linux/drivers/pci/hotplug/cpqphp_ctrl.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Compaq Hot Plug Controller Driver
   4 *
   5 * Copyright (C) 1995,2001 Compaq Computer Corporation
   6 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
   7 * Copyright (C) 2001 IBM Corp.
   8 *
   9 * All rights reserved.
  10 *
  11 * Send feedback to <greg@kroah.com>
  12 *
  13 */
  14
  15#include <linux/module.h>
  16#include <linux/kernel.h>
  17#include <linux/types.h>
  18#include <linux/slab.h>
  19#include <linux/workqueue.h>
  20#include <linux/interrupt.h>
  21#include <linux/delay.h>
  22#include <linux/wait.h>
  23#include <linux/pci.h>
  24#include <linux/pci_hotplug.h>
  25#include <linux/kthread.h>
  26#include "cpqphp.h"
  27
  28static u32 configure_new_device(struct controller *ctrl, struct pci_func *func,
  29                        u8 behind_bridge, struct resource_lists *resources);
  30static int configure_new_function(struct controller *ctrl, struct pci_func *func,
  31                        u8 behind_bridge, struct resource_lists *resources);
  32static void interrupt_event_handler(struct controller *ctrl);
  33
  34
  35static struct task_struct *cpqhp_event_thread;
  36static struct timer_list *pushbutton_pending;   /* = NULL */
  37
  38/* delay is in jiffies to wait for */
  39static void long_delay(int delay)
  40{
  41        /*
  42         * XXX(hch): if someone is bored please convert all callers
  43         * to call msleep_interruptible directly.  They really want
  44         * to specify timeouts in natural units and spend a lot of
  45         * effort converting them to jiffies..
  46         */
  47        msleep_interruptible(jiffies_to_msecs(delay));
  48}
  49
  50
  51/* FIXME: The following line needs to be somewhere else... */
  52#define WRONG_BUS_FREQUENCY 0x07
  53static u8 handle_switch_change(u8 change, struct controller *ctrl)
  54{
  55        int hp_slot;
  56        u8 rc = 0;
  57        u16 temp_word;
  58        struct pci_func *func;
  59        struct event_info *taskInfo;
  60
  61        if (!change)
  62                return 0;
  63
  64        /* Switch Change */
  65        dbg("cpqsbd:  Switch interrupt received.\n");
  66
  67        for (hp_slot = 0; hp_slot < 6; hp_slot++) {
  68                if (change & (0x1L << hp_slot)) {
  69                        /*
  70                         * this one changed.
  71                         */
  72                        func = cpqhp_slot_find(ctrl->bus,
  73                                (hp_slot + ctrl->slot_device_offset), 0);
  74
  75                        /* this is the structure that tells the worker thread
  76                         * what to do
  77                         */
  78                        taskInfo = &(ctrl->event_queue[ctrl->next_event]);
  79                        ctrl->next_event = (ctrl->next_event + 1) % 10;
  80                        taskInfo->hp_slot = hp_slot;
  81
  82                        rc++;
  83
  84                        temp_word = ctrl->ctrl_int_comp >> 16;
  85                        func->presence_save = (temp_word >> hp_slot) & 0x01;
  86                        func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
  87
  88                        if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
  89                                /*
  90                                 * Switch opened
  91                                 */
  92
  93                                func->switch_save = 0;
  94
  95                                taskInfo->event_type = INT_SWITCH_OPEN;
  96                        } else {
  97                                /*
  98                                 * Switch closed
  99                                 */
 100
 101                                func->switch_save = 0x10;
 102
 103                                taskInfo->event_type = INT_SWITCH_CLOSE;
 104                        }
 105                }
 106        }
 107
 108        return rc;
 109}
 110
 111/**
 112 * cpqhp_find_slot - find the struct slot of given device
 113 * @ctrl: scan lots of this controller
 114 * @device: the device id to find
 115 */
 116static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
 117{
 118        struct slot *slot = ctrl->slot;
 119
 120        while (slot && (slot->device != device))
 121                slot = slot->next;
 122
 123        return slot;
 124}
 125
 126
 127static u8 handle_presence_change(u16 change, struct controller *ctrl)
 128{
 129        int hp_slot;
 130        u8 rc = 0;
 131        u8 temp_byte;
 132        u16 temp_word;
 133        struct pci_func *func;
 134        struct event_info *taskInfo;
 135        struct slot *p_slot;
 136
 137        if (!change)
 138                return 0;
 139
 140        /*
 141         * Presence Change
 142         */
 143        dbg("cpqsbd:  Presence/Notify input change.\n");
 144        dbg("         Changed bits are 0x%4.4x\n", change);
 145
 146        for (hp_slot = 0; hp_slot < 6; hp_slot++) {
 147                if (change & (0x0101 << hp_slot)) {
 148                        /*
 149                         * this one changed.
 150                         */
 151                        func = cpqhp_slot_find(ctrl->bus,
 152                                (hp_slot + ctrl->slot_device_offset), 0);
 153
 154                        taskInfo = &(ctrl->event_queue[ctrl->next_event]);
 155                        ctrl->next_event = (ctrl->next_event + 1) % 10;
 156                        taskInfo->hp_slot = hp_slot;
 157
 158                        rc++;
 159
 160                        p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
 161                        if (!p_slot)
 162                                return 0;
 163
 164                        /* If the switch closed, must be a button
 165                         * If not in button mode, nevermind
 166                         */
 167                        if (func->switch_save && (ctrl->push_button == 1)) {
 168                                temp_word = ctrl->ctrl_int_comp >> 16;
 169                                temp_byte = (temp_word >> hp_slot) & 0x01;
 170                                temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
 171
 172                                if (temp_byte != func->presence_save) {
 173                                        /*
 174                                         * button Pressed (doesn't do anything)
 175                                         */
 176                                        dbg("hp_slot %d button pressed\n", hp_slot);
 177                                        taskInfo->event_type = INT_BUTTON_PRESS;
 178                                } else {
 179                                        /*
 180                                         * button Released - TAKE ACTION!!!!
 181                                         */
 182                                        dbg("hp_slot %d button released\n", hp_slot);
 183                                        taskInfo->event_type = INT_BUTTON_RELEASE;
 184
 185                                        /* Cancel if we are still blinking */
 186                                        if ((p_slot->state == BLINKINGON_STATE)
 187                                            || (p_slot->state == BLINKINGOFF_STATE)) {
 188                                                taskInfo->event_type = INT_BUTTON_CANCEL;
 189                                                dbg("hp_slot %d button cancel\n", hp_slot);
 190                                        } else if ((p_slot->state == POWERON_STATE)
 191                                                   || (p_slot->state == POWEROFF_STATE)) {
 192                                                /* info(msg_button_ignore, p_slot->number); */
 193                                                taskInfo->event_type = INT_BUTTON_IGNORE;
 194                                                dbg("hp_slot %d button ignore\n", hp_slot);
 195                                        }
 196                                }
 197                        } else {
 198                                /* Switch is open, assume a presence change
 199                                 * Save the presence state
 200                                 */
 201                                temp_word = ctrl->ctrl_int_comp >> 16;
 202                                func->presence_save = (temp_word >> hp_slot) & 0x01;
 203                                func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
 204
 205                                if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
 206                                    (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
 207                                        /* Present */
 208                                        taskInfo->event_type = INT_PRESENCE_ON;
 209                                } else {
 210                                        /* Not Present */
 211                                        taskInfo->event_type = INT_PRESENCE_OFF;
 212                                }
 213                        }
 214                }
 215        }
 216
 217        return rc;
 218}
 219
 220
 221static u8 handle_power_fault(u8 change, struct controller *ctrl)
 222{
 223        int hp_slot;
 224        u8 rc = 0;
 225        struct pci_func *func;
 226        struct event_info *taskInfo;
 227
 228        if (!change)
 229                return 0;
 230
 231        /*
 232         * power fault
 233         */
 234
 235        info("power fault interrupt\n");
 236
 237        for (hp_slot = 0; hp_slot < 6; hp_slot++) {
 238                if (change & (0x01 << hp_slot)) {
 239                        /*
 240                         * this one changed.
 241                         */
 242                        func = cpqhp_slot_find(ctrl->bus,
 243                                (hp_slot + ctrl->slot_device_offset), 0);
 244
 245                        taskInfo = &(ctrl->event_queue[ctrl->next_event]);
 246                        ctrl->next_event = (ctrl->next_event + 1) % 10;
 247                        taskInfo->hp_slot = hp_slot;
 248
 249                        rc++;
 250
 251                        if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
 252                                /*
 253                                 * power fault Cleared
 254                                 */
 255                                func->status = 0x00;
 256
 257                                taskInfo->event_type = INT_POWER_FAULT_CLEAR;
 258                        } else {
 259                                /*
 260                                 * power fault
 261                                 */
 262                                taskInfo->event_type = INT_POWER_FAULT;
 263
 264                                if (ctrl->rev < 4) {
 265                                        amber_LED_on(ctrl, hp_slot);
 266                                        green_LED_off(ctrl, hp_slot);
 267                                        set_SOGO(ctrl);
 268
 269                                        /* this is a fatal condition, we want
 270                                         * to crash the machine to protect from
 271                                         * data corruption. simulated_NMI
 272                                         * shouldn't ever return */
 273                                        /* FIXME
 274                                        simulated_NMI(hp_slot, ctrl); */
 275
 276                                        /* The following code causes a software
 277                                         * crash just in case simulated_NMI did
 278                                         * return */
 279                                        /*FIXME
 280                                        panic(msg_power_fault); */
 281                                } else {
 282                                        /* set power fault status for this board */
 283                                        func->status = 0xFF;
 284                                        info("power fault bit %x set\n", hp_slot);
 285                                }
 286                        }
 287                }
 288        }
 289
 290        return rc;
 291}
 292
 293
 294/**
 295 * sort_by_size - sort nodes on the list by their length, smallest first.
 296 * @head: list to sort
 297 */
 298static int sort_by_size(struct pci_resource **head)
 299{
 300        struct pci_resource *current_res;
 301        struct pci_resource *next_res;
 302        int out_of_order = 1;
 303
 304        if (!(*head))
 305                return 1;
 306
 307        if (!((*head)->next))
 308                return 0;
 309
 310        while (out_of_order) {
 311                out_of_order = 0;
 312
 313                /* Special case for swapping list head */
 314                if (((*head)->next) &&
 315                    ((*head)->length > (*head)->next->length)) {
 316                        out_of_order++;
 317                        current_res = *head;
 318                        *head = (*head)->next;
 319                        current_res->next = (*head)->next;
 320                        (*head)->next = current_res;
 321                }
 322
 323                current_res = *head;
 324
 325                while (current_res->next && current_res->next->next) {
 326                        if (current_res->next->length > current_res->next->next->length) {
 327                                out_of_order++;
 328                                next_res = current_res->next;
 329                                current_res->next = current_res->next->next;
 330                                current_res = current_res->next;
 331                                next_res->next = current_res->next;
 332                                current_res->next = next_res;
 333                        } else
 334                                current_res = current_res->next;
 335                }
 336        }  /* End of out_of_order loop */
 337
 338        return 0;
 339}
 340
 341
 342/**
 343 * sort_by_max_size - sort nodes on the list by their length, largest first.
