linux/drivers/remoteproc/remoteproc_core.c
<<
>>
Prefs
   1/*
   2 * Remote Processor Framework
   3 *
   4 * Copyright (C) 2011 Texas Instruments, Inc.
   5 * Copyright (C) 2011 Google, Inc.
   6 *
   7 * Ohad Ben-Cohen <ohad@wizery.com>
   8 * Brian Swetland <swetland@google.com>
   9 * Mark Grosen <mgrosen@ti.com>
  10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
  11 * Suman Anna <s-anna@ti.com>
  12 * Robert Tivy <rtivy@ti.com>
  13 * Armando Uribe De Leon <x0095078@ti.com>
  14 *
  15 * This program is free software; you can redistribute it and/or
  16 * modify it under the terms of the GNU General Public License
  17 * version 2 as published by the Free Software Foundation.
  18 *
  19 * This program is distributed in the hope that it will be useful,
  20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  22 * GNU General Public License for more details.
  23 */
  24
  25#define pr_fmt(fmt)    "%s: " fmt, __func__
  26
  27#include <linux/kernel.h>
  28#include <linux/module.h>
  29#include <linux/device.h>
  30#include <linux/slab.h>
  31#include <linux/mutex.h>
  32#include <linux/dma-mapping.h>
  33#include <linux/firmware.h>
  34#include <linux/string.h>
  35#include <linux/debugfs.h>
  36#include <linux/devcoredump.h>
  37#include <linux/remoteproc.h>
  38#include <linux/iommu.h>
  39#include <linux/idr.h>
  40#include <linux/elf.h>
  41#include <linux/crc32.h>
  42#include <linux/virtio_ids.h>
  43#include <linux/virtio_ring.h>
  44#include <asm/byteorder.h>
  45
  46#include "remoteproc_internal.h"
  47
  48static DEFINE_MUTEX(rproc_list_mutex);
  49static LIST_HEAD(rproc_list);
  50
  51typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
  52                                struct resource_table *table, int len);
  53typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
  54                                 void *, int offset, int avail);
  55
  56/* Unique indices for remoteproc devices */
  57static DEFINE_IDA(rproc_dev_index);
  58
  59static const char * const rproc_crash_names[] = {
  60        [RPROC_MMUFAULT]        = "mmufault",
  61        [RPROC_WATCHDOG]        = "watchdog",
  62        [RPROC_FATAL_ERROR]     = "fatal error",
  63};
  64
  65/* translate rproc_crash_type to string */
  66static const char *rproc_crash_to_string(enum rproc_crash_type type)
  67{
  68        if (type < ARRAY_SIZE(rproc_crash_names))
  69                return rproc_crash_names[type];
  70        return "unknown";
  71}
  72
  73/*
  74 * This is the IOMMU fault handler we register with the IOMMU API
  75 * (when relevant; not all remote processors access memory through
  76 * an IOMMU).
  77 *
  78 * IOMMU core will invoke this handler whenever the remote processor
  79 * will try to access an unmapped device address.
  80 */
  81static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
  82                             unsigned long iova, int flags, void *token)
  83{
  84        struct rproc *rproc = token;
  85
  86        dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
  87
  88        rproc_report_crash(rproc, RPROC_MMUFAULT);
  89
  90        /*
  91         * Let the iommu core know we're not really handling this fault;
  92         * we just used it as a recovery trigger.
  93         */
  94        return -ENOSYS;
  95}
  96
  97static int rproc_enable_iommu(struct rproc *rproc)
  98{
  99        struct iommu_domain *domain;
 100        struct device *dev = rproc->dev.parent;
 101        int ret;
 102
 103        if (!rproc->has_iommu) {
 104                dev_dbg(dev, "iommu not present\n");
 105                return 0;
 106        }
 107
 108        domain = iommu_domain_alloc(dev->bus);
 109        if (!domain) {
 110                dev_err(dev, "can't alloc iommu domain\n");
 111                return -ENOMEM;
 112        }
 113
 114        iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
 115
 116        ret = iommu_attach_device(domain, dev);
 117        if (ret) {
 118                dev_err(dev, "can't attach iommu device: %d\n", ret);
 119                goto free_domain;
 120        }
 121
 122        rproc->domain = domain;
 123
 124        return 0;
 125
 126free_domain:
 127        iommu_domain_free(domain);
 128        return ret;
 129}
 130
 131static void rproc_disable_iommu(struct rproc *rproc)
 132{
 133        struct iommu_domain *domain = rproc->domain;
 134        struct device *dev = rproc->dev.parent;
 135
 136        if (!domain)
 137                return;
 138
 139        iommu_detach_device(domain, dev);
 140        iommu_domain_free(domain);
 141}
 142
 143/**
 144 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
 145 * @rproc: handle of a remote processor
 146 * @da: remoteproc device address to translate
 147 * @len: length of the memory region @da is pointing to
 148 *
 149 * Some remote processors will ask us to allocate them physically contiguous
 150 * memory regions (which we call "carveouts"), and map them to specific
 151 * device addresses (which are hardcoded in the firmware). They may also have
 152 * dedicated memory regions internal to the processors, and use them either
 153 * exclusively or alongside carveouts.
 154 *
 155 * They may then ask us to copy objects into specific device addresses (e.g.
 156 * code/data sections) or expose us certain symbols in other device address
 157 * (e.g. their trace buffer).
 158 *
 159 * This function is a helper function with which we can go over the allocated
 160 * carveouts and translate specific device addresses to kernel virtual addresses
 161 * so we can access the referenced memory. This function also allows to perform
 162 * translations on the internal remoteproc memory regions through a platform
 163 * implementation specific da_to_va ops, if present.
 164 *
 165 * The function returns a valid kernel address on success or NULL on failure.
 166 *
 167 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
 168 * but only on kernel direct mapped RAM memory. Instead, we're just using
 169 * here the output of the DMA API for the carveouts, which should be more
 170 * correct.
