linux/drivers/scsi/aacraid/commsup.c
<<
>>
Prefs
   1/*
   2 *      Adaptec AAC series RAID controller driver
   3 *      (c) Copyright 2001 Red Hat Inc.
   4 *
   5 * based on the old aacraid driver that is..
   6 * Adaptec aacraid device driver for Linux.
   7 *
   8 * Copyright (c) 2000-2010 Adaptec, Inc.
   9 *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
  10 *               2016-2017 Microsemi Corp. (aacraid@microsemi.com)
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License as published by
  14 * the Free Software Foundation; either version 2, or (at your option)
  15 * any later version.
  16 *
  17 * This program is distributed in the hope that it will be useful,
  18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 * GNU General Public License for more details.
  21 *
  22 * You should have received a copy of the GNU General Public License
  23 * along with this program; see the file COPYING.  If not, write to
  24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  25 *
  26 * Module Name:
  27 *  commsup.c
  28 *
  29 * Abstract: Contain all routines that are required for FSA host/adapter
  30 *    communication.
  31 *
  32 */
  33
  34#include <linux/kernel.h>
  35#include <linux/init.h>
  36#include <linux/crash_dump.h>
  37#include <linux/types.h>
  38#include <linux/sched.h>
  39#include <linux/pci.h>
  40#include <linux/spinlock.h>
  41#include <linux/slab.h>
  42#include <linux/completion.h>
  43#include <linux/blkdev.h>
  44#include <linux/delay.h>
  45#include <linux/kthread.h>
  46#include <linux/interrupt.h>
  47#include <linux/semaphore.h>
  48#include <linux/bcd.h>
  49#include <scsi/scsi.h>
  50#include <scsi/scsi_host.h>
  51#include <scsi/scsi_device.h>
  52#include <scsi/scsi_cmnd.h>
  53
  54#include "aacraid.h"
  55
  56/**
  57 *      fib_map_alloc           -       allocate the fib objects
  58 *      @dev: Adapter to allocate for
  59 *
  60 *      Allocate and map the shared PCI space for the FIB blocks used to
  61 *      talk to the Adaptec firmware.
  62 */
  63
  64static int fib_map_alloc(struct aac_dev *dev)
  65{
  66        if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE)
  67                dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
  68        else
  69                dev->max_cmd_size = dev->max_fib_size;
  70        if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) {
  71                dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
  72        } else {
  73                dev->max_cmd_size = dev->max_fib_size;
  74        }
  75
  76        dprintk((KERN_INFO
  77          "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n",
  78          &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue,
  79          AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
  80        dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev,
  81                (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr))
  82                * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
  83                &dev->hw_fib_pa, GFP_KERNEL);
  84        if (dev->hw_fib_va == NULL)
  85                return -ENOMEM;
  86        return 0;
  87}
  88
  89/**
  90 *      aac_fib_map_free                -       free the fib objects
  91 *      @dev: Adapter to free
  92 *
  93 *      Free the PCI mappings and the memory allocated for FIB blocks
  94 *      on this adapter.
  95 */
  96
  97void aac_fib_map_free(struct aac_dev *dev)
  98{
  99        size_t alloc_size;
 100        size_t fib_size;
 101        int num_fibs;
 102
 103        if(!dev->hw_fib_va || !dev->max_cmd_size)
 104                return;
 105
 106        num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
 107        fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
 108        alloc_size = fib_size * num_fibs + ALIGN32 - 1;
 109
 110        dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va,
 111                          dev->hw_fib_pa);
 112
 113        dev->hw_fib_va = NULL;
 114        dev->hw_fib_pa = 0;
 115}
 116
 117void aac_fib_vector_assign(struct aac_dev *dev)
 118{
 119        u32 i = 0;
 120        u32 vector = 1;
 121        struct fib *fibptr = NULL;
 122
 123        for (i = 0, fibptr = &dev->fibs[i];
 124                i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
 125                i++, fibptr++) {
 126                if ((dev->max_msix == 1) ||
 127                  (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
 128                        - dev->vector_cap))) {
 129                        fibptr->vector_no = 0;
 130                } else {
 131                        fibptr->vector_no = vector;
 132                        vector++;
 133                        if (vector == dev->max_msix)
 134                                vector = 1;
 135                }
 136        }
 137}
 138
 139/**
 140 *      aac_fib_setup   -       setup the fibs
 141 *      @dev: Adapter to set up
 142 *
 143 *      Allocate the PCI space for the fibs, map it and then initialise the
 144 *      fib area, the unmapped fib data and also the free list
 145 */
 146
 147int aac_fib_setup(struct aac_dev * dev)
 148{
 149        struct fib *fibptr;
 150        struct hw_fib *hw_fib;
 151        dma_addr_t hw_fib_pa;
 152        int i;
 153        u32 max_cmds;
 154
 155        while (((i = fib_map_alloc(dev)) == -ENOMEM)
 156         && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
 157                max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1;
 158                dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB;
 159                if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3)
 160                        dev->init->r7.max_io_commands = cpu_to_le32(max_cmds);
 161        }
 162        if (i<0)
 163                return -ENOMEM;
 164
 165        memset(dev->hw_fib_va, 0,
 166                (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) *
 167                (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
 168
 169        /* 32 byte alignment for PMC */
 170        hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
 171        hw_fib    = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
 172                                        (hw_fib_pa - dev->hw_fib_pa));
 173
 174        /* add Xport header */
 175        hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
 176                sizeof(struct aac_fib_xporthdr));
 177        hw_fib_pa += sizeof(struct aac_fib_xporthdr);
 178
 179        /*
 180         *      Initialise the fibs
 181         */
 182        for (i = 0, fibptr = &dev->fibs[i];
 183                i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
 184                i++, fibptr++)
 185        {
 186                fibptr->flags = 0;
 187                fibptr->size = sizeof(struct fib);
 188                fibptr->dev = dev;
 189                fibptr->hw_fib_va = hw_fib;
 190                fibptr->data = (void *) fibptr->hw_fib_va->data;
 191                fibptr->next = fibptr+1;        /* Forward chain the fibs */
 192                sema_init(&fibptr->event_wait, 0);
 193                spin_lock_init(&fibptr->event_lock);
 194                hw_fib->header.XferState = cpu_to_le32(0xffffffff);
 195                hw_fib->header.SenderSize =
 196                        cpu_to_le16(dev->max_fib_size); /* ?? max_cmd_size */
 197                fibptr->hw_fib_pa = hw_fib_pa;
 198                fibptr->hw_sgl_pa = hw_fib_pa +
 199                        offsetof(struct aac_hba_cmd_req, sge[2]);
 200                /*
 201                 * one element is for the ptr to the separate sg list,
 202                 * second element for 32 byte alignment
 203                 */
 204                fibptr->hw_error_pa = hw_fib_pa +
 205                        offsetof(struct aac_native_hba, resp.resp_bytes[0]);
 206
 207                hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
 208                        dev->max_cmd_size + sizeof(struct aac_fib_xporthdr));
 209                hw_fib_pa = hw_fib_pa +
 210                        dev->max_cmd_size + sizeof(struct aac_fib_xporthdr);
 211        }
 212
 213        /*
 214         *Assign vector numbers to fibs
 215         */
 216        aac_fib_vector_assign(dev);
 217
 218        /*
 219         *      Add the fib chain to the free list
 220         */
 221        dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
 222        /*
 223        *       Set 8 fibs aside for management tools
 224        */
 225        dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue];
 226        return 0;
 227}
 228
 229/**
 230 *      aac_fib_alloc_tag-allocate a fib using tags
 231 *      @dev: Adapter to allocate the fib for
 232 *
 233 *      Allocate a fib from the adapter fib pool using tags
 234 *      from the blk layer.
 235 */
 236
 237struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd)
 238{
 239        struct fib *fibptr;
 240
 241        fibptr = &dev->fibs[scmd->request->tag];
 242        /*
 243         *      Null out fields that depend on being zero at the start of
 244         *      each I/O
 245         */
 246        fibptr->hw_fib_va->header.XferState = 0;
 247        fibptr->type = FSAFS_NTC_FIB_CONTEXT;
 248        fibptr->callback_data = NULL;
 249        fibptr->callback = NULL;
 250
 251        return fibptr;
 252}
 253
 254/**
 255 *      aac_fib_alloc   -       allocate a fib
 256 *      @dev: Adapter to allocate the fib for
 257 *
 258 *      Allocate a fib from the adapter fib pool. If the pool is empty we
 259 *      return NULL.
 260 */
 261
 262struct fib *aac_fib_alloc(struct aac_dev *dev)
 263{
 264        struct fib * fibptr;
 265        unsigned long flags;
 266        spin_lock_irqsave(&dev->fib_lock, flags);
 267        fibptr = dev->free_fib;
 268        if(!fibptr){
 269                spin_unlock_irqrestore(&dev->fib_lock, flags);
 270                return fibptr;
 271        }
 272        dev->free_fib = fibptr->next;
 273        spin_unlock_irqrestore(&dev->fib_lock, flags);
 274        /*
 275         *      Set the proper node type code and node byte size
 276         */
 277        fibptr->type = FSAFS_NTC_FIB_CONTEXT;
 278        fibptr->size = sizeof(struct fib);
 279        /*
 280         *      Null out fields that depend on being zero at the start of
 281         *      each I/O
 282         */
 283        fibptr->hw_fib_va->header.XferState = 0;
 284        fibptr->flags = 0;
 285        fibptr->callback = NULL;
 286        fibptr->callback_data = NULL;
 287
 288        return fibptr;
 289}
 290
 291/**
 292 *      aac_fib_free    -       free a fib
 293 *      @fibptr: fib to free up
 294 *
 295 *      Frees up a fib and places it on the appropriate queue
 296 */
 297
 298void aac_fib_free(struct fib *fibptr)
 299{
 300        unsigned long flags;
 301
 302        if (fibptr->done == 2)
 303                return;
 304
 305        spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
 306        if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
 307                aac_config.fib_timeouts++;
 308        if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
 309                fibptr->hw_fib_va->header.XferState != 0) {
 310                printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
 311                         (void*)fibptr,
 312                         le32_to_cpu(fibptr->hw_fib_va->header.XferState));
 313        }
 314        fibptr->next = fibptr->dev->free_fib;
 315        fibptr->dev->free_fib = fibptr;
 316        spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
 317}
 318
 319/**
 320 *      aac_fib_init    -       initialise a fib
 321 *      @fibptr: The fib to initialize
 322 *
 323 *      Set up the generic fib fields ready for use
 324 */
 325
 326void aac_fib_init(struct fib *fibptr)
 327{
 328        struct hw_fib *hw_fib = fibptr->hw_fib_va;
 329
 330        memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
 331        hw_fib->header.StructType = FIB_MAGIC;
 332        hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
 333        hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
 334        hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
 335        hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
 336}
 337
 338/**
 339 *      fib_deallocate          -       deallocate a fib
 340 *      @fibptr: fib to deallocate
 341 *
 342 *      Will deallocate and return to the free pool the FIB pointed to by the
 343 *      caller.
