linux/fs/ext2/inode.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext2/inode.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  from
  11 *
  12 *  linux/fs/minix/inode.c
  13 *
  14 *  Copyright (C) 1991, 1992  Linus Torvalds
  15 *
  16 *  Goal-directed block allocation by Stephen Tweedie
  17 *      (sct@dcs.ed.ac.uk), 1993, 1998
  18 *  Big-endian to little-endian byte-swapping/bitmaps by
  19 *        David S. Miller (davem@caip.rutgers.edu), 1995
  20 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  21 *      (jj@sunsite.ms.mff.cuni.cz)
  22 *
  23 *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
  24 */
  25
  26#include <linux/time.h>
  27#include <linux/highuid.h>
  28#include <linux/pagemap.h>
  29#include <linux/dax.h>
  30#include <linux/blkdev.h>
  31#include <linux/quotaops.h>
  32#include <linux/writeback.h>
  33#include <linux/buffer_head.h>
  34#include <linux/mpage.h>
  35#include <linux/fiemap.h>
  36#include <linux/iomap.h>
  37#include <linux/namei.h>
  38#include <linux/uio.h>
  39#include "ext2.h"
  40#include "acl.h"
  41#include "xattr.h"
  42
  43static int __ext2_write_inode(struct inode *inode, int do_sync);
  44
  45/*
  46 * Test whether an inode is a fast symlink.
  47 */
  48static inline int ext2_inode_is_fast_symlink(struct inode *inode)
  49{
  50        int ea_blocks = EXT2_I(inode)->i_file_acl ?
  51                (inode->i_sb->s_blocksize >> 9) : 0;
  52
  53        return (S_ISLNK(inode->i_mode) &&
  54                inode->i_blocks - ea_blocks == 0);
  55}
  56
  57static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
  58
  59static void ext2_write_failed(struct address_space *mapping, loff_t to)
  60{
  61        struct inode *inode = mapping->host;
  62
  63        if (to > inode->i_size) {
  64                truncate_pagecache(inode, inode->i_size);
  65                ext2_truncate_blocks(inode, inode->i_size);
  66        }
  67}
  68
  69/*
  70 * Called at the last iput() if i_nlink is zero.
  71 */
  72void ext2_evict_inode(struct inode * inode)
  73{
  74        struct ext2_block_alloc_info *rsv;
  75        int want_delete = 0;
  76
  77        if (!inode->i_nlink && !is_bad_inode(inode)) {
  78                want_delete = 1;
  79                dquot_initialize(inode);
  80        } else {
  81                dquot_drop(inode);
  82        }
  83
  84        truncate_inode_pages_final(&inode->i_data);
  85
  86        if (want_delete) {
  87                sb_start_intwrite(inode->i_sb);
  88                /* set dtime */
  89                EXT2_I(inode)->i_dtime  = get_seconds();
  90                mark_inode_dirty(inode);
  91                __ext2_write_inode(inode, inode_needs_sync(inode));
  92                /* truncate to 0 */
  93                inode->i_size = 0;
  94                if (inode->i_blocks)
  95                        ext2_truncate_blocks(inode, 0);
  96                ext2_xattr_delete_inode(inode);
  97        }
  98
  99        invalidate_inode_buffers(inode);
 100        clear_inode(inode);
 101
 102        ext2_discard_reservation(inode);
 103        rsv = EXT2_I(inode)->i_block_alloc_info;
 104        EXT2_I(inode)->i_block_alloc_info = NULL;
 105        if (unlikely(rsv))
 106                kfree(rsv);
 107
 108        if (want_delete) {
 109                ext2_free_inode(inode);
 110                sb_end_intwrite(inode->i_sb);
 111        }
 112}
 113
 114typedef struct {
 115        __le32  *p;
 116        __le32  key;
 117        struct buffer_head *bh;
 118} Indirect;
 119
 120static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
 121{
 122        p->key = *(p->p = v);
 123        p->bh = bh;
 124}
 125
 126static inline int verify_chain(Indirect *from, Indirect *to)
 127{
 128        while (from <= to && from->key == *from->p)
 129                from++;
 130        return (from > to);
 131}
 132
 133/**
 134 *      ext2_block_to_path - parse the block number into array of offsets
 135 *      @inode: inode in question (we are only interested in its superblock)
 136 *      @i_block: block number to be parsed
 137 *      @offsets: array to store the offsets in
 138 *      @boundary: set this non-zero if the referred-to block is likely to be
 139 *             followed (on disk) by an indirect block.
 140 *      To store the locations of file's data ext2 uses a data structure common
 141 *      for UNIX filesystems - tree of pointers anchored in the inode, with
 142 *      data blocks at leaves and indirect blocks in intermediate nodes.
 143 *      This function translates the block number into path in that tree -
 144 *      return value is the path length and @offsets[n] is the offset of
 145 *      pointer to (n+1)th node in the nth one. If @block is out of range
 146 *      (negative or too large) warning is printed and zero returned.
 147 *
 148 *      Note: function doesn't find node addresses, so no IO is needed. All
 149 *      we need to know is the capacity of indirect blocks (taken from the
 150 *      inode->i_sb).
 151 */
 152
 153/*
 154 * Portability note: the last comparison (check that we fit into triple
 155 * indirect block) is spelled differently, because otherwise on an
 156 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 157 * if our filesystem had 8Kb blocks. We might use long long, but that would
 158 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 159 * i_block would have to be negative in the very beginning, so we would not
 160 * get there at all.
 161 */
 162
 163static int ext2_block_to_path(struct inode *inode,
 164                        long i_block, int offsets[4], int *boundary)
 165{
 166        int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
 167        int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
 168        const long direct_blocks = EXT2_NDIR_BLOCKS,
 169                indirect_blocks = ptrs,
 170                double_blocks = (1 << (ptrs_bits * 2));
 171        int n = 0;
 172        int final = 0;
 173
 174        if (i_block < 0) {
 175                ext2_msg(inode->i_sb, KERN_WARNING,
 176                        "warning: %s: block < 0", __func__);
 177        } else if (i_block < direct_blocks) {
 178                offsets[n++] = i_block;
 179                final = direct_blocks;
 180        } else if ( (i_block -= direct_blocks) < indirect_blocks) {
 181                offsets[n++] = EXT2_IND_BLOCK;
 182                offsets[n++] = i_block;
 183                final = ptrs;
 184        } else if ((i_block -= indirect_blocks) < double_blocks) {
 185                offsets[n++] = EXT2_DIND_BLOCK;
 186                offsets[n++] = i_block >> ptrs_bits;
 187                offsets[n++] = i_block & (ptrs - 1);
 188                final = ptrs;
 189        } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
 190                offsets[n++] = EXT2_TIND_BLOCK;
 191                offsets[n++] = i_block >> (ptrs_bits * 2);
 192                offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
 193                offsets[n++] = i_block & (ptrs - 1);
 194                final = ptrs;
 195        } else {
 196                ext2_msg(inode->i_sb, KERN_WARNING,
 197                        "warning: %s: block is too big", __func__);
 198        }
 199        if (boundary)
 200                *boundary = final - 1 - (i_block & (ptrs - 1));
 201
 202        return n;
 203}
 204
 205/**
 206 *      ext2_get_branch - read the chain of indirect blocks leading to data
 207 *      @inode: inode in question
 208 *      @depth: depth of the chain (1 - direct pointer, etc.)
