device, updating statistics and
 587 * populating the error frame if given.
 588 */
 589static void xcan_set_error_state(struct net_device *ndev,
 590                                 enum can_state new_state,
 591                                 struct can_frame *cf)
 592{
 593        struct xcan_priv *priv = netdev_priv(ndev);
 594        u32 ecr = priv->read_reg(priv, XCAN_ECR_OFFSET);
 595        u32 txerr = ecr & XCAN_ECR_TEC_MASK;
 596        u32 rxerr = (ecr & XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT;
 597
 598        priv->can.state = new_state;
 599
 600        if (cf) {
 601                cf->can_id |= CAN_ERR_CRTL;
 602                cf->data[6] = txerr;
 603                cf->data[7] = rxerr;
 604        }
 605
 606        switch (new_state) {
 607        case CAN_STATE_ERROR_PASSIVE:
 608                priv->can.can_stats.error_passive++;
 609                if (cf)
 610                        cf->data[1] = (rxerr > 127) ?
 611                                        CAN_ERR_CRTL_RX_PASSIVE :
 612                                        CAN_ERR_CRTL_TX_PASSIVE;
 613                break;
 614        case CAN_STATE_ERROR_WARNING:
 615                priv->can.can_stats.error_warning++;
 616                if (cf)
 617                        cf->data[1] |= (txerr > rxerr) ?
 618                                        CAN_ERR_CRTL_TX_WARNING :
 619                                        CAN_ERR_CRTL_RX_WARNING;
 620                break;
 621        case CAN_STATE_ERROR_ACTIVE:
 622                if (cf)
 623                        cf->data[1] |= CAN_ERR_CRTL_ACTIVE;
 624                break;
 625        default:
 626                /* non-ERROR states are handled elsewhere */
 627                WARN_ON(1);
 628                break;
 629        }
 630}
 631
 632/**
 633 * xcan_update_error_state_after_rxtx - Update CAN error state after RX/TX
 634 * @ndev:       Pointer to net_device structure
 635 *
 636 * If the device is in a ERROR-WARNING or ERROR-PASSIVE state, check if
 637 * the performed RX/TX has caused it to drop to a lesser state and set
 638 * the interface state accordingly.
 639 */
 640static void xcan_update_error_state_after_rxtx(struct net_device *ndev)
 641{
 642        struct xcan_priv *priv = netdev_priv(ndev);
 643        enum can_state old_state = priv->can.state;
 644        enum can_state new_state;
 645
 646        /* changing error state due to successful frame RX/TX can only
 647         * occur from these states
 648         */
 649        if (old_state != CAN_STATE_ERROR_WARNING &&
 650            old_state != CAN_STATE_ERROR_PASSIVE)
 651                return;
 652
 653        new_state = xcan_current_error_state(ndev);
 654
 655        if (new_state != old_state) {
 656                struct sk_buff *skb;
 657                struct can_frame *cf;
 658
 659                skb = alloc_can_err_skb(ndev, &cf);
 660
 661                xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
 662
 663                if (skb) {
 664                        struct net_device_stats *stats = &ndev->stats;
 665
 666                        stats->rx_packets++;
 667                        stats->rx_bytes += cf->can_dlc;
 668                        netif_rx(skb);
 669                }
 670        }
 671}
 672
 673/**
 674 * xcan_err_interrupt - error frame Isr
 675 * @ndev:       net_device pointer
 676 * @isr:        interrupt status register value
 677 *
 678 * This is the CAN error interrupt and it will
 679 * check the the type of error and forward the error
 680 * frame to upper layers.
