linux/drivers/usb/dwc2/hcd.c
<<
>>
Prefs
   1// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
   2/*
   3 * hcd.c - DesignWare HS OTG Controller host-mode routines
   4 *
   5 * Copyright (C) 2004-2013 Synopsys, Inc.
   6 *
   7 * Redistribution and use in source and binary forms, with or without
   8 * modification, are permitted provided that the following conditions
   9 * are met:
  10 * 1. Redistributions of source code must retain the above copyright
  11 *    notice, this list of conditions, and the following disclaimer,
  12 *    without modification.
  13 * 2. Redistributions in binary form must reproduce the above copyright
  14 *    notice, this list of conditions and the following disclaimer in the
  15 *    documentation and/or other materials provided with the distribution.
  16 * 3. The names of the above-listed copyright holders may not be used
  17 *    to endorse or promote products derived from this software without
  18 *    specific prior written permission.
  19 *
  20 * ALTERNATIVELY, this software may be distributed under the terms of the
  21 * GNU General Public License ("GPL") as published by the Free Software
  22 * Foundation; either version 2 of the License, or (at your option) any
  23 * later version.
  24 *
  25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
  26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
  27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
  29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  36 */
  37
  38/*
  39 * This file contains the core HCD code, and implements the Linux hc_driver
  40 * API
  41 */
  42#include <linux/kernel.h>
  43#include <linux/module.h>
  44#include <linux/spinlock.h>
  45#include <linux/interrupt.h>
  46#include <linux/platform_device.h>
  47#include <linux/dma-mapping.h>
  48#include <linux/delay.h>
  49#include <linux/io.h>
  50#include <linux/slab.h>
  51#include <linux/usb.h>
  52
  53#include <linux/usb/hcd.h>
  54#include <linux/usb/ch11.h>
  55
  56#include "core.h"
  57#include "hcd.h"
  58
  59static void dwc2_port_resume(struct dwc2_hsotg *hsotg);
  60
  61/*
  62 * =========================================================================
  63 *  Host Core Layer Functions
  64 * =========================================================================
  65 */
  66
  67/**
  68 * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
  69 * used in both device and host modes
  70 *
  71 * @hsotg: Programming view of the DWC_otg controller
  72 */
  73static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
  74{
  75        u32 intmsk;
  76
  77        /* Clear any pending OTG Interrupts */
  78        dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
  79
  80        /* Clear any pending interrupts */
  81        dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
  82
  83        /* Enable the interrupts in the GINTMSK */
  84        intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
  85
  86        if (!hsotg->params.host_dma)
  87                intmsk |= GINTSTS_RXFLVL;
  88        if (!hsotg->params.external_id_pin_ctl)
  89                intmsk |= GINTSTS_CONIDSTSCHNG;
  90
  91        intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
  92                  GINTSTS_SESSREQINT;
  93
  94        if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm)
  95                intmsk |= GINTSTS_LPMTRANRCVD;
  96
  97        dwc2_writel(intmsk, hsotg->regs + GINTMSK);
  98}
  99
 100/*
 101 * Initializes the FSLSPClkSel field of the HCFG register depending on the
 102 * PHY type
 103 */
 104static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg)
 105{
 106        u32 hcfg, val;
 107
 108        if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
 109             hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
 110             hsotg->params.ulpi_fs_ls) ||
 111            hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) {
 112                /* Full speed PHY */
 113                val = HCFG_FSLSPCLKSEL_48_MHZ;
 114        } else {
 115                /* High speed PHY running at full speed or high speed */
 116                val = HCFG_FSLSPCLKSEL_30_60_MHZ;
 117        }
 118
 119        dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val);
 120        hcfg = dwc2_readl(hsotg->regs + HCFG);
 121        hcfg &= ~HCFG_FSLSPCLKSEL_MASK;
 122        hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT;
 123        dwc2_writel(hcfg, hsotg->regs + HCFG);
 124}
 125
 126static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
 127{
 128        u32 usbcfg, ggpio, i2cctl;
 129        int retval = 0;
 130
 131        /*
 132         * core_init() is now called on every switch so only call the
 133         * following for the first time through
 134         */
 135        if (select_phy) {
 136                dev_dbg(hsotg->dev, "FS PHY selected\n");
 137
 138                usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
 139                if (!(usbcfg & GUSBCFG_PHYSEL)) {
 140                        usbcfg |= GUSBCFG_PHYSEL;
 141                        dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
 142
 143                        /* Reset after a PHY select */
 144                        retval = dwc2_core_reset(hsotg, false);
 145
 146                        if (retval) {
 147                                dev_err(hsotg->dev,
 148                                        "%s: Reset failed, aborting", __func__);
 149                                return retval;
 150                        }
 151                }
 152
 153                if (hsotg->params.activate_stm_fs_transceiver) {
 154                        ggpio = dwc2_readl(hsotg->regs + GGPIO);
 155                        if (!(ggpio & GGPIO_STM32_OTG_GCCFG_PWRDWN)) {
 156                                dev_dbg(hsotg->dev, "Activating transceiver\n");
 157                                /*
 158                                 * STM32F4x9 uses the GGPIO register as general
 159                                 * core configuration register.
 160                                 */
 161                                ggpio |= GGPIO_STM32_OTG_GCCFG_PWRDWN;
 162                                dwc2_writel(ggpio, hsotg->regs + GGPIO);
 163                        }
 164                }
 165        }
 166
 167        /*
 168         * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
 169         * do this on HNP Dev/Host mode switches (done in dev_init and
 170         * host_init).
 171         */
 172        if (dwc2_is_host_mode(hsotg))
 173                dwc2_init_fs_ls_pclk_sel(hsotg);
 174
 175        if (hsotg->params.i2c_enable) {
 176                dev_dbg(hsotg->dev, "FS PHY enabling I2C\n");
 177
 178                /* Program GUSBCFG.OtgUtmiFsSel to I2C */
 179                usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
 180                usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL;
 181                dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
 182
 183                /* Program GI2CCTL.I2CEn */
 184                i2cctl = dwc2_readl(hsotg->regs + GI2CCTL);
 185                i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK;
 186                i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT;
 187                i2cctl &= ~GI2CCTL_I2CEN;
 188                dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
 189                i2cctl |= GI2CCTL_I2CEN;
 190                dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
 191        }
 192
 193        return retval;
 194}
 195
 196static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
 197{
 198        u32 usbcfg, usbcfg_old;
 199        int retval = 0;
 200
 201        if (!select_phy)
 202                return 0;
 203
 204        usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
 205        usbcfg_old = usbcfg;
 206
 207        /*
 208         * HS PHY parameters. These parameters are preserved during soft reset
 209         * so only program the first time. Do a soft reset immediately after
 210         * setting phyif.
 211         */
 212        switch (hsotg->params.phy_type) {
 213        case DWC2_PHY_TYPE_PARAM_ULPI:
 214                /* ULPI interface */
 215                dev_dbg(hsotg->dev, "HS ULPI PHY selected\n");
 216                usbcfg |= GUSBCFG_ULPI_UTMI_SEL;
 217                usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL);
 218                if (hsotg->params.phy_ulpi_ddr)
 219                        usbcfg |= GUSBCFG_DDRSEL;
 220
 221                /* Set external VBUS indicator as needed. */
 222                if (hsotg->params.oc_disable)
 223                        usbcfg |= (GUSBCFG_ULPI_INT_VBUS_IND |
 224                                   GUSBCFG_INDICATORPASSTHROUGH);
 225                break;
 226        case DWC2_PHY_TYPE_PARAM_UTMI:
 227                /* UTMI+ interface */
 228                dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n");
 229                usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16);
 230                if (hsotg->params.phy_utmi_width == 16)
 231                        usbcfg |= GUSBCFG_PHYIF16;
 232                break;
 233        default:
 234                dev_err(hsotg->dev, "FS PHY selected at HS!\n");
 235                break;
 236        }
 237
 238        if (usbcfg != usbcfg_old) {
 239                dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
 240
 241                /* Reset after setting the PHY parameters */
 242                retval = dwc2_core_reset(hsotg, false);
 243                if (retval) {
 244                        dev_err(hsotg->dev,
 245                                "%s: Reset failed, aborting", __func__);
 246                        return retval;
 247                }
 248        }
 249
 250        return retval;
 251}
 252
 253static int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
 254{
 255        u32 usbcfg;
 256        int retval = 0;
 257
 258        if ((hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
 259             hsotg->params.speed == DWC2_SPEED_PARAM_LOW) &&
 260            hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) {
 261                /* If FS/LS mode with FS/LS PHY */
 262                retval = dwc2_fs_phy_init(hsotg, select_phy);
 263                if (retval)
 264                        return retval;
 265        } else {
 266                /* High speed PHY */
 267                retval = dwc2_hs_phy_init(hsotg, select_phy);
 268                if (retval)
 269                        return retval;
 270        }
 271
 272        if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
 273            hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
 274            hsotg->params.ulpi_fs_ls) {
 275                dev_dbg(hsotg->dev, "Setting ULPI FSLS\n");
 276                usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
 277                usbcfg |= GUSBCFG_ULPI_FS_LS;
 278                usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M;
 279                dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
 280        } else {
 281                usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
 282                usbcfg &= ~GUSBCFG_ULPI_FS_LS;
 283                usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M;
 284                dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
 285        }
 286
 287        return retval;
 288}
 289
 290static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
 291{
 292        u32 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
 293
 294        switch (hsotg->hw_params.arch) {
 295        case GHWCFG2_EXT_DMA_ARCH:
 296                dev_err(hsotg->dev, "External DMA Mode not supported\n");
 297                return -EINVAL;
 298
 299        case GHWCFG2_INT_DMA_ARCH:
 300                dev_dbg(hsotg->dev, "Internal DMA Mode\n");
 301                if (hsotg->params.ahbcfg != -1) {
 302                        ahbcfg &= GAHBCFG_CTRL_MASK;
 303                        ahbcfg |= hsotg->params.ahbcfg &
 304                                  ~GAHBCFG_CTRL_MASK;
 305                }
 306                break;
 307
 308        case GHWCFG2_SLAVE_ONLY_ARCH:
 309        default:
 310                dev_dbg(hsotg->dev, "Slave Only Mode\n");
 311                break;
 312        }
 313
 314        if (hsotg->params.host_dma)
 315                ahbcfg |= GAHBCFG_DMA_EN;
 316        else
 317                hsotg->params.dma_desc_enable = false;
 318
 319        dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
 320
 321        return 0;
 322}
 323
 324static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
 325{
 326        u32 usbcfg;
 327
 328        usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
 329        usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
 330
 331        switch (hsotg->hw_params.op_mode) {
 332        case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
 333                if (hsotg->params.otg_cap ==
 334                                DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
 335                        usbcfg |= GUSBCFG_HNPCAP;
 336                if (hsotg->params.otg_cap !=
 337                                DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
 338                        usbcfg |= GUSBCFG_SRPCAP;
 339                break;
 340
 341        case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
 342        case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
 343        case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
 344                if (hsotg->params.otg_cap !=
 345                                DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
 346                        usbcfg |= GUSBCFG_SRPCAP;
 347                break;
 348
 349        case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
 350        case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
 351        case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
 352        default:
 353                break;
 354        }
 355
 356        dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
 357}
 358
 359static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg)
 360{
 361        int ret;
 362
 363        hsotg->vbus_supply = devm_regulator_get_optional(hsotg->dev, "vbus");
 364        if (IS_ERR(hsotg->vbus_supply)) {
 365                ret = PTR_ERR(hsotg->vbus_supply);
 366                hsotg->vbus_supply = NULL;
 367                return ret == -ENODEV ? 0 : ret;
 368        }
 369
 370        return regulator_enable(hsotg->vbus_supply);
 371}
 372
 373static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg)
 374{
 375        if (hsotg->vbus_supply)
 376                return regulator_disable(hsotg->vbus_supply);
 377
 378        return 0;
 379}
 380
 381/**
 382 * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
 383 *
 384 * @hsotg: Programming view of DWC_otg controller
 385 */
 386static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
 387{
 388        u32 intmsk;
 389
 390        dev_dbg(hsotg->dev, "%s()\n", __func__);
 391
 392        /* Disable all interrupts */
 393        dwc2_writel(0, hsotg->regs + GINTMSK);
 394        dwc2_writel(0, hsotg->regs + HAINTMSK);
 395
 396        /* Enable the common interrupts */
 397        dwc2_enable_common_interrupts(hsotg);
 398
 399        /* Enable host mode interrupts without disturbing common interrupts */
 400        intmsk = dwc2_readl(hsotg->regs + GINTMSK);
 401        intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
 402        dwc2_writel(intmsk, hsotg->regs + GINTMSK);
 403}
 404
 405/**
 406 * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
 407 *
 408 * @hsotg: Programming view of DWC_otg controller
 409 */
 410static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
 411{
 412        u32 intmsk = dwc2_readl(hsotg->regs + GINTMSK);
 413
 414        /* Disable host mode interrupts without disturbing common interrupts */
 415        intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
 416                    GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
 417        dwc2_writel(intmsk, hsotg->regs + GINTMSK);
 418}
 419
 420/*
 421 * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
 422 * For system that have a total fifo depth that is smaller than the default
 423 * RX + TX fifo size.
 424 *
 425 * @hsotg: Programming view of DWC_otg controller
 426 */
 427static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
 428{
 429        struct dwc2_core_params *params = &hsotg->params;
 430        struct dwc2_hw_params *hw = &hsotg->hw_params;
 431        u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
 432
 433        total_fifo_size = hw->total_fifo_size;
 434        rxfsiz = params->host_rx_fifo_size;
 435        nptxfsiz = params->host_nperio_tx_fifo_size;
 436        ptxfsiz = params->host_perio_tx_fifo_size;
 437
 438        /*
 439         * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
 440         * allocation with support for high bandwidth endpoints. Synopsys
 441         * defines MPS(Max Packet size) for a periodic EP=1024, and for
 442         * non-periodic as 512.
 443         */
 444        if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
 445                /*
 446                 * For Buffer DMA mode/Scatter Gather DMA mode
 447                 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
 448                 * with n = number of host channel.
 449                 * 2 * ((1024/4) + 2) = 516
 450                 */
 451                rxfsiz = 516 + hw->host_channels;
 452
 453                /*
 454                 * min non-periodic tx fifo depth
 455                 * 2 * (largest non-periodic USB packet used / 4)
 456                 * 2 * (512/4) = 256
 457                 */
 458                nptxfsiz = 256;
 459
 460                /*
 461                 * min periodic tx fifo depth
 462                 * (largest packet size*MC)/4
 463                 * (1024 * 3)/4 = 768
 464                 */
 465                ptxfsiz = 768;
 466
 467                params->host_rx_fifo_size = rxfsiz;
 468                params->host_nperio_tx_fifo_size = nptxfsiz;
 469                params->host_perio_tx_fifo_size = ptxfsiz;
 470        }
 471
 472        /*
 473         * If the summation of RX, NPTX and PTX fifo sizes is still
 474         * bigger than the total_fifo_size, then we have a problem.
 475         *
 476         * We won't be able to allocate as many endpoints. Right now,
 477         * we're just printing an error message, but ideally this FIFO
 478         * allocation algorithm would be improved in the future.
 479         *
 480         * FIXME improve this FIFO allocation algorithm.
 481         */
 482        if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
 483                dev_err(hsotg->dev, "invalid fifo sizes\n");
 484}
 485
 486static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
 487{
 488        struct dwc2_core_params *params = &hsotg->params;
 489        u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
 490
 491        if (!params->enable_dynamic_fifo)
 492                return;
 493
 494        dwc2_calculate_dynamic_fifo(hsotg);
 495
 496        /* Rx FIFO */
 497        grxfsiz = dwc2_readl(hsotg->regs + GRXFSIZ);
 498        dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
 499        grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
 500        grxfsiz |= params->host_rx_fifo_size <<
 501                   GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
 502        dwc2_writel(grxfsiz, hsotg->regs + GRXFSIZ);
 503        dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
 504                dwc2_readl(hsotg->regs + GRXFSIZ));
 505
 506        /* Non-periodic Tx FIFO */
 507        dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
 508                dwc2_readl(hsotg->regs + GNPTXFSIZ));
 509        nptxfsiz = params->host_nperio_tx_fifo_size <<
 510                   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
 511        nptxfsiz |= params->host_rx_fifo_size <<
 512                    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
 513        dwc2_writel(nptxfsiz, hsotg->regs + GNPTXFSIZ);
 514        dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
 515                dwc2_readl(hsotg->regs + GNPTXFSIZ));
 516
 517        /* Periodic Tx FIFO */
 518        dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
 519                dwc2_readl(hsotg->regs + HPTXFSIZ));
 520        hptxfsiz = params->host_perio_tx_fifo_size <<
 521                   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
 522        hptxfsiz |= (params->host_rx_fifo_size +
 523                     params->host_nperio_tx_fifo_size) <<
 524                    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
 525        dwc2_writel(hptxfsiz, hsotg->regs + HPTXFSIZ);
 526        dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
 527                dwc2_readl(hsotg->regs + HPTXFSIZ));
 528
 529        if (hsotg->params.en_multiple_tx_fifo &&
 530            hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
 531                /*
 532                 * This feature was implemented in 2.91a version
 533                 * Global DFIFOCFG calculation for Host mode -
 534                 * include RxFIFO, NPTXFIFO and HPTXFIFO
 535                 */
 536                dfifocfg = dwc2_readl(hsotg->regs + GDFIFOCFG);
 537                dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
 538                dfifocfg |= (params->host_rx_fifo_size +
 539                             params->host_nperio_tx_fifo_size +
 540                             params->host_perio_tx_fifo_size) <<
 541                            GDFIFOCFG_EPINFOBASE_SHIFT &
 542                            GDFIFOCFG_EPINFOBASE_MASK;
 543                dwc2_writel(dfifocfg, hsotg->regs + GDFIFOCFG);
 544        }
 545}
 546
 547/**
 548 * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
 549 * the HFIR register according to PHY type and speed
 550 *
 551 * @hsotg: Programming view of DWC_otg controller
 552 *
 553 * NOTE: The caller can modify the value of the HFIR register only after the
 554 * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
 555 * has been set
 556 */
 557u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
 558{
 559        u32 usbcfg;
 560        u32 hprt0;
 561        int clock = 60; /* default value */
 562
 563        usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
 564        hprt0 = dwc2_readl(hsotg->regs + HPRT0);
 565
 566        if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
 567            !(usbcfg & GUSBCFG_PHYIF16))
 568                clock = 60;
 569        if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
 570            GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
 571                clock = 48;
 572        if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
 573            !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
 574                clock = 30;
 575        if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
 576            !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
 577                clock = 60;
 578        if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
 579            !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
 580                clock = 48;
 581        if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
 582            hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
 583                clock = 48;
 584        if ((usbcfg & GUSBCFG_PHYSEL) &&
 585            hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
 586                clock = 48;
 587
 588        if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
 589                /* High speed case */
 590                return 125 * clock - 1;
 591
 592        /* FS/LS case */
 593        return 1000 * clock - 1;
 594}
 595
 596/**
 597 * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
 598 * buffer
 599 *
 600 * @hsotg: Programming view of DWC_otg controller
 601 * @dest:    Destination buffer for the packet
 602 * @bytes:   Number of bytes to copy to the destination
 603 */
 604void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
 605{
 606        u32 __iomem *fifo = hsotg->regs + HCFIFO(0);
 607        u32 *data_buf = (u32 *)dest;
 608        int word_count = (bytes + 3) / 4;
 609        int i;
 610
 611        /*
 612         * Todo: Account for the case where dest is not dword aligned. This
 613         * requires reading data from the FIFO into a u32 temp buffer, then
 614         * moving it into the data buffer.
 615         */
 616
 617        dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
 618
 619        for (i = 0; i < word_count; i++, data_buf++)
 620                *data_buf = dwc2_readl(fifo);
 621}
 622
 623/**
 624 * dwc2_dump_channel_info() - Prints the state of a host channel
 625 *
 626 * @hsotg: Programming view of DWC_otg controller
 627 * @chan:  Pointer to the channel to dump
 628 *
 629 * Must be called with interrupt disabled and spinlock held
 630 *
 631 * NOTE: This function will be removed once the peripheral controller code
 632 * is integrated and the driver is stable
 633 */
 634static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
 635                                   struct dwc2_host_chan *chan)
 636{
 637#ifdef VERBOSE_DEBUG
 638        int num_channels = hsotg->params.host_channels;
 639        struct dwc2_qh *qh;
 640        u32 hcchar;
 641        u32 hcsplt;
 642        u32 hctsiz;
 643        u32 hc_dma;
 644        int i;
 645
 646        if (!chan)
 647                return;
 648
 649        hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
 650        hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
 651        hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(chan->hc_num));
 652        hc_dma = dwc2_readl(hsotg->regs + HCDMA(chan->hc_num));
 653
 654        dev_dbg(hsotg->dev, "  Assigned to channel %p:\n", chan);
 655        dev_dbg(hsotg->dev, "    hcchar 0x%08x, hcsplt 0x%08x\n",
 656                hcchar, hcsplt);
 657        dev_dbg(hsotg->dev, "    hctsiz 0x%08x, hc_dma 0x%08x\n",
 658                hctsiz, hc_dma);
 659        dev_dbg(hsotg->dev, "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
 660                chan->dev_addr, chan->ep_num, chan->ep_is_in);
 661        dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
 662        dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
 663        dev_dbg(hsotg->dev, "    data_pid_start: %d\n", chan->data_pid_start);
 664        dev_dbg(hsotg->dev, "    xfer_started: %d\n", chan->xfer_started);
 665        dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
 666        dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
 667        dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
 668                (unsigned long)chan->xfer_dma);
 669        dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
 670        dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
 671        dev_dbg(hsotg->dev, "  NP inactive sched:\n");
 672        list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
 673                            qh_list_entry)
 674                dev_dbg(hsotg->dev, "    %p\n", qh);
 675        dev_dbg(hsotg->dev, "  NP waiting sched:\n");
 676        list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting,
 677                            qh_list_entry)
 678                dev_dbg(hsotg->dev, "    %p\n", qh);
 679        dev_dbg(hsotg->dev, "  NP active sched:\n");
 680        list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
 681                            qh_list_entry)
 682                dev_dbg(hsotg->dev, "    %p\n", qh);
 683        dev_dbg(hsotg->dev, "  Channels:\n");
 684        for (i = 0; i < num_channels; i++) {
 685                struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
 686
 687                dev_dbg(hsotg->dev, "    %2d: %p\n", i, chan);
 688        }
 689#endif /* VERBOSE_DEBUG */
 690}
 691
 692static int _dwc2_hcd_start(struct usb_hcd *hcd);
 693
 694static void dwc2_host_start(struct dwc2_hsotg *hsotg)
 695{
 696        struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
 697
 698        hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
 699        _dwc2_hcd_start(hcd);
 700}
 701
 702static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
 703{
 704        struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
 705
 706        hcd->self.is_b_host = 0;
 707}
 708
 709static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
 710                               int *hub_addr, int *hub_port)
 711{
 712        struct urb *urb = context;
 713
 714        if (urb->dev->tt)
 715                *hub_addr = urb->dev->tt->hub->devnum;
 716        else
 717                *hub_addr = 0;
 718        *hub_port = urb->dev->ttport;
 719}
 720
 721/*
 722 * =========================================================================
 723 *  Low Level Host Channel Access Functions
 724 * =========================================================================
 725 */
 726
 727static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
 728                                      struct dwc2_host_chan *chan)
 729{
 730        u32 hcintmsk = HCINTMSK_CHHLTD;
 731
 732        switch (chan->ep_type) {
 733        case USB_ENDPOINT_XFER_CONTROL:
 734        case USB_ENDPOINT_XFER_BULK:
 735                dev_vdbg(hsotg->dev, "control/bulk\n");
 736                hcintmsk |= HCINTMSK_XFERCOMPL;
 737                hcintmsk |= HCINTMSK_STALL;
 738                hcintmsk |= HCINTMSK_XACTERR;
 739                hcintmsk |= HCINTMSK_DATATGLERR;
 740                if (chan->ep_is_in) {
 741                        hcintmsk |= HCINTMSK_BBLERR;
 742                } else {
 743                        hcintmsk |= HCINTMSK_NAK;
 744                        hcintmsk |= HCINTMSK_NYET;
 745                        if (chan->do_ping)
 746                                hcintmsk |= HCINTMSK_ACK;
 747                }
 748
 749                if (chan->do_split) {
 750                        hcintmsk |= HCINTMSK_NAK;
 751                        if (chan->complete_split)
 752                                hcintmsk |= HCINTMSK_NYET;
 753                        else
 754                                hcintmsk |= HCINTMSK_ACK;
 755                }
 756
 757                if (chan->error_state)
 758                        hcintmsk |= HCINTMSK_ACK;
 759                break;
 760
 761        case USB_ENDPOINT_XFER_INT:
 762                if (dbg_perio())
 763                        dev_vdbg(hsotg->dev, "intr\n");
 764                hcintmsk |= HCINTMSK_XFERCOMPL;
 765                hcintmsk |= HCINTMSK_NAK;
 766                hcintmsk |= HCINTMSK_STALL;
 767                hcintmsk |= HCINTMSK_XACTERR;
 768                hcintmsk |= HCINTMSK_DATATGLERR;
 769                hcintmsk |= HCINTMSK_FRMOVRUN;
 770
 771                if (chan->ep_is_in)
 772                        hcintmsk |= HCINTMSK_BBLERR;
 773                if (chan->error_state)
 774                        hcintmsk |= HCINTMSK_ACK;
 775                if (chan->do_split) {
 776                        if (chan->complete_split)
 777                                hcintmsk |= HCINTMSK_NYET;
 778                        else
 779                                hcintmsk |= HCINTMSK_ACK;
 780                }
 781                break;
 782
 783        case USB_ENDPOINT_XFER_ISOC:
 784                if (dbg_perio())
 785                        dev_vdbg(hsotg->dev, "isoc\n");
 786                hcintmsk |= HCINTMSK_XFERCOMPL;
 787                hcintmsk |= HCINTMSK_FRMOVRUN;
 788                hcintmsk |= HCINTMSK_ACK;
 789
 790                if (chan->ep_is_in) {
 791                        hcintmsk |= HCINTMSK_XACTERR;
 792                        hcintmsk |= HCINTMSK_BBLERR;
 793                }
 794                break;
 795        default:
 796                dev_err(hsotg->dev, "## Unknown EP type ##\n");
 797                break;
 798        }
 799
 800        dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
 801        if (dbg_hc(chan))
 802                dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
 803}
 804
 805static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
 806                                    struct dwc2_host_chan *chan)
 807{
 808        u32 hcintmsk = HCINTMSK_CHHLTD;
 809
 810        /*
 811         * For Descriptor DMA mode core halts the channel on AHB error.