 209 *      @offsets: offsets of pointers in inode/indirect blocks
 210 *      @chain: place to store the result
 211 *      @err: here we store the error value
 212 *
 213 *      Function fills the array of triples <key, p, bh> and returns %NULL
 214 *      if everything went OK or the pointer to the last filled triple
 215 *      (incomplete one) otherwise. Upon the return chain[i].key contains
 216 *      the number of (i+1)-th block in the chain (as it is stored in memory,
 217 *      i.e. little-endian 32-bit), chain[i].p contains the address of that
 218 *      number (it points into struct inode for i==0 and into the bh->b_data
 219 *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 220 *      block for i>0 and NULL for i==0. In other words, it holds the block
 221 *      numbers of the chain, addresses they were taken from (and where we can
 222 *      verify that chain did not change) and buffer_heads hosting these
 223 *      numbers.
 224 *
 225 *      Function stops when it stumbles upon zero pointer (absent block)
 226 *              (pointer to last triple returned, *@err == 0)
 227 *      or when it gets an IO error reading an indirect block
 228 *              (ditto, *@err == -EIO)
 229 *      or when it notices that chain had been changed while it was reading
 230 *              (ditto, *@err == -EAGAIN)
 231 *      or when it reads all @depth-1 indirect blocks successfully and finds
 232 *      the whole chain, all way to the data (returns %NULL, *err == 0).
 233 */
 234static Indirect *ext2_get_branch(struct inode *inode,
 235                                 int depth,
 236                                 int *offsets,
 237                                 Indirect chain[4],
 238                                 int *err)
 239{
 240        struct super_block *sb = inode->i_sb;
 241        Indirect *p = chain;
 242        struct buffer_head *bh;
 243
 244        *err = 0;
 245        /* i_data is not going away, no lock needed */
 246        add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
 247        if (!p->key)
 248                goto no_block;
 249        while (--depth) {
 250                bh = sb_bread(sb, le32_to_cpu(p->key));
 251                if (!bh)
 252                        goto failure;
 253                read_lock(&EXT2_I(inode)->i_meta_lock);
 254                if (!verify_chain(chain, p))
 255                        goto changed;
 256                add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
 257                read_unlock(&EXT2_I(inode)->i_meta_lock);
 258                if (!p->key)
 259                        goto no_block;
 260        }
 261        return NULL;
 262
 263changed:
 264        read_unlock(&EXT2_I(inode)->i_meta_lock);
 265        brelse(bh);
 266        *err = -EAGAIN;
 267        goto no_block;
 268failure:
 269        *err = -EIO;
 270no_block:
 271        return p;
 272}
 273
 274/**
 275 *      ext2_find_near - find a place for allocation with sufficient locality
 276 *      @inode: owner
 277 *      @ind: descriptor of indirect block.
 278 *
 279 *      This function returns the preferred place for block allocation.
 280 *      It is used when heuristic for sequential allocation fails.
 281 *      Rules are:
 282 *        + if there is a block to the left of our position - allocate near it.
 283 *        + if pointer will live in indirect block - allocate near that block.
 284 *        + if pointer will live in inode - allocate in the same cylinder group.
 285 *
 286 * In the latter case we colour the starting block by the callers PID to
 287 * prevent it from clashing with concurrent allocations for a different inode
 288 * in the same block group.   The PID is used here so that functionally related
 289 * files will be close-by on-disk.
 290 *
 291 *      Caller must make sure that @ind is valid and will stay that way.
 292 */
 293
 294static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
 295{
 296        struct ext2_inode_info *ei = EXT2_I(inode);
 297        __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
 298        __le32 *p;
 299        ext2_fsblk_t bg_start;
 300        ext2_fsblk_t colour;
 301
 302        /* Try to find previous block */
 303        for (p = ind->p - 1; p >= start; p--)
 304                if (*p)
 305                        return le32_to_cpu(*p);
 306
 307        /* No such thing, so let's try location of indirect block */
 308        if (ind->bh)
 309                return ind->bh->b_blocknr;
 310
 311        /*
 312         * It is going to be referred from inode itself? OK, just put it into
 313         * the same cylinder group then.
 314         */
 315        bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
 316        colour = (current->pid % 16) *
 317                        (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
 318        return bg_start + colour;
 319}
 320
 321/**
 322 *      ext2_find_goal - find a preferred place for allocation.
 323 *      @inode: owner
 324 *      @block:  block we want
 325 *      @partial: pointer to the last triple within a chain
 326 *
 327 *      Returns preferred place for a block (the goal).
 328 */
 329
 330static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
 331                                          Indirect *partial)
 332{
 333        struct ext2_block_alloc_info *block_i;
 334
 335        block_i = EXT2_I(inode)->i_block_alloc_info;
 336
 337        /*
 338         * try the heuristic for sequential allocation,
 339         * failing that at least try to get decent locality.
 340         */
 341        if (block_i && (block == block_i->last_alloc_logical_block + 1)
 342                && (block_i->last_alloc_physical_block != 0)) {
 343                return block_i->last_alloc_physical_block + 1;
 344        }
 345
 346        return ext2_find_near(inode, partial);
 347}
 348
 349/**
 350 *      ext2_blks_to_allocate: Look up the block map and count the number
 351 *      of direct blocks need to be allocated for the given branch.
 352 *
 353 *      @branch: chain of indirect blocks
 354 *      @k: number of blocks need for indirect blocks
 355 *      @blks: number of data blocks to be mapped.
