linux/drivers/usb/gadget/udc/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/**
   3 * udc.c - Core UDC Framework
   4 *
   5 * Copyright (C) 2010 Texas Instruments
   6 * Author: Felipe Balbi <balbi@ti.com>
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/module.h>
  11#include <linux/device.h>
  12#include <linux/list.h>
  13#include <linux/err.h>
  14#include <linux/dma-mapping.h>
  15#include <linux/sched/task_stack.h>
  16#include <linux/workqueue.h>
  17
  18#include <linux/usb/ch9.h>
  19#include <linux/usb/gadget.h>
  20#include <linux/usb.h>
  21
  22#include "trace.h"
  23
  24/**
  25 * struct usb_udc - describes one usb device controller
  26 * @driver - the gadget driver pointer. For use by the class code
  27 * @dev - the child device to the actual controller
  28 * @gadget - the gadget. For use by the class code
  29 * @list - for use by the udc class driver
  30 * @vbus - for udcs who care about vbus status, this value is real vbus status;
  31 * for udcs who do not care about vbus status, this value is always true
  32 *
  33 * This represents the internal data structure which is used by the UDC-class
  34 * to hold information about udc driver and gadget together.
  35 */
  36struct usb_udc {
  37        struct usb_gadget_driver        *driver;
  38        struct usb_gadget               *gadget;
  39        struct device                   dev;
  40        struct list_head                list;
  41        bool                            vbus;
  42};
  43
  44static struct class *udc_class;
  45static LIST_HEAD(udc_list);
  46static LIST_HEAD(gadget_driver_pending_list);
  47static DEFINE_MUTEX(udc_lock);
  48
  49static int udc_bind_to_driver(struct usb_udc *udc,
  50                struct usb_gadget_driver *driver);
  51
  52/* ------------------------------------------------------------------------- */
  53
  54/**
  55 * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
  56 * @ep:the endpoint being configured
  57 * @maxpacket_limit:value of maximum packet size limit
  58 *
  59 * This function should be used only in UDC drivers to initialize endpoint
  60 * (usually in probe function).
  61 */
  62void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
  63                                              unsigned maxpacket_limit)
  64{
  65        ep->maxpacket_limit = maxpacket_limit;
  66        ep->maxpacket = maxpacket_limit;
  67
  68        trace_usb_ep_set_maxpacket_limit(ep, 0);
  69}
  70EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit);
  71
  72/**
  73 * usb_ep_enable - configure endpoint, making it usable
  74 * @ep:the endpoint being configured.  may not be the endpoint named "ep0".
  75 *      drivers discover endpoints through the ep_list of a usb_gadget.
  76 *
  77 * When configurations are set, or when interface settings change, the driver
  78 * will enable or disable the relevant endpoints.  while it is enabled, an
  79 * endpoint may be used for i/o until the driver receives a disconnect() from
  80 * the host or until the endpoint is disabled.
  81 *
  82 * the ep0 implementation (which calls this routine) must ensure that the
  83 * hardware capabilities of each endpoint match the descriptor provided
  84 * for it.  for example, an endpoint named "ep2in-bulk" would be usable
  85 * for interrupt transfers as well as bulk, but it likely couldn't be used
  86 * for iso transfers or for endpoint 14.  some endpoints are fully
  87 * configurable, with more generic names like "ep-a".  (remember that for
  88 * USB, "in" means "towards the USB master".)
  89 *
  90 * returns zero, or a negative error code.
  91 */
  92int usb_ep_enable(struct usb_ep *ep)
  93{
  94        int ret = 0;
  95
  96        if (ep->enabled)
  97                goto out;
  98
  99        ret = ep->ops->enable(ep, ep->desc);
 100        if (ret)
 101                goto out;
 102
 103        ep->enabled = true;
 104
 105out:
 106        trace_usb_ep_enable(ep, ret);
 107
 108        return ret;
 109}
 110EXPORT_SYMBOL_GPL(usb_ep_enable);
 111
 112/**
 113 * usb_ep_disable - endpoint is no longer usable
 114 * @ep:the endpoint being unconfigured.  may not be the endpoint named "ep0".
 115 *
 116 * no other task may be using this endpoint when this is called.
 117 * any pending and uncompleted requests will complete with status
 118 * indicating disconnect (-ESHUTDOWN) before this call returns.
 119 * gadget drivers must call usb_ep_enable() again before queueing
 120 * requests to the endpoint.
 121 *
 122 * returns zero, or a negative error code.
 123 */
 124int usb_ep_disable(struct usb_ep *ep)
 125{
 126        int ret = 0;
 127
 128        if (!ep->enabled)
 129                goto out;
 130
 131        ret = ep->ops->disable(ep);
 132        if (ret)
 133                goto out;
 134
 135        ep->enabled = false;
 136
 137out:
 138        trace_usb_ep_disable(ep, ret);
 139
 140        return ret;
 141}
 142EXPORT_SYMBOL_GPL(usb_ep_disable);
 143
 144/**
 145 * usb_ep_alloc_request - allocate a request object to use with this endpoint
 146 * @ep:the endpoint to be used with with the request
 147 * @gfp_flags:GFP_* flags to use
 148 *
 149 * Request objects must be allocated with this call, since they normally
 150 * need controller-specific setup and may even need endpoint-specific
 151 * resources such as allocation of DMA descriptors.
 152 * Requests may be submitted with usb_ep_queue(), and receive a single
 153 * completion callback.  Free requests with usb_ep_free_request(), when
 154 * they are no longer needed.
 155 *
 156 * Returns the request, or null if one could not be allocated.
 157 */
 158struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
 159                                                       gfp_t gfp_flags)
 160{
 161        struct usb_request *req = NULL;
 162
 163        req = ep->ops->alloc_request(ep, gfp_flags);
 164
 165        trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM);
 166
 167        return req;
 168}
 169EXPORT_SYMBOL_GPL(usb_ep_alloc_request);
 170
 171/**
 172 * usb_ep_free_request - frees a request object
 173 * @ep:the endpoint associated with the request
 174 * @req:the request being freed
 175 *
 176 * Reverses the effect of usb_ep_alloc_request().
 177 * Caller guarantees the request is not queued, and that it will
 178 * no longer be requeued (or otherwise used).
 179 */
 180void usb_ep_free_request(struct usb_ep *ep,
 181                                       struct usb_request *req)
 182{
 183        trace_usb_ep_free_request(ep, req, 0);
 184        ep->ops->free_request(ep, req);
 185}
 186EXPORT_SYMBOL_GPL(usb_ep_free_request);
 187
 188/**
 189 * usb_ep_queue - queues (submits) an I/O request to an endpoint.
 190 * @ep:the endpoint associated with the request
 191 * @req:the request being submitted
 192 * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
 193 *      pre-allocate all necessary memory with the request.