 344 */
 345
 346static void fib_dealloc(struct fib * fibptr)
 347{
 348        struct hw_fib *hw_fib = fibptr->hw_fib_va;
 349        hw_fib->header.XferState = 0;
 350}
 351
 352/*
 353 *      Commuication primitives define and support the queuing method we use to
 354 *      support host to adapter commuication. All queue accesses happen through
 355 *      these routines and are the only routines which have a knowledge of the
 356 *       how these queues are implemented.
 357 */
 358
 359/**
 360 *      aac_get_entry           -       get a queue entry
 361 *      @dev: Adapter
 362 *      @qid: Queue Number
 363 *      @entry: Entry return
 364 *      @index: Index return
 365 *      @nonotify: notification control
 366 *
 367 *      With a priority the routine returns a queue entry if the queue has free entries. If the queue
 368 *      is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
 369 *      returned.
 370 */
 371
 372static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
 373{
 374        struct aac_queue * q;
 375        unsigned long idx;
 376
 377        /*
 378         *      All of the queues wrap when they reach the end, so we check
 379         *      to see if they have reached the end and if they have we just
 380         *      set the index back to zero. This is a wrap. You could or off
 381         *      the high bits in all updates but this is a bit faster I think.
 382         */
 383
 384        q = &dev->queues->queue[qid];
 385
 386        idx = *index = le32_to_cpu(*(q->headers.producer));
 387        /* Interrupt Moderation, only interrupt for first two entries */
 388        if (idx != le32_to_cpu(*(q->headers.consumer))) {
 389                if (--idx == 0) {
 390                        if (qid == AdapNormCmdQueue)
 391                                idx = ADAP_NORM_CMD_ENTRIES;
 392                        else
 393                                idx = ADAP_NORM_RESP_ENTRIES;
 394                }
 395                if (idx != le32_to_cpu(*(q->headers.consumer)))
 396                        *nonotify = 1;
 397        }
 398
 399        if (qid == AdapNormCmdQueue) {
 400                if (*index >= ADAP_NORM_CMD_ENTRIES)
 401                        *index = 0; /* Wrap to front of the Producer Queue. */
 402        } else {
 403                if (*index >= ADAP_NORM_RESP_ENTRIES)
 404                        *index = 0; /* Wrap to front of the Producer Queue. */
 405        }
 406
 407        /* Queue is full */
 408        if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
 409                printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
 410                                qid, atomic_read(&q->numpending));
 411                return 0;
 412        } else {
 413                *entry = q->base + *index;
 414                return 1;
 415        }
 416}
 417
 418/**
 419 *      aac_queue_get           -       get the next free QE
 420 *      @dev: Adapter
 421 *      @index: Returned index
 422 *      @priority: Priority of fib
 423 *      @fib: Fib to associate with the queue entry
 424 *      @wait: Wait if queue full
 425 *      @fibptr: Driver fib object to go with fib
 426 *      @nonotify: Don't notify the adapter
 427 *
 428 *      Gets the next free QE off the requested priorty adapter command
 429 *      queue and associates the Fib with the QE. The QE represented by
 430 *      index is ready to insert on the queue when this routine returns
 431 *      success.
 432 */
 433
 434int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
 435{
 436        struct aac_entry * entry = NULL;
 437        int map = 0;
 438
 439        if (qid == AdapNormCmdQueue) {
 440                /*  if no entries wait for some if caller wants to */
 441                while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
 442                        printk(KERN_ERR "GetEntries failed\n");
 443                }
 444                /*
 445                 *      Setup queue entry with a command, status and fib mapped
 446                 */
 447                entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
 448                map = 1;
 449        } else {
 450                while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
 451                        /* if no entries wait for some if caller wants to */
 452                }
 453                /*
 454                 *      Setup queue entry with command, status and fib mapped
 455                 */
 456                entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
 457                entry->addr = hw_fib->header.SenderFibAddress;
 458                        /* Restore adapters pointer to the FIB */
 459                hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress;  /* Let the adapter now where to find its data */
 460                map = 0;
 461        }
 462        /*
 463         *      If MapFib is true than we need to map the Fib and put pointers
 464         *      in the queue entry.
 465         */
 466        if (map)
 467                entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
 468        return 0;
 469}
 470
 471/*
 472 *      Define the highest level of host to adapter communication routines.
 473 *      These routines will support host to adapter FS commuication. These
 474 *      routines have no knowledge of the commuication method used. This level
 475 *      sends and receives FIBs. This level has no knowledge of how these FIBs
 476 *      get passed back and forth.
 477 */
 478
 479/**
 480 *      aac_fib_send    -       send a fib to the adapter
 481 *      @command: Command to send
 482 *      @fibptr: The fib
 483 *      @size: Size of fib data area
 484 *      @priority: Priority of Fib
 485 *      @wait: Async/sync select
 486 *      @reply: True if a reply is wanted
 487 *      @callback: Called with reply
 488 *      @callback_data: Passed to callback
 489 *
 490 *      Sends the requested FIB to the adapter and optionally will wait for a
 491 *      response FIB. If the caller does not wish to wait for a response than
 492 *      an event to wait on must be supplied. This event will be set when a
 493 *      response FIB is received from the adapter.
 494 */
 495
 496int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
 497                int priority, int wait, int reply, fib_callback callback,
 498                void *callback_data)
 499{
 500        struct aac_dev * dev = fibptr->dev;
 501        struct hw_fib * hw_fib = fibptr->hw_fib_va;
 502        unsigned long flags = 0;
 503        unsigned long mflags = 0;
 504        unsigned long sflags = 0;
 505
 506        if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
 507                return -EBUSY;
 508
 509        if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))
 510                return -EINVAL;
 511
 512        /*
 513         *      There are 5 cases with the wait and response requested flags.
 514         *      The only invalid cases are if the caller requests to wait and
 515         *      does not request a response and if the caller does not want a
 516         *      response and the Fib is not allocated from pool. If a response
 517         *      is not requesed the Fib will just be deallocaed by the DPC
 518         *      routine when the response comes back from the adapter. No
 519         *      further processing will be done besides deleting the Fib. We
 520         *      will have a debug mode where the adapter can notify the host
 521         *      it had a problem and the host can log that fact.
 522         */
 523        fibptr->flags = 0;
 524        if (wait && !reply) {
 525                return -EINVAL;
 526        } else if (!wait && reply) {
 527                hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
 528                FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
 529        } else if (!wait && !reply) {
 530                hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
 531                FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
 532        } else if (wait && reply) {
 533                hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
 534                FIB_COUNTER_INCREMENT(aac_config.NormalSent);
 535        }
 536        /*
 537         *      Map the fib into 32bits by using the fib number
 538         */
 539
 540        hw_fib->header.SenderFibAddress =
 541                cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
 542
 543        /* use the same shifted value for handle to be compatible
 544         * with the new native hba command handle
 545         */
 546        hw_fib->header.Handle =
 547                cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
 548
 549        /*
 550         *      Set FIB state to indicate where it came from and if we want a
 551         *      response from the adapter. Also load the command from the
 552         *      caller.
 553         *
 554         *      Map the hw fib pointer as a 32bit value
 555         */
 556        hw_fib->header.Command = cpu_to_le16(command);
 557        hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
 558        /*
 559         *      Set the size of the Fib we want to send to the adapter
 560         */
 561        hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
 562        if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
 563                return -EMSGSIZE;
 564        }
 565        /*
 566         *      Get a queue entry connect the FIB to it and send an notify
 567         *      the adapter a command is ready.
 568         */
 569        hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
 570
 571        /*
 572         *      Fill in the Callback and CallbackContext if we are not
 573         *      going to wait.
 574         */
 575        if (!wait) {
 576                fibptr->callback = callback;
 577                fibptr->callback_data = callback_data;
 578                fibptr->flags = FIB_CONTEXT_FLAG;
 579        }
 580
 581        fibptr->done = 0;
 582
 583        FIB_COUNTER_INCREMENT(aac_config.FibsSent);
 584
 585        dprintk((KERN_DEBUG "Fib contents:.\n"));
 586        dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
 587        dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
 588        dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
 589        dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
 590        dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
 591        dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
 592
 593        if (!dev->queues)
 594                return -EBUSY;
 595
 596        if (wait) {
 597
 598                spin_lock_irqsave(&dev->manage_lock, mflags);
 599                if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
 600                        printk(KERN_INFO "No management Fibs Available:%d\n",
 601                                                dev->management_fib_count);
 602                        spin_unlock_irqrestore(&dev->manage_lock, mflags);
 603                        return -EBUSY;
 604                }
 605                dev->management_fib_count++;
 606                spin_unlock_irqrestore(&dev->manage_lock, mflags);
 607                spin_lock_irqsave(&fibptr->event_lock, flags);
 608        }
 609
 610        if (dev->sync_mode) {
 611                if (wait)
 612                        spin_unlock_irqrestore(&fibptr->event_lock, flags);
 613                spin_lock_irqsave(&dev->sync_lock, sflags);
 614                if (dev->sync_fib) {
 615                        list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
 616                        spin_unlock_irqrestore(&dev->sync_lock, sflags);
 617                } else {
 618                        dev->sync_fib = fibptr;
 619                        spin_unlock_irqrestore(&dev->sync_lock, sflags);
 620                        aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
 621                                (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
 622                                NULL, NULL, NULL, NULL, NULL);
 623                }
 624                if (wait) {
 625                        fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
 626                        if (down_interruptible(&fibptr->event_wait)) {
 627                                fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
 628                                return -EFAULT;
 629                        }
 630                        return 0;
 631                }
 632                return -EINPROGRESS;
 633        }
 634
 635        if (aac_adapter_deliver(fibptr) != 0) {
 636                printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
 637                if (wait) {
 638                        spin_unlock_irqrestore(&fibptr->event_lock, flags);
 639                        spin_lock_irqsave(&dev->manage_lock, mflags);
 640                        dev->management_fib_count--;
 641                        spin_unlock_irqrestore(&dev->manage_lock, mflags);
 642                }
 643                return -EBUSY;
 644        }
 645
 646
 647        /*
 648         *      If the caller wanted us to wait for response wait now.
 649         */
 650
 651        if (wait) {
 652                spin_unlock_irqrestore(&fibptr->event_lock, flags);
 653                /* Only set for first known interruptable command */
 654                if (wait < 0) {
 655                        /*
 656                         * *VERY* Dangerous to time out a command, the
 657                         * assumption is made that we have no hope of
 658                         * functioning because an interrupt routing or other
 659                         * hardware failure has occurred.