 356 *      @blocks_to_boundary:  the offset in the indirect block
 357 *
 358 *      return the total number of blocks to be allocate, including the
 359 *      direct and indirect blocks.
 360 */
 361static int
 362ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
 363                int blocks_to_boundary)
 364{
 365        unsigned long count = 0;
 366
 367        /*
 368         * Simple case, [t,d]Indirect block(s) has not allocated yet
 369         * then it's clear blocks on that path have not allocated
 370         */
 371        if (k > 0) {
 372                /* right now don't hanel cross boundary allocation */
 373                if (blks < blocks_to_boundary + 1)
 374                        count += blks;
 375                else
 376                        count += blocks_to_boundary + 1;
 377                return count;
 378        }
 379
 380        count++;
 381        while (count < blks && count <= blocks_to_boundary
 382                && le32_to_cpu(*(branch[0].p + count)) == 0) {
 383                count++;
 384        }
 385        return count;
 386}
 387
 388/**
 389 *      ext2_alloc_blocks: multiple allocate blocks needed for a branch
 390 *      @indirect_blks: the number of blocks need to allocate for indirect
 391 *                      blocks
 392 *
 393 *      @new_blocks: on return it will store the new block numbers for
 394 *      the indirect blocks(if needed) and the first direct block,
 395 *      @blks:  on return it will store the total number of allocated
 396 *              direct blocks
 397 */
 398static int ext2_alloc_blocks(struct inode *inode,
 399                        ext2_fsblk_t goal, int indirect_blks, int blks,
 400                        ext2_fsblk_t new_blocks[4], int *err)
 401{
 402        int target, i;
 403        unsigned long count = 0;
 404        int index = 0;
 405        ext2_fsblk_t current_block = 0;
 406        int ret = 0;
 407
 408        /*
 409         * Here we try to allocate the requested multiple blocks at once,
 410         * on a best-effort basis.
 411         * To build a branch, we should allocate blocks for
 412         * the indirect blocks(if not allocated yet), and at least
 413         * the first direct block of this branch.  That's the
 414         * minimum number of blocks need to allocate(required)
 415         */
 416        target = blks + indirect_blks;
 417
 418        while (1) {
 419                count = target;
 420                /* allocating blocks for indirect blocks and direct blocks */
 421                current_block = ext2_new_blocks(inode,goal,&count,err);
 422                if (*err)
 423                        goto failed_out;
 424
 425                target -= count;
 426                /* allocate blocks for indirect blocks */
 427                while (index < indirect_blks && count) {
 428                        new_blocks[index++] = current_block++;
 429                        count--;
 430                }
 431
 432                if (count > 0)
 433                        break;
 434        }
 435
 436        /* save the new block number for the first direct block */
 437        new_blocks[index] = current_block;
 438
 439        /* total number of blocks allocated for direct blocks */
 440        ret = count;
 441        *err = 0;
 442        return ret;
 443failed_out:
 444        for (i = 0; i <index; i++)
 445                ext2_free_blocks(inode, new_blocks[i], 1);
 446        if (index)
 447                mark_inode_dirty(inode);
 448        return ret;
 449}
 450
 451/**
 452 *      ext2_alloc_branch - allocate and set up a chain of blocks.
 453 *      @inode: owner
 454 *      @num: depth of the chain (number of blocks to allocate)
 455 *      @offsets: offsets (in the blocks) to store the pointers to next.
 456 *      @branch: place to store the chain in.
 457 *
 458 *      This function allocates @num blocks, zeroes out all but the last one,
 459 *      links them into chain and (if we are synchronous) writes them to disk.
 460 *      In other words, it prepares a branch that can be spliced onto the
 461 *      inode. It stores the information about that chain in the branch[], in
 462 *      the same format as ext2_get_branch() would do. We are calling it after
 463 *      we had read the existing part of chain and partial points to the last
 464 *      triple of that (one with zero ->key). Upon the exit we have the same
 465 *      picture as after the successful ext2_get_block(), except that in one
 466 *      place chain is disconnected - *branch->p is still zero (we did not
 467 *      set the last link), but branch->key contains the number that should
 468 *      be placed into *branch->p to fill that gap.
 469 *
 470 *      If allocation fails we free all blocks we've allocated (and forget
 471 *      their buffer_heads) and return the error value the from failed
 472 *      ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
 473 *      as described above and return 0.
 474 */
 475
 476static int ext2_alloc_branch(struct inode *inode,
 477                        int indirect_blks, int *blks, ext2_fsblk_t goal,
 478                        int *offsets, Indirect *branch)
 479{
 480        int blocksize = inode->i_sb->s_blocksize;
 481        int i, n = 0;
 482        int err = 0;
 483        struct buffer_head *bh;
 484        int num;
 485        ext2_fsblk_t new_blocks[4];
 486        ext2_fsblk_t current_block;
 487
 488        num = ext2_alloc_blocks(inode, goal, indirect_blks,
 489                                *blks, new_blocks, &err);
 490        if (err)
 491                return err;
 492
 493        branch[0].key = cpu_to_le32(new_blocks[0]);
 494        /*
 495         * metadata blocks and data blocks are allocated.
 496         */
 497        for (n = 1; n <= indirect_blks;  n++) {
 498                /*
 499                 * Get buffer_head for parent block, zero it out
 500                 * and set the pointer to new one, then send
 501                 * parent to disk.
 502                 */
 503                bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
 504                if (unlikely(!bh)) {
 505                        err = -ENOMEM;
 506                        goto failed;
 507                }
 508                branch[n].bh = bh;
 509                lock_buffer(bh);
 510                memset(bh->b_data, 0, blocksize);
 511                branch[n].p = (__le32 *) bh->b_data + offsets[n];
 512                branch[n].key = cpu_to_le32(new_blocks[n]);
 513                *branch[n].p = branch[n].key;
 514                if ( n == indirect_blks) {
 515                        current_block = new_blocks[n];
 516                        /*
 517                         * End of chain, update the last new metablock of
 518                         * the chain to point to the new allocated
 519                         * data blocks numbers
 520                         */
 521                        for (i=1; i < num; i++)
 522                                *(branch[n].p + i) = cpu_to_le32(++current_block);
 523                }
 524                set_buffer_uptodate(bh);
 525                unlock_buffer(bh);
 526                mark_buffer_dirty_inode(bh, inode);
 527                /* We used to sync bh here if IS_SYNC(inode).
 528                 * But we now rely upon generic_write_sync()
 529                 * and b_inode_buffers.  But not for directories.