 812         * Interrupt is not required.
 813         */
 814        if (!hsotg->params.dma_desc_enable) {
 815                if (dbg_hc(chan))
 816                        dev_vdbg(hsotg->dev, "desc DMA disabled\n");
 817                hcintmsk |= HCINTMSK_AHBERR;
 818        } else {
 819                if (dbg_hc(chan))
 820                        dev_vdbg(hsotg->dev, "desc DMA enabled\n");
 821                if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
 822                        hcintmsk |= HCINTMSK_XFERCOMPL;
 823        }
 824
 825        if (chan->error_state && !chan->do_split &&
 826            chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
 827                if (dbg_hc(chan))
 828                        dev_vdbg(hsotg->dev, "setting ACK\n");
 829                hcintmsk |= HCINTMSK_ACK;
 830                if (chan->ep_is_in) {
 831                        hcintmsk |= HCINTMSK_DATATGLERR;
 832                        if (chan->ep_type != USB_ENDPOINT_XFER_INT)
 833                                hcintmsk |= HCINTMSK_NAK;
 834                }
 835        }
 836
 837        dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
 838        if (dbg_hc(chan))
 839                dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
 840}
 841
 842static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
 843                                struct dwc2_host_chan *chan)
 844{
 845        u32 intmsk;
 846
 847        if (hsotg->params.host_dma) {
 848                if (dbg_hc(chan))
 849                        dev_vdbg(hsotg->dev, "DMA enabled\n");
 850                dwc2_hc_enable_dma_ints(hsotg, chan);
 851        } else {
 852                if (dbg_hc(chan))
 853                        dev_vdbg(hsotg->dev, "DMA disabled\n");
 854                dwc2_hc_enable_slave_ints(hsotg, chan);
 855        }
 856
 857        /* Enable the top level host channel interrupt */
 858        intmsk = dwc2_readl(hsotg->regs + HAINTMSK);
 859        intmsk |= 1 << chan->hc_num;
 860        dwc2_writel(intmsk, hsotg->regs + HAINTMSK);
 861        if (dbg_hc(chan))
 862                dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
 863
 864        /* Make sure host channel interrupts are enabled */
 865        intmsk = dwc2_readl(hsotg->regs + GINTMSK);
 866        intmsk |= GINTSTS_HCHINT;
 867        dwc2_writel(intmsk, hsotg->regs + GINTMSK);
 868        if (dbg_hc(chan))
 869                dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
 870}
 871
 872/**
 873 * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
 874 * a specific endpoint
 875 *
 876 * @hsotg: Programming view of DWC_otg controller
 877 * @chan:  Information needed to initialize the host channel
 878 *
 879 * The HCCHARn register is set up with the characteristics specified in chan.
 880 * Host channel interrupts that may need to be serviced while this transfer is
 881 * in progress are enabled.
 882 */
 883static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
 884{
 885        u8 hc_num = chan->hc_num;
 886        u32 hcintmsk;
 887        u32 hcchar;
 888        u32 hcsplt = 0;
 889
 890        if (dbg_hc(chan))
 891                dev_vdbg(hsotg->dev, "%s()\n", __func__);
 892
 893        /* Clear old interrupt conditions for this host channel */
 894        hcintmsk = 0xffffffff;
 895        hcintmsk &= ~HCINTMSK_RESERVED14_31;
 896        dwc2_writel(hcintmsk, hsotg->regs + HCINT(hc_num));
 897
 898        /* Enable channel interrupts required for this transfer */
 899        dwc2_hc_enable_ints(hsotg, chan);
 900
 901        /*
 902         * Program the HCCHARn register with the endpoint characteristics for
 903         * the current transfer
 904         */
 905        hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
 906        hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
 907        if (chan->ep_is_in)
 908                hcchar |= HCCHAR_EPDIR;
 909        if (chan->speed == USB_SPEED_LOW)
 910                hcchar |= HCCHAR_LSPDDEV;
 911        hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
 912        hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
 913        dwc2_writel(hcchar, hsotg->regs + HCCHAR(hc_num));
 914        if (dbg_hc(chan)) {
 915                dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
 916                         hc_num, hcchar);
 917
 918                dev_vdbg(hsotg->dev, "%s: Channel %d\n",
 919                         __func__, hc_num);
 920                dev_vdbg(hsotg->dev, "   Dev Addr: %d\n",
 921                         chan->dev_addr);
 922                dev_vdbg(hsotg->dev, "   Ep Num: %d\n",
 923                         chan->ep_num);
 924                dev_vdbg(hsotg->dev, "   Is In: %d\n",
 925                         chan->ep_is_in);
 926                dev_vdbg(hsotg->dev, "   Is Low Speed: %d\n",
 927                         chan->speed == USB_SPEED_LOW);
 928                dev_vdbg(hsotg->dev, "   Ep Type: %d\n",
 929                         chan->ep_type);
 930                dev_vdbg(hsotg->dev, "   Max Pkt: %d\n",
 931                         chan->max_packet);
 932        }
 933
 934        /* Program the HCSPLT register for SPLITs */
 935        if (chan->do_split) {
 936                if (dbg_hc(chan))
 937                        dev_vdbg(hsotg->dev,
 938                                 "Programming HC %d with split --> %s\n",
 939                                 hc_num,
 940                                 chan->complete_split ? "CSPLIT" : "SSPLIT");
 941                if (chan->complete_split)
 942                        hcsplt |= HCSPLT_COMPSPLT;
 943                hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
 944                          HCSPLT_XACTPOS_MASK;
 945                hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
 946                          HCSPLT_HUBADDR_MASK;
 947                hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
 948                          HCSPLT_PRTADDR_MASK;
 949                if (dbg_hc(chan)) {
 950                        dev_vdbg(hsotg->dev, "    comp split %d\n",
 951                                 chan->complete_split);
 952                        dev_vdbg(hsotg->dev, "    xact pos %d\n",
 953                                 chan->xact_pos);
 954                        dev_vdbg(hsotg->dev, "    hub addr %d\n",
 955                                 chan->hub_addr);
 956                        dev_vdbg(hsotg->dev, "    hub port %d\n",
 957                                 chan->hub_port);
 958                        dev_vdbg(hsotg->dev, "    is_in %d\n",
 959                                 chan->ep_is_in);
 960                        dev_vdbg(hsotg->dev, "    Max Pkt %d\n",
 961                                 chan->max_packet);
 962                        dev_vdbg(hsotg->dev, "    xferlen %d\n",
 963                                 chan->xfer_len);
 964                }
 965        }
 966
 967        dwc2_writel(hcsplt, hsotg->regs + HCSPLT(hc_num));
 968}
 969
 970/**
 971 * dwc2_hc_halt() - Attempts to halt a host channel
 972 *
 973 * @hsotg:       Controller register interface
 974 * @chan:        Host channel to halt
 975 * @halt_status: Reason for halting the channel
 976 *
 977 * This function should only be called in Slave mode or to abort a transfer in
 978 * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
 979 * controller halts the channel when the transfer is complete or a condition
 980 * occurs that requires application intervention.
 981 *
 982 * In slave mode, checks for a free request queue entry, then sets the Channel
 983 * Enable and Channel Disable bits of the Host Channel Characteristics
 984 * register of the specified channel to intiate the halt. If there is no free
 985 * request queue entry, sets only the Channel Disable bit of the HCCHARn
 986 * register to flush requests for this channel. In the latter case, sets a
 987 * flag to indicate that the host channel needs to be halted when a request
 988 * queue slot is open.
 989 *
 990 * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
 991 * HCCHARn register. The controller ensures there is space in the request
 992 * queue before submitting the halt request.
 993 *
 994 * Some time may elapse before the core flushes any posted requests for this
 995 * host channel and halts. The Channel Halted interrupt handler completes the
 996 * deactivation of the host channel.
 997 */
 998void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
 999                  enum dwc2_halt_status halt_status)
1000{
1001        u32 nptxsts, hptxsts, hcchar;
1002
1003        if (dbg_hc(chan))
1004                dev_vdbg(hsotg->dev, "%s()\n", __func__);
1005
1006        /*
1007         * In buffer DMA or external DMA mode channel can't be halted
1008         * for non-split periodic channels. At the end of the next
1009         * uframe/frame (in the worst case), the core generates a channel
1010         * halted and disables the channel automatically.
1011         */
1012        if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) ||
1013            hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) {
1014                if (!chan->do_split &&
1015                    (chan->ep_type == USB_ENDPOINT_XFER_ISOC ||
1016                     chan->ep_type == USB_ENDPOINT_XFER_INT)) {
1017                        dev_err(hsotg->dev, "%s() Channel can't be halted\n",
1018                                __func__);
1019                        return;
1020                }
1021        }
1022
1023        if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
1024                dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
1025
1026        if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
1027            halt_status == DWC2_HC_XFER_AHB_ERR) {
1028                /*
1029                 * Disable all channel interrupts except Ch Halted. The QTD
1030                 * and QH state associated with this transfer has been cleared
1031                 * (in the case of URB_DEQUEUE), so the channel needs to be
1032                 * shut down carefully to prevent crashes.
1033                 */
1034                u32 hcintmsk = HCINTMSK_CHHLTD;
1035
1036                dev_vdbg(hsotg->dev, "dequeue/error\n");
1037                dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
1038
1039                /*
1040                 * Make sure no other interrupts besides halt are currently
1041                 * pending. Handling another interrupt could cause a crash due
1042                 * to the QTD and QH state.
1043                 */
1044                dwc2_writel(~hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1045
1046                /*
1047                 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
1048                 * even if the channel was already halted for some other
1049                 * reason
1050                 */
1051                chan->halt_status = halt_status;
1052
1053                hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1054                if (!(hcchar & HCCHAR_CHENA)) {
1055                        /*
1056                         * The channel is either already halted or it hasn't
1057                         * started yet. In DMA mode, the transfer may halt if
1058                         * it finishes normally or a condition occurs that
1059                         * requires driver intervention. Don't want to halt
1060                         * the channel again. In either Slave or DMA mode,
1061                         * it's possible that the transfer has been assigned
1062                         * to a channel, but not started yet when an URB is
1063                         * dequeued. Don't want to halt a channel that hasn't
1064                         * started yet.
1065                         */
1066                        return;
1067                }
1068        }
1069        if (chan->halt_pending) {
1070                /*
1071                 * A halt has already been issued for this channel. This might
1072                 * happen when a transfer is aborted by a higher level in
1073                 * the stack.
1074                 */
1075                dev_vdbg(hsotg->dev,
1076                         "*** %s: Channel %d, chan->halt_pending already set ***\n",
1077                         __func__, chan->hc_num);
1078                return;
1079        }
1080
1081        hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1082
1083        /* No need to set the bit in DDMA for disabling the channel */
1084        /* TODO check it everywhere channel is disabled */
1085        if (!hsotg->params.dma_desc_enable) {
1086                if (dbg_hc(chan))
1087                        dev_vdbg(hsotg->dev, "desc DMA disabled\n");
1088                hcchar |= HCCHAR_CHENA;
1089        } else {
1090                if (dbg_hc(chan))
1091                        dev_dbg(hsotg->dev, "desc DMA enabled\n");
1092        }
1093        hcchar |= HCCHAR_CHDIS;
1094
1095        if (!hsotg->params.host_dma) {
1096                if (dbg_hc(chan))
1097                        dev_vdbg(hsotg->dev, "DMA not enabled\n");
1098                hcchar |= HCCHAR_CHENA;
1099
1100                /* Check for space in the request queue to issue the halt */
1101                if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
1102                    chan->ep_type == USB_ENDPOINT_XFER_BULK) {
1103                        dev_vdbg(hsotg->dev, "control/bulk\n");
1104                        nptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
1105                        if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
1106                                dev_vdbg(hsotg->dev, "Disabling channel\n");
1107                                hcchar &= ~HCCHAR_CHENA;
1108                        }
1109                } else {
1110                        if (dbg_perio())
1111                                dev_vdbg(hsotg->dev, "isoc/intr\n");
1112                        hptxsts = dwc2_readl(hsotg->regs + HPTXSTS);
1113                        if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
1114                            hsotg->queuing_high_bandwidth) {
1115                                if (dbg_perio())
1116                                        dev_vdbg(hsotg->dev, "Disabling channel\n");
1117                                hcchar &= ~HCCHAR_CHENA;
1118                        }
1119                }
1120        } else {
1121                if (dbg_hc(chan))
1122                        dev_vdbg(hsotg->dev, "DMA enabled\n");
1123        }
1124
1125        dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1126        chan->halt_status = halt_status;
1127
1128        if (hcchar & HCCHAR_CHENA) {
1129                if (dbg_hc(chan))
1130                        dev_vdbg(hsotg->dev, "Channel enabled\n");
1131                chan->halt_pending = 1;
1132                chan->halt_on_queue = 0;
1133        } else {
1134                if (dbg_hc(chan))
1135                        dev_vdbg(hsotg->dev, "Channel disabled\n");
1136                chan->halt_on_queue = 1;
1137        }
1138
1139        if (dbg_hc(chan)) {
1140                dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1141                         chan->hc_num);
1142                dev_vdbg(hsotg->dev, "   hcchar: 0x%08x\n",
1143                         hcchar);
1144                dev_vdbg(hsotg->dev, "   halt_pending: %d\n",
1145                         chan->halt_pending);
1146                dev_vdbg(hsotg->dev, "   halt_on_queue: %d\n",
1147                         chan->halt_on_queue);
1148                dev_vdbg(hsotg->dev, "   halt_status: %d\n",
1149                         chan->halt_status);
1150        }
1151}
1152
1153/**
1154 * dwc2_hc_cleanup() - Clears the transfer state for a host channel
1155 *
1156 * @hsotg: Programming view of DWC_otg controller
1157 * @chan:  Identifies the host channel to clean up
1158 *
1159 * This function is normally called after a transfer is done and the host
1160 * channel is being released
1161 */
1162void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
1163{
1164        u32 hcintmsk;
1165
1166        chan->xfer_started = 0;
1167
1168        list_del_init(&chan->split_order_list_entry);
1169
1170        /*
1171         * Clear channel interrupt enables and any unhandled channel interrupt
1172         * conditions
1173         */
1174        dwc2_writel(0, hsotg->regs + HCINTMSK(chan->hc_num));
1175        hcintmsk = 0xffffffff;
1176        hcintmsk &= ~HCINTMSK_RESERVED14_31;
1177        dwc2_writel(hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1178}
1179
1180/**
1181 * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
1182 * which frame a periodic transfer should occur
1183 *
1184 * @hsotg:  Programming view of DWC_otg controller
1185 * @chan:   Identifies the host channel to set up and its properties
1186 * @hcchar: Current value of the HCCHAR register for the specified host channel
1187 *
1188 * This function has no effect on non-periodic transfers
1189 */
1190static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
1191                                       struct dwc2_host_chan *chan, u32 *hcchar)
1192{
1193        if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1194            chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1195                int host_speed;
1196                int xfer_ns;
1197                int xfer_us;
1198                int bytes_in_fifo;
1199                u16 fifo_space;
1200                u16 frame_number;
1201                u16 wire_frame;
1202
1203                /*
1204                 * Try to figure out if we're an even or odd frame. If we set
1205                 * even and the current frame number is even the the transfer
1206                 * will happen immediately.  Similar if both are odd. If one is
1207                 * even and the other is odd then the transfer will happen when
1208                 * the frame number ticks.
1209                 *
1210                 * There's a bit of a balancing act to get this right.
1211                 * Sometimes we may want to send data in the current frame (AK
1212                 * right away).  We might want to do this if the frame number
1213                 * _just_ ticked, but we might also want to do this in order
1214                 * to continue a split transaction that happened late in a
1215                 * microframe (so we didn't know to queue the next transfer
1216                 * until the frame number had ticked).  The problem is that we
1217                 * need a lot of knowledge to know if there's actually still
1218                 * time to send things or if it would be better to wait until
1219                 * the next frame.
1220                 *
1221                 * We can look at how much time is left in the current frame
1222                 * and make a guess about whether we'll have time to transfer.
1223                 * We'll do that.
1224                 */
1225
1226                /* Get speed host is running at */
1227                host_speed = (chan->speed != USB_SPEED_HIGH &&
1228                              !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1229
1230                /* See how many bytes are in the periodic FIFO right now */
1231                fifo_space = (dwc2_readl(hsotg->regs + HPTXSTS) &
1232                              TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1233                bytes_in_fifo = sizeof(u32) *
1234                                (hsotg->params.host_perio_tx_fifo_size -
1235                                 fifo_space);
1236
1237                /*
1238                 * Roughly estimate bus time for everything in the periodic
1239                 * queue + our new transfer.  This is "rough" because we're
1240                 * using a function that makes takes into account IN/OUT
1241                 * and INT/ISO and we're just slamming in one value for all
1242                 * transfers.  This should be an over-estimate and that should
1243                 * be OK, but we can probably tighten it.
1244                 */
1245                xfer_ns = usb_calc_bus_time(host_speed, false, false,
1246                                            chan->xfer_len + bytes_in_fifo);
1247                xfer_us = NS_TO_US(xfer_ns);
1248
1249                /* See what frame number we'll be at by the time we finish */
1250                frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1251
1252                /* This is when we were scheduled to be on the wire */
1253                wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1254
1255                /*
1256                 * If we'd finish _after_ the frame we're scheduled in then
1257                 * it's hopeless.  Just schedule right away and hope for the
1258                 * best.  Note that it _might_ be wise to call back into the
1259                 * scheduler to pick a better frame, but this is better than
1260                 * nothing.
1261                 */
1262                if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1263                        dwc2_sch_vdbg(hsotg,
1264                                      "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1265                                      chan->qh, wire_frame, frame_number,
1266                                      dwc2_frame_num_dec(frame_number,
1267                                                         wire_frame));
1268                        wire_frame = frame_number;
1269
1270                        /*
1271                         * We picked a different frame number; communicate this
1272                         * back to the scheduler so it doesn't try to schedule
1273                         * another in the same frame.
1274                         *
1275                         * Remember that next_active_frame is 1 before the wire
1276                         * frame.
1277                         */
1278                        chan->qh->next_active_frame =
1279                                dwc2_frame_num_dec(frame_number, 1);
1280                }
1281
1282                if (wire_frame & 1)
1283                        *hcchar |= HCCHAR_ODDFRM;
1284                else
1285                        *hcchar &= ~HCCHAR_ODDFRM;
1286        }
1287}
1288
1289static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1290{
1291        /* Set up the initial PID for the transfer */
1292        if (chan->speed == USB_SPEED_HIGH) {
1293                if (chan->ep_is_in) {
1294                        if (chan->multi_count == 1)
1295                                chan->data_pid_start = DWC2_HC_PID_DATA0;
1296                        else if (chan->multi_count == 2)
1297                                chan->data_pid_start = DWC2_HC_PID_DATA1;
1298                        else
1299                                chan->data_pid_start = DWC2_HC_PID_DATA2;
1300                } else {
1301                        if (chan->multi_count == 1)
1302                                chan->data_pid_start = DWC2_HC_PID_DATA0;
1303                        else
1304                                chan->data_pid_start = DWC2_HC_PID_MDATA;
1305                }
1306        } else {
1307                chan->data_pid_start = DWC2_HC_PID_DATA0;
1308        }
1309}
1310
1311/**
1312 * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1313 * the Host Channel
1314 *
1315 * @hsotg: Programming view of DWC_otg controller
1316 * @chan:  Information needed to initialize the host channel
1317 *
1318 * This function should only be called in Slave mode. For a channel associated
1319 * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1320 * associated with a periodic EP, the periodic Tx FIFO is written.
1321 *
1322 * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1323 * the number of bytes written to the Tx FIFO.
1324 */
1325static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1326                                 struct dwc2_host_chan *chan)
1327{
1328        u32 i;
1329        u32 remaining_count;
1330        u32 byte_count;
1331        u32 dword_count;
1332        u32 __iomem *data_fifo;
1333        u32 *data_buf = (u32 *)chan->xfer_buf;
1334
1335        if (dbg_hc(chan))
1336                dev_vdbg(hsotg->dev, "%s()\n", __func__);
1337
1338        data_fifo = (u32 __iomem *)(hsotg->regs + HCFIFO(chan->hc_num));
1339
1340        remaining_count = chan->xfer_len - chan->xfer_count;
1341        if (remaining_count > chan->max_packet)
1342                byte_count = chan->max_packet;
1343        else
1344                byte_count = remaining_count;
1345
1346        dword_count = (byte_count + 3) / 4;
1347
1348        if (((unsigned long)data_buf & 0x3) == 0) {
1349                /* xfer_buf is DWORD aligned */
1350                for (i = 0; i < dword_count; i++, data_buf++)
1351                        dwc2_writel(*data_buf, data_fifo);
1352        } else {
1353                /* xfer_buf is not DWORD aligned */
1354                for (i = 0; i < dword_count; i++, data_buf++) {
1355                        u32 data = data_buf[0] | data_buf[1] << 8 |
1356                                   data_buf[2] << 16 | data_buf[3] << 24;
1357                        dwc2_writel(data, data_fifo);
1358                }
1359        }
1360
1361        chan->xfer_count += byte_count;
1362        chan->xfer_buf += byte_count;
1363}
1364
1365/**
1366 * dwc2_hc_do_ping() - Starts a PING transfer
1367 *
1368 * @hsotg: Programming view of DWC_otg controller
1369 * @chan:  Information needed to initialize the host channel
1370 *
1371 * This function should only be called in Slave mode. The Do Ping bit is set in
1372 * the HCTSIZ register, then the channel is enabled.