 660                         */
 661                        unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
 662                        while (down_trylock(&fibptr->event_wait)) {
 663                                int blink;
 664                                if (time_is_before_eq_jiffies(timeout)) {
 665                                        struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
 666                                        atomic_dec(&q->numpending);
 667                                        if (wait == -1) {
 668                                                printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
 669                                                  "Usually a result of a PCI interrupt routing problem;\n"
 670                                                  "update mother board BIOS or consider utilizing one of\n"
 671                                                  "the SAFE mode kernel options (acpi, apic etc)\n");
 672                                        }
 673                                        return -ETIMEDOUT;
 674                                }
 675
 676                                if (unlikely(pci_channel_offline(dev->pdev)))
 677                                        return -EFAULT;
 678
 679                                if ((blink = aac_adapter_check_health(dev)) > 0) {
 680                                        if (wait == -1) {
 681                                                printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
 682                                                  "Usually a result of a serious unrecoverable hardware problem\n",
 683                                                  blink);
 684                                        }
 685                                        return -EFAULT;
 686                                }
 687                                /*
 688                                 * Allow other processes / CPUS to use core
 689                                 */
 690                                schedule();
 691                        }
 692                } else if (down_interruptible(&fibptr->event_wait)) {
 693                        /* Do nothing ... satisfy
 694                         * down_interruptible must_check */
 695                }
 696
 697                spin_lock_irqsave(&fibptr->event_lock, flags);
 698                if (fibptr->done == 0) {
 699                        fibptr->done = 2; /* Tell interrupt we aborted */
 700                        spin_unlock_irqrestore(&fibptr->event_lock, flags);
 701                        return -ERESTARTSYS;
 702                }
 703                spin_unlock_irqrestore(&fibptr->event_lock, flags);
 704                BUG_ON(fibptr->done == 0);
 705
 706                if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
 707                        return -ETIMEDOUT;
 708                return 0;
 709        }
 710        /*
 711         *      If the user does not want a response than return success otherwise
 712         *      return pending
 713         */
 714        if (reply)
 715                return -EINPROGRESS;
 716        else
 717                return 0;
 718}
 719
 720int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback,
 721                void *callback_data)
 722{
 723        struct aac_dev *dev = fibptr->dev;
 724        int wait;
 725        unsigned long flags = 0;
 726        unsigned long mflags = 0;
 727        struct aac_hba_cmd_req *hbacmd = (struct aac_hba_cmd_req *)
 728                        fibptr->hw_fib_va;
 729
 730        fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA);
 731        if (callback) {
 732                wait = 0;
 733                fibptr->callback = callback;
 734                fibptr->callback_data = callback_data;
 735        } else
 736                wait = 1;
 737
 738
 739        hbacmd->iu_type = command;
 740
 741        if (command == HBA_IU_TYPE_SCSI_CMD_REQ) {
 742                /* bit1 of request_id must be 0 */
 743                hbacmd->request_id =
 744                        cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
 745                fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD;
 746        } else if (command != HBA_IU_TYPE_SCSI_TM_REQ)
 747                return -EINVAL;
 748
 749
 750        if (wait) {
 751                spin_lock_irqsave(&dev->manage_lock, mflags);
 752                if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
 753                        spin_unlock_irqrestore(&dev->manage_lock, mflags);
 754                        return -EBUSY;
 755                }
 756                dev->management_fib_count++;
 757                spin_unlock_irqrestore(&dev->manage_lock, mflags);
 758                spin_lock_irqsave(&fibptr->event_lock, flags);
 759        }
 760
 761        if (aac_adapter_deliver(fibptr) != 0) {
 762                if (wait) {
 763                        spin_unlock_irqrestore(&fibptr->event_lock, flags);
 764                        spin_lock_irqsave(&dev->manage_lock, mflags);
 765                        dev->management_fib_count--;
 766                        spin_unlock_irqrestore(&dev->manage_lock, mflags);
 767                }
 768                return -EBUSY;
 769        }
 770        FIB_COUNTER_INCREMENT(aac_config.NativeSent);
 771
 772        if (wait) {
 773
 774                spin_unlock_irqrestore(&fibptr->event_lock, flags);
 775
 776                if (unlikely(pci_channel_offline(dev->pdev)))
 777                        return -EFAULT;
 778
 779                fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
 780                if (down_interruptible(&fibptr->event_wait))
 781                        fibptr->done = 2;
 782                fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT);
 783
 784                spin_lock_irqsave(&fibptr->event_lock, flags);
 785                if ((fibptr->done == 0) || (fibptr->done == 2)) {
 786                        fibptr->done = 2; /* Tell interrupt we aborted */
 787                        spin_unlock_irqrestore(&fibptr->event_lock, flags);
 788                        return -ERESTARTSYS;
 789                }
 790                spin_unlock_irqrestore(&fibptr->event_lock, flags);
 791                WARN_ON(fibptr->done == 0);
 792
 793                if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
 794                        return -ETIMEDOUT;
 795
 796                return 0;
 797        }
 798
 799        return -EINPROGRESS;
 800}
 801
 802/**
 803 *      aac_consumer_get        -       get the top of the queue
 804 *      @dev: Adapter
 805 *      @q: Queue
 806 *      @entry: Return entry
 807 *
 808 *      Will return a pointer to the entry on the top of the queue requested that
 809 *      we are a consumer of, and return the address of the queue entry. It does
 810 *      not change the state of the queue.
 811 */
 812
 813int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
 814{
 815        u32 index;
 816        int status;
 817        if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
 818                status = 0;
 819        } else {
 820                /*
 821                 *      The consumer index must be wrapped if we have reached
 822                 *      the end of the queue, else we just use the entry
 823                 *      pointed to by the header index
 824                 */
 825                if (le32_to_cpu(*q->headers.consumer) >= q->entries)
 826                        index = 0;
 827                else
 828                        index = le32_to_cpu(*q->headers.consumer);
 829                *entry = q->base + index;
 830                status = 1;
 831        }
 832        return(status);
 833}
 834
 835/**
 836 *      aac_consumer_free       -       free consumer entry
 837 *      @dev: Adapter
 838 *      @q: Queue
 839 *      @qid: Queue ident
 840 *
 841 *      Frees up the current top of the queue we are a consumer of. If the
 842 *      queue was full notify the producer that the queue is no longer full.
 843 */
 844
 845void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
 846{
 847        int wasfull = 0;
 848        u32 notify;
 849
 850        if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
 851                wasfull = 1;
 852
 853        if (le32_to_cpu(*q->headers.consumer) >= q->entries)
 854                *q->headers.consumer = cpu_to_le32(1);
 855        else
 856                le32_add_cpu(q->headers.consumer, 1);
 857
 858        if (wasfull) {
 859                switch (qid) {
 860
 861                case HostNormCmdQueue:
 862                        notify = HostNormCmdNotFull;
 863                        break;
 864                case HostNormRespQueue:
 865                        notify = HostNormRespNotFull;
 866                        break;
 867                default:
 868                        BUG();
 869                        return;
 870                }
 871                aac_adapter_notify(dev, notify);
 872        }
 873}
 874
 875/**
 876 *      aac_fib_adapter_complete        -       complete adapter issued fib
 877 *      @fibptr: fib to complete
 878 *      @size: size of fib
 879 *
 880 *      Will do all necessary work to complete a FIB that was sent from
 881 *      the adapter.
 882 */
 883
 884int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
 885{
 886        struct hw_fib * hw_fib = fibptr->hw_fib_va;
 887        struct aac_dev * dev = fibptr->dev;
 888        struct aac_queue * q;
 889        unsigned long nointr = 0;
 890        unsigned long qflags;
 891
 892        if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
 893                dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
 894                dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
 895                kfree(hw_fib);
 896                return 0;
 897        }
 898
 899        if (hw_fib->header.XferState == 0) {
 900                if (dev->comm_interface == AAC_COMM_MESSAGE)
 901                        kfree(hw_fib);
 902                return 0;
 903        }
 904        /*
 905         *      If we plan to do anything check the structure type first.
 906         */
 907        if (hw_fib->header.StructType != FIB_MAGIC &&
 908            hw_fib->header.StructType != FIB_MAGIC2 &&
 909            hw_fib->header.StructType != FIB_MAGIC2_64) {
 910                if (dev->comm_interface == AAC_COMM_MESSAGE)
 911                        kfree(hw_fib);
 912                return -EINVAL;
 913        }
 914        /*
 915         *      This block handles the case where the adapter had sent us a
 916         *      command and we have finished processing the command. We
 917         *      call completeFib when we are done processing the command
 918         *      and want to send a response back to the adapter. This will
 919         *      send the completed cdb to the adapter.
 920         */
 921        if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
 922                if (dev->comm_interface == AAC_COMM_MESSAGE) {
 923                        kfree (hw_fib);
 924                } else {
 925                        u32 index;
 926                        hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
 927                        if (size) {
 928                                size += sizeof(struct aac_fibhdr);
 929                                if (size > le16_to_cpu(hw_fib->header.SenderSize))
 930                                        return -EMSGSIZE;
 931                                hw_fib->header.Size = cpu_to_le16(size);
 932                        }
 933                        q = &dev->queues->queue[AdapNormRespQueue];
 934                        spin_lock_irqsave(q->lock, qflags);
 935                        aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
 936                        *(q->headers.producer) = cpu_to_le32(index + 1);
 937                        spin_unlock_irqrestore(q->lock, qflags);
 938                        if (!(nointr & (int)aac_config.irq_mod))
 939                                aac_adapter_notify(dev, AdapNormRespQueue);
 940                }
 941        } else {
 942                printk(KERN_WARNING "aac_fib_adapter_complete: "
 943                        "Unknown xferstate detected.\n");
 944                BUG();
 945        }
 946        return 0;
 947}
 948
 949/**
 950 *      aac_fib_complete        -       fib completion handler
 951 *      @fib: FIB to complete
 952 *
 953 *      Will do all necessary work to complete a FIB.
 954 */
 955
 956int aac_fib_complete(struct fib *fibptr)
 957{
 958        struct hw_fib * hw_fib = fibptr->hw_fib_va;
 959
 960        if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
 961                fib_dealloc(fibptr);
 962                return 0;
 963        }
 964
 965        /*
 966         *      Check for a fib which has already been completed or with a
 967         *      status wait timeout
 968         */
 969
 970        if (hw_fib->header.XferState == 0 || fibptr->done == 2)
 971                return 0;
 972        /*
 973         *      If we plan to do anything check the structure type first.
 974         */
 975
 976        if (hw_fib->header.StructType != FIB_MAGIC &&
 977            hw_fib->header.StructType != FIB_MAGIC2 &&
 978            hw_fib->header.StructType != FIB_MAGIC2_64)
 979                return -EINVAL;
 980        /*
 981         *      This block completes a cdb which orginated on the host and we
 982         *      just need to deallocate the cdb or reinit it. At this point the
 983         *      command is complete that we had sent to the adapter and this
 984         *      cdb could be reused.