 530                 */
 531                if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
 532                        sync_dirty_buffer(bh);
 533        }
 534        *blks = num;
 535        return err;
 536
 537failed:
 538        for (i = 1; i < n; i++)
 539                bforget(branch[i].bh);
 540        for (i = 0; i < indirect_blks; i++)
 541                ext2_free_blocks(inode, new_blocks[i], 1);
 542        ext2_free_blocks(inode, new_blocks[i], num);
 543        return err;
 544}
 545
 546/**
 547 * ext2_splice_branch - splice the allocated branch onto inode.
 548 * @inode: owner
 549 * @block: (logical) number of block we are adding
 550 * @where: location of missing link
 551 * @num:   number of indirect blocks we are adding
 552 * @blks:  number of direct blocks we are adding
 553 *
 554 * This function fills the missing link and does all housekeeping needed in
 555 * inode (->i_blocks, etc.). In case of success we end up with the full
 556 * chain to new block and return 0.
 557 */
 558static void ext2_splice_branch(struct inode *inode,
 559                        long block, Indirect *where, int num, int blks)
 560{
 561        int i;
 562        struct ext2_block_alloc_info *block_i;
 563        ext2_fsblk_t current_block;
 564
 565        block_i = EXT2_I(inode)->i_block_alloc_info;
 566
 567        /* XXX LOCKING probably should have i_meta_lock ?*/
 568        /* That's it */
 569
 570        *where->p = where->key;
 571
 572        /*
 573         * Update the host buffer_head or inode to point to more just allocated
 574         * direct blocks blocks
 575         */
 576        if (num == 0 && blks > 1) {
 577                current_block = le32_to_cpu(where->key) + 1;
 578                for (i = 1; i < blks; i++)
 579                        *(where->p + i ) = cpu_to_le32(current_block++);
 580        }
 581
 582        /*
 583         * update the most recently allocated logical & physical block
 584         * in i_block_alloc_info, to assist find the proper goal block for next
 585         * allocation
 586         */
 587        if (block_i) {
 588                block_i->last_alloc_logical_block = block + blks - 1;
 589                block_i->last_alloc_physical_block =
 590                                le32_to_cpu(where[num].key) + blks - 1;
 591        }
 592
 593        /* We are done with atomic stuff, now do the rest of housekeeping */
 594
 595        /* had we spliced it onto indirect block? */
 596        if (where->bh)
 597                mark_buffer_dirty_inode(where->bh, inode);
 598
 599        inode->i_ctime = current_time(inode);
 600        mark_inode_dirty(inode);
 601}
 602
 603/*
 604 * Allocation strategy is simple: if we have to allocate something, we will
 605 * have to go the whole way to leaf. So let's do it before attaching anything
 606 * to tree, set linkage between the newborn blocks, write them if sync is
 607 * required, recheck the path, free and repeat if check fails, otherwise
 608 * set the last missing link (that will protect us from any truncate-generated
 609 * removals - all blocks on the path are immune now) and possibly force the
 610 * write on the parent block.
 611 * That has a nice additional property: no special recovery from the failed
 612 * allocations is needed - we simply release blocks and do not touch anything
 613 * reachable from inode.
 614 *
 615 * `handle' can be NULL if create == 0.
 616 *
 617 * return > 0, # of blocks mapped or allocated.
 618 * return = 0, if plain lookup failed.
 619 * return < 0, error case.
 620 */
 621static int ext2_get_blocks(struct inode *inode,
 622                           sector_t iblock, unsigned long maxblocks,
 623                           u32 *bno, bool *new, bool *boundary,
 624                           int create)
 625{
 626        int err;
 627        int offsets[4];
 628        Indirect chain[4];
 629        Indirect *partial;
 630        ext2_fsblk_t goal;
 631        int indirect_blks;
 632        int blocks_to_boundary = 0;
 633        int depth;
 634        struct ext2_inode_info *ei = EXT2_I(inode);
 635        int count = 0;
 636        ext2_fsblk_t first_block = 0;
 637
 638        BUG_ON(maxblocks == 0);
 639
 640        depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
 641
 642        if (depth == 0)
 643                return -EIO;
 644
 645        partial = ext2_get_branch(inode, depth, offsets, chain, &err);
 646        /* Simplest case - block found, no allocation needed */
 647        if (!partial) {
 648                first_block = le32_to_cpu(chain[depth - 1].key);
 649                count++;
 650                /*map more blocks*/
 651                while (count < maxblocks && count <= blocks_to_boundary) {
 652                        ext2_fsblk_t blk;
 653
 654                        if (!verify_chain(chain, chain + depth - 1)) {
 655                                /*
 656                                 * Indirect block might be removed by
 657                                 * truncate while we were reading it.
 658                                 * Handling of that case: forget what we've
 659                                 * got now, go to reread.
 660                                 */
 661                                err = -EAGAIN;
 662                                count = 0;
 663                                partial = chain + depth - 1;
 664                                break;
 665                        }
 666                        blk = le32_to_cpu(*(chain[depth-1].p + count));
 667                        if (blk == first_block + count)
 668                                count++;
 669                        else
 670                                break;
 671                }
 672                if (err != -EAGAIN)
 673                        goto got_it;
 674        }
 675
 676        /* Next simple case - plain lookup or failed read of indirect block */
 677        if (!create || err == -EIO)
 678                goto cleanup;
 679
 680        mutex_lock(&ei->truncate_mutex);
 681        /*
 682         * If the indirect block is missing while we are reading
 683         * the chain(ext2_get_branch() returns -EAGAIN err), or
 684         * if the chain has been changed after we grab the semaphore,
 685         * (either because another process truncated this branch, or
 686         * another get_block allocated this branch) re-grab the chain to see if
 687         * the request block has been allocated or not.
 688         *
 689         * Since we already block the truncate/other get_block
 690         * at this point, we will have the current copy of the chain when we
 691         * splice the branch into the tree.
 692         */
 693        if (err == -EAGAIN || !verify_chain(chain, partial)) {
 694                while (partial > chain) {
 695                        brelse(partial->bh);
 696                        partial--;
 697                }
 698                partial = ext2_get_branch(inode, depth, offsets, chain, &err);
 699                if (!partial) {
 700                        count++;
 701                        mutex_unlock(&ei->truncate_mutex);
 702                        if (err)
 703                                goto cleanup;
 704                        goto got_it;
 705                }
 706        }
 707
 708        /*
 709         * Okay, we need to do block allocation.  Lazily initialize the block
 710         * allocation info here if necessary
 711        */
 712        if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
 713                ext2_init_block_alloc_info(inode);
 714
 715        goal = ext2_find_goal(inode, iblock, partial);
 716
 717        /* the number of blocks need to allocate for [d,t]indirect blocks */
 718        indirect_blks = (chain + depth) - partial - 1;
 719        /*
 720         * Next look up the indirect map to count the totoal number of
 721         * direct blocks to allocate for this branch.