 171 */
 172void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
 173{
 174        struct rproc_mem_entry *carveout;
 175        void *ptr = NULL;
 176
 177        if (rproc->ops->da_to_va) {
 178                ptr = rproc->ops->da_to_va(rproc, da, len);
 179                if (ptr)
 180                        goto out;
 181        }
 182
 183        list_for_each_entry(carveout, &rproc->carveouts, node) {
 184                int offset = da - carveout->da;
 185
 186                /* try next carveout if da is too small */
 187                if (offset < 0)
 188                        continue;
 189
 190                /* try next carveout if da is too large */
 191                if (offset + len > carveout->len)
 192                        continue;
 193
 194                ptr = carveout->va + offset;
 195
 196                break;
 197        }
 198
 199out:
 200        return ptr;
 201}
 202EXPORT_SYMBOL(rproc_da_to_va);
 203
 204int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
 205{
 206        struct rproc *rproc = rvdev->rproc;
 207        struct device *dev = &rproc->dev;
 208        struct rproc_vring *rvring = &rvdev->vring[i];
 209        struct fw_rsc_vdev *rsc;
 210        dma_addr_t dma;
 211        void *va;
 212        int ret, size, notifyid;
 213
 214        /* actual size of vring (in bytes) */
 215        size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
 216
 217        /*
 218         * Allocate non-cacheable memory for the vring. In the future
 219         * this call will also configure the IOMMU for us
 220         */
 221        va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
 222        if (!va) {
 223                dev_err(dev->parent, "dma_alloc_coherent failed\n");
 224                return -EINVAL;
 225        }
 226
 227        /*
 228         * Assign an rproc-wide unique index for this vring
 229         * TODO: assign a notifyid for rvdev updates as well
 230         * TODO: support predefined notifyids (via resource table)
 231         */
 232        ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
 233        if (ret < 0) {
 234                dev_err(dev, "idr_alloc failed: %d\n", ret);
 235                dma_free_coherent(dev->parent, size, va, dma);
 236                return ret;
 237        }
 238        notifyid = ret;
 239
 240        /* Potentially bump max_notifyid */
 241        if (notifyid > rproc->max_notifyid)
 242                rproc->max_notifyid = notifyid;
 243
 244        dev_dbg(dev, "vring%d: va %p dma %pad size 0x%x idr %d\n",
 245                i, va, &dma, size, notifyid);
 246
 247        rvring->va = va;
 248        rvring->dma = dma;
 249        rvring->notifyid = notifyid;
 250
 251        /*
 252         * Let the rproc know the notifyid and da of this vring.
 253         * Not all platforms use dma_alloc_coherent to automatically
 254         * set up the iommu. In this case the device address (da) will
 255         * hold the physical address and not the device address.
 256         */
 257        rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
 258        rsc->vring[i].da = dma;
 259        rsc->vring[i].notifyid = notifyid;
 260        return 0;
 261}
 262
 263static int
 264rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
 265{
 266        struct rproc *rproc = rvdev->rproc;
 267        struct device *dev = &rproc->dev;
 268        struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
 269        struct rproc_vring *rvring = &rvdev->vring[i];
 270
 271        dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
 272                i, vring->da, vring->num, vring->align);
 273
 274        /* verify queue size and vring alignment are sane */
 275        if (!vring->num || !vring->align) {
 276                dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
 277                        vring->num, vring->align);
 278                return -EINVAL;
 279        }
 280
 281        rvring->len = vring->num;
 282        rvring->align = vring->align;
 283        rvring->rvdev = rvdev;
 284
 285        return 0;
 286}
 287
 288void rproc_free_vring(struct rproc_vring *rvring)
 289{
 290        int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
 291        struct rproc *rproc = rvring->rvdev->rproc;
 292        int idx = rvring->rvdev->vring - rvring;
 293        struct fw_rsc_vdev *rsc;
 294
 295        dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
 296        idr_remove(&rproc->notifyids, rvring->notifyid);
 297
 298        /* reset resource entry info */
 299        rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
 300        rsc->vring[idx].da = 0;
 301        rsc->vring[idx].notifyid = -1;
 302}
 303
 304static int rproc_vdev_do_probe(struct rproc_subdev *subdev)
 305{
 306        struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
 307
 308        return rproc_add_virtio_dev(rvdev, rvdev->id);
 309}
 310
 311static void rproc_vdev_do_remove(struct rproc_subdev *subdev, bool crashed)
 312{
 313        struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
 314
 315        rproc_remove_virtio_dev(rvdev);
 316}
 317
 318/**
 319 * rproc_handle_vdev() - handle a vdev fw resource
 320 * @rproc: the remote processor
 321 * @rsc: the vring resource descriptor
 322 * @avail: size of available data (for sanity checking the image)
 323 *
 324 * This resource entry requests the host to statically register a virtio
 325 * device (vdev), and setup everything needed to support it. It contains
 326 * everything needed to make it possible: the virtio device id, virtio
 327 * device features, vrings information, virtio config space, etc...
 328 *
 329 * Before registering the vdev, the vrings are allocated from non-cacheable
 330 * physically contiguous memory. Currently we only support two vrings per
 331 * remote processor (temporary limitation). We might also want to consider
 332 * doing the vring allocation only later when ->find_vqs() is invoked, and
 333 * then release them upon ->del_vqs().
 334 *
 335 * Note: @da is currently not really handled correctly: we dynamically
 336 * allocate it using the DMA API, ignoring requested hard coded addresses,
 337 * and we don't take care of any required IOMMU programming. This is all
 338 * going to be taken care of when the generic iommu-based DMA API will be
 339 * merged. Meanwhile, statically-addressed iommu-based firmware images should
 340 * use RSC_DEVMEM resource entries to map their required @da to the physical
 341 * address of their base CMA region (ouch, hacky!).
 342 *
 343 * Returns 0 on success, or an appropriate error code otherwise
 344 */
 345static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
 346                             int offset, int avail)
 347{
 348        struct device *dev = &rproc->dev;
 349        struct rproc_vdev *rvdev;
 350        int i, ret;
 351
 352        /* make sure resource isn't truncated */
 353        if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
 354                        + rsc->config_len > avail) {
 355                dev_err(dev, "vdev rsc is truncated\n");
 356                return -EINVAL;
 357        }
 358
 359        /* make sure reserved bytes are zeroes */
 360        if (rsc->reserved[0] || rsc->reserved[1]) {
 361                dev_err(dev, "vdev rsc has non zero reserved bytes\n");
 362                return -EINVAL;
 363        }
 364
 365        dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
 366                rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
 367
 368        /* we currently support only two vrings per rvdev */
 369        if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
 370                dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
 371                return -EINVAL;
 372        }
 373
 374        rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
 375        if (!rvdev)
 376                return -ENOMEM;
 377
 378        kref_init(&rvdev->refcount);
 379
 380        rvdev->id = rsc->id;
 381        rvdev->rproc = rproc;
 382
 383        /* parse the vrings */
 384        for (i = 0; i < rsc->num_of_vrings; i++) {
 385                ret = rproc_parse_vring(rvdev, rsc, i);
 386                if (ret)
 387                        goto free_rvdev;
 388        }
 389
 390        /* remember the resource offset*/
 391        rvdev->rsc_offset = offset;
 392
 393        /* allocate the vring resources */
 394        for (i = 0; i < rsc->num_of_vrings; i++) {
 395                ret = rproc_alloc_vring(rvdev, i);
 396                if (ret)
 397                        goto unwind_vring_allocations;
 398        }
 399
 400        list_add_tail(&rvdev->node, &rproc->rvdevs);
 401
 402        rproc_add_subdev(rproc, &rvdev->subdev,
 403                         rproc_vdev_do_probe, rproc_vdev_do_remove);
 404
 405        return 0;
 406
 407unwind_vring_allocations:
 408        for (i--; i >= 0; i--)
 409                rproc_free_vring(&rvdev->vring[i]);
 410free_rvdev:
 411        kfree(rvdev);
 412        return ret;
 413}
 414
 415void rproc_vdev_release(struct kref *ref)
 416{
 417        struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
 418        struct rproc_vring *rvring;
 419        struct rproc *rproc = rvdev->rproc;
 420        int id;
 421
 422        for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
 423                rvring = &rvdev->vring[id];
 424                if (!rvring->va)
 425                        continue;
 426
 427                rproc_free_vring(rvring);
 428        }
 429
 430        rproc_remove_subdev(rproc, &rvdev->subdev);
 431        list_del(&rvdev->node);
 432        kfree(rvdev);
 433}
 434
 435/**
 436 * rproc_handle_trace() - handle a shared trace buffer resource
 437 * @rproc: the remote processor
 438 * @rsc: the trace resource descriptor
 439 * @avail: size of available data (for sanity checking the image)
 440 *
 441 * In case the remote processor dumps trace logs into memory,
 442 * export it via debugfs.