 985         */
 986
 987        if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
 988                (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
 989        {
 990                fib_dealloc(fibptr);
 991        }
 992        else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
 993        {
 994                /*
 995                 *      This handles the case when the host has aborted the I/O
 996                 *      to the adapter because the adapter is not responding
 997                 */
 998                fib_dealloc(fibptr);
 999        } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
1000                fib_dealloc(fibptr);
1001        } else {
1002                BUG();
1003        }
1004        return 0;
1005}
1006
1007/**
1008 *      aac_printf      -       handle printf from firmware
1009 *      @dev: Adapter
1010 *      @val: Message info
1011 *
1012 *      Print a message passed to us by the controller firmware on the
1013 *      Adaptec board
1014 */
1015
1016void aac_printf(struct aac_dev *dev, u32 val)
1017{
1018        char *cp = dev->printfbuf;
1019        if (dev->printf_enabled)
1020        {
1021                int length = val & 0xffff;
1022                int level = (val >> 16) & 0xffff;
1023
1024                /*
1025                 *      The size of the printfbuf is set in port.c
1026                 *      There is no variable or define for it
1027                 */
1028                if (length > 255)
1029                        length = 255;
1030                if (cp[length] != 0)
1031                        cp[length] = 0;
1032                if (level == LOG_AAC_HIGH_ERROR)
1033                        printk(KERN_WARNING "%s:%s", dev->name, cp);
1034                else
1035                        printk(KERN_INFO "%s:%s", dev->name, cp);
1036        }
1037        memset(cp, 0, 256);
1038}
1039
1040static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index)
1041{
1042        return le32_to_cpu(((__le32 *)aifcmd->data)[index]);
1043}
1044
1045
1046static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd)
1047{
1048        switch (aac_aif_data(aifcmd, 1)) {
1049        case AifBuCacheDataLoss:
1050                if (aac_aif_data(aifcmd, 2))
1051                        dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n",
1052                        aac_aif_data(aifcmd, 2));
1053                else
1054                        dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n");
1055                break;
1056        case AifBuCacheDataRecover:
1057                if (aac_aif_data(aifcmd, 2))
1058                        dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n",
1059                        aac_aif_data(aifcmd, 2));
1060                else
1061                        dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n");
1062                break;
1063        }
1064}
1065
1066/**
1067 *      aac_handle_aif          -       Handle a message from the firmware
1068 *      @dev: Which adapter this fib is from
1069 *      @fibptr: Pointer to fibptr from adapter
1070 *
1071 *      This routine handles a driver notify fib from the adapter and
1072 *      dispatches it to the appropriate routine for handling.
1073 */
1074
1075#define AIF_SNIFF_TIMEOUT       (500*HZ)
1076static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
1077{
1078        struct hw_fib * hw_fib = fibptr->hw_fib_va;
1079        struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
1080        u32 channel, id, lun, container;
1081        struct scsi_device *device;
1082        enum {
1083                NOTHING,
1084                DELETE,
1085                ADD,
1086                CHANGE
1087        } device_config_needed = NOTHING;
1088
1089        /* Sniff for container changes */
1090
1091        if (!dev || !dev->fsa_dev)
1092                return;
1093        container = channel = id = lun = (u32)-1;
1094
1095        /*
1096         *      We have set this up to try and minimize the number of
1097         * re-configures that take place. As a result of this when
1098         * certain AIF's come in we will set a flag waiting for another
1099         * type of AIF before setting the re-config flag.
1100         */
1101        switch (le32_to_cpu(aifcmd->command)) {
1102        case AifCmdDriverNotify:
1103                switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1104                case AifRawDeviceRemove:
1105                        container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1106                        if ((container >> 28)) {
1107                                container = (u32)-1;
1108                                break;
1109                        }
1110                        channel = (container >> 24) & 0xF;
1111                        if (channel >= dev->maximum_num_channels) {
1112                                container = (u32)-1;
1113                                break;
1114                        }
1115                        id = container & 0xFFFF;
1116                        if (id >= dev->maximum_num_physicals) {
1117                                container = (u32)-1;
1118                                break;
1119                        }
1120                        lun = (container >> 16) & 0xFF;
1121                        container = (u32)-1;
1122                        channel = aac_phys_to_logical(channel);
1123                        device_config_needed = DELETE;
1124                        break;
1125
1126                /*
1127                 *      Morph or Expand complete
1128                 */
1129                case AifDenMorphComplete:
1130                case AifDenVolumeExtendComplete:
1131                        container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1132                        if (container >= dev->maximum_num_containers)
1133                                break;
1134
1135                        /*
1136                         *      Find the scsi_device associated with the SCSI
1137                         * address. Make sure we have the right array, and if
1138                         * so set the flag to initiate a new re-config once we
1139                         * see an AifEnConfigChange AIF come through.
1140                         */
1141
1142                        if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
1143                                device = scsi_device_lookup(dev->scsi_host_ptr,
1144                                        CONTAINER_TO_CHANNEL(container),
1145                                        CONTAINER_TO_ID(container),
1146                                        CONTAINER_TO_LUN(container));
1147                                if (device) {
1148                                        dev->fsa_dev[container].config_needed = CHANGE;
1149                                        dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
1150                                        dev->fsa_dev[container].config_waiting_stamp = jiffies;
1151                                        scsi_device_put(device);
1152                                }
1153                        }
1154                }
1155
1156                /*
1157                 *      If we are waiting on something and this happens to be
1158                 * that thing then set the re-configure flag.
1159                 */
1160                if (container != (u32)-1) {
1161                        if (container >= dev->maximum_num_containers)
1162                                break;
1163                        if ((dev->fsa_dev[container].config_waiting_on ==
1164                            le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1165                         time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1166                                dev->fsa_dev[container].config_waiting_on = 0;
1167                } else for (container = 0;
1168                    container < dev->maximum_num_containers; ++container) {
1169                        if ((dev->fsa_dev[container].config_waiting_on ==
1170                            le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1171                         time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1172                                dev->fsa_dev[container].config_waiting_on = 0;
1173                }
1174                break;
1175
1176        case AifCmdEventNotify:
1177                switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1178                case AifEnBatteryEvent:
1179                        dev->cache_protected =
1180                                (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
1181                        break;
1182                /*
1183                 *      Add an Array.
1184                 */
1185                case AifEnAddContainer:
1186                        container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1187                        if (container >= dev->maximum_num_containers)
1188                                break;
1189                        dev->fsa_dev[container].config_needed = ADD;
1190                        dev->fsa_dev[container].config_waiting_on =
1191                                AifEnConfigChange;
1192                        dev->fsa_dev[container].config_waiting_stamp = jiffies;
1193                        break;
1194
1195                /*
1196                 *      Delete an Array.
1197                 */
1198                case AifEnDeleteContainer:
1199                        container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1200                        if (container >= dev->maximum_num_containers)
1201                                break;
1202                        dev->fsa_dev[container].config_needed = DELETE;
1203                        dev->fsa_dev[container].config_waiting_on =
1204                                AifEnConfigChange;
1205                        dev->fsa_dev[container].config_waiting_stamp = jiffies;
1206                        break;
1207
1208                /*
1209                 *      Container change detected. If we currently are not
1210                 * waiting on something else, setup to wait on a Config Change.
1211                 */
1212                case AifEnContainerChange:
1213                        container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1214                        if (container >= dev->maximum_num_containers)
1215                                break;
1216                        if (dev->fsa_dev[container].config_waiting_on &&
1217                         time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1218                                break;
1219                        dev->fsa_dev[container].config_needed = CHANGE;
1220                        dev->fsa_dev[container].config_waiting_on =
1221                                AifEnConfigChange;
1222                        dev->fsa_dev[container].config_waiting_stamp = jiffies;
1223                        break;
1224
1225                case AifEnConfigChange:
1226                        break;
1227
1228                case AifEnAddJBOD:
1229                case AifEnDeleteJBOD:
1230                        container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1231                        if ((container >> 28)) {
1232                                container = (u32)-1;
1233                                break;
1234                        }
1235                        channel = (container >> 24) & 0xF;
1236                        if (channel >= dev->maximum_num_channels) {
1237                                container = (u32)-1;
1238                                break;
1239                        }
1240                        id = container & 0xFFFF;
1241                        if (id >= dev->maximum_num_physicals) {
1242                                container = (u32)-1;
1243                                break;
1244                        }
1245                        lun = (container >> 16) & 0xFF;
1246                        container = (u32)-1;
1247                        channel = aac_phys_to_logical(channel);
1248                        device_config_needed =
1249                          (((__le32 *)aifcmd->data)[0] ==
1250                            cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1251                        if (device_config_needed == ADD) {
1252                                device = scsi_device_lookup(dev->scsi_host_ptr,
1253                                        channel,
1254                                        id,
1255                                        lun);
1256                                if (device) {
1257                                        scsi_remove_device(device);
1258                                        scsi_device_put(device);
1259                                }
1260                        }
1261                        break;
1262
1263                case AifEnEnclosureManagement:
1264                        /*
1265                         * If in JBOD mode, automatic exposure of new
1266                         * physical target to be suppressed until configured.
1267                         */
1268                        if (dev->jbod)
1269                                break;
1270                        switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1271                        case EM_DRIVE_INSERTION:
1272                        case EM_DRIVE_REMOVAL:
1273                        case EM_SES_DRIVE_INSERTION:
1274                        case EM_SES_DRIVE_REMOVAL:
1275                                container = le32_to_cpu(
1276                                        ((__le32 *)aifcmd->data)[2]);
1277                                if ((container >> 28)) {
1278                                        container = (u32)-1;
1279                                        break;
1280                                }
1281                                channel = (container >> 24) & 0xF;
1282                                if (channel >= dev->maximum_num_channels) {
1283                                        container = (u32)-1;
1284                                        break;
1285                                }
1286                                id = container & 0xFFFF;
1287                                lun = (container >> 16) & 0xFF;
1288                                container = (u32)-1;
1289                                if (id >= dev->maximum_num_physicals) {
1290                                        /* legacy dev_t ? */
1291                                        if ((0x2000 <= id) || lun || channel ||
1292                                          ((channel = (id >> 7) & 0x3F) >=
1293                                          dev->maximum_num_channels))
1294                                                break;
1295                                        lun = (id >> 4) & 7;
1296                                        id &= 0xF;
1297                                }
1298                                channel = aac_phys_to_logical(channel);
1299                                device_config_needed =
1300                                  ((((__le32 *)aifcmd->data)[3]
1301                                    == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1302                                    (((__le32 *)aifcmd->data)[3]
1303                                    == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1304                                  ADD : DELETE;
1305                                break;
1306                        }
1307                        case AifBuManagerEvent:
1308                                aac_handle_aif_bu(dev, aifcmd);
1309                        break;
1310                }
1311
1312                /*
1313                 *      If we are waiting on something and this happens to be
1314                 * that thing then set the re-configure flag.