 722         */
 723        count = ext2_blks_to_allocate(partial, indirect_blks,
 724                                        maxblocks, blocks_to_boundary);
 725        /*
 726         * XXX ???? Block out ext2_truncate while we alter the tree
 727         */
 728        err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
 729                                offsets + (partial - chain), partial);
 730
 731        if (err) {
 732                mutex_unlock(&ei->truncate_mutex);
 733                goto cleanup;
 734        }
 735
 736        if (IS_DAX(inode)) {
 737                /*
 738                 * We must unmap blocks before zeroing so that writeback cannot
 739                 * overwrite zeros with stale data from block device page cache.
 740                 */
 741                clean_bdev_aliases(inode->i_sb->s_bdev,
 742                                   le32_to_cpu(chain[depth-1].key),
 743                                   count);
 744                /*
 745                 * block must be initialised before we put it in the tree
 746                 * so that it's not found by another thread before it's
 747                 * initialised
 748                 */
 749                err = sb_issue_zeroout(inode->i_sb,
 750                                le32_to_cpu(chain[depth-1].key), count,
 751                                GFP_NOFS);
 752                if (err) {
 753                        mutex_unlock(&ei->truncate_mutex);
 754                        goto cleanup;
 755                }
 756        }
 757        *new = true;
 758
 759        ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
 760        mutex_unlock(&ei->truncate_mutex);
 761got_it:
 762        if (count > blocks_to_boundary)
 763                *boundary = true;
 764        err = count;
 765        /* Clean up and exit */
 766        partial = chain + depth - 1;    /* the whole chain */
 767cleanup:
 768        while (partial > chain) {
 769                brelse(partial->bh);
 770                partial--;
 771        }
 772        if (err > 0)
 773                *bno = le32_to_cpu(chain[depth-1].key);
 774        return err;
 775}
 776
 777int ext2_get_block(struct inode *inode, sector_t iblock,
 778                struct buffer_head *bh_result, int create)
 779{
 780        unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
 781        bool new = false, boundary = false;
 782        u32 bno;
 783        int ret;
 784
 785        ret = ext2_get_blocks(inode, iblock, max_blocks, &bno, &new, &boundary,
 786                        create);
 787        if (ret <= 0)
 788                return ret;
 789
 790        map_bh(bh_result, inode->i_sb, bno);
 791        bh_result->b_size = (ret << inode->i_blkbits);
 792        if (new)
 793                set_buffer_new(bh_result);
 794        if (boundary)
 795                set_buffer_boundary(bh_result);
 796        return 0;
 797
 798}
 799
 800#ifdef CONFIG_FS_DAX
 801static int ext2_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
 802                unsigned flags, struct iomap *iomap)
 803{
 804        unsigned int blkbits = inode->i_blkbits;
 805        unsigned long first_block = offset >> blkbits;
 806        unsigned long max_blocks = (length + (1 << blkbits) - 1) >> blkbits;
 807        struct ext2_sb_info *sbi = EXT2_SB(inode->i_sb);
 808        bool new = false, boundary = false;
 809        u32 bno;
 810        int ret;
 811
 812        ret = ext2_get_blocks(inode, first_block, max_blocks,
 813                        &bno, &new, &boundary, flags & IOMAP_WRITE);
 814        if (ret < 0)
 815                return ret;
 816
 817        iomap->flags = 0;
 818        iomap->bdev = inode->i_sb->s_bdev;
 819        iomap->offset = (u64)first_block << blkbits;
 820        iomap->dax_dev = sbi->s_daxdev;
 821
 822        if (ret == 0) {
 823                iomap->type = IOMAP_HOLE;
 824                iomap->addr = IOMAP_NULL_ADDR;
 825                iomap->length = 1 << blkbits;
 826        } else {
 827                iomap->type = IOMAP_MAPPED;
 828                iomap->addr = (u64)bno << blkbits;
 829                iomap->length = (u64)ret << blkbits;
 830                iomap->flags |= IOMAP_F_MERGED;
 831        }
 832
 833        if (new)
 834                iomap->flags |= IOMAP_F_NEW;
 835        return 0;
 836}
 837
 838static int
 839ext2_iomap_end(struct inode *inode, loff_t offset, loff_t length,
 840                ssize_t written, unsigned flags, struct iomap *iomap)
 841{
 842        if (iomap->type == IOMAP_MAPPED &&
 843            written < length &&
 844            (flags & IOMAP_WRITE))
 845                ext2_write_failed(inode->i_mapping, offset + length);
 846        return 0;
 847}
 848
 849const struct iomap_ops ext2_iomap_ops = {
 850        .iomap_begin            = ext2_iomap_begin,
 851        .iomap_end              = ext2_iomap_end,
 852};
 853#else
 854/* Define empty ops for !CONFIG_FS_DAX case to avoid ugly ifdefs */
 855const struct iomap_ops ext2_iomap_ops;
 856#endif /* CONFIG_FS_DAX */
 857
 858int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
 859                u64 start, u64 len)
 860{
 861        return generic_block_fiemap(inode, fieinfo, start, len,
 862                                    ext2_get_block);
 863}
 864
 865static int ext2_writepage(struct page *page, struct writeback_control *wbc)
 866{
 867        return block_write_full_page(page, ext2_get_block, wbc);
 868}
 869
 870static int ext2_readpage(struct file *file, struct page *page)
 871{
 872        return mpage_readpage(page, ext2_get_block);
 873}
 874
 875static int
 876ext2_readpages(struct file *file, struct address_space *mapping,
 877                struct list_head *pages, unsigned nr_pages)
 878{
 879        return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
 880}
 881
 882static int
 883ext2_write_begin(struct file *file, struct address_space *mapping,
 884                loff_t pos, unsigned len, unsigned flags,
 885                struct page **pagep, void **fsdata)
 886{
 887        int ret;
 888
 889        ret = block_write_begin(mapping, pos, len, flags, pagep,
 890                                ext2_get_block);
 891        if (ret < 0)
 892                ext2_write_failed(mapping, pos + len);
 893        return ret;
 894}
 895
 896static int ext2_write_end(struct file *file, struct address_space *mapping,
 897                        loff_t pos, unsigned len, unsigned copied,
 898                        struct page *page, void *fsdata)
 899{
 900        int ret;
 901
 902        ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