 194 *
 195 * This tells the device controller to perform the specified request through
 196 * that endpoint (reading or writing a buffer).  When the request completes,
 197 * including being canceled by usb_ep_dequeue(), the request's completion
 198 * routine is called to return the request to the driver.  Any endpoint
 199 * (except control endpoints like ep0) may have more than one transfer
 200 * request queued; they complete in FIFO order.  Once a gadget driver
 201 * submits a request, that request may not be examined or modified until it
 202 * is given back to that driver through the completion callback.
 203 *
 204 * Each request is turned into one or more packets.  The controller driver
 205 * never merges adjacent requests into the same packet.  OUT transfers
 206 * will sometimes use data that's already buffered in the hardware.
 207 * Drivers can rely on the fact that the first byte of the request's buffer
 208 * always corresponds to the first byte of some USB packet, for both
 209 * IN and OUT transfers.
 210 *
 211 * Bulk endpoints can queue any amount of data; the transfer is packetized
 212 * automatically.  The last packet will be short if the request doesn't fill it
 213 * out completely.  Zero length packets (ZLPs) should be avoided in portable
 214 * protocols since not all usb hardware can successfully handle zero length
 215 * packets.  (ZLPs may be explicitly written, and may be implicitly written if
 216 * the request 'zero' flag is set.)  Bulk endpoints may also be used
 217 * for interrupt transfers; but the reverse is not true, and some endpoints
 218 * won't support every interrupt transfer.  (Such as 768 byte packets.)
 219 *
 220 * Interrupt-only endpoints are less functional than bulk endpoints, for
 221 * example by not supporting queueing or not handling buffers that are
 222 * larger than the endpoint's maxpacket size.  They may also treat data
 223 * toggle differently.
 224 *
 225 * Control endpoints ... after getting a setup() callback, the driver queues
 226 * one response (even if it would be zero length).  That enables the
 227 * status ack, after transferring data as specified in the response.  Setup
 228 * functions may return negative error codes to generate protocol stalls.
 229 * (Note that some USB device controllers disallow protocol stall responses
 230 * in some cases.)  When control responses are deferred (the response is
 231 * written after the setup callback returns), then usb_ep_set_halt() may be
 232 * used on ep0 to trigger protocol stalls.  Depending on the controller,
 233 * it may not be possible to trigger a status-stage protocol stall when the
 234 * data stage is over, that is, from within the response's completion
 235 * routine.
 236 *
 237 * For periodic endpoints, like interrupt or isochronous ones, the usb host
 238 * arranges to poll once per interval, and the gadget driver usually will
 239 * have queued some data to transfer at that time.
 240 *
 241 * Note that @req's ->complete() callback must never be called from
 242 * within usb_ep_queue() as that can create deadlock situations.
 243 *
 244 * Returns zero, or a negative error code.  Endpoints that are not enabled
 245 * report errors; errors will also be
 246 * reported when the usb peripheral is disconnected.
 247 *
 248 * If and only if @req is successfully queued (the return value is zero),
 249 * @req->complete() will be called exactly once, when the Gadget core and
 250 * UDC are finished with the request.  When the completion function is called,
 251 * control of the request is returned to the device driver which submitted it.
 252 * The completion handler may then immediately free or reuse @req.
 253 */
 254int usb_ep_queue(struct usb_ep *ep,
 255                               struct usb_request *req, gfp_t gfp_flags)
 256{
 257        int ret = 0;
 258
 259        if (WARN_ON_ONCE(!ep->enabled && ep->address)) {
 260                ret = -ESHUTDOWN;
 261                goto out;
 262        }
 263
 264        ret = ep->ops->queue(ep, req, gfp_flags);
 265
 266out:
 267        trace_usb_ep_queue(ep, req, ret);
 268
 269        return ret;
 270}
 271EXPORT_SYMBOL_GPL(usb_ep_queue);
 272
 273/**
 274 * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
 275 * @ep:the endpoint associated with the request
 276 * @req:the request being canceled
 277 *
 278 * If the request is still active on the endpoint, it is dequeued and its
 279 * completion routine is called (with status -ECONNRESET); else a negative
 280 * error code is returned. This is guaranteed to happen before the call to
 281 * usb_ep_dequeue() returns.
 282 *
 283 * Note that some hardware can't clear out write fifos (to unlink the request
 284 * at the head of the queue) except as part of disconnecting from usb. Such
 285 * restrictions prevent drivers from supporting configuration changes,
 286 * even to configuration zero (a "chapter 9" requirement).
 287 */
 288int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
 289{
 290        int ret;
 291
 292        ret = ep->ops->dequeue(ep, req);
 293        trace_usb_ep_dequeue(ep, req, ret);
 294
 295        return ret;
 296}
 297EXPORT_SYMBOL_GPL(usb_ep_dequeue);
 298
 299/**
 300 * usb_ep_set_halt - sets the endpoint halt feature.
 301 * @ep: the non-isochronous endpoint being stalled
 302 *
 303 * Use this to stall an endpoint, perhaps as an error report.
 304 * Except for control endpoints,
 305 * the endpoint stays halted (will not stream any data) until the host
 306 * clears this feature; drivers may need to empty the endpoint's request
 307 * queue first, to make sure no inappropriate transfers happen.
 308 *
 309 * Note that while an endpoint CLEAR_FEATURE will be invisible to the
 310 * gadget driver, a SET_INTERFACE will not be.  To reset endpoints for the
 311 * current altsetting, see usb_ep_clear_halt().  When switching altsettings,
 312 * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
 313 *
 314 * Returns zero, or a negative error code.  On success, this call sets
 315 * underlying hardware state that blocks data transfers.
 316 * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
 317 * transfer requests are still queued, or if the controller hardware
 318 * (usually a FIFO) still holds bytes that the host hasn't collected.
 319 */
 320int usb_ep_set_halt(struct usb_ep *ep)
 321{
 322        int ret;
 323
 324        ret = ep->ops->set_halt(ep, 1);
 325        trace_usb_ep_set_halt(ep, ret);
 326
 327        return ret;
 328}
 329EXPORT_SYMBOL_GPL(usb_ep_set_halt);
 330
 331/**
 332 * usb_ep_clear_halt - clears endpoint halt, and resets toggle
 333 * @ep:the bulk or interrupt endpoint being reset
 334 *
 335 * Use this when responding to the standard usb "set interface" request,
 336 * for endpoints that aren't reconfigured, after clearing any other state
 337 * in the endpoint's i/o queue.
 338 *
 339 * Returns zero, or a negative error code.  On success, this call clears
 340 * the underlying hardware state reflecting endpoint halt and data toggle.
 341 * Note that some hardware can't support this request (like pxa2xx_udc),
 342 * and accordingly can't correctly implement interface altsettings.
 343 */
 344int usb_ep_clear_halt(struct usb_ep *ep)
 345{
 346        int ret;
 347
 348        ret = ep->ops->set_halt(ep, 0);
 349        trace_usb_ep_clear_halt(ep, ret);
 350
 351        return ret;
 352}
 353EXPORT_SYMBOL_GPL(usb_ep_clear_halt);
 354
 355/**
 356 * usb_ep_set_wedge - sets the halt feature and ignores clear requests
 357 * @ep: the endpoint being wedged
 358 *
 359 * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
 360 * requests. If the gadget driver clears the halt status, it will
 361 * automatically unwedge the endpoint.