 443 *
 444 * Currently, the 'da' member of @rsc should contain the device address
 445 * where the remote processor is dumping the traces. Later we could also
 446 * support dynamically allocating this address using the generic
 447 * DMA API (but currently there isn't a use case for that).
 448 *
 449 * Returns 0 on success, or an appropriate error code otherwise
 450 */
 451static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
 452                              int offset, int avail)
 453{
 454        struct rproc_mem_entry *trace;
 455        struct device *dev = &rproc->dev;
 456        void *ptr;
 457        char name[15];
 458
 459        if (sizeof(*rsc) > avail) {
 460                dev_err(dev, "trace rsc is truncated\n");
 461                return -EINVAL;
 462        }
 463
 464        /* make sure reserved bytes are zeroes */
 465        if (rsc->reserved) {
 466                dev_err(dev, "trace rsc has non zero reserved bytes\n");
 467                return -EINVAL;
 468        }
 469
 470        /* what's the kernel address of this resource ? */
 471        ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
 472        if (!ptr) {
 473                dev_err(dev, "erroneous trace resource entry\n");
 474                return -EINVAL;
 475        }
 476
 477        trace = kzalloc(sizeof(*trace), GFP_KERNEL);
 478        if (!trace)
 479                return -ENOMEM;
 480
 481        /* set the trace buffer dma properties */
 482        trace->len = rsc->len;
 483        trace->va = ptr;
 484
 485        /* make sure snprintf always null terminates, even if truncating */
 486        snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
 487
 488        /* create the debugfs entry */
 489        trace->priv = rproc_create_trace_file(name, rproc, trace);
 490        if (!trace->priv) {
 491                trace->va = NULL;
 492                kfree(trace);
 493                return -EINVAL;
 494        }
 495
 496        list_add_tail(&trace->node, &rproc->traces);
 497
 498        rproc->num_traces++;
 499
 500        dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n",
 501                name, ptr, rsc->da, rsc->len);
 502
 503        return 0;
 504}
 505
 506/**
 507 * rproc_handle_devmem() - handle devmem resource entry
 508 * @rproc: remote processor handle
 509 * @rsc: the devmem resource entry
 510 * @avail: size of available data (for sanity checking the image)
 511 *
 512 * Remote processors commonly need to access certain on-chip peripherals.
 513 *
 514 * Some of these remote processors access memory via an iommu device,
 515 * and might require us to configure their iommu before they can access
 516 * the on-chip peripherals they need.
 517 *
 518 * This resource entry is a request to map such a peripheral device.
 519 *
 520 * These devmem entries will contain the physical address of the device in
 521 * the 'pa' member. If a specific device address is expected, then 'da' will
 522 * contain it (currently this is the only use case supported). 'len' will
 523 * contain the size of the physical region we need to map.
 524 *
 525 * Currently we just "trust" those devmem entries to contain valid physical
 526 * addresses, but this is going to change: we want the implementations to
 527 * tell us ranges of physical addresses the firmware is allowed to request,
 528 * and not allow firmwares to request access to physical addresses that
 529 * are outside those ranges.
 530 */
 531static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
 532                               int offset, int avail)
 533{
 534        struct rproc_mem_entry *mapping;
 535        struct device *dev = &rproc->dev;
 536        int ret;
 537
 538        /* no point in handling this resource without a valid iommu domain */
 539        if (!rproc->domain)
 540                return -EINVAL;
 541
 542        if (sizeof(*rsc) > avail) {
 543                dev_err(dev, "devmem rsc is truncated\n");
 544                return -EINVAL;
 545        }
 546
 547        /* make sure reserved bytes are zeroes */
 548        if (rsc->reserved) {
 549                dev_err(dev, "devmem rsc has non zero reserved bytes\n");
 550                return -EINVAL;
 551        }
 552
 553        mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
 554        if (!mapping)
 555                return -ENOMEM;
 556
 557        ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
 558        if (ret) {
 559                dev_err(dev, "failed to map devmem: %d\n", ret);
 560                goto out;
 561        }
 562
 563        /*
 564         * We'll need this info later when we'll want to unmap everything
 565         * (e.g. on shutdown).
 566         *
 567         * We can't trust the remote processor not to change the resource
 568         * table, so we must maintain this info independently.
 569         */
 570        mapping->da = rsc->da;
 571        mapping->len = rsc->len;
 572        list_add_tail(&mapping->node, &rproc->mappings);
 573
 574        dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
 575                rsc->pa, rsc->da, rsc->len);
 576
 577        return 0;
 578
 579out:
 580        kfree(mapping);
 581        return ret;
 582}
 583
 584/**
 585 * rproc_handle_carveout() - handle phys contig memory allocation requests
 586 * @rproc: rproc handle
 587 * @rsc: the resource entry
 588 * @avail: size of available data (for image validation)
 589 *
 590 * This function will handle firmware requests for allocation of physically
 591 * contiguous memory regions.
 592 *
 593 * These request entries should come first in the firmware's resource table,
 594 * as other firmware entries might request placing other data objects inside
 595 * these memory regions (e.g. data/code segments, trace resource entries, ...).
 596 *
 597 * Allocating memory this way helps utilizing the reserved physical memory
 598 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
 599 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
 600 * pressure is important; it may have a substantial impact on performance.
 601 */
 602static int rproc_handle_carveout(struct rproc *rproc,
 603                                 struct fw_rsc_carveout *rsc,
 604                                 int offset, int avail)
 605{
 606        struct rproc_mem_entry *carveout, *mapping;
 607        struct device *dev = &rproc->dev;
 608        dma_addr_t dma;
 609        void *va;
 610        int ret;
 611
 612        if (sizeof(*rsc) > avail) {
 613                dev_err(dev, "carveout rsc is truncated\n");
 614                return -EINVAL;
 615        }
 616
 617        /* make sure reserved bytes are zeroes */
 618        if (rsc->reserved) {
 619                dev_err(dev, "carveout rsc has non zero reserved bytes\n");
 620                return -EINVAL;
 621        }
 622
 623        dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
 624                rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
 625
 626        carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
 627        if (!carveout)
 628                return -ENOMEM;
 629
 630        va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
 631        if (!va) {
 632                dev_err(dev->parent,
 633                        "failed to allocate dma memory: len 0x%x\n", rsc->len);
 634                ret = -ENOMEM;
 635                goto free_carv;
 636        }
 637
 638        dev_dbg(dev, "carveout va %p, dma %pad, len 0x%x\n",
 639                va, &dma, rsc->len);
 640
 641        /*
 642         * Ok, this is non-standard.