1373 */
1374static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1375                            struct dwc2_host_chan *chan)
1376{
1377        u32 hcchar;
1378        u32 hctsiz;
1379
1380        if (dbg_hc(chan))
1381                dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1382                         chan->hc_num);
1383
1384        hctsiz = TSIZ_DOPNG;
1385        hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1386        dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1387
1388        hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1389        hcchar |= HCCHAR_CHENA;
1390        hcchar &= ~HCCHAR_CHDIS;
1391        dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1392}
1393
1394/**
1395 * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1396 * channel and starts the transfer
1397 *
1398 * @hsotg: Programming view of DWC_otg controller
1399 * @chan:  Information needed to initialize the host channel. The xfer_len value
1400 *         may be reduced to accommodate the max widths of the XferSize and
1401 *         PktCnt fields in the HCTSIZn register. The multi_count value may be
1402 *         changed to reflect the final xfer_len value.
1403 *
1404 * This function may be called in either Slave mode or DMA mode. In Slave mode,
1405 * the caller must ensure that there is sufficient space in the request queue
1406 * and Tx Data FIFO.
1407 *
1408 * For an OUT transfer in Slave mode, it loads a data packet into the
1409 * appropriate FIFO. If necessary, additional data packets are loaded in the
1410 * Host ISR.
1411 *
1412 * For an IN transfer in Slave mode, a data packet is requested. The data
1413 * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1414 * additional data packets are requested in the Host ISR.
1415 *
1416 * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1417 * register along with a packet count of 1 and the channel is enabled. This
1418 * causes a single PING transaction to occur. Other fields in HCTSIZ are
1419 * simply set to 0 since no data transfer occurs in this case.
1420 *
1421 * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1422 * all the information required to perform the subsequent data transfer. In
1423 * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1424 * controller performs the entire PING protocol, then starts the data
1425 * transfer.
1426 */
1427static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1428                                   struct dwc2_host_chan *chan)
1429{
1430        u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1431        u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1432        u32 hcchar;
1433        u32 hctsiz = 0;
1434        u16 num_packets;
1435        u32 ec_mc;
1436
1437        if (dbg_hc(chan))
1438                dev_vdbg(hsotg->dev, "%s()\n", __func__);
1439
1440        if (chan->do_ping) {
1441                if (!hsotg->params.host_dma) {
1442                        if (dbg_hc(chan))
1443                                dev_vdbg(hsotg->dev, "ping, no DMA\n");
1444                        dwc2_hc_do_ping(hsotg, chan);
1445                        chan->xfer_started = 1;
1446                        return;
1447                }
1448
1449                if (dbg_hc(chan))
1450                        dev_vdbg(hsotg->dev, "ping, DMA\n");
1451
1452                hctsiz |= TSIZ_DOPNG;
1453        }
1454
1455        if (chan->do_split) {
1456                if (dbg_hc(chan))
1457                        dev_vdbg(hsotg->dev, "split\n");
1458                num_packets = 1;
1459
1460                if (chan->complete_split && !chan->ep_is_in)
1461                        /*
1462                         * For CSPLIT OUT Transfer, set the size to 0 so the
1463                         * core doesn't expect any data written to the FIFO
1464                         */
1465                        chan->xfer_len = 0;
1466                else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1467                        chan->xfer_len = chan->max_packet;
1468                else if (!chan->ep_is_in && chan->xfer_len > 188)
1469                        chan->xfer_len = 188;
1470
1471                hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1472                          TSIZ_XFERSIZE_MASK;
1473
1474                /* For split set ec_mc for immediate retries */
1475                if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1476                    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1477                        ec_mc = 3;
1478                else
1479                        ec_mc = 1;
1480        } else {
1481                if (dbg_hc(chan))
1482                        dev_vdbg(hsotg->dev, "no split\n");
1483                /*
1484                 * Ensure that the transfer length and packet count will fit
1485                 * in the widths allocated for them in the HCTSIZn register
1486                 */
1487                if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1488                    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1489                        /*
1490                         * Make sure the transfer size is no larger than one
1491                         * (micro)frame's worth of data. (A check was done
1492                         * when the periodic transfer was accepted to ensure
1493                         * that a (micro)frame's worth of data can be
1494                         * programmed into a channel.)
1495                         */
1496                        u32 max_periodic_len =
1497                                chan->multi_count * chan->max_packet;
1498
1499                        if (chan->xfer_len > max_periodic_len)
1500                                chan->xfer_len = max_periodic_len;
1501                } else if (chan->xfer_len > max_hc_xfer_size) {
1502                        /*
1503                         * Make sure that xfer_len is a multiple of max packet
1504                         * size
1505                         */
1506                        chan->xfer_len =
1507                                max_hc_xfer_size - chan->max_packet + 1;
1508                }
1509
1510                if (chan->xfer_len > 0) {
1511                        num_packets = (chan->xfer_len + chan->max_packet - 1) /
1512                                        chan->max_packet;
1513                        if (num_packets > max_hc_pkt_count) {
1514                                num_packets = max_hc_pkt_count;
1515                                chan->xfer_len = num_packets * chan->max_packet;
1516                        }
1517                } else {
1518                        /* Need 1 packet for transfer length of 0 */
1519                        num_packets = 1;
1520                }
1521
1522                if (chan->ep_is_in)
1523                        /*
1524                         * Always program an integral # of max packets for IN
1525                         * transfers
1526                         */
1527                        chan->xfer_len = num_packets * chan->max_packet;
1528
1529                if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1530                    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1531                        /*
1532                         * Make sure that the multi_count field matches the
1533                         * actual transfer length
1534                         */
1535                        chan->multi_count = num_packets;
1536
1537                if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1538                        dwc2_set_pid_isoc(chan);
1539
1540                hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1541                          TSIZ_XFERSIZE_MASK;
1542
1543                /* The ec_mc gets the multi_count for non-split */
1544                ec_mc = chan->multi_count;
1545        }
1546
1547        chan->start_pkt_count = num_packets;
1548        hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1549        hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1550                  TSIZ_SC_MC_PID_MASK;
1551        dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1552        if (dbg_hc(chan)) {
1553                dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1554                         hctsiz, chan->hc_num);
1555
1556                dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1557                         chan->hc_num);
1558                dev_vdbg(hsotg->dev, "   Xfer Size: %d\n",
1559                         (hctsiz & TSIZ_XFERSIZE_MASK) >>
1560                         TSIZ_XFERSIZE_SHIFT);
1561                dev_vdbg(hsotg->dev, "   Num Pkts: %d\n",
1562                         (hctsiz & TSIZ_PKTCNT_MASK) >>
1563                         TSIZ_PKTCNT_SHIFT);
1564                dev_vdbg(hsotg->dev, "   Start PID: %d\n",
1565                         (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1566                         TSIZ_SC_MC_PID_SHIFT);
1567        }
1568
1569        if (hsotg->params.host_dma) {
1570                dma_addr_t dma_addr;
1571
1572                if (chan->align_buf) {
1573                        if (dbg_hc(chan))
1574                                dev_vdbg(hsotg->dev, "align_buf\n");
1575                        dma_addr = chan->align_buf;
1576                } else {
1577                        dma_addr = chan->xfer_dma;
1578                }
1579                dwc2_writel((u32)dma_addr, hsotg->regs + HCDMA(chan->hc_num));
1580
1581                if (dbg_hc(chan))
1582                        dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1583                                 (unsigned long)dma_addr, chan->hc_num);
1584        }
1585
1586        /* Start the split */
1587        if (chan->do_split) {
1588                u32 hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
1589
1590                hcsplt |= HCSPLT_SPLTENA;
1591                dwc2_writel(hcsplt, hsotg->regs + HCSPLT(chan->hc_num));
1592        }
1593
1594        hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1595        hcchar &= ~HCCHAR_MULTICNT_MASK;
1596        hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1597        dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1598
1599        if (hcchar & HCCHAR_CHDIS)
1600                dev_warn(hsotg->dev,
1601                         "%s: chdis set, channel %d, hcchar 0x%08x\n",
1602                         __func__, chan->hc_num, hcchar);
1603
1604        /* Set host channel enable after all other setup is complete */
1605        hcchar |= HCCHAR_CHENA;
1606        hcchar &= ~HCCHAR_CHDIS;
1607
1608        if (dbg_hc(chan))
1609                dev_vdbg(hsotg->dev, "   Multi Cnt: %d\n",
1610                         (hcchar & HCCHAR_MULTICNT_MASK) >>
1611                         HCCHAR_MULTICNT_SHIFT);
1612
1613        dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1614        if (dbg_hc(chan))
1615                dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1616                         chan->hc_num);
1617
1618        chan->xfer_started = 1;
1619        chan->requests++;
1620
1621        if (!hsotg->params.host_dma &&
1622            !chan->ep_is_in && chan->xfer_len > 0)
1623                /* Load OUT packet into the appropriate Tx FIFO */
1624                dwc2_hc_write_packet(hsotg, chan);
1625}
1626
1627/**
1628 * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1629 * host channel and starts the transfer in Descriptor DMA mode
1630 *
1631 * @hsotg: Programming view of DWC_otg controller
1632 * @chan:  Information needed to initialize the host channel
1633 *
1634 * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1635 * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1636 * with micro-frame bitmap.
1637 *
1638 * Initializes HCDMA register with descriptor list address and CTD value then
1639 * starts the transfer via enabling the channel.
1640 */
1641void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1642                                 struct dwc2_host_chan *chan)
1643{
1644        u32 hcchar;
1645        u32 hctsiz = 0;
1646
1647        if (chan->do_ping)
1648                hctsiz |= TSIZ_DOPNG;
1649
1650        if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1651                dwc2_set_pid_isoc(chan);
1652
1653        /* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1654        hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1655                  TSIZ_SC_MC_PID_MASK;
1656
1657        /* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1658        hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1659
1660        /* Non-zero only for high-speed interrupt endpoints */
1661        hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1662
1663        if (dbg_hc(chan)) {
1664                dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1665                         chan->hc_num);
1666                dev_vdbg(hsotg->dev, "   Start PID: %d\n",
1667                         chan->data_pid_start);
1668                dev_vdbg(hsotg->dev, "   NTD: %d\n", chan->ntd - 1);
1669        }
1670
1671        dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1672
1673        dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1674                                   chan->desc_list_sz, DMA_TO_DEVICE);
1675
1676        dwc2_writel(chan->desc_list_addr, hsotg->regs + HCDMA(chan->hc_num));
1677
1678        if (dbg_hc(chan))
1679                dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1680                         &chan->desc_list_addr, chan->hc_num);
1681
1682        hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1683        hcchar &= ~HCCHAR_MULTICNT_MASK;
1684        hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1685                  HCCHAR_MULTICNT_MASK;
1686
1687        if (hcchar & HCCHAR_CHDIS)
1688                dev_warn(hsotg->dev,
1689                         "%s: chdis set, channel %d, hcchar 0x%08x\n",
1690                         __func__, chan->hc_num, hcchar);
1691
1692        /* Set host channel enable after all other setup is complete */
1693        hcchar |= HCCHAR_CHENA;
1694        hcchar &= ~HCCHAR_CHDIS;
1695
1696        if (dbg_hc(chan))
1697                dev_vdbg(hsotg->dev, "   Multi Cnt: %d\n",
1698                         (hcchar & HCCHAR_MULTICNT_MASK) >>
1699                         HCCHAR_MULTICNT_SHIFT);
1700
1701        dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1702        if (dbg_hc(chan))
1703                dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1704                         chan->hc_num);
1705
1706        chan->xfer_started = 1;
1707        chan->requests++;
1708}
1709
1710/**
1711 * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1712 * a previous call to dwc2_hc_start_transfer()
1713 *
1714 * @hsotg: Programming view of DWC_otg controller
1715 * @chan:  Information needed to initialize the host channel
1716 *
1717 * The caller must ensure there is sufficient space in the request queue and Tx
1718 * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1719 * the controller acts autonomously to complete transfers programmed to a host
1720 * channel.
1721 *
1722 * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1723 * if there is any data remaining to be queued. For an IN transfer, another
1724 * data packet is always requested. For the SETUP phase of a control transfer,
1725 * this function does nothing.
1726 *
1727 * Return: 1 if a new request is queued, 0 if no more requests are required
1728 * for this transfer
1729 */
1730static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1731                                     struct dwc2_host_chan *chan)
1732{
1733        if (dbg_hc(chan))
1734                dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1735                         chan->hc_num);
1736
1737        if (chan->do_split)
1738                /* SPLITs always queue just once per channel */
1739                return 0;
1740
1741        if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1742                /* SETUPs are queued only once since they can't be NAK'd */
1743                return 0;
1744
1745        if (chan->ep_is_in) {
1746                /*
1747                 * Always queue another request for other IN transfers. If
1748                 * back-to-back INs are issued and NAKs are received for both,
1749                 * the driver may still be processing the first NAK when the
1750                 * second NAK is received. When the interrupt handler clears
1751                 * the NAK interrupt for the first NAK, the second NAK will
1752                 * not be seen. So we can't depend on the NAK interrupt
1753                 * handler to requeue a NAK'd request. Instead, IN requests
1754                 * are issued each time this function is called. When the
1755                 * transfer completes, the extra requests for the channel will
1756                 * be flushed.
1757                 */
1758                u32 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1759
1760                dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1761                hcchar |= HCCHAR_CHENA;
1762                hcchar &= ~HCCHAR_CHDIS;
1763                if (dbg_hc(chan))
1764                        dev_vdbg(hsotg->dev, "   IN xfer: hcchar = 0x%08x\n",
1765                                 hcchar);
1766                dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1767                chan->requests++;
1768                return 1;
1769        }
1770
1771        /* OUT transfers */
1772
1773        if (chan->xfer_count < chan->xfer_len) {
1774                if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1775                    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1776                        u32 hcchar = dwc2_readl(hsotg->regs +
1777                                                HCCHAR(chan->hc_num));
1778
1779                        dwc2_hc_set_even_odd_frame(hsotg, chan,
1780                                                   &hcchar);
1781                }
1782
1783                /* Load OUT packet into the appropriate Tx FIFO */
1784                dwc2_hc_write_packet(hsotg, chan);
1785                chan->requests++;
1786                return 1;
1787        }
1788
1789        return 0;
1790}
1791
1792/*
1793 * =========================================================================
1794 *  HCD
1795 * =========================================================================
1796 */
1797
1798/*
1799 * Processes all the URBs in a single list of QHs. Completes them with
1800 * -ETIMEDOUT and frees the QTD.
1801 *
1802 * Must be called with interrupt disabled and spinlock held
1803 */
1804static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1805                                      struct list_head *qh_list)
1806{
1807        struct dwc2_qh *qh, *qh_tmp;
1808        struct dwc2_qtd *qtd, *qtd_tmp;
1809
1810        list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1811                list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1812                                         qtd_list_entry) {
1813                        dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1814                        dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1815                }
1816        }
1817}
1818
1819static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1820                              struct list_head *qh_list)
1821{
1822        struct dwc2_qtd *qtd, *qtd_tmp;
1823        struct dwc2_qh *qh, *qh_tmp;
1824        unsigned long flags;
1825
1826        if (!qh_list->next)
1827                /* The list hasn't been initialized yet */
1828                return;
1829
1830        spin_lock_irqsave(&hsotg->lock, flags);
1831
1832        /* Ensure there are no QTDs or URBs left */
1833        dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1834
1835        list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1836                dwc2_hcd_qh_unlink(hsotg, qh);
1837
1838                /* Free each QTD in the QH's QTD list */
1839                list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1840                                         qtd_list_entry)
1841                        dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1842
1843                if (qh->channel && qh->channel->qh == qh)
1844                        qh->channel->qh = NULL;
1845
1846                spin_unlock_irqrestore(&hsotg->lock, flags);
1847                dwc2_hcd_qh_free(hsotg, qh);
1848                spin_lock_irqsave(&hsotg->lock, flags);
1849        }
1850
1851        spin_unlock_irqrestore(&hsotg->lock, flags);
1852}
1853
1854/*
1855 * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1856 * and periodic schedules. The QTD associated with each URB is removed from
1857 * the schedule and freed. This function may be called when a disconnect is
1858 * detected or when the HCD is being stopped.
1859 *
1860 * Must be called with interrupt disabled and spinlock held
1861 */
1862static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1863{
1864        dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1865        dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting);
1866        dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1867        dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1868        dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1869        dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1870        dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1871}
1872
1873/**
1874 * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1875 *
1876 * @hsotg: Pointer to struct dwc2_hsotg
1877 */
1878void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1879{
1880        u32 hprt0;
1881
1882        if (hsotg->op_state == OTG_STATE_B_HOST) {
1883                /*
1884                 * Reset the port. During a HNP mode switch the reset
1885                 * needs to occur within 1ms and have a duration of at
1886                 * least 50ms.
1887                 */
1888                hprt0 = dwc2_read_hprt0(hsotg);
1889                hprt0 |= HPRT0_RST;
1890                dwc2_writel(hprt0, hsotg->regs + HPRT0);
1891        }
1892
1893        queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1894                           msecs_to_jiffies(50));
1895}
1896
1897/* Must be called with interrupt disabled and spinlock held */
1898static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1899{
1900        int num_channels = hsotg->params.host_channels;
1901        struct dwc2_host_chan *channel;
1902        u32 hcchar;
1903        int i;
1904
1905        if (!hsotg->params.host_dma) {
1906                /* Flush out any channel requests in slave mode */
1907                for (i = 0; i < num_channels; i++) {
1908                        channel = hsotg->hc_ptr_array[i];
1909                        if (!list_empty(&channel->hc_list_entry))
1910                                continue;
1911                        hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1912                        if (hcchar & HCCHAR_CHENA) {
1913                                hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1914                                hcchar |= HCCHAR_CHDIS;
1915                                dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1916                        }
1917                }
1918        }
1919
1920        for (i = 0; i < num_channels; i++) {
1921                channel = hsotg->hc_ptr_array[i];
1922                if (!list_empty(&channel->hc_list_entry))
1923                        continue;
1924                hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1925                if (hcchar & HCCHAR_CHENA) {
1926                        /* Halt the channel */
1927                        hcchar |= HCCHAR_CHDIS;
1928                        dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1929                }
1930
1931                dwc2_hc_cleanup(hsotg, channel);
1932                list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1933                /*
1934                 * Added for Descriptor DMA to prevent channel double cleanup in
1935                 * release_channel_ddma(), which is called from ep_disable when
1936                 * device disconnects
1937                 */
1938                channel->qh = NULL;
1939        }
1940        /* All channels have been freed, mark them available */
1941        if (hsotg->params.uframe_sched) {
1942                hsotg->available_host_channels =
1943                        hsotg->params.host_channels;
1944        } else {
1945                hsotg->non_periodic_channels = 0;
1946                hsotg->periodic_channels = 0;
1947        }
1948}
1949
1950/**
1951 * dwc2_hcd_connect() - Handles connect of the HCD
1952 *
1953 * @hsotg: Pointer to struct dwc2_hsotg
1954 *
1955 * Must be called with interrupt disabled and spinlock held
1956 */
1957void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1958{
1959        if (hsotg->lx_state != DWC2_L0)
1960                usb_hcd_resume_root_hub(hsotg->priv);
1961
1962        hsotg->flags.b.port_connect_status_change = 1;
1963        hsotg->flags.b.port_connect_status = 1;
1964}
1965
1966/**
1967 * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1968 *
1969 * @hsotg: Pointer to struct dwc2_hsotg
1970 * @force: If true, we won't try to reconnect even if we see device connected.
1971 *
1972 * Must be called with interrupt disabled and spinlock held
1973 */
1974void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1975{
1976        u32 intr;
1977        u32 hprt0;
1978
1979        /* Set status flags for the hub driver */
1980        hsotg->flags.b.port_connect_status_change = 1;
1981        hsotg->flags.b.port_connect_status = 0;
1982
1983        /*
1984         * Shutdown any transfers in process by clearing the Tx FIFO Empty
1985         * interrupt mask and status bits and disabling subsequent host
1986         * channel interrupts.
1987         */
1988        intr = dwc2_readl(hsotg->regs + GINTMSK);
1989        intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1990        dwc2_writel(intr, hsotg->regs + GINTMSK);
1991        intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1992        dwc2_writel(intr, hsotg->regs + GINTSTS);
1993
1994        /*
1995         * Turn off the vbus power only if the core has transitioned to device
1996         * mode. If still in host mode, need to keep power on to detect a
1997         * reconnection.
1998         */
1999        if (dwc2_is_device_mode(hsotg)) {
2000                if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
2001                        dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
2002                        dwc2_writel(0, hsotg->regs + HPRT0);
2003                }
2004
2005                dwc2_disable_host_interrupts(hsotg);
2006        }
2007
2008        /* Respond with an error status to all URBs in the schedule */
2009        dwc2_kill_all_urbs(hsotg);
2010
2011        if (dwc2_is_host_mode(hsotg))
2012                /* Clean up any host channels that were in use */
2013                dwc2_hcd_cleanup_channels(hsotg);
2014
2015        dwc2_host_disconnect(hsotg);
2016
2017        /*
2018         * Add an extra check here to see if we're actually connected but
2019         * we don't have a detection interrupt pending.  This can happen if:
2020         *   1. hardware sees connect
2021         *   2. hardware sees disconnect
2022         *   3. hardware sees connect
2023         *   4. dwc2_port_intr() - clears connect interrupt
2024         *   5. dwc2_handle_common_intr() - calls here
2025         *
2026         * Without the extra check here we will end calling disconnect
2027         * and won't get any future interrupts to handle the connect.
2028         */
2029        if (!force) {
2030                hprt0 = dwc2_readl(hsotg->regs + HPRT0);
2031                if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
2032                        dwc2_hcd_connect(hsotg);
2033        }
2034}
2035
2036/**
2037 * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
2038 *
2039 * @hsotg: Pointer to struct dwc2_hsotg
2040 */
2041static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
2042{
2043        if (hsotg->bus_suspended) {
2044                hsotg->flags.b.port_suspend_change = 1;
2045                usb_hcd_resume_root_hub(hsotg->priv);
2046        }
2047
2048        if (hsotg->lx_state == DWC2_L1)
2049                hsotg->flags.b.port_l1_change = 1;
2050}
2051
2052/**
2053 * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
2054 *
2055 * @hsotg: Pointer to struct dwc2_hsotg
2056 *
2057 * Must be called with interrupt disabled and spinlock held
2058 */
2059void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
2060{
2061        dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
2062
2063        /*
2064         * The root hub should be disconnected before this function is called.
2065         * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
2066         * and the QH lists (via ..._hcd_endpoint_disable).
2067         */
2068
2069        /* Turn off all host-specific interrupts */
2070        dwc2_disable_host_interrupts(hsotg);
2071
2072        /* Turn off the vbus power */
2073        dev_dbg(hsotg->dev, "PortPower off\n");
2074        dwc2_writel(0, hsotg->regs + HPRT0);
2075}
2076
2077/* Caller must hold driver lock */
2078static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
2079                                struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
2080                                struct dwc2_qtd *qtd)
2081{
2082        u32 intr_mask;
2083        int retval;
2084        int dev_speed;
2085
2086        if (!hsotg->flags.b.port_connect_status) {
2087                /* No longer connected */
2088                dev_err(hsotg->dev, "Not connected\n");
2089                return -ENODEV;
2090        }
2091
2092        dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
2093
2094        /* Some configurations cannot support LS traffic on a FS root port */
2095        if ((dev_speed == USB_SPEED_LOW) &&
2096            (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
2097            (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
2098                u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
2099                u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
2100
2101                if (prtspd == HPRT0_SPD_FULL_SPEED)
2102                        return -ENODEV;
2103        }
2104
2105        if (!qtd)
2106                return -EINVAL;
2107
2108        dwc2_hcd_qtd_init(qtd, urb);
2109        retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
2110        if (retval) {
2111                dev_err(hsotg->dev,
2112                        "DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
2113                        retval);
2114                return retval;
2115        }
2116
2117        intr_mask = dwc2_readl(hsotg->regs + GINTMSK);
2118        if (!(intr_mask & GINTSTS_SOF)) {
2119                enum dwc2_transaction_type tr_type;
2120
2121                if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
2122                    !(qtd->urb->flags & URB_GIVEBACK_ASAP))
2123                        /*
2124                         * Do not schedule SG transactions until qtd has
2125                         * URB_GIVEBACK_ASAP set
2126                         */
2127                        return 0;
2128
2129                tr_type = dwc2_hcd_select_transactions(hsotg);
2130                if (tr_type != DWC2_TRANSACTION_NONE)
2131                        dwc2_hcd_queue_transactions(hsotg, tr_type);
2132        }
2133
2134        return 0;
2135}
2136
2137/* Must be called with interrupt disabled and spinlock held */
2138static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
2139                                struct dwc2_hcd_urb *urb)
2140{
2141        struct dwc2_qh *qh;
2142        struct dwc2_qtd *urb_qtd;
2143
2144        urb_qtd = urb->qtd;
2145        if (!urb_qtd) {
2146                dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
2147                return -EINVAL;
2148        }
2149
2150        qh = urb_qtd->qh;
2151        if (!qh) {
2152                dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
2153                return -EINVAL;
2154        }
2155
2156        urb->priv = NULL;
2157
2158        if (urb_qtd->in_process && qh->channel) {
2159                dwc2_dump_channel_info(hsotg, qh->channel);
2160
2161                /* The QTD is in process (it has been assigned to a channel) */
2162                if (hsotg->flags.b.port_connect_status)
2163                        /*
2164                         * If still connected (i.e. in host mode), halt the
2165                         * channel so it can be used for other transfers. If
2166                         * no longer connected, the host registers can't be
2167                         * written to halt the channel since the core is in
2168                         * device mode.