 681 */
 682static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
 683{
 684        struct xcan_priv *priv = netdev_priv(ndev);
 685        struct net_device_stats *stats = &ndev->stats;
 686        struct can_frame *cf;
 687        struct sk_buff *skb;
 688        u32 err_status;
 689
 690        skb = alloc_can_err_skb(ndev, &cf);
 691
 692        err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
 693        priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
 694
 695        if (isr & XCAN_IXR_BSOFF_MASK) {
 696                priv->can.state = CAN_STATE_BUS_OFF;
 697                priv->can.can_stats.bus_off++;
 698                /* Leave device in Config Mode in bus-off state */
 699                priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
 700                can_bus_off(ndev);
 701                if (skb)
 702                        cf->can_id |= CAN_ERR_BUSOFF;
 703        } else {
 704                enum can_state new_state = xcan_current_error_state(ndev);
 705
 706                xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
 707        }
 708
 709        /* Check for Arbitration lost interrupt */
 710        if (isr & XCAN_IXR_ARBLST_MASK) {
 711                priv->can.can_stats.arbitration_lost++;
 712                if (skb) {
 713                        cf->can_id |= CAN_ERR_LOSTARB;
 714                        cf->data[0] = CAN_ERR_LOSTARB_UNSPEC;
 715                }
 716        }
 717
 718        /* Check for RX FIFO Overflow interrupt */
 719        if (isr & XCAN_IXR_RXOFLW_MASK) {
 720                stats->rx_over_errors++;
 721                stats->rx_errors++;
 722                if (skb) {
 723                        cf->can_id |= CAN_ERR_CRTL;
 724                        cf->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
 725                }
 726        }
 727
 728        /* Check for error interrupt */
 729        if (isr & XCAN_IXR_ERROR_MASK) {
 730                if (skb)
 731                        cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
 732
 733                /* Check for Ack error interrupt */
 734                if (err_status & XCAN_ESR_ACKER_MASK) {
 735                        stats->tx_errors++;
 736                        if (skb) {
 737                                cf->can_id |= CAN_ERR_ACK;
 738                                cf->data[3] = CAN_ERR_PROT_LOC_ACK;
 739                        }
 740                }
 741
 742                /* Check for Bit error interrupt */
 743                if (err_status & XCAN_ESR_BERR_MASK) {
 744                        stats->tx_errors++;
 745                        if (skb) {
 746                                cf->can_id |= CAN_ERR_PROT;
 747                                cf->data[2] = CAN_ERR_PROT_BIT;
 748                        }
 749                }
 750
 751                /* Check for Stuff error interrupt */
 752                if (err_status & XCAN_ESR_STER_MASK) {
 753                        stats->rx_errors++;
 754                        if (skb) {
 755                                cf->can_id |= CAN_ERR_PROT;
 756                                cf->data[2] = CAN_ERR_PROT_STUFF;
 757                        }
 758                }
 759
 760                /* Check for Form error interrupt */
 761                if (err_status & XCAN_ESR_FMER_MASK) {
 762                        stats->rx_errors++;
 763                        if (skb) {
 764                                cf->can_id |= CAN_ERR_PROT;
 765                                cf->data[2] = CAN_ERR_PROT_FORM;
 766                        }
 767                }
 768
 769                /* Check for CRC error interrupt */
 770                if (err_status & XCAN_ESR_CRCER_MASK) {
 771                        stats->rx_errors++;
 772                        if (skb) {
 773                                cf->can_id |= CAN_ERR_PROT;
 774                                cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
 775                        }
 776                }
 777                        priv->can.can_stats.bus_error++;
 778        }
 779
 780        if (skb) {
 781                stats->rx_packets++;
 782                stats->rx_bytes += cf->can_dlc;
 783                netif_rx(skb);
 784        }
 785
 786        netdev_dbg(ndev, "%s: error status register:0x%x\n",
 787                        __func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
 788}
 789
 790/**
 791 * xcan_state_interrupt - It will check the state of the CAN device
 792 * @ndev:       net_device pointer
 793 * @isr:        interrupt status register value
 794 *
 795 * This will checks the state of the CAN device
 796 * and puts the device into appropriate state.
 797 */
 798static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
 799{
 800        struct xcan_priv *priv = netdev_priv(ndev);
 801
 802        /* Check for Sleep interrupt if set put CAN device in sleep state */
 803        if (isr & XCAN_IXR_SLP_MASK)
 804                priv->can.state = CAN_STATE_SLEEPING;
 805
 806        /* Check for Wake up interrupt if set put CAN device in Active state */
 807        if (isr & XCAN_IXR_WKUP_MASK)
 808                priv->can.state = CAN_STATE_ERROR_ACTIVE;
 809}
 810
 811/**
 812 * xcan_rx_poll - Poll routine for rx packets (NAPI)
 813 * @napi:       napi structure pointer
 814 * @quota:      Max number of rx packets to be processed.
 815 *
 816 * This is the poll routine for rx part.