 643         *
 644         * Sometimes we can't rely on the generic iommu-based DMA API
 645         * to dynamically allocate the device address and then set the IOMMU
 646         * tables accordingly, because some remote processors might
 647         * _require_ us to use hard coded device addresses that their
 648         * firmware was compiled with.
 649         *
 650         * In this case, we must use the IOMMU API directly and map
 651         * the memory to the device address as expected by the remote
 652         * processor.
 653         *
 654         * Obviously such remote processor devices should not be configured
 655         * to use the iommu-based DMA API: we expect 'dma' to contain the
 656         * physical address in this case.
 657         */
 658        if (rproc->domain) {
 659                mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
 660                if (!mapping) {
 661                        ret = -ENOMEM;
 662                        goto dma_free;
 663                }
 664
 665                ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
 666                                rsc->flags);
 667                if (ret) {
 668                        dev_err(dev, "iommu_map failed: %d\n", ret);
 669                        goto free_mapping;
 670                }
 671
 672                /*
 673                 * We'll need this info later when we'll want to unmap
 674                 * everything (e.g. on shutdown).
 675                 *
 676                 * We can't trust the remote processor not to change the
 677                 * resource table, so we must maintain this info independently.
 678                 */
 679                mapping->da = rsc->da;
 680                mapping->len = rsc->len;
 681                list_add_tail(&mapping->node, &rproc->mappings);
 682
 683                dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
 684                        rsc->da, &dma);
 685        }
 686
 687        /*
 688         * Some remote processors might need to know the pa
 689         * even though they are behind an IOMMU. E.g., OMAP4's
 690         * remote M3 processor needs this so it can control
 691         * on-chip hardware accelerators that are not behind
 692         * the IOMMU, and therefor must know the pa.
 693         *
 694         * Generally we don't want to expose physical addresses
 695         * if we don't have to (remote processors are generally
 696         * _not_ trusted), so we might want to do this only for
 697         * remote processor that _must_ have this (e.g. OMAP4's
 698         * dual M3 subsystem).
 699         *
 700         * Non-IOMMU processors might also want to have this info.
 701         * In this case, the device address and the physical address
 702         * are the same.
 703         */
 704        rsc->pa = dma;
 705
 706        carveout->va = va;
 707        carveout->len = rsc->len;
 708        carveout->dma = dma;
 709        carveout->da = rsc->da;
 710
 711        list_add_tail(&carveout->node, &rproc->carveouts);
 712
 713        return 0;
 714
 715free_mapping:
 716        kfree(mapping);
 717dma_free:
 718        dma_free_coherent(dev->parent, rsc->len, va, dma);
 719free_carv:
 720        kfree(carveout);
 721        return ret;
 722}
 723
 724/*
 725 * A lookup table for resource handlers. The indices are defined in
 726 * enum fw_resource_type.
 727 */
 728static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
 729        [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
 730        [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
 731        [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
 732        [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
 733};
 734
 735/* handle firmware resource entries before booting the remote processor */
 736static int rproc_handle_resources(struct rproc *rproc,
 737                                  rproc_handle_resource_t handlers[RSC_LAST])
 738{
 739        struct device *dev = &rproc->dev;
 740        rproc_handle_resource_t handler;
 741        int ret = 0, i;
 742
 743        if (!rproc->table_ptr)
 744                return 0;
 745
 746        for (i = 0; i < rproc->table_ptr->num; i++) {
 747                int offset = rproc->table_ptr->offset[i];
 748                struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
 749                int avail = rproc->table_sz - offset - sizeof(*hdr);
 750                void *rsc = (void *)hdr + sizeof(*hdr);
 751
 752                /* make sure table isn't truncated */
 753                if (avail < 0) {
 754                        dev_err(dev, "rsc table is truncated\n");
 755                        return -EINVAL;
 756                }
 757
 758                dev_dbg(dev, "rsc: type %d\n", hdr->type);
 759
 760                if (hdr->type >= RSC_LAST) {
 761                        dev_warn(dev, "unsupported resource %d\n", hdr->type);
 762                        continue;
 763                }
 764
 765                handler = handlers[hdr->type];
 766                if (!handler)
 767                        continue;
 768
 769                ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
 770                if (ret)
 771                        break;
 772        }
 773
 774        return ret;
 775}
 776
 777static int rproc_probe_subdevices(struct rproc *rproc)
 778{
 779        struct rproc_subdev *subdev;
 780        int ret;
 781
 782        list_for_each_entry(subdev, &rproc->subdevs, node) {
 783                ret = subdev->probe(subdev);
 784                if (ret)
 785                        goto unroll_registration;
 786        }
 787
 788        return 0;
 789
 790unroll_registration:
 791        list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node)
 792                subdev->remove(subdev, true);
 793
 794        return ret;
 795}
 796
 797static void rproc_remove_subdevices(struct rproc *rproc, bool crashed)
 798{
 799        struct rproc_subdev *subdev;
 800
 801        list_for_each_entry_reverse(subdev, &rproc->subdevs, node)
 802                subdev->remove(subdev, crashed);
 803}
 804
 805/**
 806 * rproc_coredump_cleanup() - clean up dump_segments list
 807 * @rproc: the remote processor handle
 808 */
 809static void rproc_coredump_cleanup(struct rproc *rproc)
 810{
 811        struct rproc_dump_segment *entry, *tmp;
 812
 813        list_for_each_entry_safe(entry, tmp, &rproc->dump_segments, node) {
 814                list_del(&entry->node);
 815                kfree(entry);
 816        }
 817}
 818
 819/**
 820 * rproc_resource_cleanup() - clean up and free all acquired resources
 821 * @rproc: rproc handle
 822 *
 823 * This function will free all resources acquired for @rproc, and it
 824 * is called whenever @rproc either shuts down or fails to boot.
 825 */
 826static void rproc_resource_cleanup(struct rproc *rproc)
 827{
 828        struct rproc_mem_entry *entry, *tmp;
 829        struct rproc_vdev *rvdev, *rvtmp;
 830        struct device *dev = &rproc->dev;
 831
 832        /* clean up debugfs trace entries */
 833        list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
 834                rproc_remove_trace_file(entry->priv);
 835                rproc->num_traces--;
 836                list_del(&entry->node);
 837                kfree(entry);
 838        }
 839
 840        /* clean up iommu mapping entries */
 841        list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
 842                size_t unmapped;
 843
 844                unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
 845                if (unmapped != entry->len) {
 846                        /* nothing much to do besides complaining */
 847                        dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
 848                                unmapped);
 849                }
 850
 851                list_del(&entry->node);
 852                kfree(entry);
 853        }
 854
 855        /* clean up carveout allocations */
 856        list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
 857                dma_free_coherent(dev->parent, entry->len, entry->va,
 858                                  entry->dma);
 859                list_del(&entry->node);
 860                kfree(entry);
 861        }
 862
 863        /* clean up remote vdev entries */
 864        list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
 865                kref_put(&rvdev->refcount, rproc_vdev_release);
 866
 867        rproc_coredump_cleanup(rproc);
 868}
 869
 870static int rproc_start(struct rproc *rproc, const struct firmware *fw)
 871{
 872        struct resource_table *loaded_table;
 873        struct device *dev = &rproc->dev;
 874        int ret;
 875
 876        /* load the ELF segments to memory */
 877        ret = rproc_load_segments(rproc, fw);
 878        if (ret) {
 879                dev_err(dev, "Failed to load program segments: %d\n", ret);
 880                return ret;
 881        }
 882
 883        /*
 884         * The starting device has been given the rproc->cached_table as the
 885         * resource table. The address of the vring along with the other
 886         * allocated resources (carveouts etc) is stored in cached_table.