 344 * @head: list to sort
 345 */
 346static int sort_by_max_size(struct pci_resource **head)
 347{
 348        struct pci_resource *current_res;
 349        struct pci_resource *next_res;
 350        int out_of_order = 1;
 351
 352        if (!(*head))
 353                return 1;
 354
 355        if (!((*head)->next))
 356                return 0;
 357
 358        while (out_of_order) {
 359                out_of_order = 0;
 360
 361                /* Special case for swapping list head */
 362                if (((*head)->next) &&
 363                    ((*head)->length < (*head)->next->length)) {
 364                        out_of_order++;
 365                        current_res = *head;
 366                        *head = (*head)->next;
 367                        current_res->next = (*head)->next;
 368                        (*head)->next = current_res;
 369                }
 370
 371                current_res = *head;
 372
 373                while (current_res->next && current_res->next->next) {
 374                        if (current_res->next->length < current_res->next->next->length) {
 375                                out_of_order++;
 376                                next_res = current_res->next;
 377                                current_res->next = current_res->next->next;
 378                                current_res = current_res->next;
 379                                next_res->next = current_res->next;
 380                                current_res->next = next_res;
 381                        } else
 382                                current_res = current_res->next;
 383                }
 384        }  /* End of out_of_order loop */
 385
 386        return 0;
 387}
 388
 389
 390/**
 391 * do_pre_bridge_resource_split - find node of resources that are unused
 392 * @head: new list head
 393 * @orig_head: original list head
 394 * @alignment: max node size (?)
 395 */
 396static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
 397                                struct pci_resource **orig_head, u32 alignment)
 398{
 399        struct pci_resource *prevnode = NULL;
 400        struct pci_resource *node;
 401        struct pci_resource *split_node;
 402        u32 rc;
 403        u32 temp_dword;
 404        dbg("do_pre_bridge_resource_split\n");
 405
 406        if (!(*head) || !(*orig_head))
 407                return NULL;
 408
 409        rc = cpqhp_resource_sort_and_combine(head);
 410
 411        if (rc)
 412                return NULL;
 413
 414        if ((*head)->base != (*orig_head)->base)
 415                return NULL;
 416
 417        if ((*head)->length == (*orig_head)->length)
 418                return NULL;
 419
 420
 421        /* If we got here, there the bridge requires some of the resource, but
 422         * we may be able to split some off of the front
 423         */
 424
 425        node = *head;
 426
 427        if (node->length & (alignment - 1)) {
 428                /* this one isn't an aligned length, so we'll make a new entry
 429                 * and split it up.
 430                 */
 431                split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 432
 433                if (!split_node)
 434                        return NULL;
 435
 436                temp_dword = (node->length | (alignment-1)) + 1 - alignment;
 437
 438                split_node->base = node->base;
 439                split_node->length = temp_dword;
 440
 441                node->length -= temp_dword;
 442                node->base += split_node->length;
 443
 444                /* Put it in the list */
 445                *head = split_node;
 446                split_node->next = node;
 447        }
 448
 449        if (node->length < alignment)
 450                return NULL;
 451
 452        /* Now unlink it */
 453        if (*head == node) {
 454                *head = node->next;
 455        } else {
 456                prevnode = *head;
 457                while (prevnode->next != node)
 458                        prevnode = prevnode->next;
 459
 460                prevnode->next = node->next;
 461        }
 462        node->next = NULL;
 463
 464        return node;
 465}
 466
 467
 468/**
 469 * do_bridge_resource_split - find one node of resources that aren't in use
 470 * @head: list head
 471 * @alignment: max node size (?)
 472 */
 473static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
 474{
 475        struct pci_resource *prevnode = NULL;
 476        struct pci_resource *node;
 477        u32 rc;
 478        u32 temp_dword;
 479
 480        rc = cpqhp_resource_sort_and_combine(head);
 481
 482        if (rc)
 483                return NULL;
 484
 485        node = *head;
 486
 487        while (node->next) {
 488                prevnode = node;
 489                node = node->next;
 490                kfree(prevnode);
 491        }
 492
 493        if (node->length < alignment)
 494                goto error;
 495
 496        if (node->base & (alignment - 1)) {
 497                /* Short circuit if adjusted size is too small */
 498                temp_dword = (node->base | (alignment-1)) + 1;
 499                if ((node->length - (temp_dword - node->base)) < alignment)
 500                        goto error;
 501
 502                node->length -= (temp_dword - node->base);
 503                node->base = temp_dword;
 504        }
 505
 506        if (node->length & (alignment - 1))
 507                /* There's stuff in use after this node */
 508                goto error;
 509
 510        return node;
 511error:
 512        kfree(node);
 513        return NULL;
 514}
 515
 516
 517/**
 518 * get_io_resource - find first node of given size not in ISA aliasing window.
 519 * @head: list to search
 520 * @size: size of node to find, must be a power of two.
 521 *
 522 * Description: This function sorts the resource list by size and then returns
 523 * returns the first node of "size" length that is not in the ISA aliasing
 524 * window.  If it finds a node larger than "size" it will split it up.
 525 */
 526static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
 527{
 528        struct pci_resource *prevnode;
 529        struct pci_resource *node;
 530        struct pci_resource *split_node;
 531        u32 temp_dword;
 532
 533        if (!(*head))
 534                return NULL;
 535
 536        if (cpqhp_resource_sort_and_combine(head))
 537                return NULL;
 538
 539        if (sort_by_size(head))
 540                return NULL;
 541
 542        for (node = *head; node; node = node->next) {
 543                if (node->length < size)
 544                        continue;
 545
 546                if (node->base & (size - 1)) {
 547                        /* this one isn't base aligned properly
 548                         * so we'll make a new entry and split it up
 549                         */
 550                        temp_dword = (node->base | (size-1)) + 1;
 551
 552                        /* Short circuit if adjusted size is too small */
 553                        if ((node->length - (temp_dword - node->base)) < size)
 554                                continue;
 555
 556                        split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 557
 558                        if (!split_node)
 559                                return NULL;
 560
 561                        split_node->base = node->base;
 562                        split_node->length = temp_dword - node->base;
 563                        node->base = temp_dword;
 564                        node->length -= split_node->length;
 565
 566                        /* Put it in the list */
 567                        split_node->next = node->next;
 568                        node->next = split_node;
 569                } /* End of non-aligned base */
 570
 571                /* Don't need to check if too small since we already did */
 572                if (node->length > size) {
 573                        /* this one is longer than we need
 574                         * so we'll make a new entry and split it up
 575                         */
 576                        split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 577
 578                        if (!split_node)
 579                                return NULL;
 580
 581                        split_node->base = node->base + size;
 582                        split_node->length = node->length - size;
 583                        node->length = size;
 584
 585                        /* Put it in the list */
 586                        split_node->next = node->next;
 587                        node->next = split_node;
 588                }  /* End of too big on top end */
 589
 590                /* For IO make sure it's not in the ISA aliasing space */
 591                if (node->base & 0x300L)
 592                        continue;
 593
 594                /* If we got here, then it is the right size
 595                 * Now take it out of the list and break
 596                 */
 597                if (*head == node) {
 598                        *head = node->next;
 599                } else {
 600                        prevnode = *head;
 601                        while (prevnode->next != node)
 602                                prevnode = prevnode->next;
 603
 604                        prevnode->next = node->next;
 605                }
 606                node->next = NULL;
 607                break;
 608        }
 609
 610        return node;
 611}
 612
 613
 614/**
 615 * get_max_resource - get largest node which has at least the given size.
 616 * @head: the list to search the node in
 617 * @size: the minimum size of the node to find
 618 *
 619 * Description: Gets the largest node that is at least "size" big from the
 620 * list pointed to by head.  It aligns the node on top and bottom
 621 * to "size" alignment before returning it.
 622 */
 623static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
 624{
 625        struct pci_resource *max;
 626        struct pci_resource *temp;
 627        struct pci_resource *split_node;
 628        u32 temp_dword;
 629
 630        if (cpqhp_resource_sort_and_combine(head))
 631                return NULL;
 632
 633        if (sort_by_max_size(head))
 634                return NULL;
 635
 636        for (max = *head; max; max = max->next) {
 637                /* If not big enough we could probably just bail,
 638                 * instead we'll continue to the next.
 639                 */
 640                if (max->length < size)
 641                        continue;
 642
 643                if (max->base & (size - 1)) {
 644                        /* this one isn't base aligned properly
 645                         * so we'll make a new entry and split it up
 646                         */
 647                        temp_dword = (max->base | (size-1)) + 1;
 648
 649                        /* Short circuit if adjusted size is too small */
 650                        if ((max->length - (temp_dword - max->base)) < size)
 651                                continue;
 652
 653                        split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 654
 655                        if (!split_node)
 656                                return NULL;
 657
 658                        split_node->base = max->base;
 659                        split_node->length = temp_dword - max->base;
 660                        max->base = temp_dword;
 661                        max->length -= split_node->length;
 662
 663                        split_node->next = max->next;
 664                        max->next = split_node;
 665                }
 666
 667                if ((max->base + max->length) & (size - 1)) {
 668                        /* this one isn't end aligned properly at the top
 669                         * so we'll make a new entry and split it up
 670                         */
 671                        split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 672
 673                        if (!split_node)
 674                                return NULL;
 675                        temp_dword = ((max->base + max->length) & ~(size - 1));
 676                        split_node->base = temp_dword;
 677                        split_node->length = max->length + max->base
 678                                             - split_node->base;
 679                        max->length -= split_node->length;
 680
 681                        split_node->next = max->next;
 682                        max->next = split_node;
 683                }
 684
 685                /* Make sure it didn't shrink too much when we aligned it */
 686                if (max->length < size)
 687                        continue;
 688
 689                /* Now take it out of the list */
 690                temp = *head;
 691                if (temp == max) {
 692                        *head = max->next;
 693                } else {
 694                        while (temp && temp->next != max)
 695                                temp = temp->next;
 696
 697                        if (temp)
 698                                temp->next = max->next;
 699                }
 700
 701                max->next = NULL;
 702                break;
 703        }
 704
 705        return max;
 706}
 707
 708
 709/**
 710 * get_resource - find resource of given size and split up larger ones.
 711 * @head: the list to search for resources
 712 * @size: the size limit to use
 713 *
 714 * Description: This function sorts the resource list by size and then
 715 * returns the first node of "size" length.  If it finds a node
 716 * larger than "size" it will split it up.
 717 *
 718 * size must be a power of two.
 719 */
 720static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
 721{
 722        struct pci_resource *prevnode;
 723        struct pci_resource *node;
 724        struct pci_resource *split_node;
 725        u32 temp_dword;
 726
 727        if (cpqhp_resource_sort_and_combine(head))
 728                return NULL;
 729
 730        if (sort_by_size(head))
 731                return NULL;
 732
 733        for (node = *head; node; node = node->next) {
 734                dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
 735                    __func__, size, node, node->base, node->length);
 736                if (node->length < size)
 737                        continue;
 738
 739                if (node->base & (size - 1)) {
 740                        dbg("%s: not aligned\n", __func__);
 741                        /* this one isn't base aligned properly
 742                         * so we'll make a new entry and split it up
 743                         */
 744                        temp_dword = (node->base | (size-1)) + 1;
 745
 746                        /* Short circuit if adjusted size is too small */
 747                        if ((node->length - (temp_dword - node->base)) < size)
 748                                continue;
 749
 750                        split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 751
 752                        if (!split_node)
 753                                return NULL;
 754
 755                        split_node->base = node->base;
 756                        split_node->length = temp_dword - node->base;
 757                        node->base = temp_dword;
 758                        node->length -= split_node->length;
 759
 760                        split_node->next = node->next;
 761                        node->next = split_node;
 762                } /* End of non-aligned base */
 763
 764                /* Don't need to check if too small since we already did */
 765                if (node->length > size) {
 766                        dbg("%s: too big\n", __func__);
 767                        /* this one is longer than we need
 768                         * so we'll make a new entry and split it up
 769                         */
 770                        split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 771
 772                        if (!split_node)
 773                                return NULL;
 774
 775                        split_node->base = node->base + size;
 776                        split_node->length = node->length - size;
 777                        node->length = size;
 778
 779                        /* Put it in the list */
 780                        split_node->next = node->next;
 781                        node->next = split_node;
 782                }  /* End of too big on top end */
 783
 784                dbg("%s: got one!!!\n", __func__);
 785                /* If we got here, then it is the right size
 786                 * Now take it out of the list */
 787                if (*head == node) {
 788                        *head = node->next;
 789                } else {
 790                        prevnode = *head;
 791                        while (prevnode->next != node)
 792                                prevnode = prevnode->next;
 793
 794                        prevnode->next = node->next;
 795                }
 796                node->next = NULL;
 797                break;
 798        }
 799        return node;
 800}
 801
 802
 803/**
 804 * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
 805 * @head: the list to sort and clean up
 806 *
 807 * Description: Sorts all of the nodes in the list in ascending order by
 808 * their base addresses.  Also does garbage collection by
 809 * combining adjacent nodes.