 362 *
 363 * Returns zero on success, else negative errno.
 364 */
 365int usb_ep_set_wedge(struct usb_ep *ep)
 366{
 367        int ret;
 368
 369        if (ep->ops->set_wedge)
 370                ret = ep->ops->set_wedge(ep);
 371        else
 372                ret = ep->ops->set_halt(ep, 1);
 373
 374        trace_usb_ep_set_wedge(ep, ret);
 375
 376        return ret;
 377}
 378EXPORT_SYMBOL_GPL(usb_ep_set_wedge);
 379
 380/**
 381 * usb_ep_fifo_status - returns number of bytes in fifo, or error
 382 * @ep: the endpoint whose fifo status is being checked.
 383 *
 384 * FIFO endpoints may have "unclaimed data" in them in certain cases,
 385 * such as after aborted transfers.  Hosts may not have collected all
 386 * the IN data written by the gadget driver (and reported by a request
 387 * completion).  The gadget driver may not have collected all the data
 388 * written OUT to it by the host.  Drivers that need precise handling for
 389 * fault reporting or recovery may need to use this call.
 390 *
 391 * This returns the number of such bytes in the fifo, or a negative
 392 * errno if the endpoint doesn't use a FIFO or doesn't support such
 393 * precise handling.
 394 */
 395int usb_ep_fifo_status(struct usb_ep *ep)
 396{
 397        int ret;
 398
 399        if (ep->ops->fifo_status)
 400                ret = ep->ops->fifo_status(ep);
 401        else
 402                ret = -EOPNOTSUPP;
 403
 404        trace_usb_ep_fifo_status(ep, ret);
 405
 406        return ret;
 407}
 408EXPORT_SYMBOL_GPL(usb_ep_fifo_status);
 409
 410/**
 411 * usb_ep_fifo_flush - flushes contents of a fifo
 412 * @ep: the endpoint whose fifo is being flushed.
 413 *
 414 * This call may be used to flush the "unclaimed data" that may exist in
 415 * an endpoint fifo after abnormal transaction terminations.  The call
 416 * must never be used except when endpoint is not being used for any
 417 * protocol translation.
 418 */
 419void usb_ep_fifo_flush(struct usb_ep *ep)
 420{
 421        if (ep->ops->fifo_flush)
 422                ep->ops->fifo_flush(ep);
 423
 424        trace_usb_ep_fifo_flush(ep, 0);
 425}
 426EXPORT_SYMBOL_GPL(usb_ep_fifo_flush);
 427
 428/* ------------------------------------------------------------------------- */
 429
 430/**
 431 * usb_gadget_frame_number - returns the current frame number
 432 * @gadget: controller that reports the frame number
 433 *
 434 * Returns the usb frame number, normally eleven bits from a SOF packet,
 435 * or negative errno if this device doesn't support this capability.
 436 */
 437int usb_gadget_frame_number(struct usb_gadget *gadget)
 438{
 439        int ret;
 440
 441        ret = gadget->ops->get_frame(gadget);
 442
 443        trace_usb_gadget_frame_number(gadget, ret);
 444
 445        return ret;
 446}
 447EXPORT_SYMBOL_GPL(usb_gadget_frame_number);
 448
 449/**
 450 * usb_gadget_wakeup - tries to wake up the host connected to this gadget
 451 * @gadget: controller used to wake up the host
 452 *
 453 * Returns zero on success, else negative error code if the hardware
 454 * doesn't support such attempts, or its support has not been enabled
 455 * by the usb host.  Drivers must return device descriptors that report
 456 * their ability to support this, or hosts won't enable it.
 457 *
 458 * This may also try to use SRP to wake the host and start enumeration,
 459 * even if OTG isn't otherwise in use.  OTG devices may also start
 460 * remote wakeup even when hosts don't explicitly enable it.
 461 */
 462int usb_gadget_wakeup(struct usb_gadget *gadget)
 463{
 464        int ret = 0;
 465
 466        if (!gadget->ops->wakeup) {
 467                ret = -EOPNOTSUPP;
 468                goto out;
 469        }
 470
 471        ret = gadget->ops->wakeup(gadget);
 472
 473out:
 474        trace_usb_gadget_wakeup(gadget, ret);
 475
 476        return ret;
 477}
 478EXPORT_SYMBOL_GPL(usb_gadget_wakeup);
 479
 480/**
 481 * usb_gadget_set_selfpowered - sets the device selfpowered feature.
 482 * @gadget:the device being declared as self-powered
 483 *
 484 * this affects the device status reported by the hardware driver
 485 * to reflect that it now has a local power supply.
 486 *
 487 * returns zero on success, else negative errno.
 488 */
 489int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
 490{
 491        int ret = 0;
 492
 493        if (!gadget->ops->set_selfpowered) {
 494                ret = -EOPNOTSUPP;
 495                goto out;
 496        }
 497
 498        ret = gadget->ops->set_selfpowered(gadget, 1);
 499
 500out:
 501        trace_usb_gadget_set_selfpowered(gadget, ret);
 502
 503        return ret;
 504}
 505EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered);
 506
 507/**
 508 * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
 509 * @gadget:the device being declared as bus-powered
 510 *
 511 * this affects the device status reported by the hardware driver.
 512 * some hardware may not support bus-powered operation, in which
 513 * case this feature's value can never change.
 514 *
 515 * returns zero on success, else negative errno.
 516 */
 517int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
 518{
 519        int ret = 0;
 520
 521        if (!gadget->ops->set_selfpowered) {
 522                ret = -EOPNOTSUPP;
 523                goto out;
 524        }
 525
 526        ret = gadget->ops->set_selfpowered(gadget, 0);
 527
 528out:
 529        trace_usb_gadget_clear_selfpowered(gadget, ret);
 530
 531        return ret;
 532}
 533EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered);
 534
 535/**
 536 * usb_gadget_vbus_connect - Notify controller that VBUS is powered
 537 * @gadget:The device which now has VBUS power.
 538 * Context: can sleep
 539 *
 540 * This call is used by a driver for an external transceiver (or GPIO)
 541 * that detects a VBUS power session starting.  Common responses include
 542 * resuming the controller, activating the D+ (or D-) pullup to let the
 543 * host detect that a USB device is attached, and starting to draw power
 544 * (8mA or possibly more, especially after SET_CONFIGURATION).
 545 *
 546 * Returns zero on success, else negative errno.
 547 */
 548int usb_gadget_vbus_connect(struct usb_gadget *gadget)
 549{
 550        int ret = 0;
 551
 552        if (!gadget->ops->vbus_session) {
 553                ret = -EOPNOTSUPP;
 554                goto out;
 555        }
 556
 557        ret = gadget->ops->vbus_session(gadget, 1);
 558
 559out:
 560        trace_usb_gadget_vbus_connect(gadget, ret);
 561
 562        return ret;
 563}
 564EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect);
 565
 566/**
 567 * usb_gadget_vbus_draw - constrain controller's VBUS power usage
 568 * @gadget:The device whose VBUS usage is being described
 569 * @mA:How much current to draw, in milliAmperes.  This should be twice
 570 *      the value listed in the configuration descriptor bMaxPower field.