 887         * In order to pass this information to the remote device we must copy
 888         * this information to device memory. We also update the table_ptr so
 889         * that any subsequent changes will be applied to the loaded version.
 890         */
 891        loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
 892        if (loaded_table) {
 893                memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
 894                rproc->table_ptr = loaded_table;
 895        }
 896
 897        /* power up the remote processor */
 898        ret = rproc->ops->start(rproc);
 899        if (ret) {
 900                dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
 901                return ret;
 902        }
 903
 904        /* probe any subdevices for the remote processor */
 905        ret = rproc_probe_subdevices(rproc);
 906        if (ret) {
 907                dev_err(dev, "failed to probe subdevices for %s: %d\n",
 908                        rproc->name, ret);
 909                rproc->ops->stop(rproc);
 910                return ret;
 911        }
 912
 913        rproc->state = RPROC_RUNNING;
 914
 915        dev_info(dev, "remote processor %s is now up\n", rproc->name);
 916
 917        return 0;
 918}
 919
 920/*
 921 * take a firmware and boot a remote processor with it.
 922 */
 923static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
 924{
 925        struct device *dev = &rproc->dev;
 926        const char *name = rproc->firmware;
 927        int ret;
 928
 929        ret = rproc_fw_sanity_check(rproc, fw);
 930        if (ret)
 931                return ret;
 932
 933        dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
 934
 935        /*
 936         * if enabling an IOMMU isn't relevant for this rproc, this is
 937         * just a nop
 938         */
 939        ret = rproc_enable_iommu(rproc);
 940        if (ret) {
 941                dev_err(dev, "can't enable iommu: %d\n", ret);
 942                return ret;
 943        }
 944
 945        rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
 946
 947        /* Load resource table, core dump segment list etc from the firmware */
 948        ret = rproc_parse_fw(rproc, fw);
 949        if (ret)
 950                goto disable_iommu;
 951
 952        /* reset max_notifyid */
 953        rproc->max_notifyid = -1;
 954
 955        /* handle fw resources which are required to boot rproc */
 956        ret = rproc_handle_resources(rproc, rproc_loading_handlers);
 957        if (ret) {
 958                dev_err(dev, "Failed to process resources: %d\n", ret);
 959                goto clean_up_resources;
 960        }
 961
 962        ret = rproc_start(rproc, fw);
 963        if (ret)
 964                goto clean_up_resources;
 965
 966        return 0;
 967
 968clean_up_resources:
 969        rproc_resource_cleanup(rproc);
 970        kfree(rproc->cached_table);
 971        rproc->cached_table = NULL;
 972        rproc->table_ptr = NULL;
 973disable_iommu:
 974        rproc_disable_iommu(rproc);
 975        return ret;
 976}
 977
 978/*
 979 * take a firmware and boot it up.
 980 *
 981 * Note: this function is called asynchronously upon registration of the
 982 * remote processor (so we must wait until it completes before we try
 983 * to unregister the device. one other option is just to use kref here,
 984 * that might be cleaner).
 985 */
 986static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
 987{
 988        struct rproc *rproc = context;
 989
 990        rproc_boot(rproc);
 991
 992        release_firmware(fw);
 993}
 994
 995static int rproc_trigger_auto_boot(struct rproc *rproc)
 996{
 997        int ret;
 998
 999        /*
1000         * We're initiating an asynchronous firmware loading, so we can
1001         * be built-in kernel code, without hanging the boot process.
1002         */
1003        ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1004                                      rproc->firmware, &rproc->dev, GFP_KERNEL,
1005                                      rproc, rproc_auto_boot_callback);
1006        if (ret < 0)
1007                dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1008
1009        return ret;
1010}
1011
1012static int rproc_stop(struct rproc *rproc, bool crashed)
1013{
1014        struct device *dev = &rproc->dev;
1015        int ret;
1016
1017        /* remove any subdevices for the remote processor */
1018        rproc_remove_subdevices(rproc, crashed);
1019
1020        /* the installed resource table is no longer accessible */
1021        rproc->table_ptr = rproc->cached_table;
1022
1023        /* power off the remote processor */
1024        ret = rproc->ops->stop(rproc);
1025        if (ret) {
1026                dev_err(dev, "can't stop rproc: %d\n", ret);
1027                return ret;
1028        }
1029
1030        rproc->state = RPROC_OFFLINE;
1031
1032        dev_info(dev, "stopped remote processor %s\n", rproc->name);
1033
1034        return 0;
1035}
1036
1037/**
1038 * rproc_coredump_add_segment() - add segment of device memory to coredump
1039 * @rproc:      handle of a remote processor
1040 * @da:         device address
1041 * @size:       size of segment
1042 *
1043 * Add device memory to the list of segments to be included in a coredump for
1044 * the remoteproc.
1045 *
1046 * Return: 0 on success, negative errno on error.
1047 */
1048int rproc_coredump_add_segment(struct rproc *rproc, dma_addr_t da, size_t size)
1049{
1050        struct rproc_dump_segment *segment;
1051
1052        segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1053        if (!segment)
1054                return -ENOMEM;
1055
1056        segment->da = da;
1057        segment->size = size;
1058
1059        list_add_tail(&segment->node, &rproc->dump_segments);
1060
1061        return 0;
1062}
1063EXPORT_SYMBOL(rproc_coredump_add_segment);
1064
1065/**
1066 * rproc_coredump() - perform coredump
1067 * @rproc:      rproc handle
1068 *
1069 * This function will generate an ELF header for the registered segments
1070 * and create a devcoredump device associated with rproc.