2169                         */
2170                        dwc2_hc_halt(hsotg, qh->channel,
2171                                     DWC2_HC_XFER_URB_DEQUEUE);
2172        }
2173
2174        /*
2175         * Free the QTD and clean up the associated QH. Leave the QH in the
2176         * schedule if it has any remaining QTDs.
2177         */
2178        if (!hsotg->params.dma_desc_enable) {
2179                u8 in_process = urb_qtd->in_process;
2180
2181                dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2182                if (in_process) {
2183                        dwc2_hcd_qh_deactivate(hsotg, qh, 0);
2184                        qh->channel = NULL;
2185                } else if (list_empty(&qh->qtd_list)) {
2186                        dwc2_hcd_qh_unlink(hsotg, qh);
2187                }
2188        } else {
2189                dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2190        }
2191
2192        return 0;
2193}
2194
2195/* Must NOT be called with interrupt disabled or spinlock held */
2196static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
2197                                     struct usb_host_endpoint *ep, int retry)
2198{
2199        struct dwc2_qtd *qtd, *qtd_tmp;
2200        struct dwc2_qh *qh;
2201        unsigned long flags;
2202        int rc;
2203
2204        spin_lock_irqsave(&hsotg->lock, flags);
2205
2206        qh = ep->hcpriv;
2207        if (!qh) {
2208                rc = -EINVAL;
2209                goto err;
2210        }
2211
2212        while (!list_empty(&qh->qtd_list) && retry--) {
2213                if (retry == 0) {
2214                        dev_err(hsotg->dev,
2215                                "## timeout in dwc2_hcd_endpoint_disable() ##\n");
2216                        rc = -EBUSY;
2217                        goto err;
2218                }
2219
2220                spin_unlock_irqrestore(&hsotg->lock, flags);
2221                msleep(20);
2222                spin_lock_irqsave(&hsotg->lock, flags);
2223                qh = ep->hcpriv;
2224                if (!qh) {
2225                        rc = -EINVAL;
2226                        goto err;
2227                }
2228        }
2229
2230        dwc2_hcd_qh_unlink(hsotg, qh);
2231
2232        /* Free each QTD in the QH's QTD list */
2233        list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2234                dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2235
2236        ep->hcpriv = NULL;
2237
2238        if (qh->channel && qh->channel->qh == qh)
2239                qh->channel->qh = NULL;
2240
2241        spin_unlock_irqrestore(&hsotg->lock, flags);
2242
2243        dwc2_hcd_qh_free(hsotg, qh);
2244
2245        return 0;
2246
2247err:
2248        ep->hcpriv = NULL;
2249        spin_unlock_irqrestore(&hsotg->lock, flags);
2250
2251        return rc;
2252}
2253
2254/* Must be called with interrupt disabled and spinlock held */
2255static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2256                                   struct usb_host_endpoint *ep)
2257{
2258        struct dwc2_qh *qh = ep->hcpriv;
2259
2260        if (!qh)
2261                return -EINVAL;
2262
2263        qh->data_toggle = DWC2_HC_PID_DATA0;
2264
2265        return 0;
2266}
2267
2268/**
2269 * dwc2_core_init() - Initializes the DWC_otg controller registers and
2270 * prepares the core for device mode or host mode operation
2271 *
2272 * @hsotg:         Programming view of the DWC_otg controller
2273 * @initial_setup: If true then this is the first init for this instance.
2274 */
2275int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2276{
2277        u32 usbcfg, otgctl;
2278        int retval;
2279
2280        dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2281
2282        usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
2283
2284        /* Set ULPI External VBUS bit if needed */
2285        usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2286        if (hsotg->params.phy_ulpi_ext_vbus)
2287                usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2288
2289        /* Set external TS Dline pulsing bit if needed */
2290        usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2291        if (hsotg->params.ts_dline)
2292                usbcfg |= GUSBCFG_TERMSELDLPULSE;
2293
2294        dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2295
2296        /*
2297         * Reset the Controller
2298         *
2299         * We only need to reset the controller if this is a re-init.
2300         * For the first init we know for sure that earlier code reset us (it
2301         * needed to in order to properly detect various parameters).
2302         */
2303        if (!initial_setup) {
2304                retval = dwc2_core_reset(hsotg, false);
2305                if (retval) {
2306                        dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2307                                __func__);
2308                        return retval;
2309                }
2310        }
2311
2312        /*
2313         * This needs to happen in FS mode before any other programming occurs
2314         */
2315        retval = dwc2_phy_init(hsotg, initial_setup);
2316        if (retval)
2317                return retval;
2318
2319        /* Program the GAHBCFG Register */
2320        retval = dwc2_gahbcfg_init(hsotg);
2321        if (retval)
2322                return retval;
2323
2324        /* Program the GUSBCFG register */
2325        dwc2_gusbcfg_init(hsotg);
2326
2327        /* Program the GOTGCTL register */
2328        otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2329        otgctl &= ~GOTGCTL_OTGVER;
2330        dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2331
2332        /* Clear the SRP success bit for FS-I2c */
2333        hsotg->srp_success = 0;
2334
2335        /* Enable common interrupts */
2336        dwc2_enable_common_interrupts(hsotg);
2337
2338        /*
2339         * Do device or host initialization based on mode during PCD and
2340         * HCD initialization
2341         */
2342        if (dwc2_is_host_mode(hsotg)) {
2343                dev_dbg(hsotg->dev, "Host Mode\n");
2344                hsotg->op_state = OTG_STATE_A_HOST;
2345        } else {
2346                dev_dbg(hsotg->dev, "Device Mode\n");
2347                hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2348        }
2349
2350        return 0;
2351}
2352
2353/**
2354 * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2355 * Host mode
2356 *
2357 * @hsotg: Programming view of DWC_otg controller
2358 *
2359 * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2360 * request queues. Host channels are reset to ensure that they are ready for
2361 * performing transfers.
2362 */
2363static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2364{
2365        u32 hcfg, hfir, otgctl, usbcfg;
2366
2367        dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2368
2369        /* Set HS/FS Timeout Calibration to 7 (max available value).
2370         * The number of PHY clocks that the application programs in
2371         * this field is added to the high/full speed interpacket timeout
2372         * duration in the core to account for any additional delays
2373         * introduced by the PHY. This can be required, because the delay
2374         * introduced by the PHY in generating the linestate condition
2375         * can vary from one PHY to another.
2376         */
2377        usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
2378        usbcfg |= GUSBCFG_TOUTCAL(7);
2379        dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2380
2381        /* Restart the Phy Clock */
2382        dwc2_writel(0, hsotg->regs + PCGCTL);
2383
2384        /* Initialize Host Configuration Register */
2385        dwc2_init_fs_ls_pclk_sel(hsotg);
2386        if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2387            hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2388                hcfg = dwc2_readl(hsotg->regs + HCFG);
2389                hcfg |= HCFG_FSLSSUPP;
2390                dwc2_writel(hcfg, hsotg->regs + HCFG);
2391        }
2392
2393        /*
2394         * This bit allows dynamic reloading of the HFIR register during
2395         * runtime. This bit needs to be programmed during initial configuration
2396         * and its value must not be changed during runtime.
2397         */
2398        if (hsotg->params.reload_ctl) {
2399                hfir = dwc2_readl(hsotg->regs + HFIR);
2400                hfir |= HFIR_RLDCTRL;
2401                dwc2_writel(hfir, hsotg->regs + HFIR);
2402        }
2403
2404        if (hsotg->params.dma_desc_enable) {
2405                u32 op_mode = hsotg->hw_params.op_mode;
2406
2407                if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2408                    !hsotg->hw_params.dma_desc_enable ||
2409                    op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2410                    op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2411                    op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2412                        dev_err(hsotg->dev,
2413                                "Hardware does not support descriptor DMA mode -\n");
2414                        dev_err(hsotg->dev,
2415                                "falling back to buffer DMA mode.\n");
2416                        hsotg->params.dma_desc_enable = false;
2417                } else {
2418                        hcfg = dwc2_readl(hsotg->regs + HCFG);
2419                        hcfg |= HCFG_DESCDMA;
2420                        dwc2_writel(hcfg, hsotg->regs + HCFG);
2421                }
2422        }
2423
2424        /* Configure data FIFO sizes */
2425        dwc2_config_fifos(hsotg);
2426
2427        /* TODO - check this */
2428        /* Clear Host Set HNP Enable in the OTG Control Register */
2429        otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2430        otgctl &= ~GOTGCTL_HSTSETHNPEN;
2431        dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2432
2433        /* Make sure the FIFOs are flushed */
2434        dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2435        dwc2_flush_rx_fifo(hsotg);
2436
2437        /* Clear Host Set HNP Enable in the OTG Control Register */
2438        otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2439        otgctl &= ~GOTGCTL_HSTSETHNPEN;
2440        dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2441
2442        if (!hsotg->params.dma_desc_enable) {
2443                int num_channels, i;
2444                u32 hcchar;
2445
2446                /* Flush out any leftover queued requests */
2447                num_channels = hsotg->params.host_channels;
2448                for (i = 0; i < num_channels; i++) {
2449                        hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2450                        hcchar &= ~HCCHAR_CHENA;
2451                        hcchar |= HCCHAR_CHDIS;
2452                        hcchar &= ~HCCHAR_EPDIR;
2453                        dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
2454                }
2455
2456                /* Halt all channels to put them into a known state */
2457                for (i = 0; i < num_channels; i++) {
2458                        hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2459                        hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2460                        hcchar &= ~HCCHAR_EPDIR;
2461                        dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
2462                        dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2463                                __func__, i);
2464
2465                        if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i),
2466                                                      HCCHAR_CHENA, 1000)) {
2467                                dev_warn(hsotg->dev, "Unable to clear enable on channel %d\n",
2468                                         i);
2469                        }
2470                }
2471        }
2472
2473        /* Enable ACG feature in host mode, if supported */
2474        dwc2_enable_acg(hsotg);
2475
2476        /* Turn on the vbus power */
2477        dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2478        if (hsotg->op_state == OTG_STATE_A_HOST) {
2479                u32 hprt0 = dwc2_read_hprt0(hsotg);
2480
2481                dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2482                        !!(hprt0 & HPRT0_PWR));
2483                if (!(hprt0 & HPRT0_PWR)) {
2484                        hprt0 |= HPRT0_PWR;
2485                        dwc2_writel(hprt0, hsotg->regs + HPRT0);
2486                }
2487        }
2488
2489        dwc2_enable_host_interrupts(hsotg);
2490}
2491
2492/*
2493 * Initializes dynamic portions of the DWC_otg HCD state
2494 *
2495 * Must be called with interrupt disabled and spinlock held
2496 */
2497static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2498{
2499        struct dwc2_host_chan *chan, *chan_tmp;
2500        int num_channels;
2501        int i;
2502
2503        hsotg->flags.d32 = 0;
2504        hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2505
2506        if (hsotg->params.uframe_sched) {
2507                hsotg->available_host_channels =
2508                        hsotg->params.host_channels;
2509        } else {
2510                hsotg->non_periodic_channels = 0;
2511                hsotg->periodic_channels = 0;
2512        }
2513
2514        /*
2515         * Put all channels in the free channel list and clean up channel
2516         * states
2517         */
2518        list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2519                                 hc_list_entry)
2520                list_del_init(&chan->hc_list_entry);
2521
2522        num_channels = hsotg->params.host_channels;
2523        for (i = 0; i < num_channels; i++) {
2524                chan = hsotg->hc_ptr_array[i];
2525                list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2526                dwc2_hc_cleanup(hsotg, chan);
2527        }
2528
2529        /* Initialize the DWC core for host mode operation */
2530        dwc2_core_host_init(hsotg);
2531}
2532
2533static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2534                               struct dwc2_host_chan *chan,
2535                               struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2536{
2537        int hub_addr, hub_port;
2538
2539        chan->do_split = 1;
2540        chan->xact_pos = qtd->isoc_split_pos;
2541        chan->complete_split = qtd->complete_split;
2542        dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2543        chan->hub_addr = (u8)hub_addr;
2544        chan->hub_port = (u8)hub_port;
2545}
2546
2547static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2548                              struct dwc2_host_chan *chan,
2549                              struct dwc2_qtd *qtd)
2550{
2551        struct dwc2_hcd_urb *urb = qtd->urb;
2552        struct dwc2_hcd_iso_packet_desc *frame_desc;
2553
2554        switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2555        case USB_ENDPOINT_XFER_CONTROL:
2556                chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2557
2558                switch (qtd->control_phase) {
2559                case DWC2_CONTROL_SETUP:
2560                        dev_vdbg(hsotg->dev, "  Control setup transaction\n");
2561                        chan->do_ping = 0;
2562                        chan->ep_is_in = 0;
2563                        chan->data_pid_start = DWC2_HC_PID_SETUP;
2564                        if (hsotg->params.host_dma)
2565                                chan->xfer_dma = urb->setup_dma;
2566                        else
2567                                chan->xfer_buf = urb->setup_packet;
2568                        chan->xfer_len = 8;
2569                        break;
2570
2571                case DWC2_CONTROL_DATA:
2572                        dev_vdbg(hsotg->dev, "  Control data transaction\n");
2573                        chan->data_pid_start = qtd->data_toggle;
2574                        break;
2575
2576                case DWC2_CONTROL_STATUS:
2577                        /*
2578                         * Direction is opposite of data direction or IN if no
2579                         * data
2580                         */
2581                        dev_vdbg(hsotg->dev, "  Control status transaction\n");
2582                        if (urb->length == 0)
2583                                chan->ep_is_in = 1;
2584                        else
2585                                chan->ep_is_in =
2586                                        dwc2_hcd_is_pipe_out(&urb->pipe_info);
2587                        if (chan->ep_is_in)
2588                                chan->do_ping = 0;
2589                        chan->data_pid_start = DWC2_HC_PID_DATA1;
2590                        chan->xfer_len = 0;
2591                        if (hsotg->params.host_dma)
2592                                chan->xfer_dma = hsotg->status_buf_dma;
2593                        else
2594                                chan->xfer_buf = hsotg->status_buf;
2595                        break;
2596                }
2597                break;
2598
2599        case USB_ENDPOINT_XFER_BULK:
2600                chan->ep_type = USB_ENDPOINT_XFER_BULK;
2601                break;
2602
2603        case USB_ENDPOINT_XFER_INT:
2604                chan->ep_type = USB_ENDPOINT_XFER_INT;
2605                break;
2606
2607        case USB_ENDPOINT_XFER_ISOC:
2608                chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2609                if (hsotg->params.dma_desc_enable)
2610                        break;
2611
2612                frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2613                frame_desc->status = 0;
2614
2615                if (hsotg->params.host_dma) {
2616                        chan->xfer_dma = urb->dma;
2617                        chan->xfer_dma += frame_desc->offset +
2618                                        qtd->isoc_split_offset;
2619                } else {
2620                        chan->xfer_buf = urb->buf;
2621                        chan->xfer_buf += frame_desc->offset +
2622                                        qtd->isoc_split_offset;
2623                }
2624
2625                chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2626
2627                if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2628                        if (chan->xfer_len <= 188)
2629                                chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2630                        else
2631                                chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2632                }
2633                break;
2634        }
2635}
2636
2637static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg *hsotg,
2638                                            struct dwc2_qh *qh,
2639                                            struct dwc2_host_chan *chan)
2640{
2641        if (!hsotg->unaligned_cache ||
2642            chan->max_packet > DWC2_KMEM_UNALIGNED_BUF_SIZE)
2643                return -ENOMEM;
2644
2645        if (!qh->dw_align_buf) {
2646                qh->dw_align_buf = kmem_cache_alloc(hsotg->unaligned_cache,
2647                                                    GFP_ATOMIC | GFP_DMA);
2648                if (!qh->dw_align_buf)
2649                        return -ENOMEM;
2650        }
2651
2652        qh->dw_align_buf_dma = dma_map_single(hsotg->dev, qh->dw_align_buf,
2653                                              DWC2_KMEM_UNALIGNED_BUF_SIZE,
2654                                              DMA_FROM_DEVICE);
2655
2656        if (dma_mapping_error(hsotg->dev, qh->dw_align_buf_dma)) {
2657                dev_err(hsotg->dev, "can't map align_buf\n");
2658                chan->align_buf = 0;
2659                return -EINVAL;
2660        }
2661
2662        chan->align_buf = qh->dw_align_buf_dma;
2663        return 0;
2664}
2665
2666#define DWC2_USB_DMA_ALIGN 4
2667
2668static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2669{
2670        void *stored_xfer_buffer;
2671        size_t length;
2672
2673        if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2674                return;
2675
2676        /* Restore urb->transfer_buffer from the end of the allocated area */
2677        memcpy(&stored_xfer_buffer, urb->transfer_buffer +
2678               urb->transfer_buffer_length, sizeof(urb->transfer_buffer));
2679
2680        if (usb_urb_dir_in(urb)) {
2681                if (usb_pipeisoc(urb->pipe))
2682                        length = urb->transfer_buffer_length;
2683                else
2684                        length = urb->actual_length;
2685
2686                memcpy(stored_xfer_buffer, urb->transfer_buffer, length);
2687        }
2688        kfree(urb->transfer_buffer);
2689        urb->transfer_buffer = stored_xfer_buffer;
2690
2691        urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2692}
2693
2694static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2695{
2696        void *kmalloc_ptr;
2697        size_t kmalloc_size;
2698
2699        if (urb->num_sgs || urb->sg ||
2700            urb->transfer_buffer_length == 0 ||
2701            !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2702                return 0;
2703
2704        /*
2705         * Allocate a buffer with enough padding for original transfer_buffer
2706         * pointer. This allocation is guaranteed to be aligned properly for
2707         * DMA
2708         */
2709        kmalloc_size = urb->transfer_buffer_length +
2710                sizeof(urb->transfer_buffer);
2711
2712        kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2713        if (!kmalloc_ptr)
2714                return -ENOMEM;
2715
2716        /*
2717         * Position value of original urb->transfer_buffer pointer to the end
2718         * of allocation for later referencing
2719         */
2720        memcpy(kmalloc_ptr + urb->transfer_buffer_length,
2721               &urb->transfer_buffer, sizeof(urb->transfer_buffer));
2722
2723        if (usb_urb_dir_out(urb))
2724                memcpy(kmalloc_ptr, urb->transfer_buffer,
2725                       urb->transfer_buffer_length);
2726        urb->transfer_buffer = kmalloc_ptr;
2727
2728        urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2729
2730        return 0;
2731}
2732
2733static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2734                                gfp_t mem_flags)
2735{
2736        int ret;
2737
2738        /* We assume setup_dma is always aligned; warn if not */
2739        WARN_ON_ONCE(urb->setup_dma &&
2740                     (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2741
2742        ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2743        if (ret)
2744                return ret;
2745
2746        ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2747        if (ret)
2748                dwc2_free_dma_aligned_buffer(urb);
2749
2750        return ret;
2751}
2752
2753static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2754{
2755        usb_hcd_unmap_urb_for_dma(hcd, urb);
2756        dwc2_free_dma_aligned_buffer(urb);
2757}
2758
2759/**
2760 * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2761 * channel and initializes the host channel to perform the transactions. The
2762 * host channel is removed from the free list.
2763 *
2764 * @hsotg: The HCD state structure
2765 * @qh:    Transactions from the first QTD for this QH are selected and assigned
2766 *         to a free host channel
2767 */
2768static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2769{
2770        struct dwc2_host_chan *chan;
2771        struct dwc2_hcd_urb *urb;
2772        struct dwc2_qtd *qtd;
2773
2774        if (dbg_qh(qh))
2775                dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2776
2777        if (list_empty(&qh->qtd_list)) {
2778                dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2779                return -ENOMEM;
2780        }
2781
2782        if (list_empty(&hsotg->free_hc_list)) {
2783                dev_dbg(hsotg->dev, "No free channel to assign\n");
2784                return -ENOMEM;
2785        }
2786
2787        chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2788                                hc_list_entry);
2789
2790        /* Remove host channel from free list */
2791        list_del_init(&chan->hc_list_entry);
2792
2793        qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2794        urb = qtd->urb;
2795        qh->channel = chan;
2796        qtd->in_process = 1;
2797
2798        /*
2799         * Use usb_pipedevice to determine device address. This address is
2800         * 0 before the SET_ADDRESS command and the correct address afterward.
2801         */
2802        chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2803        chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2804        chan->speed = qh->dev_speed;
2805        chan->max_packet = dwc2_max_packet(qh->maxp);
2806
2807        chan->xfer_started = 0;
2808        chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2809        chan->error_state = (qtd->error_count > 0);
2810        chan->halt_on_queue = 0;
2811        chan->halt_pending = 0;
2812        chan->requests = 0;
2813
2814        /*
2815         * The following values may be modified in the transfer type section
2816         * below. The xfer_len value may be reduced when the transfer is
2817         * started to accommodate the max widths of the XferSize and PktCnt
2818         * fields in the HCTSIZn register.
2819         */
2820
2821        chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2822        if (chan->ep_is_in)
2823                chan->do_ping = 0;
2824        else
2825                chan->do_ping = qh->ping_state;
2826
2827        chan->data_pid_start = qh->data_toggle;
2828        chan->multi_count = 1;
2829
2830        if (urb->actual_length > urb->length &&
2831            !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2832                urb->actual_length = urb->length;
2833
2834        if (hsotg->params.host_dma)
2835                chan->xfer_dma = urb->dma + urb->actual_length;
2836        else
2837                chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2838
2839        chan->xfer_len = urb->length - urb->actual_length;
2840        chan->xfer_count = 0;
2841
2842        /* Set the split attributes if required */
2843        if (qh->do_split)
2844                dwc2_hc_init_split(hsotg, chan, qtd, urb);
2845        else
2846                chan->do_split = 0;
2847
2848        /* Set the transfer attributes */
2849        dwc2_hc_init_xfer(hsotg, chan, qtd);
2850
2851        /* For non-dword aligned buffers */
2852        if (hsotg->params.host_dma && qh->do_split &&
2853            chan->ep_is_in && (chan->xfer_dma & 0x3)) {
2854                dev_vdbg(hsotg->dev, "Non-aligned buffer\n");
2855                if (dwc2_alloc_split_dma_aligned_buf(hsotg, qh, chan)) {
2856                        dev_err(hsotg->dev,
2857                                "Failed to allocate memory to handle non-aligned buffer\n");
2858                        /* Add channel back to free list */
2859                        chan->align_buf = 0;
2860                        chan->multi_count = 0;
2861                        list_add_tail(&chan->hc_list_entry,
2862                                      &hsotg->free_hc_list);
2863                        qtd->in_process = 0;
2864                        qh->channel = NULL;
2865                        return -ENOMEM;
2866                }
2867        } else {
2868                /*
2869                 * We assume that DMA is always aligned in non-split
2870                 * case or split out case. Warn if not.