 571 *
 572 * This call is used by gadget drivers during SET_CONFIGURATION calls,
 573 * reporting how much power the device may consume.  For example, this
 574 * could affect how quickly batteries are recharged.
 575 *
 576 * Returns zero on success, else negative errno.
 577 */
 578int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
 579{
 580        int ret = 0;
 581
 582        if (!gadget->ops->vbus_draw) {
 583                ret = -EOPNOTSUPP;
 584                goto out;
 585        }
 586
 587        ret = gadget->ops->vbus_draw(gadget, mA);
 588        if (!ret)
 589                gadget->mA = mA;
 590
 591out:
 592        trace_usb_gadget_vbus_draw(gadget, ret);
 593
 594        return ret;
 595}
 596EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw);
 597
 598/**
 599 * usb_gadget_vbus_disconnect - notify controller about VBUS session end
 600 * @gadget:the device whose VBUS supply is being described
 601 * Context: can sleep
 602 *
 603 * This call is used by a driver for an external transceiver (or GPIO)
 604 * that detects a VBUS power session ending.  Common responses include
 605 * reversing everything done in usb_gadget_vbus_connect().
 606 *
 607 * Returns zero on success, else negative errno.
 608 */
 609int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
 610{
 611        int ret = 0;
 612
 613        if (!gadget->ops->vbus_session) {
 614                ret = -EOPNOTSUPP;
 615                goto out;
 616        }
 617
 618        ret = gadget->ops->vbus_session(gadget, 0);
 619
 620out:
 621        trace_usb_gadget_vbus_disconnect(gadget, ret);
 622
 623        return ret;
 624}
 625EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect);
 626
 627/**
 628 * usb_gadget_connect - software-controlled connect to USB host
 629 * @gadget:the peripheral being connected
 630 *
 631 * Enables the D+ (or potentially D-) pullup.  The host will start
 632 * enumerating this gadget when the pullup is active and a VBUS session
 633 * is active (the link is powered).  This pullup is always enabled unless
 634 * usb_gadget_disconnect() has been used to disable it.
 635 *
 636 * Returns zero on success, else negative errno.
 637 */
 638int usb_gadget_connect(struct usb_gadget *gadget)
 639{
 640        int ret = 0;
 641
 642        if (!gadget->ops->pullup) {
 643                ret = -EOPNOTSUPP;
 644                goto out;
 645        }
 646
 647        if (gadget->deactivated) {
 648                /*
 649                 * If gadget is deactivated we only save new state.
 650                 * Gadget will be connected automatically after activation.
 651                 */
 652                gadget->connected = true;
 653                goto out;
 654        }
 655
 656        ret = gadget->ops->pullup(gadget, 1);
 657        if (!ret)
 658                gadget->connected = 1;
 659
 660out:
 661        trace_usb_gadget_connect(gadget, ret);
 662
 663        return ret;
 664}
 665EXPORT_SYMBOL_GPL(usb_gadget_connect);
 666
 667/**
 668 * usb_gadget_disconnect - software-controlled disconnect from USB host
 669 * @gadget:the peripheral being disconnected
 670 *
 671 * Disables the D+ (or potentially D-) pullup, which the host may see
 672 * as a disconnect (when a VBUS session is active).  Not all systems
 673 * support software pullup controls.
 674 *
 675 * Returns zero on success, else negative errno.
 676 */
 677int usb_gadget_disconnect(struct usb_gadget *gadget)
 678{
 679        int ret = 0;
 680
 681        if (!gadget->ops->pullup) {
 682                ret = -EOPNOTSUPP;
 683                goto out;
 684        }
 685
 686        if (gadget->deactivated) {
 687                /*
 688                 * If gadget is deactivated we only save new state.
 689                 * Gadget will stay disconnected after activation.
 690                 */
 691                gadget->connected = false;
 692                goto out;
 693        }
 694
 695        ret = gadget->ops->pullup(gadget, 0);
 696        if (!ret)
 697                gadget->connected = 0;
 698
 699out:
 700        trace_usb_gadget_disconnect(gadget, ret);
 701
 702        return ret;
 703}
 704EXPORT_SYMBOL_GPL(usb_gadget_disconnect);
 705
 706/**
 707 * usb_gadget_deactivate - deactivate function which is not ready to work
 708 * @gadget: the peripheral being deactivated
 709 *
 710 * This routine may be used during the gadget driver bind() call to prevent
 711 * the peripheral from ever being visible to the USB host, unless later
 712 * usb_gadget_activate() is called.  For example, user mode components may
 713 * need to be activated before the system can talk to hosts.
 714 *
 715 * Returns zero on success, else negative errno.
 716 */
 717int usb_gadget_deactivate(struct usb_gadget *gadget)
 718{
 719        int ret = 0;
 720
 721        if (gadget->deactivated)
 722                goto out;
 723
 724        if (gadget->connected) {
 725                ret = usb_gadget_disconnect(gadget);
 726                if (ret)
 727                        goto out;
 728
 729                /*
 730                 * If gadget was being connected before deactivation, we want
 731                 * to reconnect it in usb_gadget_activate().
 732                 */
 733                gadget->connected = true;
 734        }
 735        gadget->deactivated = true;
 736
 737out:
 738        trace_usb_gadget_deactivate(gadget, ret);
 739
 740        return ret;
 741}
 742EXPORT_SYMBOL_GPL(usb_gadget_deactivate);
 743
 744/**
 745 * usb_gadget_activate - activate function which is not ready to work
 746 * @gadget: the peripheral being activated
 747 *
 748 * This routine activates gadget which was previously deactivated with
 749 * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
 750 *
 751 * Returns zero on success, else negative errno.
 752 */
 753int usb_gadget_activate(struct usb_gadget *gadget)
 754{
 755        int ret = 0;
 756
 757        if (!gadget->deactivated)
 758                goto out;
 759
 760        gadget->deactivated = false;
 761
 762        /*
 763         * If gadget has been connected before deactivation, or became connected
 764         * while it was being deactivated, we call usb_gadget_connect().