1071 */
1072static void rproc_coredump(struct rproc *rproc)
1073{
1074        struct rproc_dump_segment *segment;
1075        struct elf32_phdr *phdr;
1076        struct elf32_hdr *ehdr;
1077        size_t data_size;
1078        size_t offset;
1079        void *data;
1080        void *ptr;
1081        int phnum = 0;
1082
1083        if (list_empty(&rproc->dump_segments))
1084                return;
1085
1086        data_size = sizeof(*ehdr);
1087        list_for_each_entry(segment, &rproc->dump_segments, node) {
1088                data_size += sizeof(*phdr) + segment->size;
1089
1090                phnum++;
1091        }
1092
1093        data = vmalloc(data_size);
1094        if (!data)
1095                return;
1096
1097        ehdr = data;
1098
1099        memset(ehdr, 0, sizeof(*ehdr));
1100        memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1101        ehdr->e_ident[EI_CLASS] = ELFCLASS32;
1102        ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1103        ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1104        ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE;
1105        ehdr->e_type = ET_CORE;
1106        ehdr->e_machine = EM_NONE;
1107        ehdr->e_version = EV_CURRENT;
1108        ehdr->e_entry = rproc->bootaddr;
1109        ehdr->e_phoff = sizeof(*ehdr);
1110        ehdr->e_ehsize = sizeof(*ehdr);
1111        ehdr->e_phentsize = sizeof(*phdr);
1112        ehdr->e_phnum = phnum;
1113
1114        phdr = data + ehdr->e_phoff;
1115        offset = ehdr->e_phoff + sizeof(*phdr) * ehdr->e_phnum;
1116        list_for_each_entry(segment, &rproc->dump_segments, node) {
1117                memset(phdr, 0, sizeof(*phdr));
1118                phdr->p_type = PT_LOAD;
1119                phdr->p_offset = offset;
1120                phdr->p_vaddr = segment->da;
1121                phdr->p_paddr = segment->da;
1122                phdr->p_filesz = segment->size;
1123                phdr->p_memsz = segment->size;
1124                phdr->p_flags = PF_R | PF_W | PF_X;
1125                phdr->p_align = 0;
1126
1127                ptr = rproc_da_to_va(rproc, segment->da, segment->size);
1128                if (!ptr) {
1129                        dev_err(&rproc->dev,
1130                                "invalid coredump segment (%pad, %zu)\n",
1131                                &segment->da, segment->size);
1132                        memset(data + offset, 0xff, segment->size);
1133                } else {
1134                        memcpy(data + offset, ptr, segment->size);
1135                }
1136
1137                offset += phdr->p_filesz;
1138                phdr++;
1139        }
1140
1141        dev_coredumpv(&rproc->dev, data, data_size, GFP_KERNEL);
1142}
1143
1144/**
1145 * rproc_trigger_recovery() - recover a remoteproc
1146 * @rproc: the remote processor
1147 *
1148 * The recovery is done by resetting all the virtio devices, that way all the
1149 * rpmsg drivers will be reseted along with the remote processor making the
1150 * remoteproc functional again.
1151 *
1152 * This function can sleep, so it cannot be called from atomic context.
1153 */
1154int rproc_trigger_recovery(struct rproc *rproc)
1155{
1156        const struct firmware *firmware_p;
1157        struct device *dev = &rproc->dev;
1158        int ret;
1159
1160        dev_err(dev, "recovering %s\n", rproc->name);
1161
1162        ret = mutex_lock_interruptible(&rproc->lock);
1163        if (ret)
1164                return ret;
1165
1166        ret = rproc_stop(rproc, true);
1167        if (ret)
1168                goto unlock_mutex;
1169
1170        /* generate coredump */
1171        rproc_coredump(rproc);
1172
1173        /* load firmware */
1174        ret = request_firmware(&firmware_p, rproc->firmware, dev);
1175        if (ret < 0) {
1176                dev_err(dev, "request_firmware failed: %d\n", ret);
1177                goto unlock_mutex;
1178        }
1179
1180        /* boot the remote processor up again */
1181        ret = rproc_start(rproc, firmware_p);
1182
1183        release_firmware(firmware_p);
1184
1185unlock_mutex:
1186        mutex_unlock(&rproc->lock);
1187        return ret;
1188}
1189
1190/**
1191 * rproc_crash_handler_work() - handle a crash
1192 *
1193 * This function needs to handle everything related to a crash, like cpu
1194 * registers and stack dump, information to help to debug the fatal error, etc.
1195 */
1196static void rproc_crash_handler_work(struct work_struct *work)
1197{
1198        struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1199        struct device *dev = &rproc->dev;
1200
1201        dev_dbg(dev, "enter %s\n", __func__);
1202
1203        mutex_lock(&rproc->lock);
1204
1205        if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1206                /* handle only the first crash detected */
1207                mutex_unlock(&rproc->lock);
1208                return;
1209        }
1210
1211        rproc->state = RPROC_CRASHED;
1212        dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1213                rproc->name);
1214
1215        mutex_unlock(&rproc->lock);
1216
1217        if (!rproc->recovery_disabled)
1218                rproc_trigger_recovery(rproc);
1219}
1220
1221/**
1222 * rproc_boot() - boot a remote processor
1223 * @rproc: handle of a remote processor
1224 *
1225 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1226 *
1227 * If the remote processor is already powered on, this function immediately
1228 * returns (successfully).
1229 *
1230 * Returns 0 on success, and an appropriate error value otherwise.
1231 */
1232int rproc_boot(struct rproc *rproc)
1233{
1234        const struct firmware *firmware_p;
1235        struct device *dev;
1236        int ret;
1237
1238        if (!rproc) {
1239                pr_err("invalid rproc handle\n");
1240                return -EINVAL;
1241        }
1242
1243        dev = &rproc->dev;
1244
1245        ret = mutex_lock_interruptible(&rproc->lock);
1246        if (ret) {
1247                dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1248                return ret;
1249        }
1250
1251        if (rproc->state == RPROC_DELETED) {
1252                ret = -ENODEV;
1253                dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1254                goto unlock_mutex;
1255        }
1256
1257        /* skip the boot process if rproc is already powered up */
1258        if (atomic_inc_return(&rproc->power) > 1) {
1259                ret = 0;
1260                goto unlock_mutex;
1261        }
1262
1263        dev_info(dev, "powering up %s\n", rproc->name);
1264
1265        /* load firmware */
1266        ret = request_firmware(&firmware_p, rproc->firmware, dev);
1267        if (ret < 0) {
1268                dev_err(dev, "request_firmware failed: %d\n", ret);
1269                goto downref_rproc;
1270        }
1271
1272        ret = rproc_fw_boot(rproc, firmware_p);
1273
1274        release_firmware(firmware_p);
1275
1276downref_rproc:
1277        if (ret)
1278                atomic_dec(&rproc->power);
1279unlock_mutex:
1280        mutex_unlock(&rproc->lock);
1281        return ret;
1282}
1283EXPORT_SYMBOL(rproc_boot);
1284
1285/**
1286 * rproc_shutdown() - power off the remote processor
1287 * @rproc: the remote processor
1288 *
1289 * Power off a remote processor (previously booted with rproc_boot()).
1290 *
1291 * In case @rproc is still being used by an additional user(s), then
1292 * this function will just decrement the power refcount and exit,
1293 * without really powering off the device.
1294 *
1295 * Every call to rproc_boot() must (eventually) be accompanied by a call
1296 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1297 *
1298 * Notes:
1299 * - we're not decrementing the rproc's refcount, only the power refcount.
1300 *   which means that the @rproc handle stays valid even after rproc_shutdown()
1301 *   returns, and users can still use it with a subsequent rproc_boot(), if
1302 *   needed.