 810 *
 811 * Returns %0 if success.
 812 */
 813int cpqhp_resource_sort_and_combine(struct pci_resource **head)
 814{
 815        struct pci_resource *node1;
 816        struct pci_resource *node2;
 817        int out_of_order = 1;
 818
 819        dbg("%s: head = %p, *head = %p\n", __func__, head, *head);
 820
 821        if (!(*head))
 822                return 1;
 823
 824        dbg("*head->next = %p\n", (*head)->next);
 825
 826        if (!(*head)->next)
 827                return 0;       /* only one item on the list, already sorted! */
 828
 829        dbg("*head->base = 0x%x\n", (*head)->base);
 830        dbg("*head->next->base = 0x%x\n", (*head)->next->base);
 831        while (out_of_order) {
 832                out_of_order = 0;
 833
 834                /* Special case for swapping list head */
 835                if (((*head)->next) &&
 836                    ((*head)->base > (*head)->next->base)) {
 837                        node1 = *head;
 838                        (*head) = (*head)->next;
 839                        node1->next = (*head)->next;
 840                        (*head)->next = node1;
 841                        out_of_order++;
 842                }
 843
 844                node1 = (*head);
 845
 846                while (node1->next && node1->next->next) {
 847                        if (node1->next->base > node1->next->next->base) {
 848                                out_of_order++;
 849                                node2 = node1->next;
 850                                node1->next = node1->next->next;
 851                                node1 = node1->next;
 852                                node2->next = node1->next;
 853                                node1->next = node2;
 854                        } else
 855                                node1 = node1->next;
 856                }
 857        }  /* End of out_of_order loop */
 858
 859        node1 = *head;
 860
 861        while (node1 && node1->next) {
 862                if ((node1->base + node1->length) == node1->next->base) {
 863                        /* Combine */
 864                        dbg("8..\n");
 865                        node1->length += node1->next->length;
 866                        node2 = node1->next;
 867                        node1->next = node1->next->next;
 868                        kfree(node2);
 869                } else
 870                        node1 = node1->next;
 871        }
 872
 873        return 0;
 874}
 875
 876
 877irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
 878{
 879        struct controller *ctrl = data;
 880        u8 schedule_flag = 0;
 881        u8 reset;
 882        u16 misc;
 883        u32 Diff;
 884        u32 temp_dword;
 885
 886
 887        misc = readw(ctrl->hpc_reg + MISC);
 888        /*
 889         * Check to see if it was our interrupt
 890         */
 891        if (!(misc & 0x000C))
 892                return IRQ_NONE;
 893
 894        if (misc & 0x0004) {
 895                /*
 896                 * Serial Output interrupt Pending
 897                 */
 898
 899                /* Clear the interrupt */
 900                misc |= 0x0004;
 901                writew(misc, ctrl->hpc_reg + MISC);
 902
 903                /* Read to clear posted writes */
 904                misc = readw(ctrl->hpc_reg + MISC);
 905
 906                dbg("%s - waking up\n", __func__);
 907                wake_up_interruptible(&ctrl->queue);
 908        }
 909
 910        if (misc & 0x0008) {
 911                /* General-interrupt-input interrupt Pending */
 912                Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
 913
 914                ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
 915
 916                /* Clear the interrupt */
 917                writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
 918
 919                /* Read it back to clear any posted writes */
 920                temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
 921
 922                if (!Diff)
 923                        /* Clear all interrupts */
 924                        writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
 925
 926                schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
 927                schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
 928                schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
 929        }
 930
 931        reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
 932        if (reset & 0x40) {
 933                /* Bus reset has completed */
 934                reset &= 0xCF;
 935                writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
 936                reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
 937                wake_up_interruptible(&ctrl->queue);
 938        }
 939
 940        if (schedule_flag) {
 941                wake_up_process(cpqhp_event_thread);
 942                dbg("Waking even thread");
 943        }
 944        return IRQ_HANDLED;
 945}
 946
 947
 948/**
 949 * cpqhp_slot_create - Creates a node and adds it to the proper bus.
 950 * @busnumber: bus where new node is to be located
 951 *
 952 * Returns pointer to the new node or %NULL if unsuccessful.
 953 */
 954struct pci_func *cpqhp_slot_create(u8 busnumber)
 955{
 956        struct pci_func *new_slot;
 957        struct pci_func *next;
 958
 959        new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
 960        if (new_slot == NULL)
 961                return new_slot;
 962
 963        new_slot->next = NULL;
 964        new_slot->configured = 1;
 965
 966        if (cpqhp_slot_list[busnumber] == NULL) {
 967                cpqhp_slot_list[busnumber] = new_slot;
 968        } else {
 969                next = cpqhp_slot_list[busnumber];
 970                while (next->next != NULL)
 971                        next = next->next;
 972                next->next = new_slot;
 973        }
 974        return new_slot;
 975}
 976
 977
 978/**
 979 * slot_remove - Removes a node from the linked list of slots.
 980 * @old_slot: slot to remove
 981 *
 982 * Returns %0 if successful, !0 otherwise.
 983 */
 984static int slot_remove(struct pci_func *old_slot)
 985{
 986        struct pci_func *next;
 987
 988        if (old_slot == NULL)
 989                return 1;
 990
 991        next = cpqhp_slot_list[old_slot->bus];
 992        if (next == NULL)
 993                return 1;
 994
 995        if (next == old_slot) {
 996                cpqhp_slot_list[old_slot->bus] = old_slot->next;
 997                cpqhp_destroy_board_resources(old_slot);
 998                kfree(old_slot);
 999                return 0;
1000        }
1001
1002        while ((next->next != old_slot) && (next->next != NULL))
1003                next = next->next;
1004
1005        if (next->next == old_slot) {
1006                next->next = old_slot->next;
1007                cpqhp_destroy_board_resources(old_slot);
1008                kfree(old_slot);
1009                return 0;
1010        } else
1011                return 2;
1012}
1013
1014
1015/**
1016 * bridge_slot_remove - Removes a node from the linked list of slots.
1017 * @bridge: bridge to remove
1018 *
1019 * Returns %0 if successful, !0 otherwise.
1020 */
1021static int bridge_slot_remove(struct pci_func *bridge)
1022{
1023        u8 subordinateBus, secondaryBus;
1024        u8 tempBus;
1025        struct pci_func *next;
1026
1027        secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1028        subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1029
1030        for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1031                next = cpqhp_slot_list[tempBus];
1032
1033                while (!slot_remove(next))
1034                        next = cpqhp_slot_list[tempBus];
1035        }
1036
1037        next = cpqhp_slot_list[bridge->bus];
1038
1039        if (next == NULL)
1040                return 1;
1041
1042        if (next == bridge) {
1043                cpqhp_slot_list[bridge->bus] = bridge->next;
1044                goto out;
1045        }
1046
1047        while ((next->next != bridge) && (next->next != NULL))
1048                next = next->next;
1049
1050        if (next->next != bridge)
1051                return 2;
1052        next->next = bridge->next;
1053out:
1054        kfree(bridge);
1055        return 0;
1056}
1057
1058
1059/**
1060 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1061 * @bus: bus to find
1062 * @device: device to find
1063 * @index: is %0 for first function found, %1 for the second...
1064 *
1065 * Returns pointer to the node if successful, %NULL otherwise.
1066 */
1067struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1068{
1069        int found = -1;
1070        struct pci_func *func;
1071
1072        func = cpqhp_slot_list[bus];
1073
1074        if ((func == NULL) || ((func->device == device) && (index == 0)))
1075                return func;
1076
1077        if (func->device == device)
1078                found++;
1079
1080        while (func->next != NULL) {
1081                func = func->next;
1082
1083                if (func->device == device)
1084                        found++;
1085
1086                if (found == index)
1087                        return func;
1088        }
1089
1090        return NULL;
1091}
1092
1093
1094/* DJZ: I don't think is_bridge will work as is.
1095 * FIXME */
1096static int is_bridge(struct pci_func *func)
1097{
1098        /* Check the header type */
1099        if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1100                return 1;
1101        else
1102                return 0;
1103}
1104
1105
1106/**
1107 * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1108 * @ctrl: controller to change frequency/mode for.
1109 * @adapter_speed: the speed of the adapter we want to match.
1110 * @hp_slot: the slot number where the adapter is installed.
1111 *
1112 * Returns %0 if we successfully change frequency and/or mode to match the
1113 * adapter speed.
1114 */
1115static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1116{
1117        struct slot *slot;
1118        struct pci_bus *bus = ctrl->pci_bus;
1119        u8 reg;
1120        u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1121        u16 reg16;
1122        u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1123
1124        if (bus->cur_bus_speed == adapter_speed)
1125                return 0;
1126
1127        /* We don't allow freq/mode changes if we find another adapter running
1128         * in another slot on this controller
1129         */
1130        for (slot = ctrl->slot; slot; slot = slot->next) {
1131                if (slot->device == (hp_slot + ctrl->slot_device_offset))
1132                        continue;
1133                if (get_presence_status(ctrl, slot) == 0)
1134                        continue;
1135                /* If another adapter is running on the same segment but at a
1136                 * lower speed/mode, we allow the new adapter to function at
1137                 * this rate if supported
1138                 */
1139                if (bus->cur_bus_speed < adapter_speed)
1140                        return 0;
1141
1142                return 1;
1143        }
1144
1145        /* If the controller doesn't support freq/mode changes and the
1146         * controller is running at a higher mode, we bail
1147         */
1148        if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1149                return 1;
1150
1151        /* But we allow the adapter to run at a lower rate if possible */
1152        if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1153                return 0;
1154
1155        /* We try to set the max speed supported by both the adapter and
1156         * controller
1157         */
1158        if (bus->max_bus_speed < adapter_speed) {
1159                if (bus->cur_bus_speed == bus->max_bus_speed)
1160                        return 0;
1161                adapter_speed = bus->max_bus_speed;
1162        }
1163
1164        writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1165        writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1166
1167        set_SOGO(ctrl);
1168        wait_for_ctrl_irq(ctrl);
1169
1170        if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1171                reg = 0xF5;
1172        else
1173                reg = 0xF4;
1174        pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1175
1176        reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1177        reg16 &= ~0x000F;
1178        switch (adapter_speed) {
1179                case(PCI_SPEED_133MHz_PCIX):
1180                        reg = 0x75;
1181                        reg16 |= 0xB;
1182                        break;
1183                case(PCI_SPEED_100MHz_PCIX):
1184                        reg = 0x74;
1185                        reg16 |= 0xA;
1186                        break;
1187                case(PCI_SPEED_66MHz_PCIX):
1188                        reg = 0x73;
1189                        reg16 |= 0x9;
1190                        break;
1191                case(PCI_SPEED_66MHz):
1192                        reg = 0x73;
1193                        reg16 |= 0x1;
1194                        break;
1195                default: /* 33MHz PCI 2.2 */
1196                        reg = 0x71;
1197                        break;
1198
1199        }
1200        reg16 |= 0xB << 12;
1201        writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1202
1203        mdelay(5);
1204
1205        /* Reenable interrupts */
1206        writel(0, ctrl->hpc_reg + INT_MASK);
1207
1208        pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1209
1210        /* Restart state machine */
1211        reg = ~0xF;
1212        pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1213        pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1214
1215        /* Only if mode change...*/
1216        if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1217                ((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
1218                        set_SOGO(ctrl);
1219
1220        wait_for_ctrl_irq(ctrl);
1221        mdelay(1100);
1222
1223        /* Restore LED/Slot state */
1224        writel(leds, ctrl->hpc_reg + LED_CONTROL);
1225        writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1226
1227        set_SOGO(ctrl);
1228        wait_for_ctrl_irq(ctrl);
1229
1230        bus->cur_bus_speed = adapter_speed;
1231        slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1232
1233        info("Successfully changed frequency/mode for adapter in slot %d\n",
1234                        slot->number);
1235        return 0;
1236}
1237
1238/* the following routines constitute the bulk of the
1239 * hotplug controller logic
1240 */
1241
1242
1243/**
1244 * board_replaced - Called after a board has been replaced in the system.