1315                 */
1316                if (container != (u32)-1) {
1317                        if (container >= dev->maximum_num_containers)
1318                                break;
1319                        if ((dev->fsa_dev[container].config_waiting_on ==
1320                            le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1321                         time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1322                                dev->fsa_dev[container].config_waiting_on = 0;
1323                } else for (container = 0;
1324                    container < dev->maximum_num_containers; ++container) {
1325                        if ((dev->fsa_dev[container].config_waiting_on ==
1326                            le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1327                         time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1328                                dev->fsa_dev[container].config_waiting_on = 0;
1329                }
1330                break;
1331
1332        case AifCmdJobProgress:
1333                /*
1334                 *      These are job progress AIF's. When a Clear is being
1335                 * done on a container it is initially created then hidden from
1336                 * the OS. When the clear completes we don't get a config
1337                 * change so we monitor the job status complete on a clear then
1338                 * wait for a container change.
1339                 */
1340
1341                if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1342                    (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1343                     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1344                        for (container = 0;
1345                            container < dev->maximum_num_containers;
1346                            ++container) {
1347                                /*
1348                                 * Stomp on all config sequencing for all
1349                                 * containers?
1350                                 */
1351                                dev->fsa_dev[container].config_waiting_on =
1352                                        AifEnContainerChange;
1353                                dev->fsa_dev[container].config_needed = ADD;
1354                                dev->fsa_dev[container].config_waiting_stamp =
1355                                        jiffies;
1356                        }
1357                }
1358                if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1359                    ((__le32 *)aifcmd->data)[6] == 0 &&
1360                    ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1361                        for (container = 0;
1362                            container < dev->maximum_num_containers;
1363                            ++container) {
1364                                /*
1365                                 * Stomp on all config sequencing for all
1366                                 * containers?
1367                                 */
1368                                dev->fsa_dev[container].config_waiting_on =
1369                                        AifEnContainerChange;
1370                                dev->fsa_dev[container].config_needed = DELETE;
1371                                dev->fsa_dev[container].config_waiting_stamp =
1372                                        jiffies;
1373                        }
1374                }
1375                break;
1376        }
1377
1378        container = 0;
1379retry_next:
1380        if (device_config_needed == NOTHING)
1381        for (; container < dev->maximum_num_containers; ++container) {
1382                if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1383                        (dev->fsa_dev[container].config_needed != NOTHING) &&
1384                        time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1385                        device_config_needed =
1386                                dev->fsa_dev[container].config_needed;
1387                        dev->fsa_dev[container].config_needed = NOTHING;
1388                        channel = CONTAINER_TO_CHANNEL(container);
1389                        id = CONTAINER_TO_ID(container);
1390                        lun = CONTAINER_TO_LUN(container);
1391                        break;
1392                }
1393        }
1394        if (device_config_needed == NOTHING)
1395                return;
1396
1397        /*
1398         *      If we decided that a re-configuration needs to be done,
1399         * schedule it here on the way out the door, please close the door
1400         * behind you.
1401         */
1402
1403        /*
1404         *      Find the scsi_device associated with the SCSI address,
1405         * and mark it as changed, invalidating the cache. This deals
1406         * with changes to existing device IDs.
1407         */
1408
1409        if (!dev || !dev->scsi_host_ptr)
1410                return;
1411        /*
1412         * force reload of disk info via aac_probe_container
1413         */
1414        if ((channel == CONTAINER_CHANNEL) &&
1415          (device_config_needed != NOTHING)) {
1416                if (dev->fsa_dev[container].valid == 1)
1417                        dev->fsa_dev[container].valid = 2;
1418                aac_probe_container(dev, container);
1419        }
1420        device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1421        if (device) {
1422                switch (device_config_needed) {
1423                case DELETE:
1424#if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1425                        scsi_remove_device(device);
1426#else
1427                        if (scsi_device_online(device)) {
1428                                scsi_device_set_state(device, SDEV_OFFLINE);
1429                                sdev_printk(KERN_INFO, device,
1430                                        "Device offlined - %s\n",
1431                                        (channel == CONTAINER_CHANNEL) ?
1432                                                "array deleted" :
1433                                                "enclosure services event");
1434                        }
1435#endif
1436                        break;
1437                case ADD:
1438                        if (!scsi_device_online(device)) {
1439                                sdev_printk(KERN_INFO, device,
1440                                        "Device online - %s\n",
1441                                        (channel == CONTAINER_CHANNEL) ?
1442                                                "array created" :
1443                                                "enclosure services event");
1444                                scsi_device_set_state(device, SDEV_RUNNING);
1445                        }
1446                        /* FALLTHRU */
1447                case CHANGE:
1448                        if ((channel == CONTAINER_CHANNEL)
1449                         && (!dev->fsa_dev[container].valid)) {
1450#if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1451                                scsi_remove_device(device);
1452#else
1453                                if (!scsi_device_online(device))
1454                                        break;
1455                                scsi_device_set_state(device, SDEV_OFFLINE);
1456                                sdev_printk(KERN_INFO, device,
1457                                        "Device offlined - %s\n",
1458                                        "array failed");
1459#endif
1460                                break;
1461                        }
1462                        scsi_rescan_device(&device->sdev_gendev);
1463
1464                default:
1465                        break;
1466                }
1467                scsi_device_put(device);
1468                device_config_needed = NOTHING;
1469        }
1470        if (device_config_needed == ADD)
1471                scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1472        if (channel == CONTAINER_CHANNEL) {
1473                container++;
1474                device_config_needed = NOTHING;
1475                goto retry_next;
1476        }
1477}
1478
1479static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1480{
1481        int index, quirks;
1482        int retval;
1483        struct Scsi_Host *host;
1484        struct scsi_device *dev;
1485        struct scsi_cmnd *command;
1486        struct scsi_cmnd *command_list;
1487        int jafo = 0;
1488        int bled;
1489        u64 dmamask;
1490        int num_of_fibs = 0;
1491
1492        /*
1493         * Assumptions:
1494         *      - host is locked, unless called by the aacraid thread.
1495         *        (a matter of convenience, due to legacy issues surrounding
1496         *        eh_host_adapter_reset).
1497         *      - in_reset is asserted, so no new i/o is getting to the
1498         *        card.
1499         *      - The card is dead, or will be very shortly ;-/ so no new
1500         *        commands are completing in the interrupt service.
1501         */
1502        host = aac->scsi_host_ptr;
1503        scsi_block_requests(host);
1504        aac_adapter_disable_int(aac);
1505        if (aac->thread && aac->thread->pid != current->pid) {
1506                spin_unlock_irq(host->host_lock);
1507                kthread_stop(aac->thread);
1508                aac->thread = NULL;
1509                jafo = 1;
1510        }
1511
1512        /*
1513         *      If a positive health, means in a known DEAD PANIC
1514         * state and the adapter could be reset to `try again'.
1515         */
1516        bled = forced ? 0 : aac_adapter_check_health(aac);
1517        retval = aac_adapter_restart(aac, bled, reset_type);
1518
1519        if (retval)
1520                goto out;
1521
1522        /*
1523         *      Loop through the fibs, close the synchronous FIBS
1524         */
1525        retval = 1;
1526        num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
1527        for (index = 0; index <  num_of_fibs; index++) {
1528
1529                struct fib *fib = &aac->fibs[index];
1530                __le32 XferState = fib->hw_fib_va->header.XferState;
1531                bool is_response_expected = false;
1532
1533                if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1534                   (XferState & cpu_to_le32(ResponseExpected)))
1535                        is_response_expected = true;
1536
1537                if (is_response_expected
1538                  || fib->flags & FIB_CONTEXT_FLAG_WAIT) {
1539                        unsigned long flagv;
1540                        spin_lock_irqsave(&fib->event_lock, flagv);
1541                        up(&fib->event_wait);
1542                        spin_unlock_irqrestore(&fib->event_lock, flagv);
1543                        schedule();
1544                        retval = 0;
1545                }
1546        }
1547        /* Give some extra time for ioctls to complete. */
1548        if (retval == 0)
1549                ssleep(2);
1550        index = aac->cardtype;
1551
1552        /*
1553         * Re-initialize the adapter, first free resources, then carefully
1554         * apply the initialization sequence to come back again. Only risk
1555         * is a change in Firmware dropping cache, it is assumed the caller
1556         * will ensure that i/o is queisced and the card is flushed in that
1557         * case.
1558         */
1559        aac_free_irq(aac);
1560        aac_fib_map_free(aac);
1561        dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
1562                          aac->comm_phys);
1563        aac->comm_addr = NULL;
1564        aac->comm_phys = 0;
1565        kfree(aac->queues);
1566        aac->queues = NULL;
1567        kfree(aac->fsa_dev);
1568        aac->fsa_dev = NULL;
1569
1570        dmamask = DMA_BIT_MASK(32);
1571        quirks = aac_get_driver_ident(index)->quirks;
1572        if (quirks & AAC_QUIRK_31BIT)
1573                retval = pci_set_dma_mask(aac->pdev, dmamask);
1574        else if (!(quirks & AAC_QUIRK_SRC))
1575                retval = pci_set_dma_mask(aac->pdev, dmamask);
1576        else
1577                retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1578
1579        if (quirks & AAC_QUIRK_31BIT && !retval) {
1580                dmamask = DMA_BIT_MASK(31);
1581                retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1582        }
1583
1584        if (retval)
1585                goto out;
1586
1587        if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1588                goto out;
1589
1590        if (jafo) {
1591                aac->thread = kthread_run(aac_command_thread, aac, "%s",
1592                                          aac->name);
1593                if (IS_ERR(aac->thread)) {
1594                        retval = PTR_ERR(aac->thread);
1595                        aac->thread = NULL;
1596                        goto out;
1597                }
1598        }
1599        (void)aac_get_adapter_info(aac);
1600        if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1601                host->sg_tablesize = 34;
1602                host->max_sectors = (host->sg_tablesize * 8) + 112;
1603        }
1604        if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1605                host->sg_tablesize = 17;
1606                host->max_sectors = (host->sg_tablesize * 8) + 112;
1607        }
1608        aac_get_config_status(aac, 1);
1609        aac_get_containers(aac);
1610        /*
1611         * This is where the assumption that the Adapter is quiesced
1612         * is important.