1303 */
1304void rproc_shutdown(struct rproc *rproc)
1305{
1306        struct device *dev = &rproc->dev;
1307        int ret;
1308
1309        ret = mutex_lock_interruptible(&rproc->lock);
1310        if (ret) {
1311                dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1312                return;
1313        }
1314
1315        /* if the remote proc is still needed, bail out */
1316        if (!atomic_dec_and_test(&rproc->power))
1317                goto out;
1318
1319        ret = rproc_stop(rproc, false);
1320        if (ret) {
1321                atomic_inc(&rproc->power);
1322                goto out;
1323        }
1324
1325        /* clean up all acquired resources */
1326        rproc_resource_cleanup(rproc);
1327
1328        rproc_disable_iommu(rproc);
1329
1330        /* Free the copy of the resource table */
1331        kfree(rproc->cached_table);
1332        rproc->cached_table = NULL;
1333        rproc->table_ptr = NULL;
1334out:
1335        mutex_unlock(&rproc->lock);
1336}
1337EXPORT_SYMBOL(rproc_shutdown);
1338
1339/**
1340 * rproc_get_by_phandle() - find a remote processor by phandle
1341 * @phandle: phandle to the rproc
1342 *
1343 * Finds an rproc handle using the remote processor's phandle, and then
1344 * return a handle to the rproc.
1345 *
1346 * This function increments the remote processor's refcount, so always
1347 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1348 *
1349 * Returns the rproc handle on success, and NULL on failure.
1350 */
1351#ifdef CONFIG_OF
1352struct rproc *rproc_get_by_phandle(phandle phandle)
1353{
1354        struct rproc *rproc = NULL, *r;
1355        struct device_node *np;
1356
1357        np = of_find_node_by_phandle(phandle);
1358        if (!np)
1359                return NULL;
1360
1361        mutex_lock(&rproc_list_mutex);
1362        list_for_each_entry(r, &rproc_list, node) {
1363                if (r->dev.parent && r->dev.parent->of_node == np) {
1364                        /* prevent underlying implementation from being removed */
1365                        if (!try_module_get(r->dev.parent->driver->owner)) {
1366                                dev_err(&r->dev, "can't get owner\n");
1367                                break;
1368                        }
1369
1370                        rproc = r;
1371                        get_device(&rproc->dev);
1372                        break;
1373                }
1374        }
1375        mutex_unlock(&rproc_list_mutex);
1376
1377        of_node_put(np);
1378
1379        return rproc;
1380}
1381#else
1382struct rproc *rproc_get_by_phandle(phandle phandle)
1383{
1384        return NULL;
1385}
1386#endif
1387EXPORT_SYMBOL(rproc_get_by_phandle);
1388
1389/**
1390 * rproc_add() - register a remote processor
1391 * @rproc: the remote processor handle to register
1392 *
1393 * Registers @rproc with the remoteproc framework, after it has been
1394 * allocated with rproc_alloc().
1395 *
1396 * This is called by the platform-specific rproc implementation, whenever
1397 * a new remote processor device is probed.
1398 *
1399 * Returns 0 on success and an appropriate error code otherwise.
1400 *
1401 * Note: this function initiates an asynchronous firmware loading
1402 * context, which will look for virtio devices supported by the rproc's
1403 * firmware.
1404 *
1405 * If found, those virtio devices will be created and added, so as a result
1406 * of registering this remote processor, additional virtio drivers might be
1407 * probed.
1408 */
1409int rproc_add(struct rproc *rproc)
1410{
1411        struct device *dev = &rproc->dev;
1412        int ret;
1413
1414        ret = device_add(dev);
1415        if (ret < 0)
1416                return ret;
1417
1418        dev_info(dev, "%s is available\n", rproc->name);
1419
1420        /* create debugfs entries */
1421        rproc_create_debug_dir(rproc);
1422
1423        /* if rproc is marked always-on, request it to boot */
1424        if (rproc->auto_boot) {
1425                ret = rproc_trigger_auto_boot(rproc);
1426                if (ret < 0)
1427                        return ret;
1428        }
1429
1430        /* expose to rproc_get_by_phandle users */
1431        mutex_lock(&rproc_list_mutex);
1432        list_add(&rproc->node, &rproc_list);
1433        mutex_unlock(&rproc_list_mutex);
1434
1435        return 0;
1436}
1437EXPORT_SYMBOL(rproc_add);
1438
1439/**
1440 * rproc_type_release() - release a remote processor instance
1441 * @dev: the rproc's device
1442 *
1443 * This function should _never_ be called directly.
1444 *
1445 * It will be called by the driver core when no one holds a valid pointer
1446 * to @dev anymore.
1447 */
1448static void rproc_type_release(struct device *dev)
1449{
1450        struct rproc *rproc = container_of(dev, struct rproc, dev);
1451
1452        dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1453
1454        idr_destroy(&rproc->notifyids);
1455
1456        if (rproc->index >= 0)
1457                ida_simple_remove(&rproc_dev_index, rproc->index);
1458
1459        kfree(rproc->firmware);
1460        kfree(rproc->ops);
1461        kfree(rproc);
1462}
1463
1464static const struct device_type rproc_type = {
1465        .name           = "remoteproc",
1466        .release        = rproc_type_release,
1467};
1468
1469/**
1470 * rproc_alloc() - allocate a remote processor handle
1471 * @dev: the underlying device
1472 * @name: name of this remote processor
1473 * @ops: platform-specific handlers (mainly start/stop)
1474 * @firmware: name of firmware file to load, can be NULL
1475 * @len: length of private data needed by the rproc driver (in bytes)
1476 *
1477 * Allocates a new remote processor handle, but does not register
1478 * it yet. if @firmware is NULL, a default name is used.
1479 *
1480 * This function should be used by rproc implementations during initialization
1481 * of the remote processor.
1482 *
1483 * After creating an rproc handle using this function, and when ready,
1484 * implementations should then call rproc_add() to complete
1485 * the registration of the remote processor.
1486 *
1487 * On success the new rproc is returned, and on failure, NULL.
1488 *
1489 * Note: _never_ directly deallocate @rproc, even if it was not registered
1490 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
1491 */
1492struct rproc *rproc_alloc(struct device *dev, const char *name,
1493                          const struct rproc_ops *ops,
1494                          const char *firmware, int len)
1495{
1496        struct rproc *rproc;
1497        char *p, *template = "rproc-%s-fw";
1498        int name_len;
1499
1500        if (!dev || !name || !ops)
1501                return NULL;
1502
1503        if (!firmware) {
1504                /*
1505                 * If the caller didn't pass in a firmware name then
1506                 * construct a default name.