 903        if (ret < len)
 904                ext2_write_failed(mapping, pos + len);
 905        return ret;
 906}
 907
 908static int
 909ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
 910                loff_t pos, unsigned len, unsigned flags,
 911                struct page **pagep, void **fsdata)
 912{
 913        int ret;
 914
 915        ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
 916                               ext2_get_block);
 917        if (ret < 0)
 918                ext2_write_failed(mapping, pos + len);
 919        return ret;
 920}
 921
 922static int ext2_nobh_writepage(struct page *page,
 923                        struct writeback_control *wbc)
 924{
 925        return nobh_writepage(page, ext2_get_block, wbc);
 926}
 927
 928static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
 929{
 930        return generic_block_bmap(mapping,block,ext2_get_block);
 931}
 932
 933static ssize_t
 934ext2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
 935{
 936        struct file *file = iocb->ki_filp;
 937        struct address_space *mapping = file->f_mapping;
 938        struct inode *inode = mapping->host;
 939        size_t count = iov_iter_count(iter);
 940        loff_t offset = iocb->ki_pos;
 941        ssize_t ret;
 942
 943        ret = blockdev_direct_IO(iocb, inode, iter, ext2_get_block);
 944        if (ret < 0 && iov_iter_rw(iter) == WRITE)
 945                ext2_write_failed(mapping, offset + count);
 946        return ret;
 947}
 948
 949static int
 950ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
 951{
 952        return mpage_writepages(mapping, wbc, ext2_get_block);
 953}
 954
 955static int
 956ext2_dax_writepages(struct address_space *mapping, struct writeback_control *wbc)
 957{
 958        return dax_writeback_mapping_range(mapping,
 959                        mapping->host->i_sb->s_bdev, wbc);
 960}
 961
 962const struct address_space_operations ext2_aops = {
 963        .readpage               = ext2_readpage,
 964        .readpages              = ext2_readpages,
 965        .writepage              = ext2_writepage,
 966        .write_begin            = ext2_write_begin,
 967        .write_end              = ext2_write_end,
 968        .bmap                   = ext2_bmap,
 969        .direct_IO              = ext2_direct_IO,
 970        .writepages             = ext2_writepages,
 971        .migratepage            = buffer_migrate_page,
 972        .is_partially_uptodate  = block_is_partially_uptodate,
 973        .error_remove_page      = generic_error_remove_page,
 974};
 975
 976const struct address_space_operations ext2_nobh_aops = {
 977        .readpage               = ext2_readpage,
 978        .readpages              = ext2_readpages,
 979        .writepage              = ext2_nobh_writepage,
 980        .write_begin            = ext2_nobh_write_begin,
 981        .write_end              = nobh_write_end,
 982        .bmap                   = ext2_bmap,
 983        .direct_IO              = ext2_direct_IO,
 984        .writepages             = ext2_writepages,
 985        .migratepage            = buffer_migrate_page,
 986        .error_remove_page      = generic_error_remove_page,
 987};
 988
 989static const struct address_space_operations ext2_dax_aops = {
 990        .writepages             = ext2_dax_writepages,
 991        .direct_IO              = noop_direct_IO,
 992        .set_page_dirty         = noop_set_page_dirty,
 993        .invalidatepage         = noop_invalidatepage,
 994};
 995
 996/*
 997 * Probably it should be a library function... search for first non-zero word
 998 * or memcmp with zero_page, whatever is better for particular architecture.
 999 * Linus?
1000 */
1001static inline int all_zeroes(__le32 *p, __le32 *q)
1002{
1003        while (p < q)
1004                if (*p++)
1005                        return 0;
1006        return 1;
1007}
1008
1009/**
1010 *      ext2_find_shared - find the indirect blocks for partial truncation.
1011 *      @inode:   inode in question
1012 *      @depth:   depth of the affected branch
1013 *      @offsets: offsets of pointers in that branch (see ext2_block_to_path)
1014 *      @chain:   place to store the pointers to partial indirect blocks
1015 *      @top:     place to the (detached) top of branch
1016 *
1017 *      This is a helper function used by ext2_truncate().
1018 *
1019 *      When we do truncate() we may have to clean the ends of several indirect
1020 *      blocks but leave the blocks themselves alive. Block is partially
1021 *      truncated if some data below the new i_size is referred from it (and
1022 *      it is on the path to the first completely truncated data block, indeed).
1023 *      We have to free the top of that path along with everything to the right
1024 *      of the path. Since no allocation past the truncation point is possible
1025 *      until ext2_truncate() finishes, we may safely do the latter, but top
1026 *      of branch may require special attention - pageout below the truncation
1027 *      point might try to populate it.
1028 *
1029 *      We atomically detach the top of branch from the tree, store the block
1030 *      number of its root in *@top, pointers to buffer_heads of partially
1031 *      truncated blocks - in @chain[].bh and pointers to their last elements
1032 *      that should not be removed - in @chain[].p. Return value is the pointer
1033 *      to last filled element of @chain.
1034 *
1035 *      The work left to caller to do the actual freeing of subtrees:
1036 *              a) free the subtree starting from *@top
1037 *              b) free the subtrees whose roots are stored in
1038 *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1039 *              c) free the subtrees growing from the inode past the @chain[0].p
1040 *                      (no partially truncated stuff there).
1041 */
1042
1043static Indirect *ext2_find_shared(struct inode *inode,
1044                                int depth,
1045                                int offsets[4],
1046                                Indirect chain[4],
1047                                __le32 *top)
1048{
1049        Indirect *partial, *p;
1050        int k, err;
1051
1052        *top = 0;
1053        for (k = depth; k > 1 && !offsets[k-1]; k--)
1054                ;
1055        partial = ext2_get_branch(inode, k, offsets, chain, &err);
1056        if (!partial)
1057                partial = chain + k-1;
1058        /*
1059         * If the branch acquired continuation since we've looked at it -
1060         * fine, it should all survive and (new) top doesn't belong to us.