 817 * It will process the packets maximux quota value.
 818 *
 819 * Return: number of packets received
 820 */
 821static int xcan_rx_poll(struct napi_struct *napi, int quota)
 822{
 823        struct net_device *ndev = napi->dev;
 824        struct xcan_priv *priv = netdev_priv(ndev);
 825        u32 isr, ier;
 826        int work_done = 0;
 827
 828        isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
 829        while ((isr & XCAN_IXR_RXNEMP_MASK) && (work_done < quota)) {
 830                work_done += xcan_rx(ndev);
 831                priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXNEMP_MASK);
 832                isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
 833        }
 834
 835        if (work_done) {
 836                can_led_event(ndev, CAN_LED_EVENT_RX);
 837                xcan_update_error_state_after_rxtx(ndev);
 838        }
 839
 840        if (work_done < quota) {
 841                napi_complete_done(napi, work_done);
 842                ier = priv->read_reg(priv, XCAN_IER_OFFSET);
 843                ier |= XCAN_IXR_RXNEMP_MASK;
 844                priv->write_reg(priv, XCAN_IER_OFFSET, ier);
 845        }
 846        return work_done;
 847}
 848
 849/**
 850 * xcan_tx_interrupt - Tx Done Isr
 851 * @ndev:       net_device pointer
 852 * @isr:        Interrupt status register value
 853 */
 854static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
 855{
 856        struct xcan_priv *priv = netdev_priv(ndev);
 857        struct net_device_stats *stats = &ndev->stats;
 858        unsigned int frames_in_fifo;
 859        int frames_sent = 1; /* TXOK => at least 1 frame was sent */
 860        unsigned long flags;
 861        int retries = 0;
 862
 863        /* Synchronize with xmit as we need to know the exact number
 864         * of frames in the FIFO to stay in sync due to the TXFEMP
 865         * handling.
 866         * This also prevents a race between netif_wake_queue() and
 867         * netif_stop_queue().
 868         */
 869        spin_lock_irqsave(&priv->tx_lock, flags);
 870
 871        frames_in_fifo = priv->tx_head - priv->tx_tail;
 872
 873        if (WARN_ON_ONCE(frames_in_fifo == 0)) {
 874                /* clear TXOK anyway to avoid getting back here */
 875                priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
 876                spin_unlock_irqrestore(&priv->tx_lock, flags);
 877                return;
 878        }
 879
 880        /* Check if 2 frames were sent (TXOK only means that at least 1
 881         * frame was sent).
 882         */
 883        if (frames_in_fifo > 1) {
 884                WARN_ON(frames_in_fifo > priv->tx_max);
 885
 886                /* Synchronize TXOK and isr so that after the loop:
 887                 * (1) isr variable is up-to-date at least up to TXOK clear
 888                 *     time. This avoids us clearing a TXOK of a second frame
 889                 *     but not noticing that the FIFO is now empty and thus
 890                 *     marking only a single frame as sent.
 891                 * (2) No TXOK is left. Having one could mean leaving a
 892                 *     stray TXOK as we might process the associated frame
 893                 *     via TXFEMP handling as we read TXFEMP *after* TXOK
 894                 *     clear to satisfy (1).
 895                 */
 896                while ((isr & XCAN_IXR_TXOK_MASK) && !WARN_ON(++retries == 100)) {
 897                        priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
 898                        isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
 899                }
 900
 901                if (isr & XCAN_IXR_TXFEMP_MASK) {
 902                        /* nothing in FIFO anymore */
 903                        frames_sent = frames_in_fifo;
 904                }
 905        } else {
 906                /* single frame in fifo, just clear TXOK */
 907                priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
 908        }
 909
 910        while (frames_sent--) {
 911                can_get_echo_skb(ndev, priv->tx_tail %
 912                                        priv->tx_max);
 913                priv->tx_tail++;
 914                stats->tx_packets++;
 915        }
 916
 917        netif_wake_queue(ndev);
 918
 919        spin_unlock_irqrestore(&priv->tx_lock, flags);
 920
 921        can_led_event(ndev, CAN_LED_EVENT_TX);
 922        xcan_update_error_state_after_rxtx(ndev);
 923}
 924
 925/**
 926 * xcan_interrupt - CAN Isr
 927 * @irq:        irq number
 928 * @dev_id:     device id poniter
 929 *
 930 * This is the xilinx CAN Isr. It checks for the type of interrupt
 931 * and invokes the corresponding ISR.