1613         */
1614        command_list = NULL;
1615        __shost_for_each_device(dev, host) {
1616                unsigned long flags;
1617                spin_lock_irqsave(&dev->list_lock, flags);
1618                list_for_each_entry(command, &dev->cmd_list, list)
1619                        if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1620                                command->SCp.buffer = (struct scatterlist *)command_list;
1621                                command_list = command;
1622                        }
1623                spin_unlock_irqrestore(&dev->list_lock, flags);
1624        }
1625        while ((command = command_list)) {
1626                command_list = (struct scsi_cmnd *)command->SCp.buffer;
1627                command->SCp.buffer = NULL;
1628                command->result = DID_OK << 16
1629                  | COMMAND_COMPLETE << 8
1630                  | SAM_STAT_TASK_SET_FULL;
1631                command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1632                command->scsi_done(command);
1633        }
1634        /*
1635         * Any Device that was already marked offline needs to be marked
1636         * running
1637         */
1638        __shost_for_each_device(dev, host) {
1639                if (!scsi_device_online(dev))
1640                        scsi_device_set_state(dev, SDEV_RUNNING);
1641        }
1642        retval = 0;
1643
1644out:
1645        aac->in_reset = 0;
1646        scsi_unblock_requests(host);
1647
1648        /*
1649         * Issue bus rescan to catch any configuration that might have
1650         * occurred
1651         */
1652        if (!retval && !is_kdump_kernel()) {
1653                dev_info(&aac->pdev->dev, "Scheduling bus rescan\n");
1654                aac_schedule_safw_scan_worker(aac);
1655        }
1656
1657        if (jafo) {
1658                spin_lock_irq(host->host_lock);
1659        }
1660        return retval;
1661}
1662
1663int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1664{
1665        unsigned long flagv = 0;
1666        int retval;
1667        struct Scsi_Host * host;
1668        int bled;
1669
1670        if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1671                return -EBUSY;
1672
1673        if (aac->in_reset) {
1674                spin_unlock_irqrestore(&aac->fib_lock, flagv);
1675                return -EBUSY;
1676        }
1677        aac->in_reset = 1;
1678        spin_unlock_irqrestore(&aac->fib_lock, flagv);
1679
1680        /*
1681         * Wait for all commands to complete to this specific
1682         * target (block maximum 60 seconds). Although not necessary,
1683         * it does make us a good storage citizen.
1684         */
1685        host = aac->scsi_host_ptr;
1686        scsi_block_requests(host);
1687
1688        /* Quiesce build, flush cache, write through mode */
1689        if (forced < 2)
1690                aac_send_shutdown(aac);
1691        spin_lock_irqsave(host->host_lock, flagv);
1692        bled = forced ? forced :
1693                        (aac_check_reset != 0 && aac_check_reset != 1);
1694        retval = _aac_reset_adapter(aac, bled, reset_type);
1695        spin_unlock_irqrestore(host->host_lock, flagv);
1696
1697        if ((forced < 2) && (retval == -ENODEV)) {
1698                /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1699                struct fib * fibctx = aac_fib_alloc(aac);
1700                if (fibctx) {
1701                        struct aac_pause *cmd;
1702                        int status;
1703
1704                        aac_fib_init(fibctx);
1705
1706                        cmd = (struct aac_pause *) fib_data(fibctx);
1707
1708                        cmd->command = cpu_to_le32(VM_ContainerConfig);
1709                        cmd->type = cpu_to_le32(CT_PAUSE_IO);
1710                        cmd->timeout = cpu_to_le32(1);
1711                        cmd->min = cpu_to_le32(1);
1712                        cmd->noRescan = cpu_to_le32(1);
1713                        cmd->count = cpu_to_le32(0);
1714
1715                        status = aac_fib_send(ContainerCommand,
1716                          fibctx,
1717                          sizeof(struct aac_pause),
1718                          FsaNormal,
1719                          -2 /* Timeout silently */, 1,
1720                          NULL, NULL);
1721
1722                        if (status >= 0)
1723                                aac_fib_complete(fibctx);
1724                        /* FIB should be freed only after getting
1725                         * the response from the F/W */
1726                        if (status != -ERESTARTSYS)
1727                                aac_fib_free(fibctx);
1728                }
1729        }
1730
1731        return retval;
1732}
1733
1734int aac_check_health(struct aac_dev * aac)
1735{
1736        int BlinkLED;
1737        unsigned long time_now, flagv = 0;
1738        struct list_head * entry;
1739
1740        /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1741        if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1742                return 0;
1743
1744        if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1745                spin_unlock_irqrestore(&aac->fib_lock, flagv);
1746                return 0; /* OK */
1747        }
1748
1749        aac->in_reset = 1;
1750
1751        /* Fake up an AIF:
1752         *      aac_aifcmd.command = AifCmdEventNotify = 1
1753         *      aac_aifcmd.seqnum = 0xFFFFFFFF
1754         *      aac_aifcmd.data[0] = AifEnExpEvent = 23
1755         *      aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1756         *      aac.aifcmd.data[2] = AifHighPriority = 3
1757         *      aac.aifcmd.data[3] = BlinkLED
1758         */
1759
1760        time_now = jiffies/HZ;
1761        entry = aac->fib_list.next;
1762
1763        /*
1764         * For each Context that is on the
1765         * fibctxList, make a copy of the
1766         * fib, and then set the event to wake up the
1767         * thread that is waiting for it.
1768         */
1769        while (entry != &aac->fib_list) {
1770                /*
1771                 * Extract the fibctx
1772                 */
1773                struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1774                struct hw_fib * hw_fib;
1775                struct fib * fib;
1776                /*
1777                 * Check if the queue is getting
1778                 * backlogged
1779                 */
1780                if (fibctx->count > 20) {
1781                        /*
1782                         * It's *not* jiffies folks,
1783                         * but jiffies / HZ, so do not
1784                         * panic ...
1785                         */
1786                        u32 time_last = fibctx->jiffies;
1787                        /*
1788                         * Has it been > 2 minutes
1789                         * since the last read off
1790                         * the queue?
1791                         */
1792                        if ((time_now - time_last) > aif_timeout) {
1793                                entry = entry->next;
1794                                aac_close_fib_context(aac, fibctx);
1795                                continue;
1796                        }
1797                }
1798                /*
1799                 * Warning: no sleep allowed while
1800                 * holding spinlock
1801                 */
1802                hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1803                fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1804                if (fib && hw_fib) {
1805                        struct aac_aifcmd * aif;
1806
1807                        fib->hw_fib_va = hw_fib;
1808                        fib->dev = aac;
1809                        aac_fib_init(fib);
1810                        fib->type = FSAFS_NTC_FIB_CONTEXT;
1811                        fib->size = sizeof (struct fib);
1812                        fib->data = hw_fib->data;
1813                        aif = (struct aac_aifcmd *)hw_fib->data;
1814                        aif->command = cpu_to_le32(AifCmdEventNotify);
1815                        aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1816                        ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1817                        ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1818                        ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1819                        ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1820
1821                        /*
1822                         * Put the FIB onto the
1823                         * fibctx's fibs
1824                         */
1825                        list_add_tail(&fib->fiblink, &fibctx->fib_list);
1826                        fibctx->count++;
1827                        /*
1828                         * Set the event to wake up the
1829                         * thread that will waiting.
1830                         */
1831                        up(&fibctx->wait_sem);
1832                } else {
1833                        printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1834                        kfree(fib);
1835                        kfree(hw_fib);
1836                }
1837                entry = entry->next;
1838        }
1839
1840        spin_unlock_irqrestore(&aac->fib_lock, flagv);
1841
1842        if (BlinkLED < 0) {
1843                printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n",
1844                                aac->name, BlinkLED);
1845                goto out;
1846        }
1847
1848        printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1849
1850out:
1851        aac->in_reset = 0;
1852        return BlinkLED;
1853}
1854
1855static inline int is_safw_raid_volume(struct aac_dev *aac, int bus, int target)
1856{
1857        return bus == CONTAINER_CHANNEL && target < aac->maximum_num_containers;
1858}
1859
1860static struct scsi_device *aac_lookup_safw_scsi_device(struct aac_dev *dev,
1861                                                                int bus,
1862                                                                int target)
1863{
1864        if (bus != CONTAINER_CHANNEL)
1865                bus = aac_phys_to_logical(bus);
1866
1867        return scsi_device_lookup(dev->scsi_host_ptr, bus, target, 0);
1868}
1869
1870static int aac_add_safw_device(struct aac_dev *dev, int bus, int target)
1871{
1872        if (bus != CONTAINER_CHANNEL)
1873                bus = aac_phys_to_logical(bus);
1874
1875        return scsi_add_device(dev->scsi_host_ptr, bus, target, 0);
1876}
1877
1878static void aac_put_safw_scsi_device(struct scsi_device *sdev)
1879{
1880        if (sdev)
1881                scsi_device_put(sdev);
1882}
1883
1884static void aac_remove_safw_device(struct aac_dev *dev, int bus, int target)
1885{
1886        struct scsi_device *sdev;
1887
1888        sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1889        scsi_remove_device(sdev);
1890        aac_put_safw_scsi_device(sdev);
1891}
1892
1893static inline int aac_is_safw_scan_count_equal(struct aac_dev *dev,
1894        int bus, int target)
1895{
1896        return dev->hba_map[bus][target].scan_counter == dev->scan_counter;
1897}
1898
1899static int aac_is_safw_target_valid(struct aac_dev *dev, int bus, int target)
1900{
1901        if (is_safw_raid_volume(dev, bus, target))
1902                return dev->fsa_dev[target].valid;
1903        else
1904                return aac_is_safw_scan_count_equal(dev, bus, target);
1905}
1906
1907static int aac_is_safw_device_exposed(struct aac_dev *dev, int bus, int target)
1908{
1909        int is_exposed = 0;
1910        struct scsi_device *sdev;
1911
1912        sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1913        if (sdev)
1914                is_exposed = 1;
1915        aac_put_safw_scsi_device(sdev);
1916
1917        return is_exposed;
1918}
1919
1920static int aac_update_safw_host_devices(struct aac_dev *dev)
1921{
1922        int i;
1923        int bus;
1924        int target;
1925        int is_exposed = 0;
1926        int rcode = 0;
1927
1928        rcode = aac_setup_safw_adapter(dev);
1929        if (unlikely(rcode < 0)) {
1930                goto out;
1931        }
1932
1933        for (i = 0; i < AAC_BUS_TARGET_LOOP; i++) {
1934
1935                bus = get_bus_number(i);
1936                target = get_target_number(i);
1937
1938                is_exposed = aac_is_safw_device_exposed(dev, bus, target);
1939
1940                if (aac_is_safw_target_valid(dev, bus, target) && !is_exposed)
1941                        aac_add_safw_device(dev, bus, target);
1942                else if (!aac_is_safw_target_valid(dev, bus, target) &&
1943                                                                is_exposed)
1944                        aac_remove_safw_device(dev, bus, target);
1945        }
1946out:
1947        return rcode;
1948}
1949
1950static int aac_scan_safw_host(struct aac_dev *dev)
1951{
1952        int rcode = 0;
1953
1954        rcode = aac_update_safw_host_devices(dev);
1955        if (rcode)
1956                aac_schedule_safw_scan_worker(dev);
1957
1958        return rcode;
1959}
1960
1961int aac_scan_host(struct aac_dev *dev)
1962{
1963        int rcode = 0;
1964
1965        mutex_lock(&dev->scan_mutex);
1966        if (dev->sa_firmware)
1967                rcode = aac_scan_safw_host(dev);
1968        else
1969                scsi_scan_host(dev->scsi_host_ptr);
1970        mutex_unlock(&dev->scan_mutex);
1971
1972        return rcode;
1973}
1974
1975/**
1976 *      aac_handle_sa_aif       Handle a message from the firmware
1977 *      @dev: Which adapter this fib is from
1978 *      @fibptr: Pointer to fibptr from adapter
1979 *
1980 *      This routine handles a driver notify fib from the adapter and
1981 *      dispatches it to the appropriate routine for handling.