1245 * @func: PCI device/function information
1246 * @ctrl: hotplug controller
1247 *
1248 * This is only used if we don't have resources for hot add.
1249 * Turns power on for the board.
1250 * Checks to see if board is the same.
1251 * If board is same, reconfigures it.
1252 * If board isn't same, turns it back off.
1253 */
1254static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1255{
1256        struct pci_bus *bus = ctrl->pci_bus;
1257        u8 hp_slot;
1258        u8 temp_byte;
1259        u8 adapter_speed;
1260        u32 rc = 0;
1261
1262        hp_slot = func->device - ctrl->slot_device_offset;
1263
1264        /*
1265         * The switch is open.
1266         */
1267        if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot))
1268                rc = INTERLOCK_OPEN;
1269        /*
1270         * The board is already on
1271         */
1272        else if (is_slot_enabled(ctrl, hp_slot))
1273                rc = CARD_FUNCTIONING;
1274        else {
1275                mutex_lock(&ctrl->crit_sect);
1276
1277                /* turn on board without attaching to the bus */
1278                enable_slot_power(ctrl, hp_slot);
1279
1280                set_SOGO(ctrl);
1281
1282                /* Wait for SOBS to be unset */
1283                wait_for_ctrl_irq(ctrl);
1284
1285                /* Change bits in slot power register to force another shift out
1286                 * NOTE: this is to work around the timer bug */
1287                temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1288                writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1289                writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1290
1291                set_SOGO(ctrl);
1292
1293                /* Wait for SOBS to be unset */
1294                wait_for_ctrl_irq(ctrl);
1295
1296                adapter_speed = get_adapter_speed(ctrl, hp_slot);
1297                if (bus->cur_bus_speed != adapter_speed)
1298                        if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1299                                rc = WRONG_BUS_FREQUENCY;
1300
1301                /* turn off board without attaching to the bus */
1302                disable_slot_power(ctrl, hp_slot);
1303
1304                set_SOGO(ctrl);
1305
1306                /* Wait for SOBS to be unset */
1307                wait_for_ctrl_irq(ctrl);
1308
1309                mutex_unlock(&ctrl->crit_sect);
1310
1311                if (rc)
1312                        return rc;
1313
1314                mutex_lock(&ctrl->crit_sect);
1315
1316                slot_enable(ctrl, hp_slot);
1317                green_LED_blink(ctrl, hp_slot);
1318
1319                amber_LED_off(ctrl, hp_slot);
1320
1321                set_SOGO(ctrl);
1322
1323                /* Wait for SOBS to be unset */
1324                wait_for_ctrl_irq(ctrl);
1325
1326                mutex_unlock(&ctrl->crit_sect);
1327
1328                /* Wait for ~1 second because of hot plug spec */
1329                long_delay(1*HZ);
1330
1331                /* Check for a power fault */
1332                if (func->status == 0xFF) {
1333                        /* power fault occurred, but it was benign */
1334                        rc = POWER_FAILURE;
1335                        func->status = 0;
1336                } else
1337                        rc = cpqhp_valid_replace(ctrl, func);
1338
1339                if (!rc) {
1340                        /* It must be the same board */
1341
1342                        rc = cpqhp_configure_board(ctrl, func);
1343
1344                        /* If configuration fails, turn it off
1345                         * Get slot won't work for devices behind
1346                         * bridges, but in this case it will always be
1347                         * called for the "base" bus/dev/func of an
1348                         * adapter.
1349                         */
1350
1351                        mutex_lock(&ctrl->crit_sect);
1352
1353                        amber_LED_on(ctrl, hp_slot);
1354                        green_LED_off(ctrl, hp_slot);
1355                        slot_disable(ctrl, hp_slot);
1356
1357                        set_SOGO(ctrl);
1358
1359                        /* Wait for SOBS to be unset */
1360                        wait_for_ctrl_irq(ctrl);
1361
1362                        mutex_unlock(&ctrl->crit_sect);
1363
1364                        if (rc)
1365                                return rc;
1366                        else
1367                                return 1;
1368
1369                } else {
1370                        /* Something is wrong
1371
1372                         * Get slot won't work for devices behind bridges, but
1373                         * in this case it will always be called for the "base"
1374                         * bus/dev/func of an adapter.
1375                         */
1376
1377                        mutex_lock(&ctrl->crit_sect);
1378
1379                        amber_LED_on(ctrl, hp_slot);
1380                        green_LED_off(ctrl, hp_slot);
1381                        slot_disable(ctrl, hp_slot);
1382
1383                        set_SOGO(ctrl);
1384
1385                        /* Wait for SOBS to be unset */
1386                        wait_for_ctrl_irq(ctrl);
1387
1388                        mutex_unlock(&ctrl->crit_sect);
1389                }
1390
1391        }
1392        return rc;
1393
1394}
1395
1396
1397/**
1398 * board_added - Called after a board has been added to the system.
1399 * @func: PCI device/function info
1400 * @ctrl: hotplug controller
1401 *
1402 * Turns power on for the board.
1403 * Configures board.
1404 */
1405static u32 board_added(struct pci_func *func, struct controller *ctrl)
1406{
1407        u8 hp_slot;
1408        u8 temp_byte;
1409        u8 adapter_speed;
1410        int index;
1411        u32 temp_register = 0xFFFFFFFF;
1412        u32 rc = 0;
1413        struct pci_func *new_slot = NULL;
1414        struct pci_bus *bus = ctrl->pci_bus;
1415        struct slot *p_slot;
1416        struct resource_lists res_lists;
1417
1418        hp_slot = func->device - ctrl->slot_device_offset;
1419        dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1420            __func__, func->device, ctrl->slot_device_offset, hp_slot);
1421
1422        mutex_lock(&ctrl->crit_sect);
1423
1424        /* turn on board without attaching to the bus */
1425        enable_slot_power(ctrl, hp_slot);
1426
1427        set_SOGO(ctrl);
1428
1429        /* Wait for SOBS to be unset */
1430        wait_for_ctrl_irq(ctrl);
1431
1432        /* Change bits in slot power register to force another shift out
1433         * NOTE: this is to work around the timer bug
1434         */
1435        temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1436        writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1437        writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1438
1439        set_SOGO(ctrl);
1440
1441        /* Wait for SOBS to be unset */
1442        wait_for_ctrl_irq(ctrl);
1443
1444        adapter_speed = get_adapter_speed(ctrl, hp_slot);
1445        if (bus->cur_bus_speed != adapter_speed)
1446                if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1447                        rc = WRONG_BUS_FREQUENCY;
1448
1449        /* turn off board without attaching to the bus */
1450        disable_slot_power(ctrl, hp_slot);
1451
1452        set_SOGO(ctrl);
1453
1454        /* Wait for SOBS to be unset */
1455        wait_for_ctrl_irq(ctrl);
1456
1457        mutex_unlock(&ctrl->crit_sect);
1458
1459        if (rc)
1460                return rc;
1461
1462        p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1463
1464        /* turn on board and blink green LED */
1465
1466        dbg("%s: before down\n", __func__);
1467        mutex_lock(&ctrl->crit_sect);
1468        dbg("%s: after down\n", __func__);
1469
1470        dbg("%s: before slot_enable\n", __func__);
1471        slot_enable(ctrl, hp_slot);
1472
1473        dbg("%s: before green_LED_blink\n", __func__);
1474        green_LED_blink(ctrl, hp_slot);
1475
1476        dbg("%s: before amber_LED_blink\n", __func__);
1477        amber_LED_off(ctrl, hp_slot);
1478
1479        dbg("%s: before set_SOGO\n", __func__);
1480        set_SOGO(ctrl);
1481
1482        /* Wait for SOBS to be unset */
1483        dbg("%s: before wait_for_ctrl_irq\n", __func__);
1484        wait_for_ctrl_irq(ctrl);
1485        dbg("%s: after wait_for_ctrl_irq\n", __func__);
1486
1487        dbg("%s: before up\n", __func__);
1488        mutex_unlock(&ctrl->crit_sect);
1489        dbg("%s: after up\n", __func__);
1490
1491        /* Wait for ~1 second because of hot plug spec */
1492        dbg("%s: before long_delay\n", __func__);
1493        long_delay(1*HZ);
1494        dbg("%s: after long_delay\n", __func__);
1495
1496        dbg("%s: func status = %x\n", __func__, func->status);
1497        /* Check for a power fault */
1498        if (func->status == 0xFF) {
1499                /* power fault occurred, but it was benign */
1500                temp_register = 0xFFFFFFFF;
1501                dbg("%s: temp register set to %x by power fault\n", __func__, temp_register);
1502                rc = POWER_FAILURE;
1503                func->status = 0;
1504        } else {
1505                /* Get vendor/device ID u32 */
1506                ctrl->pci_bus->number = func->bus;
1507                rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1508                dbg("%s: pci_read_config_dword returns %d\n", __func__, rc);
1509                dbg("%s: temp_register is %x\n", __func__, temp_register);
1510
1511                if (rc != 0) {
1512                        /* Something's wrong here */
1513                        temp_register = 0xFFFFFFFF;
1514                        dbg("%s: temp register set to %x by error\n", __func__, temp_register);
1515                }
1516                /* Preset return code.  It will be changed later if things go okay. */
1517                rc = NO_ADAPTER_PRESENT;
1518        }
1519
1520        /* All F's is an empty slot or an invalid board */
1521        if (temp_register != 0xFFFFFFFF) {
1522                res_lists.io_head = ctrl->io_head;
1523                res_lists.mem_head = ctrl->mem_head;
1524                res_lists.p_mem_head = ctrl->p_mem_head;
1525                res_lists.bus_head = ctrl->bus_head;
1526                res_lists.irqs = NULL;
1527
1528                rc = configure_new_device(ctrl, func, 0, &res_lists);
1529
1530                dbg("%s: back from configure_new_device\n", __func__);
1531                ctrl->io_head = res_lists.io_head;
1532                ctrl->mem_head = res_lists.mem_head;
1533                ctrl->p_mem_head = res_lists.p_mem_head;
1534                ctrl->bus_head = res_lists.bus_head;
1535
1536                cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1537                cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1538                cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1539                cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1540
1541                if (rc) {
1542                        mutex_lock(&ctrl->crit_sect);
1543
1544                        amber_LED_on(ctrl, hp_slot);
1545                        green_LED_off(ctrl, hp_slot);
1546                        slot_disable(ctrl, hp_slot);
1547
1548                        set_SOGO(ctrl);
1549
1550                        /* Wait for SOBS to be unset */
1551                        wait_for_ctrl_irq(ctrl);
1552
1553                        mutex_unlock(&ctrl->crit_sect);
1554                        return rc;
1555                } else {
1556                        cpqhp_save_slot_config(ctrl, func);
1557                }
1558
1559
1560                func->status = 0;
1561                func->switch_save = 0x10;
1562                func->is_a_board = 0x01;
1563
1564                /* next, we will instantiate the linux pci_dev structures (with
1565                 * appropriate driver notification, if already present) */
1566                dbg("%s: configure linux pci_dev structure\n", __func__);
1567                index = 0;
1568                do {
1569                        new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1570                        if (new_slot && !new_slot->pci_dev)
1571                                cpqhp_configure_device(ctrl, new_slot);
1572                } while (new_slot);
1573
1574                mutex_lock(&ctrl->crit_sect);
1575
1576                green_LED_on(ctrl, hp_slot);
1577
1578                set_SOGO(ctrl);
1579
1580                /* Wait for SOBS to be unset */
1581                wait_for_ctrl_irq(ctrl);
1582
1583                mutex_unlock(&ctrl->crit_sect);
1584        } else {
1585                mutex_lock(&ctrl->crit_sect);
1586
1587                amber_LED_on(ctrl, hp_slot);
1588                green_LED_off(ctrl, hp_slot);
1589                slot_disable(ctrl, hp_slot);
1590
1591                set_SOGO(ctrl);
1592
1593                /* Wait for SOBS to be unset */
1594                wait_for_ctrl_irq(ctrl);
1595
1596                mutex_unlock(&ctrl->crit_sect);
1597
1598                return rc;
1599        }
1600        return 0;
1601}
1602
1603
1604/**
1605 * remove_board - Turns off slot and LEDs
1606 * @func: PCI device/function info
1607 * @replace_flag: whether replacing or adding a new device
1608 * @ctrl: target controller
1609 */
1610static u32 remove_board(struct pci_func *func, u32 replace_flag, struct controller *ctrl)
1611{
1612        int index;
1613        u8 skip = 0;
1614        u8 device;
1615        u8 hp_slot;
1616        u8 temp_byte;
1617        u32 rc;
1618        struct resource_lists res_lists;
1619        struct pci_func *temp_func;
1620
1621        if (cpqhp_unconfigure_device(func))
1622                return 1;
1623
1624        device = func->device;
1625
1626        hp_slot = func->device - ctrl->slot_device_offset;
1627        dbg("In %s, hp_slot = %d\n", __func__, hp_slot);
1628
1629        /* When we get here, it is safe to change base address registers.