 932 *
 933 * Return:
 934 * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
 935 */
 936static irqreturn_t xcan_interrupt(int irq, void *dev_id)
 937{
 938        struct net_device *ndev = (struct net_device *)dev_id;
 939        struct xcan_priv *priv = netdev_priv(ndev);
 940        u32 isr, ier;
 941        u32 isr_errors;
 942
 943        /* Get the interrupt status from Xilinx CAN */
 944        isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
 945        if (!isr)
 946                return IRQ_NONE;
 947
 948        /* Check for the type of interrupt and Processing it */
 949        if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
 950                priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
 951                                XCAN_IXR_WKUP_MASK));
 952                xcan_state_interrupt(ndev, isr);
 953        }
 954
 955        /* Check for Tx interrupt and Processing it */
 956        if (isr & XCAN_IXR_TXOK_MASK)
 957                xcan_tx_interrupt(ndev, isr);
 958
 959        /* Check for the type of error interrupt and Processing it */
 960        isr_errors = isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
 961                            XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK);
 962        if (isr_errors) {
 963                priv->write_reg(priv, XCAN_ICR_OFFSET, isr_errors);
 964                xcan_err_interrupt(ndev, isr);
 965        }
 966
 967        /* Check for the type of receive interrupt and Processing it */
 968        if (isr & XCAN_IXR_RXNEMP_MASK) {
 969                ier = priv->read_reg(priv, XCAN_IER_OFFSET);
 970                ier &= ~XCAN_IXR_RXNEMP_MASK;
 971                priv->write_reg(priv, XCAN_IER_OFFSET, ier);
 972                napi_schedule(&priv->napi);
 973        }
 974        return IRQ_HANDLED;
 975}
 976
 977/**
 978 * xcan_chip_stop - Driver stop routine
 979 * @ndev:       Pointer to net_device structure
 980 *
 981 * This is the drivers stop routine. It will disable the
 982 * interrupts and put the device into configuration mode.
 983 */
 984static void xcan_chip_stop(struct net_device *ndev)
 985{
 986        struct xcan_priv *priv = netdev_priv(ndev);
 987
 988        /* Disable interrupts and leave the can in configuration mode */
 989        set_reset_mode(ndev);
 990        priv->can.state = CAN_STATE_STOPPED;
 991}
 992
 993/**
 994 * xcan_open - Driver open routine
 995 * @ndev:       Pointer to net_device structure
 996 *
 997 * This is the driver open routine.
 998 * Return: 0 on success and failure value on error
 999 */
1000static int xcan_open(struct net_device *ndev)
1001{
1002        struct xcan_priv *priv = netdev_priv(ndev);
1003        int ret;
1004
1005        ret = pm_runtime_get_sync(priv->dev);
1006        if (ret < 0) {
1007                netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1008                                __func__, ret);
1009                return ret;
1010        }
1011
1012        ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
1013                        ndev->name, ndev);
1014        if (ret < 0) {
1015                netdev_err(ndev, "irq allocation for CAN failed\n");
1016                goto err;
1017        }
1018
1019        /* Set chip into reset mode */
1020        ret = set_reset_mode(ndev);
1021        if (ret < 0) {
1022                netdev_err(ndev, "mode resetting failed!\n");
1023                goto err_irq;
1024        }
1025
1026        /* Common open */
1027        ret = open_candev(ndev);
1028        if (ret)
1029                goto err_irq;
1030
1031        ret = xcan_chip_start(ndev);
1032        if (ret < 0) {
1033                netdev_err(ndev, "xcan_chip_start failed!\n");
1034                goto err_candev;
1035        }
1036
1037        can_led_event(ndev, CAN_LED_EVENT_OPEN);
1038        napi_enable(&priv->napi);
1039        netif_start_queue(ndev);
1040
1041        return 0;
1042
1043err_candev:
1044        close_candev(ndev);
1045err_irq:
1046        free_irq(ndev->irq, ndev);
1047err:
1048        pm_runtime_put(priv->dev);
1049
1050        return ret;
1051}
1052
1053/**
1054 * xcan_close - Driver close routine
1055 * @ndev:       Pointer to net_device structure
1056 *
1057 * Return: 0 always
1058 */
1059static int xcan_close(struct net_device *ndev)
1060{
1061        struct xcan_priv *priv = netdev_priv(ndev);
1062
1063        netif_stop_queue(ndev);
1064        napi_disable(&priv->napi);
1065        xcan_chip_stop(ndev);
1066        free_irq(ndev->irq, ndev);
1067        close_candev(ndev);
1068
1069        can_led_event(ndev, CAN_LED_EVENT_STOP);
1070        pm_runtime_put(priv->dev);
1071
1072        return 0;
1073}
1074
1075/**
1076 * xcan_get_berr_counter - error counter routine
1077 * @ndev:       Pointer to net_device structure
1078 * @bec:        Pointer to can_berr_counter structure
1079 *
1080 * This is the driver error counter routine.