2871                 */
2872                WARN_ON_ONCE(hsotg->params.host_dma &&
2873                             (chan->xfer_dma & 0x3));
2874                chan->align_buf = 0;
2875        }
2876
2877        if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2878            chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2879                /*
2880                 * This value may be modified when the transfer is started
2881                 * to reflect the actual transfer length
2882                 */
2883                chan->multi_count = dwc2_hb_mult(qh->maxp);
2884
2885        if (hsotg->params.dma_desc_enable) {
2886                chan->desc_list_addr = qh->desc_list_dma;
2887                chan->desc_list_sz = qh->desc_list_sz;
2888        }
2889
2890        dwc2_hc_init(hsotg, chan);
2891        chan->qh = qh;
2892
2893        return 0;
2894}
2895
2896/**
2897 * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2898 * schedule and assigns them to available host channels. Called from the HCD
2899 * interrupt handler functions.
2900 *
2901 * @hsotg: The HCD state structure
2902 *
2903 * Return: The types of new transactions that were assigned to host channels
2904 */
2905enum dwc2_transaction_type dwc2_hcd_select_transactions(
2906                struct dwc2_hsotg *hsotg)
2907{
2908        enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2909        struct list_head *qh_ptr;
2910        struct dwc2_qh *qh;
2911        int num_channels;
2912
2913#ifdef DWC2_DEBUG_SOF
2914        dev_vdbg(hsotg->dev, "  Select Transactions\n");
2915#endif
2916
2917        /* Process entries in the periodic ready list */
2918        qh_ptr = hsotg->periodic_sched_ready.next;
2919        while (qh_ptr != &hsotg->periodic_sched_ready) {
2920                if (list_empty(&hsotg->free_hc_list))
2921                        break;
2922                if (hsotg->params.uframe_sched) {
2923                        if (hsotg->available_host_channels <= 1)
2924                                break;
2925                        hsotg->available_host_channels--;
2926                }
2927                qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2928                if (dwc2_assign_and_init_hc(hsotg, qh))
2929                        break;
2930
2931                /*
2932                 * Move the QH from the periodic ready schedule to the
2933                 * periodic assigned schedule
2934                 */
2935                qh_ptr = qh_ptr->next;
2936                list_move_tail(&qh->qh_list_entry,
2937                               &hsotg->periodic_sched_assigned);
2938                ret_val = DWC2_TRANSACTION_PERIODIC;
2939        }
2940
2941        /*
2942         * Process entries in the inactive portion of the non-periodic
2943         * schedule. Some free host channels may not be used if they are
2944         * reserved for periodic transfers.
2945         */
2946        num_channels = hsotg->params.host_channels;
2947        qh_ptr = hsotg->non_periodic_sched_inactive.next;
2948        while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2949                if (!hsotg->params.uframe_sched &&
2950                    hsotg->non_periodic_channels >= num_channels -
2951                                                hsotg->periodic_channels)
2952                        break;
2953                if (list_empty(&hsotg->free_hc_list))
2954                        break;
2955                qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2956                if (hsotg->params.uframe_sched) {
2957                        if (hsotg->available_host_channels < 1)
2958                                break;
2959                        hsotg->available_host_channels--;
2960                }
2961
2962                if (dwc2_assign_and_init_hc(hsotg, qh))
2963                        break;
2964
2965                /*
2966                 * Move the QH from the non-periodic inactive schedule to the
2967                 * non-periodic active schedule
2968                 */
2969                qh_ptr = qh_ptr->next;
2970                list_move_tail(&qh->qh_list_entry,
2971                               &hsotg->non_periodic_sched_active);
2972
2973                if (ret_val == DWC2_TRANSACTION_NONE)
2974                        ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2975                else
2976                        ret_val = DWC2_TRANSACTION_ALL;
2977
2978                if (!hsotg->params.uframe_sched)
2979                        hsotg->non_periodic_channels++;
2980        }
2981
2982        return ret_val;
2983}
2984
2985/**
2986 * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2987 * a host channel associated with either a periodic or non-periodic transfer
2988 *
2989 * @hsotg: The HCD state structure
2990 * @chan:  Host channel descriptor associated with either a periodic or
2991 *         non-periodic transfer
2992 * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2993 *                     for periodic transfers or the non-periodic Tx FIFO
2994 *                     for non-periodic transfers
2995 *
2996 * Return: 1 if a request is queued and more requests may be needed to
2997 * complete the transfer, 0 if no more requests are required for this
2998 * transfer, -1 if there is insufficient space in the Tx FIFO
2999 *
3000 * This function assumes that there is space available in the appropriate
3001 * request queue. For an OUT transfer or SETUP transaction in Slave mode,
3002 * it checks whether space is available in the appropriate Tx FIFO.
3003 *
3004 * Must be called with interrupt disabled and spinlock held
3005 */
3006static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
3007                                  struct dwc2_host_chan *chan,
3008                                  u16 fifo_dwords_avail)
3009{
3010        int retval = 0;
3011
3012        if (chan->do_split)
3013                /* Put ourselves on the list to keep order straight */
3014                list_move_tail(&chan->split_order_list_entry,
3015                               &hsotg->split_order);
3016
3017        if (hsotg->params.host_dma) {
3018                if (hsotg->params.dma_desc_enable) {
3019                        if (!chan->xfer_started ||
3020                            chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
3021                                dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
3022                                chan->qh->ping_state = 0;
3023                        }
3024                } else if (!chan->xfer_started) {
3025                        dwc2_hc_start_transfer(hsotg, chan);
3026                        chan->qh->ping_state = 0;
3027                }
3028        } else if (chan->halt_pending) {
3029                /* Don't queue a request if the channel has been halted */
3030        } else if (chan->halt_on_queue) {
3031                dwc2_hc_halt(hsotg, chan, chan->halt_status);
3032        } else if (chan->do_ping) {
3033                if (!chan->xfer_started)
3034                        dwc2_hc_start_transfer(hsotg, chan);
3035        } else if (!chan->ep_is_in ||
3036                   chan->data_pid_start == DWC2_HC_PID_SETUP) {
3037                if ((fifo_dwords_avail * 4) >= chan->max_packet) {
3038                        if (!chan->xfer_started) {
3039                                dwc2_hc_start_transfer(hsotg, chan);
3040                                retval = 1;
3041                        } else {
3042                                retval = dwc2_hc_continue_transfer(hsotg, chan);
3043                        }
3044                } else {
3045                        retval = -1;
3046                }
3047        } else {
3048                if (!chan->xfer_started) {
3049                        dwc2_hc_start_transfer(hsotg, chan);
3050                        retval = 1;
3051                } else {
3052                        retval = dwc2_hc_continue_transfer(hsotg, chan);
3053                }
3054        }
3055
3056        return retval;
3057}
3058
3059/*
3060 * Processes periodic channels for the next frame and queues transactions for
3061 * these channels to the DWC_otg controller. After queueing transactions, the
3062 * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
3063 * to queue as Periodic Tx FIFO or request queue space becomes available.
3064 * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
3065 *
3066 * Must be called with interrupt disabled and spinlock held
3067 */
3068static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
3069{
3070        struct list_head *qh_ptr;
3071        struct dwc2_qh *qh;
3072        u32 tx_status;
3073        u32 fspcavail;
3074        u32 gintmsk;
3075        int status;
3076        bool no_queue_space = false;
3077        bool no_fifo_space = false;
3078        u32 qspcavail;
3079
3080        /* If empty list then just adjust interrupt enables */
3081        if (list_empty(&hsotg->periodic_sched_assigned))
3082                goto exit;
3083
3084        if (dbg_perio())
3085                dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
3086
3087        tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
3088        qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3089                    TXSTS_QSPCAVAIL_SHIFT;
3090        fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3091                    TXSTS_FSPCAVAIL_SHIFT;
3092
3093        if (dbg_perio()) {
3094                dev_vdbg(hsotg->dev, "  P Tx Req Queue Space Avail (before queue): %d\n",
3095                         qspcavail);
3096                dev_vdbg(hsotg->dev, "  P Tx FIFO Space Avail (before queue): %d\n",
3097                         fspcavail);
3098        }
3099
3100        qh_ptr = hsotg->periodic_sched_assigned.next;
3101        while (qh_ptr != &hsotg->periodic_sched_assigned) {
3102                tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
3103                qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3104                            TXSTS_QSPCAVAIL_SHIFT;
3105                if (qspcavail == 0) {
3106                        no_queue_space = true;
3107                        break;
3108                }
3109
3110                qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
3111                if (!qh->channel) {
3112                        qh_ptr = qh_ptr->next;
3113                        continue;
3114                }
3115
3116                /* Make sure EP's TT buffer is clean before queueing qtds */
3117                if (qh->tt_buffer_dirty) {
3118                        qh_ptr = qh_ptr->next;
3119                        continue;
3120                }
3121
3122                /*
3123                 * Set a flag if we're queuing high-bandwidth in slave mode.
3124                 * The flag prevents any halts to get into the request queue in
3125                 * the middle of multiple high-bandwidth packets getting queued.
3126                 */
3127                if (!hsotg->params.host_dma &&
3128                    qh->channel->multi_count > 1)
3129                        hsotg->queuing_high_bandwidth = 1;
3130
3131                fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3132                            TXSTS_FSPCAVAIL_SHIFT;
3133                status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3134                if (status < 0) {
3135                        no_fifo_space = true;
3136                        break;
3137                }
3138
3139                /*
3140                 * In Slave mode, stay on the current transfer until there is
3141                 * nothing more to do or the high-bandwidth request count is
3142                 * reached. In DMA mode, only need to queue one request. The
3143                 * controller automatically handles multiple packets for
3144                 * high-bandwidth transfers.
3145                 */
3146                if (hsotg->params.host_dma || status == 0 ||
3147                    qh->channel->requests == qh->channel->multi_count) {
3148                        qh_ptr = qh_ptr->next;
3149                        /*
3150                         * Move the QH from the periodic assigned schedule to
3151                         * the periodic queued schedule
3152                         */
3153                        list_move_tail(&qh->qh_list_entry,
3154                                       &hsotg->periodic_sched_queued);
3155
3156                        /* done queuing high bandwidth */
3157                        hsotg->queuing_high_bandwidth = 0;
3158                }
3159        }
3160
3161exit:
3162        if (no_queue_space || no_fifo_space ||
3163            (!hsotg->params.host_dma &&
3164             !list_empty(&hsotg->periodic_sched_assigned))) {
3165                /*
3166                 * May need to queue more transactions as the request
3167                 * queue or Tx FIFO empties. Enable the periodic Tx
3168                 * FIFO empty interrupt. (Always use the half-empty
3169                 * level to ensure that new requests are loaded as
3170                 * soon as possible.)
3171                 */
3172                gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3173                if (!(gintmsk & GINTSTS_PTXFEMP)) {
3174                        gintmsk |= GINTSTS_PTXFEMP;
3175                        dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3176                }
3177        } else {
3178                /*
3179                 * Disable the Tx FIFO empty interrupt since there are
3180                 * no more transactions that need to be queued right
3181                 * now. This function is called from interrupt
3182                 * handlers to queue more transactions as transfer
3183                 * states change.
3184                 */
3185                gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3186                if (gintmsk & GINTSTS_PTXFEMP) {
3187                        gintmsk &= ~GINTSTS_PTXFEMP;
3188                        dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3189                }
3190        }
3191}
3192
3193/*
3194 * Processes active non-periodic channels and queues transactions for these
3195 * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3196 * FIFO Empty interrupt is enabled if there are more transactions to queue as
3197 * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3198 * FIFO Empty interrupt is disabled.
3199 *
3200 * Must be called with interrupt disabled and spinlock held
3201 */
3202static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3203{
3204        struct list_head *orig_qh_ptr;
3205        struct dwc2_qh *qh;
3206        u32 tx_status;
3207        u32 qspcavail;
3208        u32 fspcavail;
3209        u32 gintmsk;
3210        int status;
3211        int no_queue_space = 0;
3212        int no_fifo_space = 0;
3213        int more_to_do = 0;
3214
3215        dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3216
3217        tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3218        qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3219                    TXSTS_QSPCAVAIL_SHIFT;
3220        fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3221                    TXSTS_FSPCAVAIL_SHIFT;
3222        dev_vdbg(hsotg->dev, "  NP Tx Req Queue Space Avail (before queue): %d\n",
3223                 qspcavail);
3224        dev_vdbg(hsotg->dev, "  NP Tx FIFO Space Avail (before queue): %d\n",
3225                 fspcavail);
3226
3227        /*
3228         * Keep track of the starting point. Skip over the start-of-list
3229         * entry.
3230         */
3231        if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3232                hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3233        orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3234
3235        /*
3236         * Process once through the active list or until no more space is
3237         * available in the request queue or the Tx FIFO
3238         */
3239        do {
3240                tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3241                qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3242                            TXSTS_QSPCAVAIL_SHIFT;
3243                if (!hsotg->params.host_dma && qspcavail == 0) {
3244                        no_queue_space = 1;
3245                        break;
3246                }
3247
3248                qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3249                                qh_list_entry);
3250                if (!qh->channel)
3251                        goto next;
3252
3253                /* Make sure EP's TT buffer is clean before queueing qtds */
3254                if (qh->tt_buffer_dirty)
3255                        goto next;
3256
3257                fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3258                            TXSTS_FSPCAVAIL_SHIFT;
3259                status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3260
3261                if (status > 0) {
3262                        more_to_do = 1;
3263                } else if (status < 0) {
3264                        no_fifo_space = 1;
3265                        break;
3266                }
3267next:
3268                /* Advance to next QH, skipping start-of-list entry */
3269                hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3270                if (hsotg->non_periodic_qh_ptr ==
3271                                &hsotg->non_periodic_sched_active)
3272                        hsotg->non_periodic_qh_ptr =
3273                                        hsotg->non_periodic_qh_ptr->next;
3274        } while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3275
3276        if (!hsotg->params.host_dma) {
3277                tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3278                qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3279                            TXSTS_QSPCAVAIL_SHIFT;
3280                fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3281                            TXSTS_FSPCAVAIL_SHIFT;
3282                dev_vdbg(hsotg->dev,
3283                         "  NP Tx Req Queue Space Avail (after queue): %d\n",
3284                         qspcavail);
3285                dev_vdbg(hsotg->dev,
3286                         "  NP Tx FIFO Space Avail (after queue): %d\n",
3287                         fspcavail);
3288
3289                if (more_to_do || no_queue_space || no_fifo_space) {
3290                        /*
3291                         * May need to queue more transactions as the request
3292                         * queue or Tx FIFO empties. Enable the non-periodic
3293                         * Tx FIFO empty interrupt. (Always use the half-empty
3294                         * level to ensure that new requests are loaded as
3295                         * soon as possible.)
3296                         */
3297                        gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3298                        gintmsk |= GINTSTS_NPTXFEMP;
3299                        dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3300                } else {
3301                        /*
3302                         * Disable the Tx FIFO empty interrupt since there are
3303                         * no more transactions that need to be queued right
3304                         * now. This function is called from interrupt
3305                         * handlers to queue more transactions as transfer
3306                         * states change.
3307                         */
3308                        gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3309                        gintmsk &= ~GINTSTS_NPTXFEMP;
3310                        dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3311                }
3312        }
3313}
3314
3315/**
3316 * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3317 * and queues transactions for these channels to the DWC_otg controller. Called
3318 * from the HCD interrupt handler functions.
3319 *
3320 * @hsotg:   The HCD state structure
3321 * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3322 *           or both)
3323 *
3324 * Must be called with interrupt disabled and spinlock held
3325 */
3326void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3327                                 enum dwc2_transaction_type tr_type)
3328{
3329#ifdef DWC2_DEBUG_SOF
3330        dev_vdbg(hsotg->dev, "Queue Transactions\n");
3331#endif
3332        /* Process host channels associated with periodic transfers */
3333        if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3334            tr_type == DWC2_TRANSACTION_ALL)
3335                dwc2_process_periodic_channels(hsotg);
3336
3337        /* Process host channels associated with non-periodic transfers */
3338        if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3339            tr_type == DWC2_TRANSACTION_ALL) {
3340                if (!list_empty(&hsotg->non_periodic_sched_active)) {
3341                        dwc2_process_non_periodic_channels(hsotg);
3342                } else {
3343                        /*
3344                         * Ensure NP Tx FIFO empty interrupt is disabled when
3345                         * there are no non-periodic transfers to process
3346                         */
3347                        u32 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3348
3349                        gintmsk &= ~GINTSTS_NPTXFEMP;
3350                        dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3351                }
3352        }
3353}
3354
3355static void dwc2_conn_id_status_change(struct work_struct *work)
3356{
3357        struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3358                                                wf_otg);
3359        u32 count = 0;
3360        u32 gotgctl;
3361        unsigned long flags;
3362
3363        dev_dbg(hsotg->dev, "%s()\n", __func__);
3364
3365        gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3366        dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3367        dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3368                !!(gotgctl & GOTGCTL_CONID_B));
3369
3370        /* B-Device connector (Device Mode) */
3371        if (gotgctl & GOTGCTL_CONID_B) {
3372                dwc2_vbus_supply_exit(hsotg);
3373                /* Wait for switch to device mode */
3374                dev_dbg(hsotg->dev, "connId B\n");
3375                if (hsotg->bus_suspended) {
3376                        dev_info(hsotg->dev,
3377                                 "Do port resume before switching to device mode\n");
3378                        dwc2_port_resume(hsotg);
3379                }
3380                while (!dwc2_is_device_mode(hsotg)) {
3381                        dev_info(hsotg->dev,
3382                                 "Waiting for Peripheral Mode, Mode=%s\n",
3383                                 dwc2_is_host_mode(hsotg) ? "Host" :
3384                                 "Peripheral");
3385                        msleep(20);
3386                        /*
3387                         * Sometimes the initial GOTGCTRL read is wrong, so
3388                         * check it again and jump to host mode if that was
3389                         * the case.
3390                         */
3391                        gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3392                        if (!(gotgctl & GOTGCTL_CONID_B))
3393                                goto host;
3394                        if (++count > 250)
3395                                break;
3396                }
3397                if (count > 250)
3398                        dev_err(hsotg->dev,
3399                                "Connection id status change timed out\n");
3400                hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3401                dwc2_core_init(hsotg, false);
3402                dwc2_enable_global_interrupts(hsotg);
3403                spin_lock_irqsave(&hsotg->lock, flags);
3404                dwc2_hsotg_core_init_disconnected(hsotg, false);
3405                spin_unlock_irqrestore(&hsotg->lock, flags);
3406                /* Enable ACG feature in device mode,if supported */
3407                dwc2_enable_acg(hsotg);
3408                dwc2_hsotg_core_connect(hsotg);
3409        } else {
3410host:
3411                /* A-Device connector (Host Mode) */
3412                dev_dbg(hsotg->dev, "connId A\n");
3413                while (!dwc2_is_host_mode(hsotg)) {
3414                        dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3415                                 dwc2_is_host_mode(hsotg) ?
3416                                 "Host" : "Peripheral");
3417                        msleep(20);
3418                        if (++count > 250)
3419                                break;
3420                }
3421                if (count > 250)
3422                        dev_err(hsotg->dev,
3423                                "Connection id status change timed out\n");
3424
3425                spin_lock_irqsave(&hsotg->lock, flags);
3426                dwc2_hsotg_disconnect(hsotg);
3427                spin_unlock_irqrestore(&hsotg->lock, flags);
3428
3429                hsotg->op_state = OTG_STATE_A_HOST;
3430                /* Initialize the Core for Host mode */
3431                dwc2_core_init(hsotg, false);
3432                dwc2_enable_global_interrupts(hsotg);
3433                dwc2_hcd_start(hsotg);
3434        }
3435}
3436
3437static void dwc2_wakeup_detected(struct timer_list *t)
3438{
3439        struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer);
3440        u32 hprt0;
3441
3442        dev_dbg(hsotg->dev, "%s()\n", __func__);
3443
3444        /*
3445         * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3446         * so that OPT tests pass with all PHYs.)
3447         */
3448        hprt0 = dwc2_read_hprt0(hsotg);
3449        dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3450        hprt0 &= ~HPRT0_RES;
3451        dwc2_writel(hprt0, hsotg->regs + HPRT0);
3452        dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3453                dwc2_readl(hsotg->regs + HPRT0));
3454
3455        dwc2_hcd_rem_wakeup(hsotg);
3456        hsotg->bus_suspended = false;
3457
3458        /* Change to L0 state */
3459        hsotg->lx_state = DWC2_L0;
3460}
3461
3462static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3463{
3464        struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3465
3466        return hcd->self.b_hnp_enable;
3467}
3468
3469/* Must NOT be called with interrupt disabled or spinlock held */
3470static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3471{
3472        unsigned long flags;
3473        u32 hprt0;
3474        u32 pcgctl;
3475        u32 gotgctl;
3476
3477        dev_dbg(hsotg->dev, "%s()\n", __func__);
3478
3479        spin_lock_irqsave(&hsotg->lock, flags);
3480
3481        if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3482                gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3483                gotgctl |= GOTGCTL_HSTSETHNPEN;
3484                dwc2_writel(gotgctl, hsotg->regs + GOTGCTL);
3485                hsotg->op_state = OTG_STATE_A_SUSPEND;
3486        }
3487
3488        hprt0 = dwc2_read_hprt0(hsotg);
3489        hprt0 |= HPRT0_SUSP;
3490        dwc2_writel(hprt0, hsotg->regs + HPRT0);
3491
3492        hsotg->bus_suspended = true;
3493
3494        /*
3495         * If power_down is supported, Phy clock will be suspended
3496         * after registers are backuped.
3497         */
3498        if (!hsotg->params.power_down) {
3499                /* Suspend the Phy Clock */
3500                pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3501                pcgctl |= PCGCTL_STOPPCLK;
3502                dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3503                udelay(10);
3504        }
3505
3506        /* For HNP the bus must be suspended for at least 200ms */
3507        if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3508                pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3509                pcgctl &= ~PCGCTL_STOPPCLK;
3510                dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3511
3512                spin_unlock_irqrestore(&hsotg->lock, flags);
3513
3514                msleep(200);
3515        } else {
3516                spin_unlock_irqrestore(&hsotg->lock, flags);
3517        }
3518}
3519
3520/* Must NOT be called with interrupt disabled or spinlock held */
3521static void dwc2_port_resume(struct dwc2_hsotg *hsotg)
3522{
3523        unsigned long flags;
3524        u32 hprt0;
3525        u32 pcgctl;
3526
3527        spin_lock_irqsave(&hsotg->lock, flags);
3528
3529        /*
3530         * If power_down is supported, Phy clock is already resumed
3531         * after registers restore.