1982 */
1983static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr)
1984{
1985        int i;
1986        u32 events = 0;
1987
1988        if (fibptr->hbacmd_size & SA_AIF_HOTPLUG)
1989                events = SA_AIF_HOTPLUG;
1990        else if (fibptr->hbacmd_size & SA_AIF_HARDWARE)
1991                events = SA_AIF_HARDWARE;
1992        else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE)
1993                events = SA_AIF_PDEV_CHANGE;
1994        else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE)
1995                events = SA_AIF_LDEV_CHANGE;
1996        else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE)
1997                events = SA_AIF_BPSTAT_CHANGE;
1998        else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE)
1999                events = SA_AIF_BPCFG_CHANGE;
2000
2001        switch (events) {
2002        case SA_AIF_HOTPLUG:
2003        case SA_AIF_HARDWARE:
2004        case SA_AIF_PDEV_CHANGE:
2005        case SA_AIF_LDEV_CHANGE:
2006        case SA_AIF_BPCFG_CHANGE:
2007
2008                aac_scan_host(dev);
2009
2010                break;
2011
2012        case SA_AIF_BPSTAT_CHANGE:
2013                /* currently do nothing */
2014                break;
2015        }
2016
2017        for (i = 1; i <= 10; ++i) {
2018                events = src_readl(dev, MUnit.IDR);
2019                if (events & (1<<23)) {
2020                        pr_warn(" AIF not cleared by firmware - %d/%d)\n",
2021                                i, 10);
2022                        ssleep(1);
2023                }
2024        }
2025}
2026
2027static int get_fib_count(struct aac_dev *dev)
2028{
2029        unsigned int num = 0;
2030        struct list_head *entry;
2031        unsigned long flagv;
2032
2033        /*
2034         * Warning: no sleep allowed while
2035         * holding spinlock. We take the estimate
2036         * and pre-allocate a set of fibs outside the
2037         * lock.
2038         */
2039        num = le32_to_cpu(dev->init->r7.adapter_fibs_size)
2040                        / sizeof(struct hw_fib); /* some extra */
2041        spin_lock_irqsave(&dev->fib_lock, flagv);
2042        entry = dev->fib_list.next;
2043        while (entry != &dev->fib_list) {
2044                entry = entry->next;
2045                ++num;
2046        }
2047        spin_unlock_irqrestore(&dev->fib_lock, flagv);
2048
2049        return num;
2050}
2051
2052static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool,
2053                                                struct fib **fib_pool,
2054                                                unsigned int num)
2055{
2056        struct hw_fib **hw_fib_p;
2057        struct fib **fib_p;
2058
2059        hw_fib_p = hw_fib_pool;
2060        fib_p = fib_pool;
2061        while (hw_fib_p < &hw_fib_pool[num]) {
2062                *(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL);
2063                if (!(*(hw_fib_p++))) {
2064                        --hw_fib_p;
2065                        break;
2066                }
2067
2068                *(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL);
2069                if (!(*(fib_p++))) {
2070                        kfree(*(--hw_fib_p));
2071                        break;
2072                }
2073        }
2074
2075        /*
2076         * Get the actual number of allocated fibs
2077         */
2078        num = hw_fib_p - hw_fib_pool;
2079        return num;
2080}
2081
2082static void wakeup_fibctx_threads(struct aac_dev *dev,
2083                                                struct hw_fib **hw_fib_pool,
2084                                                struct fib **fib_pool,
2085                                                struct fib *fib,
2086                                                struct hw_fib *hw_fib,
2087                                                unsigned int num)
2088{
2089        unsigned long flagv;
2090        struct list_head *entry;
2091        struct hw_fib **hw_fib_p;
2092        struct fib **fib_p;
2093        u32 time_now, time_last;
2094        struct hw_fib *hw_newfib;
2095        struct fib *newfib;
2096        struct aac_fib_context *fibctx;
2097
2098        time_now = jiffies/HZ;
2099        spin_lock_irqsave(&dev->fib_lock, flagv);
2100        entry = dev->fib_list.next;
2101        /*
2102         * For each Context that is on the
2103         * fibctxList, make a copy of the
2104         * fib, and then set the event to wake up the
2105         * thread that is waiting for it.
2106         */
2107
2108        hw_fib_p = hw_fib_pool;
2109        fib_p = fib_pool;
2110        while (entry != &dev->fib_list) {
2111                /*
2112                 * Extract the fibctx
2113                 */
2114                fibctx = list_entry(entry, struct aac_fib_context,
2115                                next);
2116                /*
2117                 * Check if the queue is getting
2118                 * backlogged
2119                 */
2120                if (fibctx->count > 20) {
2121                        /*
2122                         * It's *not* jiffies folks,
2123                         * but jiffies / HZ so do not
2124                         * panic ...
2125                         */
2126                        time_last = fibctx->jiffies;
2127                        /*
2128                         * Has it been > 2 minutes
2129                         * since the last read off
2130                         * the queue?
2131                         */
2132                        if ((time_now - time_last) > aif_timeout) {
2133                                entry = entry->next;
2134                                aac_close_fib_context(dev, fibctx);
2135                                continue;
2136                        }
2137                }
2138                /*
2139                 * Warning: no sleep allowed while
2140                 * holding spinlock
2141                 */
2142                if (hw_fib_p >= &hw_fib_pool[num]) {
2143                        pr_warn("aifd: didn't allocate NewFib\n");
2144                        entry = entry->next;
2145                        continue;
2146                }
2147
2148                hw_newfib = *hw_fib_p;
2149                *(hw_fib_p++) = NULL;
2150                newfib = *fib_p;
2151                *(fib_p++) = NULL;
2152                /*
2153                 * Make the copy of the FIB
2154                 */
2155                memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
2156                memcpy(newfib, fib, sizeof(struct fib));
2157                newfib->hw_fib_va = hw_newfib;
2158                /*
2159                 * Put the FIB onto the
2160                 * fibctx's fibs
2161                 */
2162                list_add_tail(&newfib->fiblink, &fibctx->fib_list);
2163                fibctx->count++;
2164                /*
2165                 * Set the event to wake up the
2166                 * thread that is waiting.
2167                 */
2168                up(&fibctx->wait_sem);
2169
2170                entry = entry->next;
2171        }
2172        /*
2173         *      Set the status of this FIB
2174         */
2175        *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2176        aac_fib_adapter_complete(fib, sizeof(u32));
2177        spin_unlock_irqrestore(&dev->fib_lock, flagv);
2178
2179}
2180
2181static void aac_process_events(struct aac_dev *dev)
2182{
2183        struct hw_fib *hw_fib;
2184        struct fib *fib;
2185        unsigned long flags;
2186        spinlock_t *t_lock;
2187
2188        t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2189        spin_lock_irqsave(t_lock, flags);
2190
2191        while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
2192                struct list_head *entry;
2193                struct aac_aifcmd *aifcmd;
2194                unsigned int  num;
2195                struct hw_fib **hw_fib_pool, **hw_fib_p;
2196                struct fib **fib_pool, **fib_p;
2197
2198                set_current_state(TASK_RUNNING);
2199
2200                entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
2201                list_del(entry);
2202
2203                t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2204                spin_unlock_irqrestore(t_lock, flags);
2205
2206                fib = list_entry(entry, struct fib, fiblink);
2207                hw_fib = fib->hw_fib_va;
2208                if (dev->sa_firmware) {
2209                        /* Thor AIF */
2210                        aac_handle_sa_aif(dev, fib);
2211                        aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2212                        goto free_fib;
2213                }
2214                /*
2215                 *      We will process the FIB here or pass it to a
2216                 *      worker thread that is TBD. We Really can't
2217                 *      do anything at this point since we don't have
2218                 *      anything defined for this thread to do.
2219                 */
2220                memset(fib, 0, sizeof(struct fib));
2221                fib->type = FSAFS_NTC_FIB_CONTEXT;
2222                fib->size = sizeof(struct fib);
2223                fib->hw_fib_va = hw_fib;
2224                fib->data = hw_fib->data;
2225                fib->dev = dev;
2226                /*
2227                 *      We only handle AifRequest fibs from the adapter.