1630         * We will attempt to save the base address register lengths */
1631        if (replace_flag || !ctrl->add_support)
1632                rc = cpqhp_save_base_addr_length(ctrl, func);
1633        else if (!func->bus_head && !func->mem_head &&
1634                 !func->p_mem_head && !func->io_head) {
1635                /* Here we check to see if we've saved any of the board's
1636                 * resources already.  If so, we'll skip the attempt to
1637                 * determine what's being used. */
1638                index = 0;
1639                temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1640                while (temp_func) {
1641                        if (temp_func->bus_head || temp_func->mem_head
1642                            || temp_func->p_mem_head || temp_func->io_head) {
1643                                skip = 1;
1644                                break;
1645                        }
1646                        temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1647                }
1648
1649                if (!skip)
1650                        rc = cpqhp_save_used_resources(ctrl, func);
1651        }
1652        /* Change status to shutdown */
1653        if (func->is_a_board)
1654                func->status = 0x01;
1655        func->configured = 0;
1656
1657        mutex_lock(&ctrl->crit_sect);
1658
1659        green_LED_off(ctrl, hp_slot);
1660        slot_disable(ctrl, hp_slot);
1661
1662        set_SOGO(ctrl);
1663
1664        /* turn off SERR for slot */
1665        temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1666        temp_byte &= ~(0x01 << hp_slot);
1667        writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1668
1669        /* Wait for SOBS to be unset */
1670        wait_for_ctrl_irq(ctrl);
1671
1672        mutex_unlock(&ctrl->crit_sect);
1673
1674        if (!replace_flag && ctrl->add_support) {
1675                while (func) {
1676                        res_lists.io_head = ctrl->io_head;
1677                        res_lists.mem_head = ctrl->mem_head;
1678                        res_lists.p_mem_head = ctrl->p_mem_head;
1679                        res_lists.bus_head = ctrl->bus_head;
1680
1681                        cpqhp_return_board_resources(func, &res_lists);
1682
1683                        ctrl->io_head = res_lists.io_head;
1684                        ctrl->mem_head = res_lists.mem_head;
1685                        ctrl->p_mem_head = res_lists.p_mem_head;
1686                        ctrl->bus_head = res_lists.bus_head;
1687
1688                        cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1689                        cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1690                        cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1691                        cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1692
1693                        if (is_bridge(func)) {
1694                                bridge_slot_remove(func);
1695                        } else
1696                                slot_remove(func);
1697
1698                        func = cpqhp_slot_find(ctrl->bus, device, 0);
1699                }
1700
1701                /* Setup slot structure with entry for empty slot */
1702                func = cpqhp_slot_create(ctrl->bus);
1703
1704                if (func == NULL)
1705                        return 1;
1706
1707                func->bus = ctrl->bus;
1708                func->device = device;
1709                func->function = 0;
1710                func->configured = 0;
1711                func->switch_save = 0x10;
1712                func->is_a_board = 0;
1713                func->p_task_event = NULL;
1714        }
1715
1716        return 0;
1717}
1718
1719static void pushbutton_helper_thread(struct timer_list *t)
1720{
1721        pushbutton_pending = t;
1722
1723        wake_up_process(cpqhp_event_thread);
1724}
1725
1726
1727/* this is the main worker thread */
1728static int event_thread(void *data)
1729{
1730        struct controller *ctrl;
1731
1732        while (1) {
1733                dbg("!!!!event_thread sleeping\n");
1734                set_current_state(TASK_INTERRUPTIBLE);
1735                schedule();
1736
1737                if (kthread_should_stop())
1738                        break;
1739                /* Do stuff here */
1740                if (pushbutton_pending)
1741                        cpqhp_pushbutton_thread(pushbutton_pending);
1742                else
1743                        for (ctrl = cpqhp_ctrl_list; ctrl; ctrl = ctrl->next)
1744                                interrupt_event_handler(ctrl);
1745        }
1746        dbg("event_thread signals exit\n");
1747        return 0;
1748}
1749
1750int cpqhp_event_start_thread(void)
1751{
1752        cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
1753        if (IS_ERR(cpqhp_event_thread)) {
1754                err("Can't start up our event thread\n");
1755                return PTR_ERR(cpqhp_event_thread);
1756        }
1757
1758        return 0;
1759}
1760
1761
1762void cpqhp_event_stop_thread(void)
1763{
1764        kthread_stop(cpqhp_event_thread);
1765}
1766
1767
1768static void interrupt_event_handler(struct controller *ctrl)
1769{
1770        int loop = 0;
1771        int change = 1;
1772        struct pci_func *func;
1773        u8 hp_slot;
1774        struct slot *p_slot;
1775
1776        while (change) {
1777                change = 0;
1778
1779                for (loop = 0; loop < 10; loop++) {
1780                        /* dbg("loop %d\n", loop); */
1781                        if (ctrl->event_queue[loop].event_type != 0) {
1782                                hp_slot = ctrl->event_queue[loop].hp_slot;
1783
1784                                func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1785                                if (!func)
1786                                        return;
1787
1788                                p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1789                                if (!p_slot)
1790                                        return;
1791
1792                                dbg("hp_slot %d, func %p, p_slot %p\n",
1793                                    hp_slot, func, p_slot);
1794
1795                                if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1796                                        dbg("button pressed\n");
1797                                } else if (ctrl->event_queue[loop].event_type ==
1798                                           INT_BUTTON_CANCEL) {
1799                                        dbg("button cancel\n");
1800                                        del_timer(&p_slot->task_event);
1801
1802                                        mutex_lock(&ctrl->crit_sect);
1803
1804                                        if (p_slot->state == BLINKINGOFF_STATE) {
1805                                                /* slot is on */
1806                                                dbg("turn on green LED\n");
1807                                                green_LED_on(ctrl, hp_slot);
1808                                        } else if (p_slot->state == BLINKINGON_STATE) {
1809                                                /* slot is off */
1810                                                dbg("turn off green LED\n");
1811                                                green_LED_off(ctrl, hp_slot);
1812                                        }
1813
1814                                        info(msg_button_cancel, p_slot->number);
1815
1816                                        p_slot->state = STATIC_STATE;
1817
1818                                        amber_LED_off(ctrl, hp_slot);
1819
1820                                        set_SOGO(ctrl);
1821
1822                                        /* Wait for SOBS to be unset */
1823                                        wait_for_ctrl_irq(ctrl);
1824
1825                                        mutex_unlock(&ctrl->crit_sect);
1826                                }
1827                                /*** button Released (No action on press...) */
1828                                else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1829                                        dbg("button release\n");
1830
1831                                        if (is_slot_enabled(ctrl, hp_slot)) {
1832                                                dbg("slot is on\n");
1833                                                p_slot->state = BLINKINGOFF_STATE;
1834                                                info(msg_button_off, p_slot->number);
1835                                        } else {
1836                                                dbg("slot is off\n");
1837                                                p_slot->state = BLINKINGON_STATE;
1838                                                info(msg_button_on, p_slot->number);
1839                                        }
1840                                        mutex_lock(&ctrl->crit_sect);
1841
1842                                        dbg("blink green LED and turn off amber\n");
1843
1844                                        amber_LED_off(ctrl, hp_slot);
1845                                        green_LED_blink(ctrl, hp_slot);
1846
1847                                        set_SOGO(ctrl);
1848
1849                                        /* Wait for SOBS to be unset */
1850                                        wait_for_ctrl_irq(ctrl);
1851
1852                                        mutex_unlock(&ctrl->crit_sect);
1853                                        timer_setup(&p_slot->task_event,
1854                                                    pushbutton_helper_thread,
1855                                                    0);
1856                                        p_slot->hp_slot = hp_slot;
1857                                        p_slot->ctrl = ctrl;
1858/*                                      p_slot->physical_slot = physical_slot; */
1859                                        p_slot->task_event.expires = jiffies + 5 * HZ;   /* 5 second delay */
1860
1861                                        dbg("add_timer p_slot = %p\n", p_slot);
1862                                        add_timer(&p_slot->task_event);
1863                                }
1864                                /***********POWER FAULT */
1865                                else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1866                                        dbg("power fault\n");
1867                                }
1868
1869                                ctrl->event_queue[loop].event_type = 0;
1870
1871                                change = 1;
1872                        }
1873                }               /* End of FOR loop */
1874        }
1875
1876        return;
1877}
1878
1879
1880/**
1881 * cpqhp_pushbutton_thread - handle pushbutton events
1882 * @slot: target slot (struct)
1883 *
1884 * Scheduled procedure to handle blocking stuff for the pushbuttons.
1885 * Handles all pending events and exits.