 765         */
 766        if (gadget->connected)
 767                ret = usb_gadget_connect(gadget);
 768
 769out:
 770        trace_usb_gadget_activate(gadget, ret);
 771
 772        return ret;
 773}
 774EXPORT_SYMBOL_GPL(usb_gadget_activate);
 775
 776/* ------------------------------------------------------------------------- */
 777
 778#ifdef  CONFIG_HAS_DMA
 779
 780int usb_gadget_map_request_by_dev(struct device *dev,
 781                struct usb_request *req, int is_in)
 782{
 783        if (req->length == 0)
 784                return 0;
 785
 786        if (req->num_sgs) {
 787                int     mapped;
 788
 789                mapped = dma_map_sg(dev, req->sg, req->num_sgs,
 790                                is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
 791                if (mapped == 0) {
 792                        dev_err(dev, "failed to map SGs\n");
 793                        return -EFAULT;
 794                }
 795
 796                req->num_mapped_sgs = mapped;
 797        } else {
 798                if (is_vmalloc_addr(req->buf)) {
 799                        dev_err(dev, "buffer is not dma capable\n");
 800                        return -EFAULT;
 801                } else if (object_is_on_stack(req->buf)) {
 802                        dev_err(dev, "buffer is on stack\n");
 803                        return -EFAULT;
 804                }
 805
 806                req->dma = dma_map_single(dev, req->buf, req->length,
 807                                is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
 808
 809                if (dma_mapping_error(dev, req->dma)) {
 810                        dev_err(dev, "failed to map buffer\n");
 811                        return -EFAULT;
 812                }
 813
 814                req->dma_mapped = 1;
 815        }
 816
 817        return 0;
 818}
 819EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev);
 820
 821int usb_gadget_map_request(struct usb_gadget *gadget,
 822                struct usb_request *req, int is_in)
 823{
 824        return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in);
 825}
 826EXPORT_SYMBOL_GPL(usb_gadget_map_request);
 827
 828void usb_gadget_unmap_request_by_dev(struct device *dev,
 829                struct usb_request *req, int is_in)
 830{
 831        if (req->length == 0)
 832                return;
 833
 834        if (req->num_mapped_sgs) {
 835                dma_unmap_sg(dev, req->sg, req->num_sgs,
 836                                is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
 837
 838                req->num_mapped_sgs = 0;
 839        } else if (req->dma_mapped) {
 840                dma_unmap_single(dev, req->dma, req->length,
 841                                is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
 842                req->dma_mapped = 0;
 843        }
 844}
 845EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev);
 846
 847void usb_gadget_unmap_request(struct usb_gadget *gadget,
 848                struct usb_request *req, int is_in)
 849{
 850        usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in);
 851}
 852EXPORT_SYMBOL_GPL(usb_gadget_unmap_request);
 853
 854#endif  /* CONFIG_HAS_DMA */
 855
 856/* ------------------------------------------------------------------------- */
 857
 858/**
 859 * usb_gadget_giveback_request - give the request back to the gadget layer
 860 * Context: in_interrupt()
 861 *
 862 * This is called by device controller drivers in order to return the
 863 * completed request back to the gadget layer.
 864 */
 865void usb_gadget_giveback_request(struct usb_ep *ep,
 866                struct usb_request *req)
 867{
 868        if (likely(req->status == 0))
 869                usb_led_activity(USB_LED_EVENT_GADGET);
 870
 871        trace_usb_gadget_giveback_request(ep, req, 0);
 872
 873        req->complete(ep, req);
 874}
 875EXPORT_SYMBOL_GPL(usb_gadget_giveback_request);
 876
 877/* ------------------------------------------------------------------------- */
 878
 879/**
 880 * gadget_find_ep_by_name - returns ep whose name is the same as sting passed
 881 *      in second parameter or NULL if searched endpoint not found
 882 * @g: controller to check for quirk
 883 * @name: name of searched endpoint
 884 */
 885struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name)
 886{
 887        struct usb_ep *ep;
 888
 889        gadget_for_each_ep(ep, g) {
 890                if (!strcmp(ep->name, name))
 891                        return ep;
 892        }
 893
 894        return NULL;
 895}
 896EXPORT_SYMBOL_GPL(gadget_find_ep_by_name);
 897
 898/* ------------------------------------------------------------------------- */
 899
 900int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
 901                struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
 902                struct usb_ss_ep_comp_descriptor *ep_comp)
 903{
 904        u8              type;
 905        u16             max;
 906        int             num_req_streams = 0;
 907
 908        /* endpoint already claimed? */
 909        if (ep->claimed)
 910                return 0;
 911
 912        type = usb_endpoint_type(desc);
 913        max = usb_endpoint_maxp(desc);
 914
 915        if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in)
 916                return 0;
 917        if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out)
 918                return 0;
 919
 920        if (max > ep->maxpacket_limit)
 921                return 0;
 922
 923        /* "high bandwidth" works only at high speed */
 924        if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1)
 925                return 0;
 926
 927        switch (type) {
 928        case USB_ENDPOINT_XFER_CONTROL:
 929                /* only support ep0 for portable CONTROL traffic */
 930                return 0;
 931        case USB_ENDPOINT_XFER_ISOC:
 932                if (!ep->caps.type_iso)
 933                        return 0;
 934                /* ISO:  limit 1023 bytes full speed, 1024 high/super speed */
 935                if (!gadget_is_dualspeed(gadget) && max > 1023)
 936                        return 0;
 937                break;
 938        case USB_ENDPOINT_XFER_BULK:
 939                if (!ep->caps.type_bulk)
 940                        return 0;
 941                if (ep_comp && gadget_is_superspeed(gadget)) {
 942                        /* Get the number of required streams from the
 943                         * EP companion descriptor and see if the EP
 944                         * matches it
 945                         */
 946                        num_req_streams = ep_comp->bmAttributes & 0x1f;
 947                        if (num_req_streams > ep->max_streams)
 948                                return 0;
 949                }
 950                break;
 951        case USB_ENDPOINT_XFER_INT:
 952                /* Bulk endpoints handle interrupt transfers,
 953                 * except the toggle-quirky iso-synch kind
 954                 */
 955                if (!ep->caps.type_int && !ep->caps.type_bulk)
 956                        return 0;
 957                /* INT:  limit 64 bytes full speed, 1024 high/super speed */
 958                if (!gadget_is_dualspeed(gadget) && max > 64)
 959                        return 0;
 960                break;
 961        }
 962
 963        return 1;
 964}
 965EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc);
 966
 967/* ------------------------------------------------------------------------- */
 968
 969static void usb_gadget_state_work(struct work_struct *work)
 970{
 971        struct usb_gadget *gadget = work_to_gadget(work);
 972        struct usb_udc *udc = gadget->udc;
 973
 974        if (udc)
 975                sysfs_notify(&udc->dev.kobj, NULL, "state");
 976}
 977
 978void usb_gadget_set_state(struct usb_gadget *gadget,
 979                enum usb_device_state state)
 980{
 981        gadget->state = state;
 982        schedule_work(&gadget->work);
 983}
 984EXPORT_SYMBOL_GPL(usb_gadget_set_state);
 985
 986/* ------------------------------------------------------------------------- */
 987
 988static void usb_udc_connect_control(struct usb_udc *udc)
 989{
 990        if (udc->vbus)
 991                usb_gadget_connect(udc->gadget);
 992        else
 993                usb_gadget_disconnect(udc->gadget);
 994}
 995
 996/**
 997 * usb_udc_vbus_handler - updates the udc core vbus status, and try to
 998 * connect or disconnect gadget
 999 * @gadget: The gadget which vbus change occurs
1000 * @status: The vbus status
1001 *
1002 * The udc driver calls it when it wants to connect or disconnect gadget
1003 * according to vbus status.