3532         */
3533        if (!hsotg->params.power_down) {
3534                pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3535                pcgctl &= ~PCGCTL_STOPPCLK;
3536                dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3537                spin_unlock_irqrestore(&hsotg->lock, flags);
3538                msleep(20);
3539                spin_lock_irqsave(&hsotg->lock, flags);
3540        }
3541
3542        hprt0 = dwc2_read_hprt0(hsotg);
3543        hprt0 |= HPRT0_RES;
3544        hprt0 &= ~HPRT0_SUSP;
3545        dwc2_writel(hprt0, hsotg->regs + HPRT0);
3546        spin_unlock_irqrestore(&hsotg->lock, flags);
3547
3548        msleep(USB_RESUME_TIMEOUT);
3549
3550        spin_lock_irqsave(&hsotg->lock, flags);
3551        hprt0 = dwc2_read_hprt0(hsotg);
3552        hprt0 &= ~(HPRT0_RES | HPRT0_SUSP);
3553        dwc2_writel(hprt0, hsotg->regs + HPRT0);
3554        hsotg->bus_suspended = false;
3555        spin_unlock_irqrestore(&hsotg->lock, flags);
3556}
3557
3558/* Handles hub class-specific requests */
3559static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3560                                u16 wvalue, u16 windex, char *buf, u16 wlength)
3561{
3562        struct usb_hub_descriptor *hub_desc;
3563        int retval = 0;
3564        u32 hprt0;
3565        u32 port_status;
3566        u32 speed;
3567        u32 pcgctl;
3568
3569        switch (typereq) {
3570        case ClearHubFeature:
3571                dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3572
3573                switch (wvalue) {
3574                case C_HUB_LOCAL_POWER:
3575                case C_HUB_OVER_CURRENT:
3576                        /* Nothing required here */
3577                        break;
3578
3579                default:
3580                        retval = -EINVAL;
3581                        dev_err(hsotg->dev,
3582                                "ClearHubFeature request %1xh unknown\n",
3583                                wvalue);
3584                }
3585                break;
3586
3587        case ClearPortFeature:
3588                if (wvalue != USB_PORT_FEAT_L1)
3589                        if (!windex || windex > 1)
3590                                goto error;
3591                switch (wvalue) {
3592                case USB_PORT_FEAT_ENABLE:
3593                        dev_dbg(hsotg->dev,
3594                                "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3595                        hprt0 = dwc2_read_hprt0(hsotg);
3596                        hprt0 |= HPRT0_ENA;
3597                        dwc2_writel(hprt0, hsotg->regs + HPRT0);
3598                        break;
3599
3600                case USB_PORT_FEAT_SUSPEND:
3601                        dev_dbg(hsotg->dev,
3602                                "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3603
3604                        if (hsotg->bus_suspended) {
3605                                if (hsotg->hibernated)
3606                                        dwc2_exit_hibernation(hsotg, 0, 0, 1);
3607                                else
3608                                        dwc2_port_resume(hsotg);
3609                        }
3610                        break;
3611
3612                case USB_PORT_FEAT_POWER:
3613                        dev_dbg(hsotg->dev,
3614                                "ClearPortFeature USB_PORT_FEAT_POWER\n");
3615                        hprt0 = dwc2_read_hprt0(hsotg);
3616                        hprt0 &= ~HPRT0_PWR;
3617                        dwc2_writel(hprt0, hsotg->regs + HPRT0);
3618                        break;
3619
3620                case USB_PORT_FEAT_INDICATOR:
3621                        dev_dbg(hsotg->dev,
3622                                "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3623                        /* Port indicator not supported */
3624                        break;
3625
3626                case USB_PORT_FEAT_C_CONNECTION:
3627                        /*
3628                         * Clears driver's internal Connect Status Change flag
3629                         */
3630                        dev_dbg(hsotg->dev,
3631                                "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3632                        hsotg->flags.b.port_connect_status_change = 0;
3633                        break;
3634
3635                case USB_PORT_FEAT_C_RESET:
3636                        /* Clears driver's internal Port Reset Change flag */
3637                        dev_dbg(hsotg->dev,
3638                                "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3639                        hsotg->flags.b.port_reset_change = 0;
3640                        break;
3641
3642                case USB_PORT_FEAT_C_ENABLE:
3643                        /*
3644                         * Clears the driver's internal Port Enable/Disable
3645                         * Change flag
3646                         */
3647                        dev_dbg(hsotg->dev,
3648                                "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3649                        hsotg->flags.b.port_enable_change = 0;
3650                        break;
3651
3652                case USB_PORT_FEAT_C_SUSPEND:
3653                        /*
3654                         * Clears the driver's internal Port Suspend Change
3655                         * flag, which is set when resume signaling on the host
3656                         * port is complete
3657                         */
3658                        dev_dbg(hsotg->dev,
3659                                "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3660                        hsotg->flags.b.port_suspend_change = 0;
3661                        break;
3662
3663                case USB_PORT_FEAT_C_PORT_L1:
3664                        dev_dbg(hsotg->dev,
3665                                "ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3666                        hsotg->flags.b.port_l1_change = 0;
3667                        break;
3668
3669                case USB_PORT_FEAT_C_OVER_CURRENT:
3670                        dev_dbg(hsotg->dev,
3671                                "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3672                        hsotg->flags.b.port_over_current_change = 0;
3673                        break;
3674
3675                default:
3676                        retval = -EINVAL;
3677                        dev_err(hsotg->dev,
3678                                "ClearPortFeature request %1xh unknown or unsupported\n",
3679                                wvalue);
3680                }
3681                break;
3682
3683        case GetHubDescriptor:
3684                dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3685                hub_desc = (struct usb_hub_descriptor *)buf;
3686                hub_desc->bDescLength = 9;
3687                hub_desc->bDescriptorType = USB_DT_HUB;
3688                hub_desc->bNbrPorts = 1;
3689                hub_desc->wHubCharacteristics =
3690                        cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3691                                    HUB_CHAR_INDV_PORT_OCPM);
3692                hub_desc->bPwrOn2PwrGood = 1;
3693                hub_desc->bHubContrCurrent = 0;
3694                hub_desc->u.hs.DeviceRemovable[0] = 0;
3695                hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3696                break;
3697
3698        case GetHubStatus:
3699                dev_dbg(hsotg->dev, "GetHubStatus\n");
3700                memset(buf, 0, 4);
3701                break;
3702
3703        case GetPortStatus:
3704                dev_vdbg(hsotg->dev,
3705                         "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3706                         hsotg->flags.d32);
3707                if (!windex || windex > 1)
3708                        goto error;
3709
3710                port_status = 0;
3711                if (hsotg->flags.b.port_connect_status_change)
3712                        port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3713                if (hsotg->flags.b.port_enable_change)
3714                        port_status |= USB_PORT_STAT_C_ENABLE << 16;
3715                if (hsotg->flags.b.port_suspend_change)
3716                        port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3717                if (hsotg->flags.b.port_l1_change)
3718                        port_status |= USB_PORT_STAT_C_L1 << 16;
3719                if (hsotg->flags.b.port_reset_change)
3720                        port_status |= USB_PORT_STAT_C_RESET << 16;
3721                if (hsotg->flags.b.port_over_current_change) {
3722                        dev_warn(hsotg->dev, "Overcurrent change detected\n");
3723                        port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3724                }
3725
3726                if (!hsotg->flags.b.port_connect_status) {
3727                        /*
3728                         * The port is disconnected, which means the core is
3729                         * either in device mode or it soon will be. Just
3730                         * return 0's for the remainder of the port status
3731                         * since the port register can't be read if the core
3732                         * is in device mode.
3733                         */
3734                        *(__le32 *)buf = cpu_to_le32(port_status);
3735                        break;
3736                }
3737
3738                hprt0 = dwc2_readl(hsotg->regs + HPRT0);
3739                dev_vdbg(hsotg->dev, "  HPRT0: 0x%08x\n", hprt0);
3740
3741                if (hprt0 & HPRT0_CONNSTS)
3742                        port_status |= USB_PORT_STAT_CONNECTION;
3743                if (hprt0 & HPRT0_ENA)
3744                        port_status |= USB_PORT_STAT_ENABLE;
3745                if (hprt0 & HPRT0_SUSP)
3746                        port_status |= USB_PORT_STAT_SUSPEND;
3747                if (hprt0 & HPRT0_OVRCURRACT)
3748                        port_status |= USB_PORT_STAT_OVERCURRENT;
3749                if (hprt0 & HPRT0_RST)
3750                        port_status |= USB_PORT_STAT_RESET;
3751                if (hprt0 & HPRT0_PWR)
3752                        port_status |= USB_PORT_STAT_POWER;
3753
3754                speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3755                if (speed == HPRT0_SPD_HIGH_SPEED)
3756                        port_status |= USB_PORT_STAT_HIGH_SPEED;
3757                else if (speed == HPRT0_SPD_LOW_SPEED)
3758                        port_status |= USB_PORT_STAT_LOW_SPEED;
3759
3760                if (hprt0 & HPRT0_TSTCTL_MASK)
3761                        port_status |= USB_PORT_STAT_TEST;
3762                /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3763
3764                if (hsotg->params.dma_desc_fs_enable) {
3765                        /*
3766                         * Enable descriptor DMA only if a full speed
3767                         * device is connected.
3768                         */
3769                        if (hsotg->new_connection &&
3770                            ((port_status &
3771                              (USB_PORT_STAT_CONNECTION |
3772                               USB_PORT_STAT_HIGH_SPEED |
3773                               USB_PORT_STAT_LOW_SPEED)) ==
3774                               USB_PORT_STAT_CONNECTION)) {
3775                                u32 hcfg;
3776
3777                                dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3778                                hsotg->params.dma_desc_enable = true;
3779                                hcfg = dwc2_readl(hsotg->regs + HCFG);
3780                                hcfg |= HCFG_DESCDMA;
3781                                dwc2_writel(hcfg, hsotg->regs + HCFG);
3782                                hsotg->new_connection = false;
3783                        }
3784                }
3785
3786                dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3787                *(__le32 *)buf = cpu_to_le32(port_status);
3788                break;
3789
3790        case SetHubFeature:
3791                dev_dbg(hsotg->dev, "SetHubFeature\n");
3792                /* No HUB features supported */
3793                break;
3794
3795        case SetPortFeature:
3796                dev_dbg(hsotg->dev, "SetPortFeature\n");
3797                if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3798                        goto error;
3799
3800                if (!hsotg->flags.b.port_connect_status) {
3801                        /*
3802                         * The port is disconnected, which means the core is
3803                         * either in device mode or it soon will be. Just
3804                         * return without doing anything since the port
3805                         * register can't be written if the core is in device
3806                         * mode.
3807                         */
3808                        break;
3809                }
3810
3811                switch (wvalue) {
3812                case USB_PORT_FEAT_SUSPEND:
3813                        dev_dbg(hsotg->dev,
3814                                "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3815                        if (windex != hsotg->otg_port)
3816                                goto error;
3817                        if (hsotg->params.power_down == 2)
3818                                dwc2_enter_hibernation(hsotg, 1);
3819                        else
3820                                dwc2_port_suspend(hsotg, windex);
3821                        break;
3822
3823                case USB_PORT_FEAT_POWER:
3824                        dev_dbg(hsotg->dev,
3825                                "SetPortFeature - USB_PORT_FEAT_POWER\n");
3826                        hprt0 = dwc2_read_hprt0(hsotg);
3827                        hprt0 |= HPRT0_PWR;
3828                        dwc2_writel(hprt0, hsotg->regs + HPRT0);
3829                        break;
3830
3831                case USB_PORT_FEAT_RESET:
3832                        if (hsotg->params.power_down == 2 &&
3833                            hsotg->hibernated)
3834                                dwc2_exit_hibernation(hsotg, 0, 1, 1);
3835                        hprt0 = dwc2_read_hprt0(hsotg);
3836                        dev_dbg(hsotg->dev,
3837                                "SetPortFeature - USB_PORT_FEAT_RESET\n");
3838                        pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3839                        pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3840                        dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3841                        /* ??? Original driver does this */
3842                        dwc2_writel(0, hsotg->regs + PCGCTL);
3843
3844                        hprt0 = dwc2_read_hprt0(hsotg);
3845                        /* Clear suspend bit if resetting from suspend state */
3846                        hprt0 &= ~HPRT0_SUSP;
3847
3848                        /*
3849                         * When B-Host the Port reset bit is set in the Start
3850                         * HCD Callback function, so that the reset is started
3851                         * within 1ms of the HNP success interrupt
3852                         */
3853                        if (!dwc2_hcd_is_b_host(hsotg)) {
3854                                hprt0 |= HPRT0_PWR | HPRT0_RST;
3855                                dev_dbg(hsotg->dev,
3856                                        "In host mode, hprt0=%08x\n", hprt0);
3857                                dwc2_writel(hprt0, hsotg->regs + HPRT0);
3858                        }
3859
3860                        /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3861                        msleep(50);
3862                        hprt0 &= ~HPRT0_RST;
3863                        dwc2_writel(hprt0, hsotg->regs + HPRT0);
3864                        hsotg->lx_state = DWC2_L0; /* Now back to On state */
3865                        break;
3866
3867                case USB_PORT_FEAT_INDICATOR:
3868                        dev_dbg(hsotg->dev,
3869                                "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3870                        /* Not supported */
3871                        break;
3872
3873                case USB_PORT_FEAT_TEST:
3874                        hprt0 = dwc2_read_hprt0(hsotg);
3875                        dev_dbg(hsotg->dev,
3876                                "SetPortFeature - USB_PORT_FEAT_TEST\n");
3877                        hprt0 &= ~HPRT0_TSTCTL_MASK;
3878                        hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3879                        dwc2_writel(hprt0, hsotg->regs + HPRT0);
3880                        break;
3881
3882                default:
3883                        retval = -EINVAL;
3884                        dev_err(hsotg->dev,
3885                                "SetPortFeature %1xh unknown or unsupported\n",
3886                                wvalue);
3887                        break;
3888                }
3889                break;
3890
3891        default:
3892error:
3893                retval = -EINVAL;
3894                dev_dbg(hsotg->dev,
3895                        "Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3896                        typereq, windex, wvalue);
3897                break;
3898        }
3899
3900        return retval;
3901}
3902
3903static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3904{
3905        int retval;
3906
3907        if (port != 1)
3908                return -EINVAL;
3909
3910        retval = (hsotg->flags.b.port_connect_status_change ||
3911                  hsotg->flags.b.port_reset_change ||
3912                  hsotg->flags.b.port_enable_change ||
3913                  hsotg->flags.b.port_suspend_change ||
3914                  hsotg->flags.b.port_over_current_change);
3915
3916        if (retval) {
3917                dev_dbg(hsotg->dev,
3918                        "DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3919                dev_dbg(hsotg->dev, "  port_connect_status_change: %d\n",
3920                        hsotg->flags.b.port_connect_status_change);
3921                dev_dbg(hsotg->dev, "  port_reset_change: %d\n",
3922                        hsotg->flags.b.port_reset_change);
3923                dev_dbg(hsotg->dev, "  port_enable_change: %d\n",
3924                        hsotg->flags.b.port_enable_change);
3925                dev_dbg(hsotg->dev, "  port_suspend_change: %d\n",
3926                        hsotg->flags.b.port_suspend_change);
3927                dev_dbg(hsotg->dev, "  port_over_current_change: %d\n",
3928                        hsotg->flags.b.port_over_current_change);
3929        }
3930
3931        return retval;
3932}
3933
3934int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3935{
3936        u32 hfnum = dwc2_readl(hsotg->regs + HFNUM);
3937
3938#ifdef DWC2_DEBUG_SOF
3939        dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3940                 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3941#endif
3942        return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3943}
3944
3945int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3946{
3947        u32 hprt = dwc2_readl(hsotg->regs + HPRT0);
3948        u32 hfir = dwc2_readl(hsotg->regs + HFIR);
3949        u32 hfnum = dwc2_readl(hsotg->regs + HFNUM);
3950        unsigned int us_per_frame;
3951        unsigned int frame_number;
3952        unsigned int remaining;
3953        unsigned int interval;
3954        unsigned int phy_clks;
3955
3956        /* High speed has 125 us per (micro) frame; others are 1 ms per */
3957        us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3958
3959        /* Extract fields */
3960        frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3961        remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3962        interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3963
3964        /*
3965         * Number of phy clocks since the last tick of the frame number after
3966         * "us" has passed.
3967         */
3968        phy_clks = (interval - remaining) +
3969                   DIV_ROUND_UP(interval * us, us_per_frame);
3970
3971        return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3972}
3973
3974int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3975{
3976        return hsotg->op_state == OTG_STATE_B_HOST;
3977}
3978
3979static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3980                                               int iso_desc_count,
3981                                               gfp_t mem_flags)
3982{
3983        struct dwc2_hcd_urb *urb;
3984        u32 size = sizeof(*urb) + iso_desc_count *
3985                   sizeof(struct dwc2_hcd_iso_packet_desc);
3986
3987        urb = kzalloc(size, mem_flags);
3988        if (urb)
3989                urb->packet_count = iso_desc_count;
3990        return urb;
3991}
3992
3993static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3994                                      struct dwc2_hcd_urb *urb, u8 dev_addr,
3995                                      u8 ep_num, u8 ep_type, u8 ep_dir, u16 mps)
3996{
3997        if (dbg_perio() ||
3998            ep_type == USB_ENDPOINT_XFER_BULK ||
3999            ep_type == USB_ENDPOINT_XFER_CONTROL)
4000                dev_vdbg(hsotg->dev,
4001                         "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, mps=%d\n",
4002                         dev_addr, ep_num, ep_dir, ep_type, mps);
4003        urb->pipe_info.dev_addr = dev_addr;
4004        urb->pipe_info.ep_num = ep_num;
4005        urb->pipe_info.pipe_type = ep_type;
4006        urb->pipe_info.pipe_dir = ep_dir;
4007        urb->pipe_info.mps = mps;
4008}
4009
4010/*
4011 * NOTE: This function will be removed once the peripheral controller code
4012 * is integrated and the driver is stable
4013 */
4014void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
4015{
4016#ifdef DEBUG
4017        struct dwc2_host_chan *chan;
4018        struct dwc2_hcd_urb *urb;
4019        struct dwc2_qtd *qtd;
4020        int num_channels;
4021        u32 np_tx_status;
4022        u32 p_tx_status;
4023        int i;
4024
4025        num_channels = hsotg->params.host_channels;
4026        dev_dbg(hsotg->dev, "\n");
4027        dev_dbg(hsotg->dev,
4028                "************************************************************\n");
4029        dev_dbg(hsotg->dev, "HCD State:\n");
4030        dev_dbg(hsotg->dev, "  Num channels: %d\n", num_channels);
4031
4032        for (i = 0; i < num_channels; i++) {
4033                chan = hsotg->hc_ptr_array[i];
4034                dev_dbg(hsotg->dev, "  Channel %d:\n", i);
4035                dev_dbg(hsotg->dev,
4036                        "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
4037                        chan->dev_addr, chan->ep_num, chan->ep_is_in);
4038                dev_dbg(hsotg->dev, "    speed: %d\n", chan->speed);
4039                dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
4040                dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
4041                dev_dbg(hsotg->dev, "    data_pid_start: %d\n",
4042                        chan->data_pid_start);
4043                dev_dbg(hsotg->dev, "    multi_count: %d\n", chan->multi_count);
4044                dev_dbg(hsotg->dev, "    xfer_started: %d\n",
4045                        chan->xfer_started);
4046                dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
4047                dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
4048                        (unsigned long)chan->xfer_dma);
4049                dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
4050                dev_dbg(hsotg->dev, "    xfer_count: %d\n", chan->xfer_count);
4051                dev_dbg(hsotg->dev, "    halt_on_queue: %d\n",
4052                        chan->halt_on_queue);
4053                dev_dbg(hsotg->dev, "    halt_pending: %d\n",
4054                        chan->halt_pending);
4055                dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
4056                dev_dbg(hsotg->dev, "    do_split: %d\n", chan->do_split);
4057                dev_dbg(hsotg->dev, "    complete_split: %d\n",
4058                        chan->complete_split);
4059                dev_dbg(hsotg->dev, "    hub_addr: %d\n", chan->hub_addr);
4060                dev_dbg(hsotg->dev, "    hub_port: %d\n", chan->hub_port);
4061                dev_dbg(hsotg->dev, "    xact_pos: %d\n", chan->xact_pos);
4062                dev_dbg(hsotg->dev, "    requests: %d\n", chan->requests);
4063                dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
4064
4065                if (chan->xfer_started) {
4066                        u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
4067
4068                        hfnum = dwc2_readl(hsotg->regs + HFNUM);
4069                        hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
4070                        hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(i));
4071                        hcint = dwc2_readl(hsotg->regs + HCINT(i));
4072                        hcintmsk = dwc2_readl(hsotg->regs + HCINTMSK(i));
4073                        dev_dbg(hsotg->dev, "    hfnum: 0x%08x\n", hfnum);
4074                        dev_dbg(hsotg->dev, "    hcchar: 0x%08x\n", hcchar);
4075                        dev_dbg(hsotg->dev, "    hctsiz: 0x%08x\n", hctsiz);
4076                        dev_dbg(hsotg->dev, "    hcint: 0x%08x\n", hcint);
4077                        dev_dbg(hsotg->dev, "    hcintmsk: 0x%08x\n", hcintmsk);
4078                }
4079
4080                if (!(chan->xfer_started && chan->qh))
4081                        continue;
4082
4083                list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
4084                        if (!qtd->in_process)
4085                                break;
4086                        urb = qtd->urb;
4087                        dev_dbg(hsotg->dev, "    URB Info:\n");
4088                        dev_dbg(hsotg->dev, "      qtd: %p, urb: %p\n",
4089                                qtd, urb);
4090                        if (urb) {
4091                                dev_dbg(hsotg->dev,
4092                                        "      Dev: %d, EP: %d %s\n",
4093                                        dwc2_hcd_get_dev_addr(&urb->pipe_info),
4094                                        dwc2_hcd_get_ep_num(&urb->pipe_info),
4095                                        dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
4096                                        "IN" : "OUT");
4097                                dev_dbg(hsotg->dev,
4098                                        "      Max packet size: %d\n",
4099                                        dwc2_hcd_get_mps(&urb->pipe_info));
4100                                dev_dbg(hsotg->dev,
4101                                        "      transfer_buffer: %p\n",
4102                                        urb->buf);
4103                                dev_dbg(hsotg->dev,
4104                                        "      transfer_dma: %08lx\n",
4105                                        (unsigned long)urb->dma);
4106                                dev_dbg(hsotg->dev,
4107                                        "      transfer_buffer_length: %d\n",
4108                                        urb->length);
4109                                dev_dbg(hsotg->dev, "      actual_length: %d\n",
4110                                        urb->actual_length);
4111                        }
4112                }
4113        }
4114
4115        dev_dbg(hsotg->dev, "  non_periodic_channels: %d\n",
4116                hsotg->non_periodic_channels);
4117        dev_dbg(hsotg->dev, "  periodic_channels: %d\n",
4118                hsotg->periodic_channels);
4119        dev_dbg(hsotg->dev, "  periodic_usecs: %d\n", hsotg->periodic_usecs);
4120        np_tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
4121        dev_dbg(hsotg->dev, "  NP Tx Req Queue Space Avail: %d\n",
4122                (np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
4123        dev_dbg(hsotg->dev, "  NP Tx FIFO Space Avail: %d\n",
4124                (np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
4125        p_tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
4126        dev_dbg(hsotg->dev, "  P Tx Req Queue Space Avail: %d\n",
4127                (p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
4128        dev_dbg(hsotg->dev, "  P Tx FIFO Space Avail: %d\n",
4129                (p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
4130        dwc2_dump_global_registers(hsotg);
4131        dwc2_dump_host_registers(hsotg);
4132        dev_dbg(hsotg->dev,
4133                "************************************************************\n");
4134        dev_dbg(hsotg->dev, "\n");
4135#endif
4136}
4137
4138struct wrapper_priv_data {
4139        struct dwc2_hsotg *hsotg;
4140};
4141
4142/* Gets the dwc2_hsotg from a usb_hcd */
4143static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
4144{
4145        struct wrapper_priv_data *p;
4146
4147        p = (struct wrapper_priv_data *)&hcd->hcd_priv;
4148        return p->hsotg;
4149}
4150
4151/**
4152 * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
4153 *
4154 * This will get the dwc2_tt structure (and ttport) associated with the given
4155 * context (which is really just a struct urb pointer).
4156 *
4157 * The first time this is called for a given TT we allocate memory for our
4158 * structure.  When everyone is done and has called dwc2_host_put_tt_info()
4159 * then the refcount for the structure will go to 0 and we'll free it.
4160 *
4161 * @hsotg:     The HCD state structure for the DWC OTG controller.
4162 * @context:   The priv pointer from a struct dwc2_hcd_urb.
4163 * @mem_flags: Flags for allocating memory.
4164 * @ttport:    We'll return this device's port number here.  That's used to
4165 *             reference into the bitmap if we're on a multi_tt hub.
4166 *
4167 * Return: a pointer to a struct dwc2_tt.  Don't forget to call
4168 *         dwc2_host_put_tt_info()!  Returns NULL upon memory alloc failure.
4169 */
4170
4171struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
4172                                      gfp_t mem_flags, int *ttport)
4173{
4174        struct urb *urb = context;
4175        struct dwc2_tt *dwc_tt = NULL;
4176
4177        if (urb->dev->tt) {
4178                *ttport = urb->dev->ttport;
4179
4180                dwc_tt = urb->dev->tt->hcpriv;
4181                if (!dwc_tt) {
4182                        size_t bitmap_size;
4183
4184                        /*
4185                         * For single_tt we need one schedule.  For multi_tt
4186                         * we need one per port.