1507                 */
1508                name_len = strlen(name) + strlen(template) - 2 + 1;
1509                p = kmalloc(name_len, GFP_KERNEL);
1510                if (!p)
1511                        return NULL;
1512                snprintf(p, name_len, template, name);
1513        } else {
1514                p = kstrdup(firmware, GFP_KERNEL);
1515                if (!p)
1516                        return NULL;
1517        }
1518
1519        rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
1520        if (!rproc) {
1521                kfree(p);
1522                return NULL;
1523        }
1524
1525        rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
1526        if (!rproc->ops) {
1527                kfree(p);
1528                kfree(rproc);
1529                return NULL;
1530        }
1531
1532        rproc->firmware = p;
1533        rproc->name = name;
1534        rproc->priv = &rproc[1];
1535        rproc->auto_boot = true;
1536
1537        device_initialize(&rproc->dev);
1538        rproc->dev.parent = dev;
1539        rproc->dev.type = &rproc_type;
1540        rproc->dev.class = &rproc_class;
1541        rproc->dev.driver_data = rproc;
1542
1543        /* Assign a unique device index and name */
1544        rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
1545        if (rproc->index < 0) {
1546                dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
1547                put_device(&rproc->dev);
1548                return NULL;
1549        }
1550
1551        dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
1552
1553        atomic_set(&rproc->power, 0);
1554
1555        /* Default to ELF loader if no load function is specified */
1556        if (!rproc->ops->load) {
1557                rproc->ops->load = rproc_elf_load_segments;
1558                rproc->ops->parse_fw = rproc_elf_load_rsc_table;
1559                rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
1560                rproc->ops->sanity_check = rproc_elf_sanity_check;
1561                rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
1562        }
1563
1564        mutex_init(&rproc->lock);
1565
1566        idr_init(&rproc->notifyids);
1567
1568        INIT_LIST_HEAD(&rproc->carveouts);
1569        INIT_LIST_HEAD(&rproc->mappings);
1570        INIT_LIST_HEAD(&rproc->traces);
1571        INIT_LIST_HEAD(&rproc->rvdevs);
1572        INIT_LIST_HEAD(&rproc->subdevs);
1573        INIT_LIST_HEAD(&rproc->dump_segments);
1574
1575        INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
1576
1577        rproc->state = RPROC_OFFLINE;
1578
1579        return rproc;
1580}
1581EXPORT_SYMBOL(rproc_alloc);
1582
1583/**
1584 * rproc_free() - unroll rproc_alloc()
1585 * @rproc: the remote processor handle
1586 *
1587 * This function decrements the rproc dev refcount.
1588 *
1589 * If no one holds any reference to rproc anymore, then its refcount would
1590 * now drop to zero, and it would be freed.
1591 */
1592void rproc_free(struct rproc *rproc)
1593{
1594        put_device(&rproc->dev);
1595}
1596EXPORT_SYMBOL(rproc_free);
1597
1598/**
1599 * rproc_put() - release rproc reference
1600 * @rproc: the remote processor handle
1601 *
1602 * This function decrements the rproc dev refcount.
1603 *
1604 * If no one holds any reference to rproc anymore, then its refcount would
1605 * now drop to zero, and it would be freed.
1606 */
1607void rproc_put(struct rproc *rproc)
1608{
1609        module_put(rproc->dev.parent->driver->owner);
1610        put_device(&rproc->dev);
1611}
1612EXPORT_SYMBOL(rproc_put);
1613
1614/**
1615 * rproc_del() - unregister a remote processor
1616 * @rproc: rproc handle to unregister
1617 *
1618 * This function should be called when the platform specific rproc
1619 * implementation decides to remove the rproc device. it should
1620 * _only_ be called if a previous invocation of rproc_add()
1621 * has completed successfully.
1622 *
1623 * After rproc_del() returns, @rproc isn't freed yet, because
1624 * of the outstanding reference created by rproc_alloc. To decrement that
1625 * one last refcount, one still needs to call rproc_free().
1626 *
1627 * Returns 0 on success and -EINVAL if @rproc isn't valid.
1628 */
1629int rproc_del(struct rproc *rproc)
1630{
1631        if (!rproc)
1632                return -EINVAL;
1633
1634        /* if rproc is marked always-on, rproc_add() booted it */
1635        /* TODO: make sure this works with rproc->power > 1 */
1636        if (rproc->auto_boot)
1637                rproc_shutdown(rproc);
1638
1639        mutex_lock(&rproc->lock);
1640        rproc->state = RPROC_DELETED;
1641        mutex_unlock(&rproc->lock);
1642
1643        rproc_delete_debug_dir(rproc);
1644
1645        /* the rproc is downref'ed as soon as it's removed from the klist */
1646        mutex_lock(&rproc_list_mutex);
1647        list_del(&rproc->node);
1648        mutex_unlock(&rproc_list_mutex);
1649
1650        device_del(&rproc->dev);
1651
1652        return 0;
1653}
1654EXPORT_SYMBOL(rproc_del);
1655
1656/**
1657 * rproc_add_subdev() - add a subdevice to a remoteproc
1658 * @rproc: rproc handle to add the subdevice to
1659 * @subdev: subdev handle to register
1660 * @probe: function to call when the rproc boots
1661 * @remove: function to call when the rproc shuts down
1662 */
1663void rproc_add_subdev(struct rproc *rproc,
1664                      struct rproc_subdev *subdev,
1665                      int (*probe)(struct rproc_subdev *subdev),
1666                      void (*remove)(struct rproc_subdev *subdev, bool crashed))
1667{
1668        subdev->probe = probe;
1669        subdev->remove = remove;
1670
1671        list_add_tail(&subdev->node, &rproc->subdevs);
1672}
1673EXPORT_SYMBOL(rproc_add_subdev);
1674
1675/**
1676 * rproc_remove_subdev() - remove a subdevice from a remoteproc
1677 * @rproc: rproc handle to remove the subdevice from
1678 * @subdev: subdev handle, previously registered with rproc_add_subdev()
1679 */
1680void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
1681{
1682        list_del(&subdev->node);
1683}
1684EXPORT_SYMBOL(rproc_remove_subdev);
1685
1686/**
1687 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
1688 * @dev:        child device to find ancestor of
1689 *
1690 * Returns the ancestor rproc instance, or NULL if not found.
1691 */
1692struct rproc *rproc_get_by_child(struct device *dev)
1693{
1694        for (dev = dev->parent; dev; dev = dev->parent) {
1695                if (dev->type == &rproc_type)
1696                        return dev->driver_data;
1697        }
1698
1699        return NULL;
1700}
1701EXPORT_SYMBOL(rproc_get_by_child);
1702
1703/**
1704 * rproc_report_crash() - rproc crash reporter function
1705 * @rproc: remote processor
1706 * @type: crash type
1707 *
1708 * This function must be called every time a crash is detected by the low-level
1709 * drivers implementing a specific remoteproc. This should not be called from a
1710 * non-remoteproc driver.
1711 *
1712 * This function can be called from atomic/interrupt context.
1713 */
1714void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
1715{
1716        if (!rproc) {
1717                pr_err("NULL rproc pointer\n");
1718                return;
1719        }
1720
1721        dev_err(&rproc->dev, "crash detected in %s: type %s\n",
1722                rproc->name, rproc_crash_to_string(type));
1723
1724        /* create a new task to handle the error */
1725        schedule_work(&rproc->crash_handler);
1726}
1727EXPORT_SYMBOL(rproc_report_crash);
1728
1729static int __init remoteproc_init(void)
1730{
1731        rproc_init_sysfs();
1732        rproc_init_debugfs();
1733
1734        return 0;
1735}
1736module_init(remoteproc_init);
1737
1738static void __exit remoteproc_exit(void)
1739{
1740        ida_destroy(&rproc_dev_index);
1741
1742        rproc_exit_debugfs();
1743        rproc_exit_sysfs();
1744}
1745module_exit(remoteproc_exit);
1746
1747MODULE_LICENSE("GPL v2");
1748MODULE_DESCRIPTION("Generic Remote Processor Framework");
1749