1004 */
1005void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status)
1006{
1007        struct usb_udc *udc = gadget->udc;
1008
1009        if (udc) {
1010                udc->vbus = status;
1011                usb_udc_connect_control(udc);
1012        }
1013}
1014EXPORT_SYMBOL_GPL(usb_udc_vbus_handler);
1015
1016/**
1017 * usb_gadget_udc_reset - notifies the udc core that bus reset occurs
1018 * @gadget: The gadget which bus reset occurs
1019 * @driver: The gadget driver we want to notify
1020 *
1021 * If the udc driver has bus reset handler, it needs to call this when the bus
1022 * reset occurs, it notifies the gadget driver that the bus reset occurs as
1023 * well as updates gadget state.
1024 */
1025void usb_gadget_udc_reset(struct usb_gadget *gadget,
1026                struct usb_gadget_driver *driver)
1027{
1028        driver->reset(gadget);
1029        usb_gadget_set_state(gadget, USB_STATE_DEFAULT);
1030}
1031EXPORT_SYMBOL_GPL(usb_gadget_udc_reset);
1032
1033/**
1034 * usb_gadget_udc_start - tells usb device controller to start up
1035 * @udc: The UDC to be started
1036 *
1037 * This call is issued by the UDC Class driver when it's about
1038 * to register a gadget driver to the device controller, before
1039 * calling gadget driver's bind() method.
1040 *
1041 * It allows the controller to be powered off until strictly
1042 * necessary to have it powered on.
1043 *
1044 * Returns zero on success, else negative errno.
1045 */
1046static inline int usb_gadget_udc_start(struct usb_udc *udc)
1047{
1048        return udc->gadget->ops->udc_start(udc->gadget, udc->driver);
1049}
1050
1051/**
1052 * usb_gadget_udc_stop - tells usb device controller we don't need it anymore
1053 * @gadget: The device we want to stop activity
1054 * @driver: The driver to unbind from @gadget
1055 *
1056 * This call is issued by the UDC Class driver after calling
1057 * gadget driver's unbind() method.
1058 *
1059 * The details are implementation specific, but it can go as
1060 * far as powering off UDC completely and disable its data
1061 * line pullups.
1062 */
1063static inline void usb_gadget_udc_stop(struct usb_udc *udc)
1064{
1065        udc->gadget->ops->udc_stop(udc->gadget);
1066}
1067
1068/**
1069 * usb_gadget_udc_set_speed - tells usb device controller speed supported by
1070 *    current driver
1071 * @udc: The device we want to set maximum speed
1072 * @speed: The maximum speed to allowed to run
1073 *
1074 * This call is issued by the UDC Class driver before calling
1075 * usb_gadget_udc_start() in order to make sure that we don't try to
1076 * connect on speeds the gadget driver doesn't support.
1077 */
1078static inline void usb_gadget_udc_set_speed(struct usb_udc *udc,
1079                                            enum usb_device_speed speed)
1080{
1081        if (udc->gadget->ops->udc_set_speed) {
1082                enum usb_device_speed s;
1083
1084                s = min(speed, udc->gadget->max_speed);
1085                udc->gadget->ops->udc_set_speed(udc->gadget, s);
1086        }
1087}
1088
1089/**
1090 * usb_udc_release - release the usb_udc struct
1091 * @dev: the dev member within usb_udc
1092 *
1093 * This is called by driver's core in order to free memory once the last
1094 * reference is released.
1095 */
1096static void usb_udc_release(struct device *dev)
1097{
1098        struct usb_udc *udc;
1099
1100        udc = container_of(dev, struct usb_udc, dev);
1101        dev_dbg(dev, "releasing '%s'\n", dev_name(dev));
1102        kfree(udc);
1103}
1104
1105static const struct attribute_group *usb_udc_attr_groups[];
1106
1107static void usb_udc_nop_release(struct device *dev)
1108{
1109        dev_vdbg(dev, "%s\n", __func__);
1110}
1111
1112/* should be called with udc_lock held */
1113static int check_pending_gadget_drivers(struct usb_udc *udc)
1114{
1115        struct usb_gadget_driver *driver;
1116        int ret = 0;
1117
1118        list_for_each_entry(driver, &gadget_driver_pending_list, pending)
1119                if (!driver->udc_name || strcmp(driver->udc_name,
1120                                                dev_name(&udc->dev)) == 0) {
1121                        ret = udc_bind_to_driver(udc, driver);
1122                        if (ret != -EPROBE_DEFER)
1123                                list_del(&driver->pending);
1124                        break;
1125                }
1126
1127        return ret;
1128}
1129
1130/**
1131 * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list
1132 * @parent: the parent device to this udc. Usually the controller driver's
1133 * device.
1134 * @gadget: the gadget to be added to the list.
1135 * @release: a gadget release function.
1136 *
1137 * Returns zero on success, negative errno otherwise.
1138 * Calls the gadget release function in the latter case.
1139 */
1140int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget,
1141                void (*release)(struct device *dev))
1142{
1143        struct usb_udc          *udc;
1144        int                     ret = -ENOMEM;
1145
1146        dev_set_name(&gadget->dev, "gadget");
1147        INIT_WORK(&gadget->work, usb_gadget_state_work);
1148        gadget->dev.parent = parent;
1149
1150        if (release)
1151                gadget->dev.release = release;
1152        else
1153                gadget->dev.release = usb_udc_nop_release;
1154
1155        device_initialize(&gadget->dev);
1156
1157        udc = kzalloc(sizeof(*udc), GFP_KERNEL);
1158        if (!udc)
1159                goto err_put_gadget;
1160
1161        device_initialize(&udc->dev);
1162        udc->dev.release = usb_udc_release;
1163        udc->dev.class = udc_class;
1164        udc->dev.groups = usb_udc_attr_groups;
1165        udc->dev.parent = parent;
1166        ret = dev_set_name(&udc->dev, "%s", kobject_name(&parent->kobj));
1167        if (ret)
1168                goto err_put_udc;
1169
1170        ret = device_add(&gadget->dev);
1171        if (ret)
1172                goto err_put_udc;
1173
1174        udc->gadget = gadget;
1175        gadget->udc = udc;
1176
1177        mutex_lock(&udc_lock);
1178        list_add_tail(&udc->list, &udc_list);
1179
1180        ret = device_add(&udc->dev);
1181        if (ret)
1182                goto err_unlist_udc;
1183
1184        usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED);
1185        udc->vbus = true;
1186
1187        /* pick up one of pending gadget drivers */
1188        ret = check_pending_gadget_drivers(udc);
1189        if (ret)
1190                goto err_del_udc;
1191
1192        mutex_unlock(&udc_lock);
1193
1194        return 0;
1195
1196 err_del_udc:
1197        device_del(&udc->dev);
1198
1199 err_unlist_udc:
1200        list_del(&udc->list);
1201        mutex_unlock(&udc_lock);
1202
1203        device_del(&gadget->dev);
1204
1205 err_put_udc:
1206        put_device(&udc->dev);
1207
1208 err_put_gadget:
1209        put_device(&gadget->dev);
1210        return ret;
1211}
1212EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release);
1213
1214/**
1215 * usb_get_gadget_udc_name - get the name of the first UDC controller
1216 * This functions returns the name of the first UDC controller in the system.