2228                 */
2229
2230                aifcmd = (struct aac_aifcmd *) hw_fib->data;
2231                if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
2232                        /* Handle Driver Notify Events */
2233                        aac_handle_aif(dev, fib);
2234                        *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2235                        aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2236                        goto free_fib;
2237                }
2238                /*
2239                 * The u32 here is important and intended. We are using
2240                 * 32bit wrapping time to fit the adapter field
2241                 */
2242
2243                /* Sniff events */
2244                if (aifcmd->command == cpu_to_le32(AifCmdEventNotify)
2245                 || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) {
2246                        aac_handle_aif(dev, fib);
2247                }
2248
2249                /*
2250                 * get number of fibs to process
2251                 */
2252                num = get_fib_count(dev);
2253                if (!num)
2254                        goto free_fib;
2255
2256                hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *),
2257                                                GFP_KERNEL);
2258                if (!hw_fib_pool)
2259                        goto free_fib;
2260
2261                fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL);
2262                if (!fib_pool)
2263                        goto free_hw_fib_pool;
2264
2265                /*
2266                 * Fill up fib pointer pools with actual fibs
2267                 * and hw_fibs
2268                 */
2269                num = fillup_pools(dev, hw_fib_pool, fib_pool, num);
2270                if (!num)
2271                        goto free_mem;
2272
2273                /*
2274                 * wakeup the thread that is waiting for
2275                 * the response from fw (ioctl)
2276                 */
2277                wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool,
2278                                                            fib, hw_fib, num);
2279
2280free_mem:
2281                /* Free up the remaining resources */
2282                hw_fib_p = hw_fib_pool;
2283                fib_p = fib_pool;
2284                while (hw_fib_p < &hw_fib_pool[num]) {
2285                        kfree(*hw_fib_p);
2286                        kfree(*fib_p);
2287                        ++fib_p;
2288                        ++hw_fib_p;
2289                }
2290                kfree(fib_pool);
2291free_hw_fib_pool:
2292                kfree(hw_fib_pool);
2293free_fib:
2294                kfree(fib);
2295                t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2296                spin_lock_irqsave(t_lock, flags);
2297        }
2298        /*
2299         *      There are no more AIF's
2300         */
2301        t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2302        spin_unlock_irqrestore(t_lock, flags);
2303}
2304
2305static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str,
2306                                                        u32 datasize)
2307{
2308        struct aac_srb *srbcmd;
2309        struct sgmap64 *sg64;
2310        dma_addr_t addr;
2311        char *dma_buf;
2312        struct fib *fibptr;
2313        int ret = -ENOMEM;
2314        u32 vbus, vid;
2315
2316        fibptr = aac_fib_alloc(dev);
2317        if (!fibptr)
2318                goto out;
2319
2320        dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
2321                                     GFP_KERNEL);
2322        if (!dma_buf)
2323                goto fib_free_out;
2324
2325        aac_fib_init(fibptr);
2326
2327        vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus);
2328        vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target);
2329
2330        srbcmd = (struct aac_srb *)fib_data(fibptr);
2331
2332        srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
2333        srbcmd->channel = cpu_to_le32(vbus);
2334        srbcmd->id = cpu_to_le32(vid);
2335        srbcmd->lun = 0;
2336        srbcmd->flags = cpu_to_le32(SRB_DataOut);
2337        srbcmd->timeout = cpu_to_le32(10);
2338        srbcmd->retry_limit = 0;
2339        srbcmd->cdb_size = cpu_to_le32(12);
2340        srbcmd->count = cpu_to_le32(datasize);
2341
2342        memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
2343        srbcmd->cdb[0] = BMIC_OUT;
2344        srbcmd->cdb[6] = WRITE_HOST_WELLNESS;
2345        memcpy(dma_buf, (char *)wellness_str, datasize);
2346
2347        sg64 = (struct sgmap64 *)&srbcmd->sg;
2348        sg64->count = cpu_to_le32(1);
2349        sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
2350        sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2351        sg64->sg[0].count = cpu_to_le32(datasize);
2352
2353        ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb),
2354                                FsaNormal, 1, 1, NULL, NULL);
2355
2356        dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr);
2357
2358        /*
2359         * Do not set XferState to zero unless
2360         * receives a response from F/W
2361         */
2362        if (ret >= 0)
2363                aac_fib_complete(fibptr);
2364
2365        /*
2366         * FIB should be freed only after
2367         * getting the response from the F/W
2368         */
2369        if (ret != -ERESTARTSYS)
2370                goto fib_free_out;
2371
2372out:
2373        return ret;
2374fib_free_out:
2375        aac_fib_free(fibptr);
2376        goto out;
2377}
2378
2379int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now)
2380{
2381        struct tm cur_tm;
2382        char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ";
2383        u32 datasize = sizeof(wellness_str);
2384        time64_t local_time;
2385        int ret = -ENODEV;
2386
2387        if (!dev->sa_firmware)
2388                goto out;
2389
2390        local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60));
2391        time64_to_tm(local_time, 0, &cur_tm);
2392        cur_tm.tm_mon += 1;
2393        cur_tm.tm_year += 1900;
2394        wellness_str[8] = bin2bcd(cur_tm.tm_hour);
2395        wellness_str[9] = bin2bcd(cur_tm.tm_min);
2396        wellness_str[10] = bin2bcd(cur_tm.tm_sec);
2397        wellness_str[12] = bin2bcd(cur_tm.tm_mon);
2398        wellness_str[13] = bin2bcd(cur_tm.tm_mday);
2399        wellness_str[14] = bin2bcd(cur_tm.tm_year / 100);
2400        wellness_str[15] = bin2bcd(cur_tm.tm_year % 100);
2401
2402        ret = aac_send_wellness_command(dev, wellness_str, datasize);
2403
2404out:
2405        return ret;
2406}
2407
2408int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now)
2409{
2410        int ret = -ENOMEM;
2411        struct fib *fibptr;
2412        __le32 *info;
2413
2414        fibptr = aac_fib_alloc(dev);
2415        if (!fibptr)
2416                goto out;
2417
2418        aac_fib_init(fibptr);
2419        info = (__le32 *)fib_data(fibptr);
2420        *info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */
2421        ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal,
2422                                        1, 1, NULL, NULL);
2423
2424        /*
2425         * Do not set XferState to zero unless
2426         * receives a response from F/W
2427         */
2428        if (ret >= 0)
2429                aac_fib_complete(fibptr);
2430
2431        /*
2432         * FIB should be freed only after
2433         * getting the response from the F/W
2434         */
2435        if (ret != -ERESTARTSYS)
2436                aac_fib_free(fibptr);
2437
2438out:
2439        return ret;
2440}
2441
2442/**
2443 *      aac_command_thread      -       command processing thread
2444 *      @dev: Adapter to monitor
2445 *
2446 *      Waits on the commandready event in it's queue. When the event gets set
2447 *      it will pull FIBs off it's queue. It will continue to pull FIBs off
2448 *      until the queue is empty. When the queue is empty it will wait for
2449 *      more FIBs.
2450 */
2451
2452int aac_command_thread(void *data)
2453{
2454        struct aac_dev *dev = data;
2455        DECLARE_WAITQUEUE(wait, current);
2456        unsigned long next_jiffies = jiffies + HZ;
2457        unsigned long next_check_jiffies = next_jiffies;
2458        long difference = HZ;
2459
2460        /*
2461         *      We can only have one thread per adapter for AIF's.
2462         */
2463        if (dev->aif_thread)
2464                return -EINVAL;
2465
2466        /*
2467         *      Let the DPC know it has a place to send the AIF's to.
2468         */
2469        dev->aif_thread = 1;
2470        add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2471        set_current_state(TASK_INTERRUPTIBLE);
2472        dprintk ((KERN_INFO "aac_command_thread start\n"));
2473        while (1) {
2474
2475                aac_process_events(dev);
2476
2477                /*
2478                 *      Background activity
2479                 */
2480                if ((time_before(next_check_jiffies,next_jiffies))
2481                 && ((difference = next_check_jiffies - jiffies) <= 0)) {
2482                        next_check_jiffies = next_jiffies;
2483                        if (aac_adapter_check_health(dev) == 0) {
2484                                difference = ((long)(unsigned)check_interval)
2485                                           * HZ;
2486                                next_check_jiffies = jiffies + difference;
2487                        } else if (!dev->queues)
2488                                break;
2489                }
2490                if (!time_before(next_check_jiffies,next_jiffies)
2491                 && ((difference = next_jiffies - jiffies) <= 0)) {
2492                        struct timespec64 now;
2493                        int ret;
2494
2495                        /* Don't even try to talk to adapter if its sick */
2496                        ret = aac_adapter_check_health(dev);
2497                        if (ret || !dev->queues)
2498                                break;
2499                        next_check_jiffies = jiffies
2500                                           + ((long)(unsigned)check_interval)
2501                                           * HZ;
2502                        ktime_get_real_ts64(&now);
2503
2504                        /* Synchronize our watches */
2505                        if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec)
2506                         && (now.tv_nsec > (NSEC_PER_SEC / HZ)))
2507                                difference = HZ + HZ / 2 -
2508                                             now.tv_nsec / (NSEC_PER_SEC / HZ);
2509                        else {
2510                                if (now.tv_nsec > NSEC_PER_SEC / 2)
2511                                        ++now.tv_sec;
2512
2513                                if (dev->sa_firmware)
2514                                        ret =
2515                                        aac_send_safw_hostttime(dev, &now);
2516                                else
2517                                        ret = aac_send_hosttime(dev, &now);
2518
2519                                difference = (long)(unsigned)update_interval*HZ;
2520                        }
2521                        next_jiffies = jiffies + difference;
2522                        if (time_before(next_check_jiffies,next_jiffies))
2523                                difference = next_check_jiffies - jiffies;
2524                }
2525                if (difference <= 0)
2526                        difference = 1;
2527                set_current_state(TASK_INTERRUPTIBLE);
2528
2529                if (kthread_should_stop())
2530                        break;
2531
2532                /*
2533                 * we probably want usleep_range() here instead of the
2534                 * jiffies computation
2535                 */
2536                schedule_timeout(difference);
2537
2538                if (kthread_should_stop())
2539                        break;
2540        }
2541        if (dev->queues)
2542                remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2543        dev->aif_thread = 0;
2544        return 0;
2545}
2546
2547int aac_acquire_irq(struct aac_dev *dev)
2548{
2549        int i;
2550        int j;
2551        int ret = 0;
2552
2553        if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
2554                for (i = 0; i < dev->max_msix; i++) {
2555                        dev->aac_msix[i].vector_no = i;
2556                        dev->aac_msix[i].dev = dev;
2557                        if (request_irq(pci_irq_vector(dev->pdev, i),
2558                                        dev->a_ops.adapter_intr,
2559                                        0, "aacraid", &(dev->aac_msix[i]))) {
2560                                printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
2561                                                dev->name, dev->id, i);
2562                                for (j = 0 ; j < i ; j++)
2563                                        free_irq(pci_irq_vector(dev->pdev, j),
2564                                                 &(dev->aac_msix[j]));
2565                                pci_disable_msix(dev->pdev);
2566                                ret = -1;
2567                        }
2568                }
2569        } else {
2570                dev->aac_msix[0].vector_no = 0;
2571                dev->aac_msix[0].dev = dev;
2572
2573                if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
2574                        IRQF_SHARED, "aacraid",
2575                        &(dev->aac_msix[0])) < 0) {
2576                        if (dev->msi)
2577                                pci_disable_msi(dev->pdev);
2578                        printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
2579                                        dev->name, dev->id);
2580                        ret = -1;
2581                }
2582        }
2583        return ret;
2584}
2585
2586void aac_free_irq(struct aac_dev *dev)
2587{
2588        int i;
2589        int cpu;
2590
2591        cpu = cpumask_first(cpu_online_mask);
2592        if (aac_is_src(dev)) {
2593                if (dev->max_msix > 1) {
2594                        for (i = 0; i < dev->max_msix; i++)
2595                                free_irq(pci_irq_vector(dev->pdev, i),
2596                                         &(dev->aac_msix[i]));
2597                } else {
2598                        free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2599                }
2600        } else {
2601                free_irq(dev->pdev->irq, dev);
2602        }
2603        if (dev->msi)
2604                pci_disable_msi(dev->pdev);
2605        else if (dev->max_msix > 1)
2606                pci_disable_msix(dev->pdev);
2607}
2608