1081 * Return: 0 on success and failure value on error
1082 */
1083static int xcan_get_berr_counter(const struct net_device *ndev,
1084                                        struct can_berr_counter *bec)
1085{
1086        struct xcan_priv *priv = netdev_priv(ndev);
1087        int ret;
1088
1089        ret = pm_runtime_get_sync(priv->dev);
1090        if (ret < 0) {
1091                netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1092                                __func__, ret);
1093                return ret;
1094        }
1095
1096        bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
1097        bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
1098                        XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
1099
1100        pm_runtime_put(priv->dev);
1101
1102        return 0;
1103}
1104
1105
1106static const struct net_device_ops xcan_netdev_ops = {
1107        .ndo_open       = xcan_open,
1108        .ndo_stop       = xcan_close,
1109        .ndo_start_xmit = xcan_start_xmit,
1110        .ndo_change_mtu = can_change_mtu,
1111};
1112
1113/**
1114 * xcan_suspend - Suspend method for the driver
1115 * @dev:        Address of the device structure
1116 *
1117 * Put the driver into low power mode.
1118 * Return: 0 on success and failure value on error
1119 */
1120static int __maybe_unused xcan_suspend(struct device *dev)
1121{
1122        struct net_device *ndev = dev_get_drvdata(dev);
1123
1124        if (netif_running(ndev)) {
1125                netif_stop_queue(ndev);
1126                netif_device_detach(ndev);
1127                xcan_chip_stop(ndev);
1128        }
1129
1130        return pm_runtime_force_suspend(dev);
1131}
1132
1133/**
1134 * xcan_resume - Resume from suspend
1135 * @dev:        Address of the device structure
1136 *
1137 * Resume operation after suspend.
1138 * Return: 0 on success and failure value on error
1139 */
1140static int __maybe_unused xcan_resume(struct device *dev)
1141{
1142        struct net_device *ndev = dev_get_drvdata(dev);
1143        int ret;
1144
1145        ret = pm_runtime_force_resume(dev);
1146        if (ret) {
1147                dev_err(dev, "pm_runtime_force_resume failed on resume\n");
1148                return ret;
1149        }
1150
1151        if (netif_running(ndev)) {
1152                ret = xcan_chip_start(ndev);
1153                if (ret) {
1154                        dev_err(dev, "xcan_chip_start failed on resume\n");
1155                        return ret;
1156                }
1157
1158                netif_device_attach(ndev);
1159                netif_start_queue(ndev);
1160        }
1161
1162        return 0;
1163}
1164
1165/**
1166 * xcan_runtime_suspend - Runtime suspend method for the driver
1167 * @dev:        Address of the device structure
1168 *
1169 * Put the driver into low power mode.
1170 * Return: 0 always
1171 */
1172static int __maybe_unused xcan_runtime_suspend(struct device *dev)
1173{
1174        struct net_device *ndev = dev_get_drvdata(dev);
1175        struct xcan_priv *priv = netdev_priv(ndev);
1176
1177        clk_disable_unprepare(priv->bus_clk);
1178        clk_disable_unprepare(priv->can_clk);
1179
1180        return 0;
1181}
1182
1183/**
1184 * xcan_runtime_resume - Runtime resume from suspend
1185 * @dev:        Address of the device structure
1186 *
1187 * Resume operation after suspend.