4187                         */
4188                        bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4189                                      sizeof(dwc_tt->periodic_bitmaps[0]);
4190                        if (urb->dev->tt->multi)
4191                                bitmap_size *= urb->dev->tt->hub->maxchild;
4192
4193                        dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4194                                         mem_flags);
4195                        if (!dwc_tt)
4196                                return NULL;
4197
4198                        dwc_tt->usb_tt = urb->dev->tt;
4199                        dwc_tt->usb_tt->hcpriv = dwc_tt;
4200                }
4201
4202                dwc_tt->refcount++;
4203        }
4204
4205        return dwc_tt;
4206}
4207
4208/**
4209 * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4210 *
4211 * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4212 * of the structure are done.
4213 *
4214 * It's OK to call this with NULL.
4215 *
4216 * @hsotg:     The HCD state structure for the DWC OTG controller.
4217 * @dwc_tt:    The pointer returned by dwc2_host_get_tt_info.
4218 */
4219void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4220{
4221        /* Model kfree and make put of NULL a no-op */
4222        if (!dwc_tt)
4223                return;
4224
4225        WARN_ON(dwc_tt->refcount < 1);
4226
4227        dwc_tt->refcount--;
4228        if (!dwc_tt->refcount) {
4229                dwc_tt->usb_tt->hcpriv = NULL;
4230                kfree(dwc_tt);
4231        }
4232}
4233
4234int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4235{
4236        struct urb *urb = context;
4237
4238        return urb->dev->speed;
4239}
4240
4241static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4242                                        struct urb *urb)
4243{
4244        struct usb_bus *bus = hcd_to_bus(hcd);
4245
4246        if (urb->interval)
4247                bus->bandwidth_allocated += bw / urb->interval;
4248        if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4249                bus->bandwidth_isoc_reqs++;
4250        else
4251                bus->bandwidth_int_reqs++;
4252}
4253
4254static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4255                                    struct urb *urb)
4256{
4257        struct usb_bus *bus = hcd_to_bus(hcd);
4258
4259        if (urb->interval)
4260                bus->bandwidth_allocated -= bw / urb->interval;
4261        if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4262                bus->bandwidth_isoc_reqs--;
4263        else
4264                bus->bandwidth_int_reqs--;
4265}
4266
4267/*
4268 * Sets the final status of an URB and returns it to the upper layer. Any
4269 * required cleanup of the URB is performed.
4270 *
4271 * Must be called with interrupt disabled and spinlock held
4272 */
4273void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4274                        int status)
4275{
4276        struct urb *urb;
4277        int i;
4278
4279        if (!qtd) {
4280                dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4281                return;
4282        }
4283
4284        if (!qtd->urb) {
4285                dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4286                return;
4287        }
4288
4289        urb = qtd->urb->priv;
4290        if (!urb) {
4291                dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4292                return;
4293        }
4294
4295        urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4296
4297        if (dbg_urb(urb))
4298                dev_vdbg(hsotg->dev,
4299                         "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4300                         __func__, urb, usb_pipedevice(urb->pipe),
4301                         usb_pipeendpoint(urb->pipe),
4302                         usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4303                         urb->actual_length);
4304
4305        if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4306                urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4307                for (i = 0; i < urb->number_of_packets; ++i) {
4308                        urb->iso_frame_desc[i].actual_length =
4309                                dwc2_hcd_urb_get_iso_desc_actual_length(
4310                                                qtd->urb, i);
4311                        urb->iso_frame_desc[i].status =
4312                                dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4313                }
4314        }
4315
4316        if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4317                for (i = 0; i < urb->number_of_packets; i++)
4318                        dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4319                                 i, urb->iso_frame_desc[i].status);
4320        }
4321
4322        urb->status = status;
4323        if (!status) {
4324                if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4325                    urb->actual_length < urb->transfer_buffer_length)
4326                        urb->status = -EREMOTEIO;
4327        }
4328
4329        if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4330            usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4331                struct usb_host_endpoint *ep = urb->ep;
4332
4333                if (ep)
4334                        dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4335                                        dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4336                                        urb);
4337        }
4338
4339        usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4340        urb->hcpriv = NULL;
4341        kfree(qtd->urb);
4342        qtd->urb = NULL;
4343
4344        usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4345}
4346
4347/*
4348 * Work queue function for starting the HCD when A-Cable is connected
4349 */
4350static void dwc2_hcd_start_func(struct work_struct *work)
4351{
4352        struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4353                                                start_work.work);
4354
4355        dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4356        dwc2_host_start(hsotg);
4357}
4358
4359/*
4360 * Reset work queue function
4361 */
4362static void dwc2_hcd_reset_func(struct work_struct *work)
4363{
4364        struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4365                                                reset_work.work);
4366        unsigned long flags;
4367        u32 hprt0;
4368
4369        dev_dbg(hsotg->dev, "USB RESET function called\n");
4370
4371        spin_lock_irqsave(&hsotg->lock, flags);
4372
4373        hprt0 = dwc2_read_hprt0(hsotg);
4374        hprt0 &= ~HPRT0_RST;
4375        dwc2_writel(hprt0, hsotg->regs + HPRT0);
4376        hsotg->flags.b.port_reset_change = 1;
4377
4378        spin_unlock_irqrestore(&hsotg->lock, flags);
4379}
4380
4381/*
4382 * =========================================================================
4383 *  Linux HC Driver Functions
4384 * =========================================================================
4385 */
4386
4387/*
4388 * Initializes the DWC_otg controller and its root hub and prepares it for host
4389 * mode operation. Activates the root port. Returns 0 on success and a negative
4390 * error code on failure.
4391 */
4392static int _dwc2_hcd_start(struct usb_hcd *hcd)
4393{
4394        struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4395        struct usb_bus *bus = hcd_to_bus(hcd);
4396        unsigned long flags;
4397
4398        dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4399
4400        spin_lock_irqsave(&hsotg->lock, flags);
4401        hsotg->lx_state = DWC2_L0;
4402        hcd->state = HC_STATE_RUNNING;
4403        set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4404
4405        if (dwc2_is_device_mode(hsotg)) {
4406                spin_unlock_irqrestore(&hsotg->lock, flags);
4407                return 0;       /* why 0 ?? */
4408        }
4409
4410        dwc2_hcd_reinit(hsotg);
4411
4412        /* Initialize and connect root hub if one is not already attached */
4413        if (bus->root_hub) {
4414                dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4415                /* Inform the HUB driver to resume */
4416                usb_hcd_resume_root_hub(hcd);
4417        }
4418
4419        spin_unlock_irqrestore(&hsotg->lock, flags);
4420
4421        return dwc2_vbus_supply_init(hsotg);
4422}
4423
4424/*
4425 * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4426 * stopped.
4427 */
4428static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4429{
4430        struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4431        unsigned long flags;
4432
4433        /* Turn off all host-specific interrupts */
4434        dwc2_disable_host_interrupts(hsotg);
4435
4436        /* Wait for interrupt processing to finish */
4437        synchronize_irq(hcd->irq);
4438
4439        spin_lock_irqsave(&hsotg->lock, flags);
4440        /* Ensure hcd is disconnected */
4441        dwc2_hcd_disconnect(hsotg, true);
4442        dwc2_hcd_stop(hsotg);
4443        hsotg->lx_state = DWC2_L3;
4444        hcd->state = HC_STATE_HALT;
4445        clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4446        spin_unlock_irqrestore(&hsotg->lock, flags);
4447
4448        dwc2_vbus_supply_exit(hsotg);
4449
4450        usleep_range(1000, 3000);
4451}
4452
4453static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4454{
4455        struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4456        unsigned long flags;
4457        int ret = 0;
4458        u32 hprt0;
4459
4460        spin_lock_irqsave(&hsotg->lock, flags);
4461
4462        if (dwc2_is_device_mode(hsotg))
4463                goto unlock;
4464
4465        if (hsotg->lx_state != DWC2_L0)
4466                goto unlock;
4467
4468        if (!HCD_HW_ACCESSIBLE(hcd))
4469                goto unlock;
4470
4471        if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4472                goto unlock;
4473
4474        if (hsotg->params.power_down != DWC2_POWER_DOWN_PARAM_PARTIAL)
4475                goto skip_power_saving;
4476
4477        /*
4478         * Drive USB suspend and disable port Power
4479         * if usb bus is not suspended.
4480         */
4481        if (!hsotg->bus_suspended) {
4482                hprt0 = dwc2_read_hprt0(hsotg);
4483                hprt0 |= HPRT0_SUSP;
4484                hprt0 &= ~HPRT0_PWR;
4485                dwc2_writel(hprt0, hsotg->regs + HPRT0);
4486                dwc2_vbus_supply_exit(hsotg);
4487        }
4488
4489        /* Enter partial_power_down */
4490        ret = dwc2_enter_partial_power_down(hsotg);
4491        if (ret) {
4492                if (ret != -ENOTSUPP)
4493                        dev_err(hsotg->dev,
4494                                "enter partial_power_down failed\n");
4495                goto skip_power_saving;
4496        }
4497
4498        /* Ask phy to be suspended */
4499        if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4500                spin_unlock_irqrestore(&hsotg->lock, flags);
4501                usb_phy_set_suspend(hsotg->uphy, true);
4502                spin_lock_irqsave(&hsotg->lock, flags);
4503        }
4504
4505        /* After entering partial_power_down, hardware is no more accessible */
4506        clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4507
4508skip_power_saving:
4509        hsotg->lx_state = DWC2_L2;
4510unlock:
4511        spin_unlock_irqrestore(&hsotg->lock, flags);
4512
4513        return ret;
4514}
4515
4516static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4517{
4518        struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4519        unsigned long flags;
4520        int ret = 0;
4521
4522        spin_lock_irqsave(&hsotg->lock, flags);
4523
4524        if (dwc2_is_device_mode(hsotg))
4525                goto unlock;
4526
4527        if (hsotg->lx_state != DWC2_L2)
4528                goto unlock;
4529
4530        if (hsotg->params.power_down != DWC2_POWER_DOWN_PARAM_PARTIAL) {
4531                hsotg->lx_state = DWC2_L0;
4532                goto unlock;
4533        }
4534
4535        /*
4536         * Set HW accessible bit before powering on the controller
4537         * since an interrupt may rise.
4538         */
4539        set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4540
4541        /*
4542         * Enable power if not already done.
4543         * This must not be spinlocked since duration
4544         * of this call is unknown.
4545         */
4546        if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4547                spin_unlock_irqrestore(&hsotg->lock, flags);
4548                usb_phy_set_suspend(hsotg->uphy, false);
4549                spin_lock_irqsave(&hsotg->lock, flags);
4550        }
4551
4552        /* Exit partial_power_down */
4553        ret = dwc2_exit_partial_power_down(hsotg, true);
4554        if (ret && (ret != -ENOTSUPP))
4555                dev_err(hsotg->dev, "exit partial_power_down failed\n");
4556
4557        hsotg->lx_state = DWC2_L0;
4558
4559        spin_unlock_irqrestore(&hsotg->lock, flags);
4560
4561        if (hsotg->bus_suspended) {
4562                spin_lock_irqsave(&hsotg->lock, flags);
4563                hsotg->flags.b.port_suspend_change = 1;
4564                spin_unlock_irqrestore(&hsotg->lock, flags);
4565                dwc2_port_resume(hsotg);
4566        } else {
4567                dwc2_vbus_supply_init(hsotg);
4568
4569                /* Wait for controller to correctly update D+/D- level */
4570                usleep_range(3000, 5000);
4571
4572                /*
4573                 * Clear Port Enable and Port Status changes.
4574                 * Enable Port Power.
4575                 */
4576                dwc2_writel(HPRT0_PWR | HPRT0_CONNDET |
4577                                HPRT0_ENACHG, hsotg->regs + HPRT0);
4578                /* Wait for controller to detect Port Connect */
4579                usleep_range(5000, 7000);
4580        }
4581
4582        return ret;
4583unlock:
4584        spin_unlock_irqrestore(&hsotg->lock, flags);
4585
4586        return ret;
4587}
4588
4589/* Returns the current frame number */
4590static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4591{
4592        struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4593
4594        return dwc2_hcd_get_frame_number(hsotg);
4595}
4596
4597static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4598                               char *fn_name)
4599{
4600#ifdef VERBOSE_DEBUG
4601        struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4602        char *pipetype = NULL;
4603        char *speed = NULL;
4604
4605        dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4606        dev_vdbg(hsotg->dev, "  Device address: %d\n",
4607                 usb_pipedevice(urb->pipe));
4608        dev_vdbg(hsotg->dev, "  Endpoint: %d, %s\n",
4609                 usb_pipeendpoint(urb->pipe),
4610                 usb_pipein(urb->pipe) ? "IN" : "OUT");
4611
4612        switch (usb_pipetype(urb->pipe)) {
4613        case PIPE_CONTROL:
4614                pipetype = "CONTROL";
4615                break;
4616        case PIPE_BULK:
4617                pipetype = "BULK";
4618                break;
4619        case PIPE_INTERRUPT:
4620                pipetype = "INTERRUPT";
4621                break;
4622        case PIPE_ISOCHRONOUS:
4623                pipetype = "ISOCHRONOUS";
4624                break;
4625        }
4626
4627        dev_vdbg(hsotg->dev, "  Endpoint type: %s %s (%s)\n", pipetype,
4628                 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4629                 "IN" : "OUT");
4630
4631        switch (urb->dev->speed) {
4632        case USB_SPEED_HIGH:
4633                speed = "HIGH";
4634                break;
4635        case USB_SPEED_FULL:
4636                speed = "FULL";
4637                break;
4638        case USB_SPEED_LOW:
4639                speed = "LOW";
4640                break;
4641        default:
4642                speed = "UNKNOWN";
4643                break;
4644        }
4645
4646        dev_vdbg(hsotg->dev, "  Speed: %s\n", speed);
4647        dev_vdbg(hsotg->dev, "  Max packet size: %d\n",
4648                 usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
4649        dev_vdbg(hsotg->dev, "  Data buffer length: %d\n",
4650                 urb->transfer_buffer_length);
4651        dev_vdbg(hsotg->dev, "  Transfer buffer: %p, Transfer DMA: %08lx\n",
4652                 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4653        dev_vdbg(hsotg->dev, "  Setup buffer: %p, Setup DMA: %08lx\n",
4654                 urb->setup_packet, (unsigned long)urb->setup_dma);
4655        dev_vdbg(hsotg->dev, "  Interval: %d\n", urb->interval);
4656
4657        if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4658                int i;
4659
4660                for (i = 0; i < urb->number_of_packets; i++) {
4661                        dev_vdbg(hsotg->dev, "  ISO Desc %d:\n", i);
4662                        dev_vdbg(hsotg->dev, "    offset: %d, length %d\n",
4663                                 urb->iso_frame_desc[i].offset,
4664                                 urb->iso_frame_desc[i].length);
4665                }
4666        }
4667#endif
4668}
4669
4670/*
4671 * Starts processing a USB transfer request specified by a USB Request Block
4672 * (URB). mem_flags indicates the type of memory allocation to use while
4673 * processing this URB.
4674 */
4675static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4676                                 gfp_t mem_flags)
4677{
4678        struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4679        struct usb_host_endpoint *ep = urb->ep;
4680        struct dwc2_hcd_urb *dwc2_urb;
4681        int i;
4682        int retval;
4683        int alloc_bandwidth = 0;
4684        u8 ep_type = 0;
4685        u32 tflags = 0;
4686        void *buf;
4687        unsigned long flags;
4688        struct dwc2_qh *qh;
4689        bool qh_allocated = false;
4690        struct dwc2_qtd *qtd;
4691
4692        if (dbg_urb(urb)) {
4693                dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4694                dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4695        }
4696
4697        if (!ep)
4698                return -EINVAL;
4699
4700        if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4701            usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4702                spin_lock_irqsave(&hsotg->lock, flags);
4703                if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4704                        alloc_bandwidth = 1;
4705                spin_unlock_irqrestore(&hsotg->lock, flags);
4706        }
4707
4708        switch (usb_pipetype(urb->pipe)) {
4709        case PIPE_CONTROL:
4710                ep_type = USB_ENDPOINT_XFER_CONTROL;
4711                break;
4712        case PIPE_ISOCHRONOUS:
4713                ep_type = USB_ENDPOINT_XFER_ISOC;
4714                break;
4715        case PIPE_BULK:
4716                ep_type = USB_ENDPOINT_XFER_BULK;
4717                break;
4718        case PIPE_INTERRUPT:
4719                ep_type = USB_ENDPOINT_XFER_INT;
4720                break;
4721        }
4722
4723        dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4724                                      mem_flags);
4725        if (!dwc2_urb)
4726                return -ENOMEM;
4727
4728        dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4729                                  usb_pipeendpoint(urb->pipe), ep_type,
4730                                  usb_pipein(urb->pipe),
4731                                  usb_maxpacket(urb->dev, urb->pipe,
4732                                                !(usb_pipein(urb->pipe))));
4733
4734        buf = urb->transfer_buffer;
4735
4736        if (hcd->self.uses_dma) {
4737                if (!buf && (urb->transfer_dma & 3)) {
4738                        dev_err(hsotg->dev,
4739                                "%s: unaligned transfer with no transfer_buffer",
4740                                __func__);
4741                        retval = -EINVAL;
4742                        goto fail0;
4743                }
4744        }
4745
4746        if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4747                tflags |= URB_GIVEBACK_ASAP;
4748        if (urb->transfer_flags & URB_ZERO_PACKET)
4749                tflags |= URB_SEND_ZERO_PACKET;
4750
4751        dwc2_urb->priv = urb;
4752        dwc2_urb->buf = buf;
4753        dwc2_urb->dma = urb->transfer_dma;
4754        dwc2_urb->length = urb->transfer_buffer_length;
4755        dwc2_urb->setup_packet = urb->setup_packet;
4756        dwc2_urb->setup_dma = urb->setup_dma;
4757        dwc2_urb->flags = tflags;
4758        dwc2_urb->interval = urb->interval;
4759        dwc2_urb->status = -EINPROGRESS;
4760
4761        for (i = 0; i < urb->number_of_packets; ++i)
4762                dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4763                                                 urb->iso_frame_desc[i].offset,
4764                                                 urb->iso_frame_desc[i].length);
4765
4766        urb->hcpriv = dwc2_urb;
4767        qh = (struct dwc2_qh *)ep->hcpriv;
4768        /* Create QH for the endpoint if it doesn't exist */
4769        if (!qh) {
4770                qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4771                if (!qh) {
4772                        retval = -ENOMEM;
4773                        goto fail0;
4774                }
4775                ep->hcpriv = qh;
4776                qh_allocated = true;
4777        }
4778
4779        qtd = kzalloc(sizeof(*qtd), mem_flags);
4780        if (!qtd) {
4781                retval = -ENOMEM;
4782                goto fail1;
4783        }
4784
4785        spin_lock_irqsave(&hsotg->lock, flags);
4786        retval = usb_hcd_link_urb_to_ep(hcd, urb);
4787        if (retval)
4788                goto fail2;
4789
4790        retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4791        if (retval)
4792                goto fail3;
4793
4794        if (alloc_bandwidth) {
4795                dwc2_allocate_bus_bandwidth(hcd,
4796                                dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4797                                urb);
4798        }
4799
4800        spin_unlock_irqrestore(&hsotg->lock, flags);
4801
4802        return 0;
4803
4804fail3:
4805        dwc2_urb->priv = NULL;
4806        usb_hcd_unlink_urb_from_ep(hcd, urb);
4807        if (qh_allocated && qh->channel && qh->channel->qh == qh)
4808                qh->channel->qh = NULL;
4809fail2:
4810        spin_unlock_irqrestore(&hsotg->lock, flags);
4811        urb->hcpriv = NULL;
4812        kfree(qtd);
4813        qtd = NULL;
4814fail1:
4815        if (qh_allocated) {
4816                struct dwc2_qtd *qtd2, *qtd2_tmp;
4817
4818                ep->hcpriv = NULL;
4819                dwc2_hcd_qh_unlink(hsotg, qh);
4820                /* Free each QTD in the QH's QTD list */
4821                list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4822                                         qtd_list_entry)
4823                        dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4824                dwc2_hcd_qh_free(hsotg, qh);
4825        }
4826fail0:
4827        kfree(dwc2_urb);
4828
4829        return retval;
4830}
4831
4832/*
4833 * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4834 */
4835static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4836                                 int status)
4837{
4838        struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4839        int rc;
4840        unsigned long flags;
4841
4842        dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4843        dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4844
4845        spin_lock_irqsave(&hsotg->lock, flags);
4846
4847        rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4848        if (rc)
4849                goto out;
4850
4851        if (!urb->hcpriv) {
4852                dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4853                goto out;
4854        }
4855
4856        rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4857
4858        usb_hcd_unlink_urb_from_ep(hcd, urb);
4859
4860        kfree(urb->hcpriv);
4861        urb->hcpriv = NULL;
4862
4863        /* Higher layer software sets URB status */
4864        spin_unlock(&hsotg->lock);
4865        usb_hcd_giveback_urb(hcd, urb, status);
4866        spin_lock(&hsotg->lock);
4867
4868        dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4869        dev_dbg(hsotg->dev, "  urb->status = %d\n", urb->status);
4870out:
4871        spin_unlock_irqrestore(&hsotg->lock, flags);
4872
4873        return rc;
4874}
4875
4876/*
4877 * Frees resources in the DWC_otg controller related to a given endpoint. Also
4878 * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4879 * must already be dequeued.
4880 */
4881static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4882                                       struct usb_host_endpoint *ep)
4883{
4884        struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4885
4886        dev_dbg(hsotg->dev,
4887                "DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4888                ep->desc.bEndpointAddress, ep->hcpriv);
4889        dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4890}
4891
4892/*
4893 * Resets endpoint specific parameter values, in current version used to reset
4894 * the data toggle (as a WA). This function can be called from usb_clear_halt
4895 * routine.
4896 */
4897static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4898                                     struct usb_host_endpoint *ep)
4899{
4900        struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4901        unsigned long flags;
4902
4903        dev_dbg(hsotg->dev,
4904                "DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4905                ep->desc.bEndpointAddress);
4906
4907        spin_lock_irqsave(&hsotg->lock, flags);
4908        dwc2_hcd_endpoint_reset(hsotg, ep);
4909        spin_unlock_irqrestore(&hsotg->lock, flags);
4910}
4911
4912/*
4913 * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4914 * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4915 * interrupt.
4916 *
4917 * This function is called by the USB core when an interrupt occurs
4918 */
4919static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4920{
4921        struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4922
4923        return dwc2_handle_hcd_intr(hsotg);
4924}
4925
4926/*
4927 * Creates Status Change bitmap for the root hub and root port. The bitmap is
4928 * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4929 * is the status change indicator for the single root port. Returns 1 if either
4930 * change indicator is 1, otherwise returns 0.
4931 */
4932static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4933{
4934        struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4935
4936        buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4937        return buf[0] != 0;
4938}
4939
4940/* Handles hub class-specific requests */
4941static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4942                                 u16 windex, char *buf, u16 wlength)
4943{
4944        int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4945                                          wvalue, windex, buf, wlength);
4946        return retval;
4947}
4948
4949/* Handles hub TT buffer clear completions */
4950static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4951                                               struct usb_host_endpoint *ep)
4952{
4953        struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4954        struct dwc2_qh *qh;
4955        unsigned long flags;
4956
4957        qh = ep->hcpriv;
4958        if (!qh)
4959                return;
4960
4961        spin_lock_irqsave(&hsotg->lock, flags);
4962        qh->tt_buffer_dirty = 0;
4963
4964        if (hsotg->flags.b.port_connect_status)
4965                dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4966
4967        spin_unlock_irqrestore(&hsotg->lock, flags);
4968}
4969
4970/*
4971 * HPRT0_SPD_HIGH_SPEED: high speed
4972 * HPRT0_SPD_FULL_SPEED: full speed
4973 */
4974static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
4975{
4976        struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4977
4978        if (hsotg->params.speed == speed)
4979                return;
4980
4981        hsotg->params.speed = speed;
4982        queue_work(hsotg->wq_otg, &hsotg->wf_otg);
4983}
4984
4985static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4986{
4987        struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4988
4989        if (!hsotg->params.change_speed_quirk)
4990                return;
4991
4992        /*
4993         * On removal, set speed to default high-speed.