1217 * Please note that this interface is usefull only for legacy drivers which
1218 * assume that there is only one UDC controller in the system and they need to
1219 * get its name before initialization. There is no guarantee that the UDC
1220 * of the returned name will be still available, when gadget driver registers
1221 * itself.
1222 *
1223 * Returns pointer to string with UDC controller name on success, NULL
1224 * otherwise. Caller should kfree() returned string.
1225 */
1226char *usb_get_gadget_udc_name(void)
1227{
1228        struct usb_udc *udc;
1229        char *name = NULL;
1230
1231        /* For now we take the first available UDC */
1232        mutex_lock(&udc_lock);
1233        list_for_each_entry(udc, &udc_list, list) {
1234                if (!udc->driver) {
1235                        name = kstrdup(udc->gadget->name, GFP_KERNEL);
1236                        break;
1237                }
1238        }
1239        mutex_unlock(&udc_lock);
1240        return name;
1241}
1242EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name);
1243
1244/**
1245 * usb_add_gadget_udc - adds a new gadget to the udc class driver list
1246 * @parent: the parent device to this udc. Usually the controller
1247 * driver's device.
1248 * @gadget: the gadget to be added to the list
1249 *
1250 * Returns zero on success, negative errno otherwise.
1251 */
1252int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget)
1253{
1254        return usb_add_gadget_udc_release(parent, gadget, NULL);
1255}
1256EXPORT_SYMBOL_GPL(usb_add_gadget_udc);
1257
1258static void usb_gadget_remove_driver(struct usb_udc *udc)
1259{
1260        dev_dbg(&udc->dev, "unregistering UDC driver [%s]\n",
1261                        udc->driver->function);
1262
1263        kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1264
1265        usb_gadget_disconnect(udc->gadget);
1266        udc->driver->disconnect(udc->gadget);
1267        udc->driver->unbind(udc->gadget);
1268        usb_gadget_udc_stop(udc);
1269
1270        udc->driver = NULL;
1271        udc->dev.driver = NULL;
1272        udc->gadget->dev.driver = NULL;
1273}
1274
1275/**
1276 * usb_del_gadget_udc - deletes @udc from udc_list
1277 * @gadget: the gadget to be removed.
1278 *
1279 * This, will call usb_gadget_unregister_driver() if
1280 * the @udc is still busy.
1281 */
1282void usb_del_gadget_udc(struct usb_gadget *gadget)
1283{
1284        struct usb_udc *udc = gadget->udc;
1285
1286        if (!udc)
1287                return;
1288
1289        dev_vdbg(gadget->dev.parent, "unregistering gadget\n");
1290
1291        mutex_lock(&udc_lock);
1292        list_del(&udc->list);
1293
1294        if (udc->driver) {
1295                struct usb_gadget_driver *driver = udc->driver;
1296
1297                usb_gadget_remove_driver(udc);
1298                list_add(&driver->pending, &gadget_driver_pending_list);
1299        }
1300        mutex_unlock(&udc_lock);
1301
1302        kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE);
1303        flush_work(&gadget->work);
1304        device_unregister(&udc->dev);
1305        device_unregister(&gadget->dev);
1306        memset(&gadget->dev, 0x00, sizeof(gadget->dev));
1307}
1308EXPORT_SYMBOL_GPL(usb_del_gadget_udc);
1309
1310/* ------------------------------------------------------------------------- */
1311
1312static int udc_bind_to_driver(struct usb_udc *udc, struct usb_gadget_driver *driver)
1313{
1314        int ret;
1315
1316        dev_dbg(&udc->dev, "registering UDC driver [%s]\n",
1317                        driver->function);
1318
1319        udc->driver = driver;
1320        udc->dev.driver = &driver->driver;
1321        udc->gadget->dev.driver = &driver->driver;
1322
1323        usb_gadget_udc_set_speed(udc, driver->max_speed);
1324
1325        ret = driver->bind(udc->gadget, driver);
1326        if (ret)
1327                goto err1;
1328        ret = usb_gadget_udc_start(udc);
1329        if (ret) {
1330                driver->unbind(udc->gadget);
1331                goto err1;
1332        }
1333        usb_udc_connect_control(udc);
1334
1335        kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1336        return 0;
1337err1:
1338        if (ret != -EISNAM)
1339                dev_err(&udc->dev, "failed to start %s: %d\n",
1340                        udc->driver->function, ret);
1341        udc->driver = NULL;
1342        udc->dev.driver = NULL;
1343        udc->gadget->dev.driver = NULL;
1344        return ret;
1345}
1346
1347int usb_gadget_probe_driver(struct usb_gadget_driver *driver)
1348{
1349        struct usb_udc          *udc = NULL;
1350        int                     ret = -ENODEV;
1351
1352        if (!driver || !driver->bind || !driver->setup)
1353                return -EINVAL;
1354
1355        mutex_lock(&udc_lock);
1356        if (driver->udc_name) {
1357                list_for_each_entry(udc, &udc_list, list) {
1358                        ret = strcmp(driver->udc_name, dev_name(&udc->dev));
1359                        if (!ret)
1360                                break;
1361                }
1362                if (ret)
1363                        ret = -ENODEV;
1364                else if (udc->driver)
1365                        ret = -EBUSY;
1366                else
1367                        goto found;
1368        } else {
1369                list_for_each_entry(udc, &udc_list, list) {
1370                        /* For now we take the first one */
1371                        if (!udc->driver)
1372                                goto found;
1373                }
1374        }
1375
1376        if (!driver->match_existing_only) {
1377                list_add_tail(&driver->pending, &gadget_driver_pending_list);
1378                pr_info("udc-core: couldn't find an available UDC - added [%s] to list of pending drivers\n",
1379                        driver->function);
1380                ret = 0;
1381        }
1382
1383        mutex_unlock(&udc_lock);
1384        return ret;
1385found:
1386        ret = udc_bind_to_driver(udc, driver);
1387        mutex_unlock(&udc_lock);
1388        return ret;
1389}
1390EXPORT_SYMBOL_GPL(usb_gadget_probe_driver);
1391
1392int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
1393{
1394        struct usb_udc          *udc = NULL;
1395        int                     ret = -ENODEV;
1396
1397        if (!driver || !driver->unbind)
1398                return -EINVAL;
1399
1400        mutex_lock(&udc_lock);
1401        list_for_each_entry(udc, &udc_list, list) {
1402                if (udc->driver == driver) {
1403                        usb_gadget_remove_driver(udc);
1404                        usb_gadget_set_state(udc->gadget,
1405                                             USB_STATE_NOTATTACHED);
1406
1407                        /* Maybe there is someone waiting for this UDC? */
1408                        check_pending_gadget_drivers(udc);