1188 * Return: 0 on success and failure value on error
1189 */
1190static int __maybe_unused xcan_runtime_resume(struct device *dev)
1191{
1192        struct net_device *ndev = dev_get_drvdata(dev);
1193        struct xcan_priv *priv = netdev_priv(ndev);
1194        int ret;
1195
1196        ret = clk_prepare_enable(priv->bus_clk);
1197        if (ret) {
1198                dev_err(dev, "Cannot enable clock.\n");
1199                return ret;
1200        }
1201        ret = clk_prepare_enable(priv->can_clk);
1202        if (ret) {
1203                dev_err(dev, "Cannot enable clock.\n");
1204                clk_disable_unprepare(priv->bus_clk);
1205                return ret;
1206        }
1207
1208        return 0;
1209}
1210
1211static const struct dev_pm_ops xcan_dev_pm_ops = {
1212        SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume)
1213        SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL)
1214};
1215
1216static const struct xcan_devtype_data xcan_zynq_data = {
1217        .caps = XCAN_CAP_WATERMARK,
1218};
1219
1220/* Match table for OF platform binding */
1221static const struct of_device_id xcan_of_match[] = {
1222        { .compatible = "xlnx,zynq-can-1.0", .data = &xcan_zynq_data },
1223        { .compatible = "xlnx,axi-can-1.00.a", },
1224        { /* end of list */ },
1225};
1226MODULE_DEVICE_TABLE(of, xcan_of_match);
1227
1228/**
1229 * xcan_probe - Platform registration call
1230 * @pdev:       Handle to the platform device structure
1231 *
1232 * This function does all the memory allocation and registration for the CAN
1233 * device.
1234 *
1235 * Return: 0 on success and failure value on error
1236 */
1237static int xcan_probe(struct platform_device *pdev)
1238{
1239        struct resource *res; /* IO mem resources */
1240        struct net_device *ndev;
1241        struct xcan_priv *priv;
1242        const struct of_device_id *of_id;
1243        int caps = 0;
1244        void __iomem *addr;
1245        int ret, rx_max, tx_max, tx_fifo_depth;
1246
1247        /* Get the virtual base address for the device */
1248        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1249        addr = devm_ioremap_resource(&pdev->dev, res);
1250        if (IS_ERR(addr)) {
1251                ret = PTR_ERR(addr);
1252                goto err;
1253        }
1254
1255        ret = of_property_read_u32(pdev->dev.of_node, "tx-fifo-depth",
1256                                   &tx_fifo_depth);
1257        if (ret < 0)
1258                goto err;
1259
1260        ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth", &rx_max);
1261        if (ret < 0)
1262                goto err;
1263
1264        of_id = of_match_device(xcan_of_match, &pdev->dev);
1265        if (of_id) {
1266                const struct xcan_devtype_data *devtype_data = of_id->data;
1267
1268                if (devtype_data)
1269                        caps = devtype_data->caps;
1270        }
1271
1272        /* There is no way to directly figure out how many frames have been
1273         * sent when the TXOK interrupt is processed. If watermark programming
1274         * is supported, we can have 2 frames in the FIFO and use TXFEMP
1275         * to determine if 1 or 2 frames have been sent.
1276         * Theoretically we should be able to use TXFWMEMP to determine up
1277         * to 3 frames, but it seems that after putting a second frame in the
1278         * FIFO, with watermark at 2 frames, it can happen that TXFWMEMP (less
1279         * than 2 frames in FIFO) is set anyway with no TXOK (a frame was
1280         * sent), which is not a sensible state - possibly TXFWMEMP is not
1281         * completely synchronized with the rest of the bits?