4994         */
4995        if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
4996            udev->parent->speed < USB_SPEED_HIGH) {
4997                dev_info(hsotg->dev, "Set speed to default high-speed\n");
4998                dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4999        }
5000}
5001
5002static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
5003{
5004        struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
5005
5006        if (!hsotg->params.change_speed_quirk)
5007                return 0;
5008
5009        if (udev->speed == USB_SPEED_HIGH) {
5010                dev_info(hsotg->dev, "Set speed to high-speed\n");
5011                dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
5012        } else if ((udev->speed == USB_SPEED_FULL ||
5013                                udev->speed == USB_SPEED_LOW)) {
5014                /*
5015                 * Change speed setting to full-speed if there's
5016                 * a full-speed or low-speed device plugged in.
5017                 */
5018                dev_info(hsotg->dev, "Set speed to full-speed\n");
5019                dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
5020        }
5021
5022        return 0;
5023}
5024
5025static struct hc_driver dwc2_hc_driver = {
5026        .description = "dwc2_hsotg",
5027        .product_desc = "DWC OTG Controller",
5028        .hcd_priv_size = sizeof(struct wrapper_priv_data),
5029
5030        .irq = _dwc2_hcd_irq,
5031        .flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
5032
5033        .start = _dwc2_hcd_start,
5034        .stop = _dwc2_hcd_stop,
5035        .urb_enqueue = _dwc2_hcd_urb_enqueue,
5036        .urb_dequeue = _dwc2_hcd_urb_dequeue,
5037        .endpoint_disable = _dwc2_hcd_endpoint_disable,
5038        .endpoint_reset = _dwc2_hcd_endpoint_reset,
5039        .get_frame_number = _dwc2_hcd_get_frame_number,
5040
5041        .hub_status_data = _dwc2_hcd_hub_status_data,
5042        .hub_control = _dwc2_hcd_hub_control,
5043        .clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
5044
5045        .bus_suspend = _dwc2_hcd_suspend,
5046        .bus_resume = _dwc2_hcd_resume,
5047
5048        .map_urb_for_dma        = dwc2_map_urb_for_dma,
5049        .unmap_urb_for_dma      = dwc2_unmap_urb_for_dma,
5050};
5051
5052/*
5053 * Frees secondary storage associated with the dwc2_hsotg structure contained
5054 * in the struct usb_hcd field
5055 */
5056static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
5057{
5058        u32 ahbcfg;
5059        u32 dctl;
5060        int i;
5061
5062        dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
5063
5064        /* Free memory for QH/QTD lists */
5065        dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
5066        dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting);
5067        dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
5068        dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
5069        dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
5070        dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
5071        dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
5072
5073        /* Free memory for the host channels */
5074        for (i = 0; i < MAX_EPS_CHANNELS; i++) {
5075                struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
5076
5077                if (chan) {
5078                        dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
5079                                i, chan);
5080                        hsotg->hc_ptr_array[i] = NULL;
5081                        kfree(chan);
5082                }
5083        }
5084
5085        if (hsotg->params.host_dma) {
5086                if (hsotg->status_buf) {
5087                        dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
5088                                          hsotg->status_buf,
5089                                          hsotg->status_buf_dma);
5090                        hsotg->status_buf = NULL;
5091                }
5092        } else {
5093                kfree(hsotg->status_buf);
5094                hsotg->status_buf = NULL;
5095        }
5096
5097        ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
5098
5099        /* Disable all interrupts */
5100        ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
5101        dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
5102        dwc2_writel(0, hsotg->regs + GINTMSK);
5103
5104        if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
5105                dctl = dwc2_readl(hsotg->regs + DCTL);
5106                dctl |= DCTL_SFTDISCON;
5107                dwc2_writel(dctl, hsotg->regs + DCTL);
5108        }
5109
5110        if (hsotg->wq_otg) {
5111                if (!cancel_work_sync(&hsotg->wf_otg))
5112                        flush_workqueue(hsotg->wq_otg);
5113                destroy_workqueue(hsotg->wq_otg);
5114        }
5115
5116        del_timer(&hsotg->wkp_timer);
5117}
5118
5119static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
5120{
5121        /* Turn off all host-specific interrupts */
5122        dwc2_disable_host_interrupts(hsotg);
5123
5124        dwc2_hcd_free(hsotg);
5125}
5126
5127/*
5128 * Initializes the HCD. This function allocates memory for and initializes the
5129 * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5130 * USB bus with the core and calls the hc_driver->start() function. It returns
5131 * a negative error on failure.
5132 */
5133int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
5134{
5135        struct platform_device *pdev = to_platform_device(hsotg->dev);
5136        struct resource *res;
5137        struct usb_hcd *hcd;
5138        struct dwc2_host_chan *channel;
5139        u32 hcfg;
5140        int i, num_channels;
5141        int retval;
5142
5143        if (usb_disabled())
5144                return -ENODEV;
5145
5146        dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
5147
5148        retval = -ENOMEM;
5149
5150        hcfg = dwc2_readl(hsotg->regs + HCFG);
5151        dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
5152
5153#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5154        hsotg->frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE,
5155                                         sizeof(*hsotg->frame_num_array),
5156                                         GFP_KERNEL);
5157        if (!hsotg->frame_num_array)
5158                goto error1;
5159        hsotg->last_frame_num_array =
5160                kcalloc(FRAME_NUM_ARRAY_SIZE,
5161                        sizeof(*hsotg->last_frame_num_array), GFP_KERNEL);
5162        if (!hsotg->last_frame_num_array)
5163                goto error1;
5164#endif
5165        hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5166
5167        /* Check if the bus driver or platform code has setup a dma_mask */
5168        if (hsotg->params.host_dma &&
5169            !hsotg->dev->dma_mask) {
5170                dev_warn(hsotg->dev,
5171                         "dma_mask not set, disabling DMA\n");
5172                hsotg->params.host_dma = false;
5173                hsotg->params.dma_desc_enable = false;
5174        }
5175
5176        /* Set device flags indicating whether the HCD supports DMA */
5177        if (hsotg->params.host_dma) {
5178                if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5179                        dev_warn(hsotg->dev, "can't set DMA mask\n");
5180                if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5181                        dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5182        }
5183
5184        if (hsotg->params.change_speed_quirk) {
5185                dwc2_hc_driver.free_dev = dwc2_free_dev;
5186                dwc2_hc_driver.reset_device = dwc2_reset_device;
5187        }
5188
5189        hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5190        if (!hcd)
5191                goto error1;
5192
5193        if (!hsotg->params.host_dma)
5194                hcd->self.uses_dma = 0;
5195
5196        hcd->has_tt = 1;
5197
5198        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5199        hcd->rsrc_start = res->start;
5200        hcd->rsrc_len = resource_size(res);
5201
5202        ((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5203        hsotg->priv = hcd;
5204
5205        /*
5206         * Disable the global interrupt until all the interrupt handlers are
5207         * installed
5208         */
5209        dwc2_disable_global_interrupts(hsotg);
5210
5211        /* Initialize the DWC_otg core, and select the Phy type */
5212        retval = dwc2_core_init(hsotg, true);
5213        if (retval)
5214                goto error2;
5215
5216        /* Create new workqueue and init work */
5217        retval = -ENOMEM;
5218        hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5219        if (!hsotg->wq_otg) {
5220                dev_err(hsotg->dev, "Failed to create workqueue\n");
5221                goto error2;
5222        }
5223        INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5224
5225        timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0);
5226
5227        /* Initialize the non-periodic schedule */
5228        INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5229        INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting);
5230        INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5231
5232        /* Initialize the periodic schedule */
5233        INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5234        INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5235        INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5236        INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5237
5238        INIT_LIST_HEAD(&hsotg->split_order);
5239
5240        /*
5241         * Create a host channel descriptor for each host channel implemented
5242         * in the controller. Initialize the channel descriptor array.
5243         */
5244        INIT_LIST_HEAD(&hsotg->free_hc_list);
5245        num_channels = hsotg->params.host_channels;
5246        memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5247
5248        for (i = 0; i < num_channels; i++) {
5249                channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5250                if (!channel)
5251                        goto error3;
5252                channel->hc_num = i;
5253                INIT_LIST_HEAD(&channel->split_order_list_entry);
5254                hsotg->hc_ptr_array[i] = channel;
5255        }
5256
5257        /* Initialize hsotg start work */
5258        INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5259
5260        /* Initialize port reset work */
5261        INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5262
5263        /*
5264         * Allocate space for storing data on status transactions. Normally no
5265         * data is sent, but this space acts as a bit bucket. This must be
5266         * done after usb_add_hcd since that function allocates the DMA buffer
5267         * pool.
5268         */
5269        if (hsotg->params.host_dma)
5270                hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5271                                        DWC2_HCD_STATUS_BUF_SIZE,
5272                                        &hsotg->status_buf_dma, GFP_KERNEL);
5273        else
5274                hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5275                                          GFP_KERNEL);
5276
5277        if (!hsotg->status_buf)
5278                goto error3;
5279
5280        /*
5281         * Create kmem caches to handle descriptor buffers in descriptor
5282         * DMA mode.
5283         * Alignment must be set to 512 bytes.
5284         */
5285        if (hsotg->params.dma_desc_enable ||
5286            hsotg->params.dma_desc_fs_enable) {
5287                hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5288                                sizeof(struct dwc2_dma_desc) *
5289                                MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5290                                NULL);
5291                if (!hsotg->desc_gen_cache) {
5292                        dev_err(hsotg->dev,
5293                                "unable to create dwc2 generic desc cache\n");
5294
5295                        /*
5296                         * Disable descriptor dma mode since it will not be
5297                         * usable.
5298                         */
5299                        hsotg->params.dma_desc_enable = false;
5300                        hsotg->params.dma_desc_fs_enable = false;
5301                }
5302
5303                hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5304                                sizeof(struct dwc2_dma_desc) *
5305                                MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5306                if (!hsotg->desc_hsisoc_cache) {
5307                        dev_err(hsotg->dev,
5308                                "unable to create dwc2 hs isoc desc cache\n");
5309
5310                        kmem_cache_destroy(hsotg->desc_gen_cache);
5311
5312                        /*
5313                         * Disable descriptor dma mode since it will not be
5314                         * usable.
5315                         */
5316                        hsotg->params.dma_desc_enable = false;
5317                        hsotg->params.dma_desc_fs_enable = false;
5318                }
5319        }
5320
5321        if (hsotg->params.host_dma) {
5322                /*
5323                 * Create kmem caches to handle non-aligned buffer
5324                 * in Buffer DMA mode.
5325                 */
5326                hsotg->unaligned_cache = kmem_cache_create("dwc2-unaligned-dma",
5327                                                DWC2_KMEM_UNALIGNED_BUF_SIZE, 4,
5328                                                SLAB_CACHE_DMA, NULL);
5329                if (!hsotg->unaligned_cache)
5330                        dev_err(hsotg->dev,
5331                                "unable to create dwc2 unaligned cache\n");
5332        }
5333
5334        hsotg->otg_port = 1;
5335        hsotg->frame_list = NULL;
5336        hsotg->frame_list_dma = 0;
5337        hsotg->periodic_qh_count = 0;
5338
5339        /* Initiate lx_state to L3 disconnected state */
5340        hsotg->lx_state = DWC2_L3;
5341
5342        hcd->self.otg_port = hsotg->otg_port;
5343
5344        /* Don't support SG list at this point */
5345        hcd->self.sg_tablesize = 0;
5346
5347        if (!IS_ERR_OR_NULL(hsotg->uphy))
5348                otg_set_host(hsotg->uphy->otg, &hcd->self);
5349
5350        /*
5351         * Finish generic HCD initialization and start the HCD. This function
5352         * allocates the DMA buffer pool, registers the USB bus, requests the
5353         * IRQ line, and calls hcd_start method.
5354         */
5355        retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
5356        if (retval < 0)
5357                goto error4;
5358
5359        device_wakeup_enable(hcd->self.controller);
5360
5361        dwc2_hcd_dump_state(hsotg);
5362
5363        dwc2_enable_global_interrupts(hsotg);
5364
5365        return 0;
5366
5367error4:
5368        kmem_cache_destroy(hsotg->unaligned_cache);
5369        kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5370        kmem_cache_destroy(hsotg->desc_gen_cache);
5371error3:
5372        dwc2_hcd_release(hsotg);
5373error2:
5374        usb_put_hcd(hcd);
5375error1:
5376
5377#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5378        kfree(hsotg->last_frame_num_array);
5379        kfree(hsotg->frame_num_array);
5380#endif
5381
5382        dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5383        return retval;
5384}
5385
5386/*
5387 * Removes the HCD.
5388 * Frees memory and resources associated with the HCD and deregisters the bus.
5389 */
5390void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5391{
5392        struct usb_hcd *hcd;
5393
5394        dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5395
5396        hcd = dwc2_hsotg_to_hcd(hsotg);
5397        dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5398
5399        if (!hcd) {
5400                dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5401                        __func__);
5402                return;
5403        }
5404
5405        if (!IS_ERR_OR_NULL(hsotg->uphy))
5406                otg_set_host(hsotg->uphy->otg, NULL);
5407
5408        usb_remove_hcd(hcd);
5409        hsotg->priv = NULL;
5410
5411        kmem_cache_destroy(hsotg->unaligned_cache);
5412        kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5413        kmem_cache_destroy(hsotg->desc_gen_cache);
5414
5415        dwc2_hcd_release(hsotg);
5416        usb_put_hcd(hcd);
5417
5418#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5419        kfree(hsotg->last_frame_num_array);
5420        kfree(hsotg->frame_num_array);
5421#endif
5422}
5423
5424/**
5425 * dwc2_backup_host_registers() - Backup controller host registers.
5426 * When suspending usb bus, registers needs to be backuped
5427 * if controller power is disabled once suspended.
5428 *
5429 * @hsotg: Programming view of the DWC_otg controller
5430 */
5431int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5432{
5433        struct dwc2_hregs_backup *hr;
5434        int i;
5435
5436        dev_dbg(hsotg->dev, "%s\n", __func__);
5437
5438        /* Backup Host regs */
5439        hr = &hsotg->hr_backup;
5440        hr->hcfg = dwc2_readl(hsotg->regs + HCFG);
5441        hr->haintmsk = dwc2_readl(hsotg->regs + HAINTMSK);
5442        for (i = 0; i < hsotg->params.host_channels; ++i)
5443                hr->hcintmsk[i] = dwc2_readl(hsotg->regs + HCINTMSK(i));
5444
5445        hr->hprt0 = dwc2_read_hprt0(hsotg);
5446        hr->hfir = dwc2_readl(hsotg->regs + HFIR);
5447        hr->hptxfsiz = dwc2_readl(hsotg->regs + HPTXFSIZ);
5448        hr->valid = true;
5449
5450        return 0;
5451}
5452
5453/**
5454 * dwc2_restore_host_registers() - Restore controller host registers.
5455 * When resuming usb bus, device registers needs to be restored
5456 * if controller power were disabled.
5457 *
5458 * @hsotg: Programming view of the DWC_otg controller
5459 */
5460int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5461{
5462        struct dwc2_hregs_backup *hr;
5463        int i;
5464
5465        dev_dbg(hsotg->dev, "%s\n", __func__);
5466
5467        /* Restore host regs */
5468        hr = &hsotg->hr_backup;
5469        if (!hr->valid) {
5470                dev_err(hsotg->dev, "%s: no host registers to restore\n",
5471                        __func__);
5472                return -EINVAL;
5473        }
5474        hr->valid = false;
5475
5476        dwc2_writel(hr->hcfg, hsotg->regs + HCFG);
5477        dwc2_writel(hr->haintmsk, hsotg->regs + HAINTMSK);
5478
5479        for (i = 0; i < hsotg->params.host_channels; ++i)
5480                dwc2_writel(hr->hcintmsk[i], hsotg->regs + HCINTMSK(i));
5481
5482        dwc2_writel(hr->hprt0, hsotg->regs + HPRT0);
5483        dwc2_writel(hr->hfir, hsotg->regs + HFIR);
5484        dwc2_writel(hr->hptxfsiz, hsotg->regs + HPTXFSIZ);
5485        hsotg->frame_number = 0;
5486
5487        return 0;
5488}
5489
5490/**
5491 * dwc2_host_enter_hibernation() - Put controller in Hibernation.
5492 *
5493 * @hsotg: Programming view of the DWC_otg controller
5494 */
5495int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
5496{
5497        unsigned long flags;
5498        int ret = 0;
5499        u32 hprt0;
5500        u32 pcgcctl;
5501        u32 gusbcfg;
5502        u32 gpwrdn;
5503
5504        dev_dbg(hsotg->dev, "Preparing host for hibernation\n");
5505        ret = dwc2_backup_global_registers(hsotg);
5506        if (ret) {
5507                dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5508                        __func__);
5509                return ret;
5510        }
5511        ret = dwc2_backup_host_registers(hsotg);
5512        if (ret) {
5513                dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5514                        __func__);
5515                return ret;
5516        }
5517
5518        /* Enter USB Suspend Mode */
5519        hprt0 = dwc2_readl(hsotg->regs + HPRT0);
5520        hprt0 |= HPRT0_SUSP;
5521        hprt0 &= ~HPRT0_ENA;
5522        dwc2_writel(hprt0, hsotg->regs + HPRT0);
5523
5524        /* Wait for the HPRT0.PrtSusp register field to be set */
5525        if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 3000))
5526                dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5527
5528        /*
5529         * We need to disable interrupts to prevent servicing of any IRQ
5530         * during going to hibernation
5531         */
5532        spin_lock_irqsave(&hsotg->lock, flags);
5533        hsotg->lx_state = DWC2_L2;
5534
5535        gusbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
5536        if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) {
5537                /* ULPI interface */
5538                /* Suspend the Phy Clock */
5539                pcgcctl = dwc2_readl(hsotg->regs + PCGCTL);
5540                pcgcctl |= PCGCTL_STOPPCLK;
5541                dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
5542                udelay(10);
5543
5544                gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5545                gpwrdn |= GPWRDN_PMUACTV;
5546                dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5547                udelay(10);
5548        } else {
5549                /* UTMI+ Interface */
5550                gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5551                gpwrdn |= GPWRDN_PMUACTV;
5552                dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5553                udelay(10);
5554
5555                pcgcctl = dwc2_readl(hsotg->regs + PCGCTL);
5556                pcgcctl |= PCGCTL_STOPPCLK;
5557                dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
5558                udelay(10);
5559        }
5560
5561        /* Enable interrupts from wake up logic */
5562        gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5563        gpwrdn |= GPWRDN_PMUINTSEL;
5564        dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5565        udelay(10);
5566
5567        /* Unmask host mode interrupts in GPWRDN */
5568        gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5569        gpwrdn |= GPWRDN_DISCONN_DET_MSK;
5570        gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5571        gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5572        dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5573        udelay(10);
5574
5575        /* Enable Power Down Clamp */
5576        gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5577        gpwrdn |= GPWRDN_PWRDNCLMP;
5578        dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5579        udelay(10);
5580
5581        /* Switch off VDD */
5582        gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5583        gpwrdn |= GPWRDN_PWRDNSWTCH;
5584        dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5585
5586        hsotg->hibernated = 1;
5587        hsotg->bus_suspended = 1;
5588        dev_dbg(hsotg->dev, "Host hibernation completed\n");
5589        spin_unlock_irqrestore(&hsotg->lock, flags);
5590        return ret;
5591}
5592
5593/*
5594 * dwc2_host_exit_hibernation()
5595 *
5596 * @hsotg: Programming view of the DWC_otg controller
5597 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5598 * @param reset: indicates whether resume is initiated by Reset.
5599 *
5600 * Return: non-zero if failed to enter to hibernation.
5601 *
5602 * This function is for exiting from Host mode hibernation by
5603 * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
5604 */
5605int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
5606                               int reset)
5607{
5608        u32 gpwrdn;
5609        u32 hprt0;
5610        int ret = 0;
5611        struct dwc2_gregs_backup *gr;
5612        struct dwc2_hregs_backup *hr;
5613
5614        gr = &hsotg->gr_backup;
5615        hr = &hsotg->hr_backup;
5616
5617        dev_dbg(hsotg->dev,
5618                "%s: called with rem_wakeup = %d reset = %d\n",
5619                __func__, rem_wakeup, reset);
5620
5621        dwc2_hib_restore_common(hsotg, rem_wakeup, 1);
5622        hsotg->hibernated = 0;
5623
5624        /*
5625         * This step is not described in functional spec but if not wait for
5626         * this delay, mismatch interrupts occurred because just after restore
5627         * core is in Device mode(gintsts.curmode == 0)
5628         */
5629        mdelay(100);
5630
5631        /* Clear all pending interupts */
5632        dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
5633
5634        /* De-assert Restore */
5635        gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5636        gpwrdn &= ~GPWRDN_RESTORE;
5637        dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5638        udelay(10);
5639
5640        /* Restore GUSBCFG, HCFG */
5641        dwc2_writel(gr->gusbcfg, hsotg->regs + GUSBCFG);
5642        dwc2_writel(hr->hcfg, hsotg->regs + HCFG);
5643
5644        /* De-assert Wakeup Logic */
5645        gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5646        gpwrdn &= ~GPWRDN_PMUACTV;
5647        dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5648        udelay(10);
5649
5650        hprt0 = hr->hprt0;
5651        hprt0 |= HPRT0_PWR;
5652        hprt0 &= ~HPRT0_ENA;
5653        hprt0 &= ~HPRT0_SUSP;
5654        dwc2_writel(hprt0, hsotg->regs + HPRT0);
5655
5656        hprt0 = hr->hprt0;
5657        hprt0 |= HPRT0_PWR;
5658        hprt0 &= ~HPRT0_ENA;
5659        hprt0 &= ~HPRT0_SUSP;
5660
5661        if (reset) {
5662                hprt0 |= HPRT0_RST;
5663                dwc2_writel(hprt0, hsotg->regs + HPRT0);
5664
5665                /* Wait for Resume time and then program HPRT again */
5666                mdelay(60);
5667                hprt0 &= ~HPRT0_RST;
5668                dwc2_writel(hprt0, hsotg->regs + HPRT0);
5669        } else {
5670                hprt0 |= HPRT0_RES;
5671                dwc2_writel(hprt0, hsotg->regs + HPRT0);
5672
5673                /* Wait for Resume time and then program HPRT again */
5674                mdelay(100);
5675                hprt0 &= ~HPRT0_RES;
5676                dwc2_writel(hprt0, hsotg->regs + HPRT0);
5677        }
5678        /* Clear all interrupt status */
5679        hprt0 = dwc2_readl(hsotg->regs + HPRT0);
5680        hprt0 |= HPRT0_CONNDET;
5681        hprt0 |= HPRT0_ENACHG;
5682        hprt0 &= ~HPRT0_ENA;
5683        dwc2_writel(hprt0, hsotg->regs + HPRT0);
5684
5685        hprt0 = dwc2_readl(hsotg->regs + HPRT0);
5686
5687        /* Clear all pending interupts */
5688        dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
5689
5690        /* Restore global registers */
5691        ret = dwc2_restore_global_registers(hsotg);
5692        if (ret) {
5693                dev_err(hsotg->dev, "%s: failed to restore registers\n",
5694                        __func__);
5695                return ret;
5696        }
5697
5698        /* Restore host registers */
5699        ret = dwc2_restore_host_registers(hsotg);
5700        if (ret) {
5701                dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5702                        __func__);
5703                return ret;
5704        }
5705
5706        dwc2_hcd_rem_wakeup(hsotg);
5707
5708        hsotg->hibernated = 0;
5709        hsotg->bus_suspended = 0;
5710        hsotg->lx_state = DWC2_L0;
5711        dev_dbg(hsotg->dev, "Host hibernation restore complete\n");
5712        return ret;
5713}
5714