1886 */
1887void cpqhp_pushbutton_thread(struct timer_list *t)
1888{
1889        u8 hp_slot;
1890        u8 device;
1891        struct pci_func *func;
1892        struct slot *p_slot = from_timer(p_slot, t, task_event);
1893        struct controller *ctrl = (struct controller *) p_slot->ctrl;
1894
1895        pushbutton_pending = NULL;
1896        hp_slot = p_slot->hp_slot;
1897
1898        device = p_slot->device;
1899
1900        if (is_slot_enabled(ctrl, hp_slot)) {
1901                p_slot->state = POWEROFF_STATE;
1902                /* power Down board */
1903                func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1904                dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1905                if (!func) {
1906                        dbg("Error! func NULL in %s\n", __func__);
1907                        return;
1908                }
1909
1910                if (cpqhp_process_SS(ctrl, func) != 0) {
1911                        amber_LED_on(ctrl, hp_slot);
1912                        green_LED_on(ctrl, hp_slot);
1913
1914                        set_SOGO(ctrl);
1915
1916                        /* Wait for SOBS to be unset */
1917                        wait_for_ctrl_irq(ctrl);
1918                }
1919
1920                p_slot->state = STATIC_STATE;
1921        } else {
1922                p_slot->state = POWERON_STATE;
1923                /* slot is off */
1924
1925                func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1926                dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1927                if (!func) {
1928                        dbg("Error! func NULL in %s\n", __func__);
1929                        return;
1930                }
1931
1932                if (ctrl != NULL) {
1933                        if (cpqhp_process_SI(ctrl, func) != 0) {
1934                                amber_LED_on(ctrl, hp_slot);
1935                                green_LED_off(ctrl, hp_slot);
1936
1937                                set_SOGO(ctrl);
1938
1939                                /* Wait for SOBS to be unset */
1940                                wait_for_ctrl_irq(ctrl);
1941                        }
1942                }
1943
1944                p_slot->state = STATIC_STATE;
1945        }
1946
1947        return;
1948}
1949
1950
1951int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
1952{
1953        u8 device, hp_slot;
1954        u16 temp_word;
1955        u32 tempdword;
1956        int rc;
1957        struct slot *p_slot;
1958        int physical_slot = 0;
1959
1960        tempdword = 0;
1961
1962        device = func->device;
1963        hp_slot = device - ctrl->slot_device_offset;
1964        p_slot = cpqhp_find_slot(ctrl, device);
1965        if (p_slot)
1966                physical_slot = p_slot->number;
1967
1968        /* Check to see if the interlock is closed */
1969        tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
1970
1971        if (tempdword & (0x01 << hp_slot))
1972                return 1;
1973
1974        if (func->is_a_board) {
1975                rc = board_replaced(func, ctrl);
1976        } else {
1977                /* add board */
1978                slot_remove(func);
1979
1980                func = cpqhp_slot_create(ctrl->bus);
1981                if (func == NULL)
1982                        return 1;
1983
1984                func->bus = ctrl->bus;
1985                func->device = device;
1986                func->function = 0;
1987                func->configured = 0;
1988                func->is_a_board = 1;
1989
1990                /* We have to save the presence info for these slots */
1991                temp_word = ctrl->ctrl_int_comp >> 16;
1992                func->presence_save = (temp_word >> hp_slot) & 0x01;
1993                func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
1994
1995                if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
1996                        func->switch_save = 0;
1997                } else {
1998                        func->switch_save = 0x10;
1999                }
2000
2001                rc = board_added(func, ctrl);
2002                if (rc) {
2003                        if (is_bridge(func)) {
2004                                bridge_slot_remove(func);
2005                        } else
2006                                slot_remove(func);
2007
2008                        /* Setup slot structure with entry for empty slot */
2009                        func = cpqhp_slot_create(ctrl->bus);
2010
2011                        if (func == NULL)
2012                                return 1;
2013
2014                        func->bus = ctrl->bus;
2015                        func->device = device;
2016                        func->function = 0;
2017                        func->configured = 0;
2018                        func->is_a_board = 0;
2019
2020                        /* We have to save the presence info for these slots */
2021                        temp_word = ctrl->ctrl_int_comp >> 16;
2022                        func->presence_save = (temp_word >> hp_slot) & 0x01;
2023                        func->presence_save |=
2024                        (temp_word >> (hp_slot + 7)) & 0x02;
2025
2026                        if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2027                                func->switch_save = 0;
2028                        } else {
2029                                func->switch_save = 0x10;
2030                        }
2031                }
2032        }
2033
2034        if (rc)
2035                dbg("%s: rc = %d\n", __func__, rc);
2036
2037        return rc;
2038}
2039
2040
2041int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2042{
2043        u8 device, class_code, header_type, BCR;
2044        u8 index = 0;
2045        u8 replace_flag;
2046        u32 rc = 0;
2047        unsigned int devfn;
2048        struct slot *p_slot;
2049        struct pci_bus *pci_bus = ctrl->pci_bus;
2050        int physical_slot = 0;
2051
2052        device = func->device;
2053        func = cpqhp_slot_find(ctrl->bus, device, index++);
2054        p_slot = cpqhp_find_slot(ctrl, device);
2055        if (p_slot)
2056                physical_slot = p_slot->number;
2057
2058        /* Make sure there are no video controllers here */
2059        while (func && !rc) {
2060                pci_bus->number = func->bus;
2061                devfn = PCI_DEVFN(func->device, func->function);
2062
2063                /* Check the Class Code */
2064                rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2065                if (rc)
2066                        return rc;
2067
2068                if (class_code == PCI_BASE_CLASS_DISPLAY) {
2069                        /* Display/Video adapter (not supported) */
2070                        rc = REMOVE_NOT_SUPPORTED;
2071                } else {
2072                        /* See if it's a bridge */
2073                        rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2074                        if (rc)
2075                                return rc;
2076
2077                        /* If it's a bridge, check the VGA Enable bit */
2078                        if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2079                                rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2080                                if (rc)
2081                                        return rc;
2082
2083                                /* If the VGA Enable bit is set, remove isn't
2084                                 * supported */
2085                                if (BCR & PCI_BRIDGE_CTL_VGA)
2086                                        rc = REMOVE_NOT_SUPPORTED;
2087                        }
2088                }
2089
2090                func = cpqhp_slot_find(ctrl->bus, device, index++);
2091        }
2092
2093        func = cpqhp_slot_find(ctrl->bus, device, 0);
2094        if ((func != NULL) && !rc) {
2095                /* FIXME: Replace flag should be passed into process_SS */
2096                replace_flag = !(ctrl->add_support);
2097                rc = remove_board(func, replace_flag, ctrl);
2098        } else if (!rc) {
2099                rc = 1;
2100        }
2101
2102        return rc;
2103}
2104
2105/**
2106 * switch_leds - switch the leds, go from one site to the other.
2107 * @ctrl: controller to use
2108 * @num_of_slots: number of slots to use
2109 * @work_LED: LED control value
2110 * @direction: 1 to start from the left side, 0 to start right.
2111 */
2112static void switch_leds(struct controller *ctrl, const int num_of_slots,
2113                        u32 *work_LED, const int direction)
2114{
2115        int loop;
2116
2117        for (loop = 0; loop < num_of_slots; loop++) {
2118                if (direction)
2119                        *work_LED = *work_LED >> 1;
2120                else
2121                        *work_LED = *work_LED << 1;
2122                writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2123
2124                set_SOGO(ctrl);
2125
2126                /* Wait for SOGO interrupt */
2127                wait_for_ctrl_irq(ctrl);
2128
2129                /* Get ready for next iteration */
2130                long_delay((2*HZ)/10);
2131        }
2132}
2133
2134/**
2135 * cpqhp_hardware_test - runs hardware tests
2136 * @ctrl: target controller
2137 * @test_num: the number written to the "test" file in sysfs.
2138 *
2139 * For hot plug ctrl folks to play with.
2140 */
2141int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2142{
2143        u32 save_LED;
2144        u32 work_LED;
2145        int loop;
2146        int num_of_slots;
2147
2148        num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2149
2150        switch (test_num) {
2151        case 1:
2152                /* Do stuff here! */
2153
2154                /* Do that funky LED thing */
2155                /* so we can restore them later */
2156                save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2157                work_LED = 0x01010101;
2158                switch_leds(ctrl, num_of_slots, &work_LED, 0);
2159                switch_leds(ctrl, num_of_slots, &work_LED, 1);
2160                switch_leds(ctrl, num_of_slots, &work_LED, 0);
2161                switch_leds(ctrl, num_of_slots, &work_LED, 1);
2162
2163                work_LED = 0x01010000;
2164                writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2165                switch_leds(ctrl, num_of_slots, &work_LED, 0);
2166                switch_leds(ctrl, num_of_slots, &work_LED, 1);
2167                work_LED = 0x00000101;
2168                writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2169                switch_leds(ctrl, num_of_slots, &work_LED, 0);
2170                switch_leds(ctrl, num_of_slots, &work_LED, 1);
2171
2172                work_LED = 0x01010000;
2173                writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2174                for (loop = 0; loop < num_of_slots; loop++) {
2175                        set_SOGO(ctrl);
2176
2177                        /* Wait for SOGO interrupt */
2178                        wait_for_ctrl_irq(ctrl);
2179
2180                        /* Get ready for next iteration */
2181                        long_delay((3*HZ)/10);
2182                        work_LED = work_LED >> 16;
2183                        writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2184
2185                        set_SOGO(ctrl);
2186
2187                        /* Wait for SOGO interrupt */
2188                        wait_for_ctrl_irq(ctrl);
2189
2190                        /* Get ready for next iteration */
2191                        long_delay((3*HZ)/10);
2192                        work_LED = work_LED << 16;
2193                        writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2194                        work_LED = work_LED << 1;
2195                        writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2196                }
2197
2198                /* put it back the way it was */
2199                writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2200
2201                set_SOGO(ctrl);
2202
2203                /* Wait for SOBS to be unset */
2204                wait_for_ctrl_irq(ctrl);
2205                break;
2206        case 2:
2207                /* Do other stuff here! */
2208                break;
2209        case 3:
2210                /* and more... */
2211                break;
2212        }
2213        return 0;
2214}
2215
2216
2217/**
2218 * configure_new_device - Configures the PCI header information of one board.
2219 * @ctrl: pointer to controller structure
2220 * @func: pointer to function structure
2221 * @behind_bridge: 1 if this is a recursive call, 0 if not
2222 * @resources: pointer to set of resource lists
2223 *
2224 * Returns 0 if success.