1282         */
1283        if (caps & XCAN_CAP_WATERMARK)
1284                tx_max = min(tx_fifo_depth, 2);
1285        else
1286                tx_max = 1;
1287
1288        /* Create a CAN device instance */
1289        ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1290        if (!ndev)
1291                return -ENOMEM;
1292
1293        priv = netdev_priv(ndev);
1294        priv->dev = &pdev->dev;
1295        priv->can.bittiming_const = &xcan_bittiming_const;
1296        priv->can.do_set_mode = xcan_do_set_mode;
1297        priv->can.do_get_berr_counter = xcan_get_berr_counter;
1298        priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1299                                        CAN_CTRLMODE_BERR_REPORTING;
1300        priv->reg_base = addr;
1301        priv->tx_max = tx_max;
1302        spin_lock_init(&priv->tx_lock);
1303
1304        /* Get IRQ for the device */
1305        ndev->irq = platform_get_irq(pdev, 0);
1306        ndev->flags |= IFF_ECHO;        /* We support local echo */
1307
1308        platform_set_drvdata(pdev, ndev);
1309        SET_NETDEV_DEV(ndev, &pdev->dev);
1310        ndev->netdev_ops = &xcan_netdev_ops;
1311
1312        /* Getting the CAN can_clk info */
1313        priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1314        if (IS_ERR(priv->can_clk)) {
1315                dev_err(&pdev->dev, "Device clock not found.\n");
1316                ret = PTR_ERR(priv->can_clk);
1317                goto err_free;
1318        }
1319        /* Check for type of CAN device */
1320        if (of_device_is_compatible(pdev->dev.of_node,
1321                                    "xlnx,zynq-can-1.0")) {
1322                priv->bus_clk = devm_clk_get(&pdev->dev, "pclk");
1323                if (IS_ERR(priv->bus_clk)) {
1324                        dev_err(&pdev->dev, "bus clock not found\n");
1325                        ret = PTR_ERR(priv->bus_clk);
1326                        goto err_free;
1327                }
1328        } else {
1329                priv->bus_clk = devm_clk_get(&pdev->dev, "s_axi_aclk");
1330                if (IS_ERR(priv->bus_clk)) {
1331                        dev_err(&pdev->dev, "bus clock not found\n");
1332                        ret = PTR_ERR(priv->bus_clk);
1333                        goto err_free;
1334                }
1335        }
1336
1337        priv->write_reg = xcan_write_reg_le;
1338        priv->read_reg = xcan_read_reg_le;
1339
1340        pm_runtime_enable(&pdev->dev);
1341        ret = pm_runtime_get_sync(&pdev->dev);
1342        if (ret < 0) {
1343                netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1344                        __func__, ret);
1345                goto err_pmdisable;
1346        }
1347
1348        if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
1349                priv->write_reg = xcan_write_reg_be;
1350                priv->read_reg = xcan_read_reg_be;
1351        }
1352
1353        priv->can.clock.freq = clk_get_rate(priv->can_clk);
1354
1355        netif_napi_add(ndev, &priv->napi, xcan_rx_poll, rx_max);
1356
1357        ret = register_candev(ndev);
1358        if (ret) {
1359                dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
1360                goto err_disableclks;
1361        }
1362
1363        devm_can_led_init(ndev);
1364
1365        pm_runtime_put(&pdev->dev);
1366
1367        netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx fifo depth: actual %d, using %d\n",
1368                        priv->reg_base, ndev->irq, priv->can.clock.freq,
1369                        tx_fifo_depth, priv->tx_max);
1370
1371        return 0;
1372
1373err_disableclks:
1374        pm_runtime_put(priv->dev);
1375err_pmdisable:
1376        pm_runtime_disable(&pdev->dev);
1377err_free:
1378        free_candev(ndev);
1379err:
1380        return ret;
1381}
1382
1383/**
1384 * xcan_remove - Unregister the device after releasing the resources
1385 * @pdev:       Handle to the platform device structure
1386 *
1387 * This function frees all the resources allocated to the device.
1388 * Return: 0 always
1389 */
1390static int xcan_remove(struct platform_device *pdev)
1391{
1392        struct net_device *ndev = platform_get_drvdata(pdev);
1393        struct xcan_priv *priv = netdev_priv(ndev);
1394
1395        unregister_candev(ndev);
1396        pm_runtime_disable(&pdev->dev);
1397        netif_napi_del(&priv->napi);
1398        free_candev(ndev);
1399
1400        return 0;
1401}
1402
1403static struct platform_driver xcan_driver = {
1404        .probe = xcan_probe,
1405        .remove = xcan_remove,
1406        .driver = {
1407                .name = DRIVER_NAME,
1408                .pm = &xcan_dev_pm_ops,
1409                .of_match_table = xcan_of_match,
1410        },
1411};
1412
1413module_platform_driver(xcan_driver);
1414
1415MODULE_LICENSE("GPL");
1416MODULE_AUTHOR("Xilinx Inc");
1417MODULE_DESCRIPTION("Xilinx CAN interface");
1418