1061         */
1062        write_lock(&EXT2_I(inode)->i_meta_lock);
1063        if (!partial->key && *partial->p) {
1064                write_unlock(&EXT2_I(inode)->i_meta_lock);
1065                goto no_top;
1066        }
1067        for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1068                ;
1069        /*
1070         * OK, we've found the last block that must survive. The rest of our
1071         * branch should be detached before unlocking. However, if that rest
1072         * of branch is all ours and does not grow immediately from the inode
1073         * it's easier to cheat and just decrement partial->p.
1074         */
1075        if (p == chain + k - 1 && p > chain) {
1076                p->p--;
1077        } else {
1078                *top = *p->p;
1079                *p->p = 0;
1080        }
1081        write_unlock(&EXT2_I(inode)->i_meta_lock);
1082
1083        while(partial > p)
1084        {
1085                brelse(partial->bh);
1086                partial--;
1087        }
1088no_top:
1089        return partial;
1090}
1091
1092/**
1093 *      ext2_free_data - free a list of data blocks
1094 *      @inode: inode we are dealing with
1095 *      @p:     array of block numbers
1096 *      @q:     points immediately past the end of array
1097 *
1098 *      We are freeing all blocks referred from that array (numbers are
1099 *      stored as little-endian 32-bit) and updating @inode->i_blocks
1100 *      appropriately.
1101 */
1102static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
1103{
1104        unsigned long block_to_free = 0, count = 0;
1105        unsigned long nr;
1106
1107        for ( ; p < q ; p++) {
1108                nr = le32_to_cpu(*p);
1109                if (nr) {
1110                        *p = 0;
1111                        /* accumulate blocks to free if they're contiguous */
1112                        if (count == 0)
1113                                goto free_this;
1114                        else if (block_to_free == nr - count)
1115                                count++;
1116                        else {
1117                                ext2_free_blocks (inode, block_to_free, count);
1118                                mark_inode_dirty(inode);
1119                        free_this:
1120                                block_to_free = nr;
1121                                count = 1;
1122                        }
1123                }
1124        }
1125        if (count > 0) {
1126                ext2_free_blocks (inode, block_to_free, count);
1127                mark_inode_dirty(inode);
1128        }
1129}
1130
1131/**
1132 *      ext2_free_branches - free an array of branches
1133 *      @inode: inode we are dealing with
1134 *      @p:     array of block numbers
1135 *      @q:     pointer immediately past the end of array
1136 *      @depth: depth of the branches to free
1137 *
1138 *      We are freeing all blocks referred from these branches (numbers are
1139 *      stored as little-endian 32-bit) and updating @inode->i_blocks
1140 *      appropriately.
1141 */
1142static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1143{
1144        struct buffer_head * bh;
1145        unsigned long nr;
1146
1147        if (depth--) {
1148                int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1149                for ( ; p < q ; p++) {
1150                        nr = le32_to_cpu(*p);
1151                        if (!nr)
1152                                continue;
1153                        *p = 0;
1154                        bh = sb_bread(inode->i_sb, nr);
1155                        /*
1156                         * A read failure? Report error and clear slot
1157                         * (should be rare).
1158                         */ 
1159                        if (!bh) {
1160                                ext2_error(inode->i_sb, "ext2_free_branches",
1161                                        "Read failure, inode=%ld, block=%ld",
1162                                        inode->i_ino, nr);
1163                                continue;
1164                        }
1165                        ext2_free_branches(inode,
1166                                           (__le32*)bh->b_data,
1167                                           (__le32*)bh->b_data + addr_per_block,
1168                                           depth);
1169                        bforget(bh);
1170                        ext2_free_blocks(inode, nr, 1);
1171                        mark_inode_dirty(inode);
1172                }
1173        } else
1174                ext2_free_data(inode, p, q);
1175}
1176
1177/* dax_sem must be held when calling this function */
1178static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1179{
1180        __le32 *i_data = EXT2_I(inode)->i_data;
1181        struct ext2_inode_info *ei = EXT2_I(inode);
1182        int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1183        int offsets[4];
1184        Indirect chain[4];
1185        Indirect *partial;
1186        __le32 nr = 0;
1187        int n;
1188        long iblock;
1189        unsigned blocksize;
1190        blocksize = inode->i_sb->s_blocksize;
1191        iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1192
1193#ifdef CONFIG_FS_DAX
1194        WARN_ON(!rwsem_is_locked(&ei->dax_sem));
1195#endif
1196
1197        n = ext2_block_to_path(inode, iblock, offsets, NULL);
1198        if (n == 0)
1199                return;
1200
1201        /*
1202         * From here we block out all ext2_get_block() callers who want to
1203         * modify the block allocation tree.
1204         */
1205        mutex_lock(&ei->truncate_mutex);
1206
1207        if (n == 1) {
1208                ext2_free_data(inode, i_data+offsets[0],
1209                                        i_data + EXT2_NDIR_BLOCKS);
1210                goto do_indirects;
1211        }
1212
1213        partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1214        /* Kill the top of shared branch (already detached) */
1215        if (nr) {
1216                if (partial == chain)
1217                        mark_inode_dirty(inode);
1218                else
1219                        mark_buffer_dirty_inode(partial->bh, inode);
1220                ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1221        }
1222        /* Clear the ends of indirect blocks on the shared branch */
1223        while (partial > chain) {
1224                ext2_free_branches(inode,
1225                                   partial->p + 1,
1226                                   (__le32*)partial->bh->b_data+addr_per_block,
1227                                   (chain+n-1) - partial);
1228                mark_buffer_dirty_inode(partial->bh, inode);
1229                brelse (partial->bh);
1230                partial--;
1231        }
1232do_indirects:
1233        /* Kill the remaining (whole) subtrees */
1234        switch (offsets[0]) {
1235                default:
1236                        nr = i_data[EXT2_IND_BLOCK];
1237                        if (nr) {
1238                                i_data[EXT2_IND_BLOCK] = 0;
1239                                mark_inode_dirty(inode);
1240                                ext2_free_branches(inode, &nr, &nr+1, 1);
1241                        }
1242                case EXT2_IND_BLOCK:
1243                        nr = i_data[EXT2_DIND_BLOCK];
1244                        if (nr) {
1245                                i_data[EXT2_DIND_BLOCK] = 0;
1246                                mark_inode_dirty(inode);
1247                                ext2_free_branches(inode, &nr, &nr+1, 2);
1248                        }
1249                case EXT2_DIND_BLOCK:
1250                        nr = i_data[EXT2_TIND_BLOCK];
1251                        if (nr) {