1409                        /*
1410                         * For now we ignore bind errors as probably it's
1411                         * not a valid reason to fail other's gadget unbind
1412                         */
1413                        ret = 0;
1414                        break;
1415                }
1416        }
1417
1418        if (ret) {
1419                list_del(&driver->pending);
1420                ret = 0;
1421        }
1422        mutex_unlock(&udc_lock);
1423        return ret;
1424}
1425EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver);
1426
1427/* ------------------------------------------------------------------------- */
1428
1429static ssize_t srp_store(struct device *dev,
1430                struct device_attribute *attr, const char *buf, size_t n)
1431{
1432        struct usb_udc          *udc = container_of(dev, struct usb_udc, dev);
1433
1434        if (sysfs_streq(buf, "1"))
1435                usb_gadget_wakeup(udc->gadget);
1436
1437        return n;
1438}
1439static DEVICE_ATTR_WO(srp);
1440
1441static ssize_t soft_connect_store(struct device *dev,
1442                struct device_attribute *attr, const char *buf, size_t n)
1443{
1444        struct usb_udc          *udc = container_of(dev, struct usb_udc, dev);
1445
1446        if (!udc->driver) {
1447                dev_err(dev, "soft-connect without a gadget driver\n");
1448                return -EOPNOTSUPP;
1449        }
1450
1451        if (sysfs_streq(buf, "connect")) {
1452                usb_gadget_udc_start(udc);
1453                usb_gadget_connect(udc->gadget);
1454        } else if (sysfs_streq(buf, "disconnect")) {
1455                usb_gadget_disconnect(udc->gadget);
1456                udc->driver->disconnect(udc->gadget);
1457                usb_gadget_udc_stop(udc);
1458        } else {
1459                dev_err(dev, "unsupported command '%s'\n", buf);
1460                return -EINVAL;
1461        }
1462
1463        return n;
1464}
1465static DEVICE_ATTR_WO(soft_connect);
1466
1467static ssize_t state_show(struct device *dev, struct device_attribute *attr,
1468                          char *buf)
1469{
1470        struct usb_udc          *udc = container_of(dev, struct usb_udc, dev);
1471        struct usb_gadget       *gadget = udc->gadget;
1472
1473        return sprintf(buf, "%s\n", usb_state_string(gadget->state));
1474}
1475static DEVICE_ATTR_RO(state);
1476
1477static ssize_t function_show(struct device *dev, struct device_attribute *attr,
1478                             char *buf)
1479{
1480        struct usb_udc          *udc = container_of(dev, struct usb_udc, dev);
1481        struct usb_gadget_driver *drv = udc->driver;
1482
1483        if (!drv || !drv->function)
1484                return 0;
1485        return scnprintf(buf, PAGE_SIZE, "%s\n", drv->function);
1486}
1487static DEVICE_ATTR_RO(function);
1488
1489#define USB_UDC_SPEED_ATTR(name, param)                                 \
1490ssize_t name##_show(struct device *dev,                                 \
1491                struct device_attribute *attr, char *buf)               \
1492{                                                                       \
1493        struct usb_udc *udc = container_of(dev, struct usb_udc, dev);   \
1494        return scnprintf(buf, PAGE_SIZE, "%s\n",                        \
1495                        usb_speed_string(udc->gadget->param));          \
1496}                                                                       \
1497static DEVICE_ATTR_RO(name)
1498
1499static USB_UDC_SPEED_ATTR(current_speed, speed);
1500static USB_UDC_SPEED_ATTR(maximum_speed, max_speed);
1501
1502#define USB_UDC_ATTR(name)                                      \
1503ssize_t name##_show(struct device *dev,                         \
1504                struct device_attribute *attr, char *buf)       \
1505{                                                               \
1506        struct usb_udc          *udc = container_of(dev, struct usb_udc, dev); \
1507        struct usb_gadget       *gadget = udc->gadget;          \
1508                                                                \
1509        return scnprintf(buf, PAGE_SIZE, "%d\n", gadget->name); \
1510}                                                               \
1511static DEVICE_ATTR_RO(name)
1512
1513static USB_UDC_ATTR(is_otg);
1514static USB_UDC_ATTR(is_a_peripheral);
1515static USB_UDC_ATTR(b_hnp_enable);
1516static USB_UDC_ATTR(a_hnp_support);
1517static USB_UDC_ATTR(a_alt_hnp_support);
1518static USB_UDC_ATTR(is_selfpowered);
1519
1520static struct attribute *usb_udc_attrs[] = {
1521        &dev_attr_srp.attr,
1522        &dev_attr_soft_connect.attr,
1523        &dev_attr_state.attr,
1524        &dev_attr_function.attr,
1525        &dev_attr_current_speed.attr,
1526        &dev_attr_maximum_speed.attr,
1527
1528        &dev_attr_is_otg.attr,
1529        &dev_attr_is_a_peripheral.attr,
1530        &dev_attr_b_hnp_enable.attr,
1531        &dev_attr_a_hnp_support.attr,
1532        &dev_attr_a_alt_hnp_support.attr,
1533        &dev_attr_is_selfpowered.attr,
1534        NULL,
1535};
1536
1537static const struct attribute_group usb_udc_attr_group = {
1538        .attrs = usb_udc_attrs,
1539};
1540
1541static const struct attribute_group *usb_udc_attr_groups[] = {
1542        &usb_udc_attr_group,
1543        NULL,
1544};
1545
1546static int usb_udc_uevent(struct device *dev, struct kobj_uevent_env *env)
1547{
1548        struct usb_udc          *udc = container_of(dev, struct usb_udc, dev);
1549        int                     ret;
1550
1551        ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name);
1552        if (ret) {
1553                dev_err(dev, "failed to add uevent USB_UDC_NAME\n");
1554                return ret;
1555        }
1556
1557        if (udc->driver) {
1558                ret = add_uevent_var(env, "USB_UDC_DRIVER=%s",
1559                                udc->driver->function);
1560                if (ret) {
1561                        dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n");
1562                        return ret;
1563                }
1564        }
1565
1566        return 0;
1567}
1568
1569static int __init usb_udc_init(void)
1570{
1571        udc_class = class_create(THIS_MODULE, "udc");
1572        if (IS_ERR(udc_class)) {
1573                pr_err("failed to create udc class --> %ld\n",
1574                                PTR_ERR(udc_class));
1575                return PTR_ERR(udc_class);
1576        }
1577
1578        udc_class->dev_uevent = usb_udc_uevent;
1579        return 0;
1580}
1581subsys_initcall(usb_udc_init);
1582
1583static void __exit usb_udc_exit(void)
1584{
1585        class_destroy(udc_class);
1586}
1587module_exit(usb_udc_exit);
1588
1589MODULE_DESCRIPTION("UDC Framework");
1590MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>");
1591MODULE_LICENSE("GPL v2");
1592