2225 */
2226static u32 configure_new_device(struct controller  *ctrl, struct pci_func  *func,
2227                                 u8 behind_bridge, struct resource_lists  *resources)
2228{
2229        u8 temp_byte, function, max_functions, stop_it;
2230        int rc;
2231        u32 ID;
2232        struct pci_func *new_slot;
2233        int index;
2234
2235        new_slot = func;
2236
2237        dbg("%s\n", __func__);
2238        /* Check for Multi-function device */
2239        ctrl->pci_bus->number = func->bus;
2240        rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2241        if (rc) {
2242                dbg("%s: rc = %d\n", __func__, rc);
2243                return rc;
2244        }
2245
2246        if (temp_byte & 0x80)   /* Multi-function device */
2247                max_functions = 8;
2248        else
2249                max_functions = 1;
2250
2251        function = 0;
2252
2253        do {
2254                rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2255
2256                if (rc) {
2257                        dbg("configure_new_function failed %d\n", rc);
2258                        index = 0;
2259
2260                        while (new_slot) {
2261                                new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2262
2263                                if (new_slot)
2264                                        cpqhp_return_board_resources(new_slot, resources);
2265                        }
2266
2267                        return rc;
2268                }
2269
2270                function++;
2271
2272                stop_it = 0;
2273
2274                /* The following loop skips to the next present function
2275                 * and creates a board structure */
2276
2277                while ((function < max_functions) && (!stop_it)) {
2278                        pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2279
2280                        if (ID == 0xFFFFFFFF) {
2281                                function++;
2282                        } else {
2283                                /* Setup slot structure. */
2284                                new_slot = cpqhp_slot_create(func->bus);
2285
2286                                if (new_slot == NULL)
2287                                        return 1;
2288
2289                                new_slot->bus = func->bus;
2290                                new_slot->device = func->device;
2291                                new_slot->function = function;
2292                                new_slot->is_a_board = 1;
2293                                new_slot->status = 0;
2294
2295                                stop_it++;
2296                        }
2297                }
2298
2299        } while (function < max_functions);
2300        dbg("returning from configure_new_device\n");
2301
2302        return 0;
2303}
2304
2305
2306/*
2307 * Configuration logic that involves the hotplug data structures and
2308 * their bookkeeping
2309 */
2310
2311
2312/**
2313 * configure_new_function - Configures the PCI header information of one device
2314 * @ctrl: pointer to controller structure
2315 * @func: pointer to function structure
2316 * @behind_bridge: 1 if this is a recursive call, 0 if not
2317 * @resources: pointer to set of resource lists
2318 *
2319 * Calls itself recursively for bridged devices.
2320 * Returns 0 if success.
2321 */
2322static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2323                                   u8 behind_bridge,
2324                                   struct resource_lists *resources)
2325{
2326        int cloop;
2327        u8 IRQ = 0;
2328        u8 temp_byte;
2329        u8 device;
2330        u8 class_code;
2331        u16 command;
2332        u16 temp_word;
2333        u32 temp_dword;
2334        u32 rc;
2335        u32 temp_register;
2336        u32 base;
2337        u32 ID;
2338        unsigned int devfn;
2339        struct pci_resource *mem_node;
2340        struct pci_resource *p_mem_node;
2341        struct pci_resource *io_node;
2342        struct pci_resource *bus_node;
2343        struct pci_resource *hold_mem_node;
2344        struct pci_resource *hold_p_mem_node;
2345        struct pci_resource *hold_IO_node;
2346        struct pci_resource *hold_bus_node;
2347        struct irq_mapping irqs;
2348        struct pci_func *new_slot;
2349        struct pci_bus *pci_bus;
2350        struct resource_lists temp_resources;
2351
2352        pci_bus = ctrl->pci_bus;
2353        pci_bus->number = func->bus;
2354        devfn = PCI_DEVFN(func->device, func->function);
2355
2356        /* Check for Bridge */
2357        rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2358        if (rc)
2359                return rc;
2360
2361        if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2362                /* set Primary bus */
2363                dbg("set Primary bus = %d\n", func->bus);
2364                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2365                if (rc)
2366                        return rc;
2367
2368                /* find range of buses to use */
2369                dbg("find ranges of buses to use\n");
2370                bus_node = get_max_resource(&(resources->bus_head), 1);
2371
2372                /* If we don't have any buses to allocate, we can't continue */
2373                if (!bus_node)
2374                        return -ENOMEM;
2375
2376                /* set Secondary bus */
2377                temp_byte = bus_node->base;
2378                dbg("set Secondary bus = %d\n", bus_node->base);
2379                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2380                if (rc)
2381                        return rc;
2382
2383                /* set subordinate bus */
2384                temp_byte = bus_node->base + bus_node->length - 1;
2385                dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2386                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2387                if (rc)
2388                        return rc;
2389
2390                /* set subordinate Latency Timer and base Latency Timer */
2391                temp_byte = 0x40;
2392                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2393                if (rc)
2394                        return rc;
2395                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2396                if (rc)
2397                        return rc;
2398
2399                /* set Cache Line size */
2400                temp_byte = 0x08;
2401                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2402                if (rc)
2403                        return rc;
2404
2405                /* Setup the IO, memory, and prefetchable windows */
2406                io_node = get_max_resource(&(resources->io_head), 0x1000);
2407                if (!io_node)
2408                        return -ENOMEM;
2409                mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2410                if (!mem_node)
2411                        return -ENOMEM;
2412                p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2413                if (!p_mem_node)
2414                        return -ENOMEM;
2415                dbg("Setup the IO, memory, and prefetchable windows\n");
2416                dbg("io_node\n");
2417                dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2418                                        io_node->length, io_node->next);
2419                dbg("mem_node\n");
2420                dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2421                                        mem_node->length, mem_node->next);
2422                dbg("p_mem_node\n");
2423                dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2424                                        p_mem_node->length, p_mem_node->next);
2425
2426                /* set up the IRQ info */
2427                if (!resources->irqs) {
2428                        irqs.barber_pole = 0;
2429                        irqs.interrupt[0] = 0;
2430                        irqs.interrupt[1] = 0;
2431                        irqs.interrupt[2] = 0;
2432                        irqs.interrupt[3] = 0;
2433                        irqs.valid_INT = 0;
2434                } else {
2435                        irqs.barber_pole = resources->irqs->barber_pole;
2436                        irqs.interrupt[0] = resources->irqs->interrupt[0];
2437                        irqs.interrupt[1] = resources->irqs->interrupt[1];
2438                        irqs.interrupt[2] = resources->irqs->interrupt[2];
2439                        irqs.interrupt[3] = resources->irqs->interrupt[3];
2440                        irqs.valid_INT = resources->irqs->valid_INT;
2441                }
2442
2443                /* set up resource lists that are now aligned on top and bottom
2444                 * for anything behind the bridge. */
2445                temp_resources.bus_head = bus_node;
2446                temp_resources.io_head = io_node;
2447                temp_resources.mem_head = mem_node;
2448                temp_resources.p_mem_head = p_mem_node;
2449                temp_resources.irqs = &irqs;
2450
2451                /* Make copies of the nodes we are going to pass down so that
2452                 * if there is a problem,we can just use these to free resources
2453                 */
2454                hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2455                hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2456                hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2457                hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2458
2459                if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2460                        kfree(hold_bus_node);
2461                        kfree(hold_IO_node);
2462                        kfree(hold_mem_node);
2463                        kfree(hold_p_mem_node);
2464
2465                        return 1;
2466                }
2467
2468                memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2469
2470                bus_node->base += 1;
2471                bus_node->length -= 1;
2472                bus_node->next = NULL;
2473
2474                /* If we have IO resources copy them and fill in the bridge's
2475                 * IO range registers */
2476                memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2477                io_node->next = NULL;
2478
2479                /* set IO base and Limit registers */
2480                temp_byte = io_node->base >> 8;
2481                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2482
2483                temp_byte = (io_node->base + io_node->length - 1) >> 8;
2484                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2485
2486                /* Copy the memory resources and fill in the bridge's memory
2487                 * range registers.
2488                 */
2489                memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2490                mem_node->next = NULL;
2491
2492                /* set Mem base and Limit registers */
2493                temp_word = mem_node->base >> 16;
2494                rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2495
2496                temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2497                rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2498
2499                memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2500                p_mem_node->next = NULL;
2501
2502                /* set Pre Mem base and Limit registers */
2503                temp_word = p_mem_node->base >> 16;
2504                rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2505
2506                temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2507                rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2508
2509                /* Adjust this to compensate for extra adjustment in first loop
2510                 */
2511                irqs.barber_pole--;
2512
2513                rc = 0;
2514
2515                /* Here we actually find the devices and configure them */
2516                for (device = 0; (device <= 0x1F) && !rc; device++) {
2517                        irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2518
2519                        ID = 0xFFFFFFFF;
2520                        pci_bus->number = hold_bus_node->base;
2521                        pci_bus_read_config_dword(pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2522                        pci_bus->number = func->bus;
2523
2524                        if (ID != 0xFFFFFFFF) {   /*  device present */
2525                                /* Setup slot structure. */
2526                                new_slot = cpqhp_slot_create(hold_bus_node->base);
2527
2528                                if (new_slot == NULL) {
2529                                        rc = -ENOMEM;
2530                                        continue;
2531                                }
2532
2533                                new_slot->bus = hold_bus_node->base;
2534                                new_slot->device = device;
2535                                new_slot->function = 0;
2536                                new_slot->is_a_board = 1;
2537                                new_slot->status = 0;
2538
2539                                rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2540                                dbg("configure_new_device rc=0x%x\n", rc);
2541                        }       /* End of IF (device in slot?) */
2542                }               /* End of FOR loop */
2543
2544                if (rc)
2545                        goto free_and_out;
2546                /* save the interrupt routing information */
2547                if (resources->irqs) {
2548                        resources->irqs->interrupt[0] = irqs.interrupt[0];
2549                        resources->irqs->interrupt[1] = irqs.interrupt[1];
2550                        resources->irqs->interrupt[2] = irqs.interrupt[2];
2551                        resources->irqs->interrupt[3] = irqs.interrupt[3];
2552                        resources->irqs->valid_INT = irqs.valid_INT;
2553                } else if (!behind_bridge) {
2554                        /* We need to hook up the interrupts here */
2555                        for (cloop = 0; cloop < 4; cloop++) {
2556                                if (irqs.valid_INT & (0x01 << cloop)) {
2557                                        rc = cpqhp_set_irq(func->bus, func->device,
2558                                                           cloop + 1, irqs.interrupt[cloop]);
2559                                        if (rc)
2560                                                goto free_and_out;
2561                                }
2562                        }       /* end of for loop */
2563                }
2564                /* Return unused bus resources
2565                 * First use the temporary node to store information for
2566                 * the board */
2567                if (bus_node && temp_resources.bus_head) {
2568                        hold_bus_node->length = bus_node->base - hold_bus_node->base;
2569
2570                        hold_bus_node->next = func->bus_head;
2571                        func->bus_head = hold_bus_node;
2572
2573                        temp_byte = temp_resources.bus_head->base - 1;
2574
2575                        /* set subordinate bus */
2576                        rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2577
2578                        if (temp_resources.bus_head->length == 0) {
2579                                kfree(temp_resources.bus_head);
2580                                temp_resources.bus_head = NULL;
2581                        } else {
2582                                return_resource(&(resources->bus_head), temp_resources.bus_head);
2583                        }
2584                }
2585
2586                /* If we have IO space available and there is some left,
2587                 * return the unused portion */
2588                if (hold_IO_node && temp_resources.io_head) {
2589                        io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2590                                                               &hold_IO_node, 0x1000);
2591
2592                        /* Check if we were able to split something off */
2593                        if (io_node) {
2594                                hold_IO_node->base = io_node->base + io_node->length;
2595
2596                                temp_byte = (hold_IO_node->base) >> 8;
2597                                rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2598
2599                                return_resource(&(resources->io_head), io_node);
2600                        }
2601
2602                        io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2603
2604                        /* Check if we were able to split something off */
2605                        if (io_node) {
2606                                /* First use the temporary node to store
2607                                 * information for the board */
2608                                hold_IO_node->length = io_node->base - hold_IO_node->base;
2609
2610                                /* If we used any, add it to the board's list */
2611                                if (hold_IO_node->length) {
2612                                        hold_IO_node->next = func->io_head;
2613                                        func->io_head = hold_IO_node;
2614
2615                                        temp_byte = (io_node->base - 1) >> 8;
2616                                        rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2617
2618                                        return_resource(&(resources->io_head), io_node);
2619                                } else {
2620                                        /* it doesn't need any IO */
2621                                        temp_word = 0x0000;
2622                                        rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2623
2624                                        return_resource(&(resources->io_head), io_node);
2625                                        kfree(hold_IO_node);
2626                                }
2627                        } else {
2628                                /* it used most of the range */
2629                                hold_IO_node->next = func->io_head;
2630                                func->io_head = hold_IO_node;
2631                        }
2632                } else if (hold_IO_node) {
2633                        /* it used the whole range */
2634                        hold_IO_node->next = func->io_head;
2635                        func->io_head = hold_IO_node;
2636                }
2637                /* If we have memory space available and there is some left,
2638                 * return the unused portion */
2639                if (hold_mem_node && temp_resources.mem_head) {
2640                        mem_node = do_pre_bridge_resource_split(&(temp_resources.  mem_head),
2641                                                                &hold_mem_node, 0x100000);
2642
2643                        /* Check if we were able to split something off */
2644                        if (mem_node) {
2645                                hold_mem_node->base = mem_node->base + mem_node->length;
2646
2647                                temp_word = (hold_mem_node->base) >> 16;
2648                                rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2649
2650                                return_resource(&(resources->mem_head), mem_node);
2651                        }
2652
2653                        mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2654
2655                        /* Check if we were able to split something off */
2656                        if (mem_node) {
2657                                /* First use the temporary node to store
2658                                 * information for the board */
2659                                hold_mem_node->length = mem_node->base - hold_mem_node->base;
2660
2661                                if (hold_mem_node->length) {
2662                                        hold_mem_node->next = func->mem_head;
2663                                        func->mem_head = hold_mem_node;
2664
2665                                        /* configure end address */
2666                                        temp_word = (mem_node->base - 1) >> 16;
2667                                        rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2668
2669                                        /* Return unused resources to the pool */
2670                                        return_resource(&(resources->mem_head), mem_node);
2671                                } else {
2672                                        /* it doesn't need any Mem */
2673                                        temp_word = 0x0000;
2674                                        rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2675
2676                                        return_resource(&(resources->mem_head), mem_node);
2677                                        kfree(hold_mem_node);
2678                                }
2679                        } else {
2680                                /* it used most of the range */
2681                                hold_mem_node->next = func->mem_head;
2682                                func->mem_head = hold_mem_node;
2683                        }
2684                } else if (hold_mem_node) {
2685                        /* it used the whole range */
2686                        hold_mem_node->next = func->mem_head;
2687                        func->mem_head = hold_mem_node;
2688                }
2689                /* If we have prefetchable memory space available and there
2690                 * is some left at the end, return the unused portion */
2691                if (temp_resources.p_mem_head) {
2692                        p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2693                                                                  &hold_p_mem_node, 0x100000);
2694
2695                        /* Check if we were able to split something off */
2696                        if (p_mem_node) {
2697                                hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2698
2699                                temp_word = (hold_p_mem_node->base) >> 16;
2700                                rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2701
2702                                return_resource(&(resources->p_mem_head), p_mem_node);
2703                        }
2704
2705                        p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2706
2707                        /* Check if we were able to split something off */
2708                        if (p_mem_node) {
2709                                /* First use the temporary node to store
2710                                 * information for the board */
2711                                hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2712
2713                                /* If we used any, add it to the board's list */
2714                                if (hold_p_mem_node->length) {
2715                                        hold_p_mem_node->next = func->p_mem_head;
2716                                        func->p_mem_head = hold_p_mem_node;
2717
2718                                        temp_word = (p_mem_node->base - 1) >> 16;
2719                                        rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2720
2721                                        return_resource(&(resources->p_mem_head), p_mem_node);
2722                                } else {
2723                                        /* it doesn't need any PMem */
2724                                        temp_word = 0x0000;
2725                                        rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2726
2727                                        return_resource(&(resources->p_mem_head), p_mem_node);
2728                                        kfree(hold_p_mem_node);
2729                                }
2730                        } else {
2731                                /* it used the most of the range */
2732                                hold_p_mem_node->next = func->p_mem_head;
2733                                func->p_mem_head = hold_p_mem_node;
2734                        }
2735                } else if (hold_p_mem_node) {
2736                        /* it used the whole range */
2737                        hold_p_mem_node->next = func->p_mem_head;
2738                        func->p_mem_head = hold_p_mem_node;
2739                }
2740                /* We should be configuring an IRQ and the bridge's base address
2741                 * registers if it needs them.  Although we have never seen such
2742                 * a device */
2743
2744                /* enable card */
2745                command = 0x0157;       /* = PCI_COMMAND_IO |
2746                                         *   PCI_COMMAND_MEMORY |
2747                                         *   PCI_COMMAND_MASTER |
2748                                         *   PCI_COMMAND_INVALIDATE |
2749                                         *   PCI_COMMAND_PARITY |
2750                                         *   PCI_COMMAND_SERR */
2751                rc = pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
2752
2753                /* set Bridge Control Register */
2754                command = 0x07;         /* = PCI_BRIDGE_CTL_PARITY |
2755                                         *   PCI_BRIDGE_CTL_SERR |
2756                                         *   PCI_BRIDGE_CTL_NO_ISA */
2757                rc = pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2758        } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2759                /* Standard device */
2760                rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2761
2762                if (class_code == PCI_BASE_CLASS_DISPLAY) {
2763                        /* Display (video) adapter (not supported) */
2764                        return DEVICE_TYPE_NOT_SUPPORTED;
2765                }
2766                /* Figure out IO and memory needs */
2767                for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2768                        temp_register = 0xFFFFFFFF;
2769
2770                        dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2771                        rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
2772
2773                        rc = pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp_register);
2774                        dbg("CND: base = 0x%x\n", temp_register);
2775
2776                        if (temp_register) {      /* If this register is implemented */
2777                                if ((temp_register & 0x03L) == 0x01) {
2778                                        /* Map IO */
2779
2780                                        /* set base = amount of IO space */
2781                                        base = temp_register & 0xFFFFFFFC;
2782                                        base = ~base + 1;
2783
2784                                        dbg("CND:      length = 0x%x\n", base);
2785                                        io_node = get_io_resource(&(resources->io_head), base);
2786                                        if (!io_node)
2787                                                return -ENOMEM;
2788                                        dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2789                                            io_node->base, io_node->length, io_node->next);
2790                                        dbg("func (%p) io_head (%p)\n", func, func->io_head);
2791
2792                                        /* allocate the resource to the board */
2793                                        base = io_node->base;
2794                                        io_node->next = func->io_head;
2795                                        func->io_head = io_node;
2796                                } else if ((temp_register & 0x0BL) == 0x08) {
2797                                        /* Map prefetchable memory */
2798                                        base = temp_register & 0xFFFFFFF0;
2799                                        base = ~base + 1;
2800
2801                                        dbg("CND:      length = 0x%x\n", base);
2802                                        p_mem_node = get_resource(&(resources->p_mem_head), base);
2803
2804                                        /* allocate the resource to the board */
2805                                        if (p_mem_node) {
2806                                                base = p_mem_node->base;
2807
2808                                                p_mem_node->next = func->p_mem_head;
2809                                                func->p_mem_head = p_mem_node;
2810                                        } else
2811                                                return -ENOMEM;
2812                                } else if ((temp_register & 0x0BL) == 0x00) {
2813                                        /* Map memory */
2814                                        base = temp_register & 0xFFFFFFF0;
2815                                        base = ~base + 1;
2816
2817                                        dbg("CND:      length = 0x%x\n", base);
2818                                        mem_node = get_resource(&(resources->mem_head), base);
2819
2820                                        /* allocate the resource to the board */
2821                                        if (mem_node) {
2822                                                base = mem_node->base;
2823
2824                                                mem_node->next = func->mem_head;
2825                                                func->mem_head = mem_node;
2826                                        } else
2827                                                return -ENOMEM;
2828                                } else {
2829                                        /* Reserved bits or requesting space below 1M */
2830                                        return NOT_ENOUGH_RESOURCES;
2831                                }
2832
2833                                rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2834
2835                                /* Check for 64-bit base */
2836                                if ((temp_register & 0x07L) == 0x04) {
2837                                        cloop += 4;
2838
2839                                        /* Upper 32 bits of address always zero
2840                                         * on today's systems */
2841                                        /* FIXME this is probably not true on
2842                                         * Alpha and ia64??? */
2843                                        base = 0;
2844                                        rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2845                                }
2846                        }
2847                }               /* End of base register loop */
2848                if (cpqhp_legacy_mode) {
2849                        /* Figure out which interrupt pin this function uses */
2850                        rc = pci_bus_read_config_byte(pci_bus, devfn,
2851                                PCI_INTERRUPT_PIN, &temp_byte);
2852
2853                        /* If this function needs an interrupt and we are behind
2854                         * a bridge and the pin is tied to something that's
2855                         * already mapped, set this one the same */
2856                        if (temp_byte && resources->irqs &&
2857                            (resources->irqs->valid_INT &
2858                             (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2859                                /* We have to share with something already set up */
2860                                IRQ = resources->irqs->interrupt[(temp_byte +
2861                                        resources->irqs->barber_pole - 1) & 0x03];
2862                        } else {
2863                                /* Program IRQ based on card type */
2864                                rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2865
2866                                if (class_code == PCI_BASE_CLASS_STORAGE)
2867                                        IRQ = cpqhp_disk_irq;
2868                                else
2869                                        IRQ = cpqhp_nic_irq;
2870                        }
2871
2872                        /* IRQ Line */
2873                        rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2874                }
2875
2876                if (!behind_bridge) {
2877                        rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ);
2878                        if (rc)
2879                                return 1;
2880                } else {
2881                        /* TBD - this code may also belong in the other clause
2882                         * of this If statement */
2883                        resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2884                        resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2885                }
2886
2887                /* Latency Timer */
2888                temp_byte = 0x40;
2889                rc = pci_bus_write_config_byte(pci_bus, devfn,
2890                                        PCI_LATENCY_TIMER, temp_byte);
2891
2892                /* Cache Line size */
2893                temp_byte = 0x08;
2894                rc = pci_bus_write_config_byte(pci_bus, devfn,
2895                                        PCI_CACHE_LINE_SIZE, temp_byte);
2896
2897                /* disable ROM base Address */
2898                temp_dword = 0x00L;
2899                rc = pci_bus_write_config_word(pci_bus, devfn,
2900                                        PCI_ROM_ADDRESS, temp_dword);
2901
2902                /* enable card */
2903                temp_word = 0x0157;     /* = PCI_COMMAND_IO |
2904                                         *   PCI_COMMAND_MEMORY |
2905                                         *   PCI_COMMAND_MASTER |
2906                                         *   PCI_COMMAND_INVALIDATE |
2907                                         *   PCI_COMMAND_PARITY |
2908                                         *   PCI_COMMAND_SERR */
2909                rc = pci_bus_write_config_word(pci_bus, devfn,
2910                                        PCI_COMMAND, temp_word);
2911        } else {                /* End of Not-A-Bridge else */
2912                /* It's some strange type of PCI adapter (Cardbus?) */
2913                return DEVICE_TYPE_NOT_SUPPORTED;
2914        }
2915
2916        func->configured = 1;
2917
2918        return 0;
2919free_and_out:
2920        cpqhp_destroy_resource_list(&temp_resources);
2921
2922        return_resource(&(resources->bus_head), hold_bus_node);
2923        return_resource(&(resources->io_head), hold_IO_node);
2924        return_resource(&(resources->mem_head), hold_mem_node);
2925        return_resource(&(resources->p_mem_head), hold_p_mem_node);
2926        return rc;
2927}
2928