1252                                i_data[EXT2_TIND_BLOCK] = 0;
1253                                mark_inode_dirty(inode);
1254                                ext2_free_branches(inode, &nr, &nr+1, 3);
1255                        }
1256                case EXT2_TIND_BLOCK:
1257                        ;
1258        }
1259
1260        ext2_discard_reservation(inode);
1261
1262        mutex_unlock(&ei->truncate_mutex);
1263}
1264
1265static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1266{
1267        if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1268            S_ISLNK(inode->i_mode)))
1269                return;
1270        if (ext2_inode_is_fast_symlink(inode))
1271                return;
1272
1273        dax_sem_down_write(EXT2_I(inode));
1274        __ext2_truncate_blocks(inode, offset);
1275        dax_sem_up_write(EXT2_I(inode));
1276}
1277
1278static int ext2_setsize(struct inode *inode, loff_t newsize)
1279{
1280        int error;
1281
1282        if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1283            S_ISLNK(inode->i_mode)))
1284                return -EINVAL;
1285        if (ext2_inode_is_fast_symlink(inode))
1286                return -EINVAL;
1287        if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1288                return -EPERM;
1289
1290        inode_dio_wait(inode);
1291
1292        if (IS_DAX(inode)) {
1293                error = iomap_zero_range(inode, newsize,
1294                                         PAGE_ALIGN(newsize) - newsize, NULL,
1295                                         &ext2_iomap_ops);
1296        } else if (test_opt(inode->i_sb, NOBH))
1297                error = nobh_truncate_page(inode->i_mapping,
1298                                newsize, ext2_get_block);
1299        else
1300                error = block_truncate_page(inode->i_mapping,
1301                                newsize, ext2_get_block);
1302        if (error)
1303                return error;
1304
1305        dax_sem_down_write(EXT2_I(inode));
1306        truncate_setsize(inode, newsize);
1307        __ext2_truncate_blocks(inode, newsize);
1308        dax_sem_up_write(EXT2_I(inode));
1309
1310        inode->i_mtime = inode->i_ctime = current_time(inode);
1311        if (inode_needs_sync(inode)) {
1312                sync_mapping_buffers(inode->i_mapping);
1313                sync_inode_metadata(inode, 1);
1314        } else {
1315                mark_inode_dirty(inode);
1316        }
1317
1318        return 0;
1319}
1320
1321static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1322                                        struct buffer_head **p)
1323{
1324        struct buffer_head * bh;
1325        unsigned long block_group;
1326        unsigned long block;
1327        unsigned long offset;
1328        struct ext2_group_desc * gdp;
1329
1330        *p = NULL;
1331        if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1332            ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1333                goto Einval;
1334
1335        block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1336        gdp = ext2_get_group_desc(sb, block_group, NULL);
1337        if (!gdp)
1338                goto Egdp;
1339        /*
1340         * Figure out the offset within the block group inode table
1341         */
1342        offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1343        block = le32_to_cpu(gdp->bg_inode_table) +
1344                (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1345        if (!(bh = sb_bread(sb, block)))
1346                goto Eio;
1347
1348        *p = bh;
1349        offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1350        return (struct ext2_inode *) (bh->b_data + offset);
1351
1352Einval:
1353        ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1354                   (unsigned long) ino);
1355        return ERR_PTR(-EINVAL);
1356Eio:
1357        ext2_error(sb, "ext2_get_inode",
1358                   "unable to read inode block - inode=%lu, block=%lu",
1359                   (unsigned long) ino, block);
1360Egdp:
1361        return ERR_PTR(-EIO);
1362}
1363
1364void ext2_set_inode_flags(struct inode *inode)
1365{
1366        unsigned int flags = EXT2_I(inode)->i_flags;
1367
1368        inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME |
1369                                S_DIRSYNC | S_DAX);
1370        if (flags & EXT2_SYNC_FL)
1371                inode->i_flags |= S_SYNC;
1372        if (flags & EXT2_APPEND_FL)
1373                inode->i_flags |= S_APPEND;
1374        if (flags & EXT2_IMMUTABLE_FL)
1375                inode->i_flags |= S_IMMUTABLE;
1376        if (flags & EXT2_NOATIME_FL)
1377                inode->i_flags |= S_NOATIME;
1378        if (flags & EXT2_DIRSYNC_FL)
1379                inode->i_flags |= S_DIRSYNC;
1380        if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
1381                inode->i_flags |= S_DAX;
1382}
1383
1384void ext2_set_file_ops(struct inode *inode)
1385{
1386        inode->i_op = &ext2_file_inode_operations;
1387        inode->i_fop = &ext2_file_operations;
1388        if (IS_DAX(inode))
1389                inode->i_mapping->a_ops = &ext2_dax_aops;
1390        else if (test_opt(inode->i_sb, NOBH))
1391                inode->i_mapping->a_ops = &ext2_nobh_aops;
1392        else
1393                inode->i_mapping->a_ops = &ext2_aops;
1394}
1395
1396struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1397{
1398        struct ext2_inode_info *ei;
1399        struct buffer_head * bh;
1400        struct ext2_inode *raw_inode;
1401        struct inode *inode;
1402        long ret = -EIO;
1403        int n;
1404        uid_t i_uid;
1405        gid_t i_gid;
1406
1407        inode = iget_locked(sb, ino);
1408        if (!inode)
1409                return ERR_PTR(-ENOMEM);
1410        if (!(inode->i_state & I_NEW))
1411                return inode;
1412
1413        ei = EXT2_I(inode);
1414        ei->i_block_alloc_info = NULL;
1415
1416        raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1417        if (IS_ERR(raw_inode)) {
1418                ret = PTR_ERR(raw_inode);
1419                goto bad_inode;
1420        }
1421
1422        inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1423        i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1424        i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1425        if (!(test_opt (inode->i_sb, NO_UID32))) {
1426                i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1427                i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1428        }
1429        i_uid_write(inode, i_uid);
1430        i_gid_write(inode, i_gid);
1431        set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1432        inode->i_size = le32_to_cpu(raw_inode->i_size);
1433        inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1434        inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1435        inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1436        inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1437        ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1438        /* We now have enough fields to check if the inode was active or not.
1439         * This is needed because nfsd might try to access dead inodes
1440         * the test is that same one that e2fsck uses
1441         * NeilBrown 1999oct15
1442         */
1443        if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1444                /* this inode is deleted */
1445                brelse (bh);
1446                ret = -ESTALE;
1447                goto bad_inode;
1448        }
1449        inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1450        ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1451        ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1452        ei->i_frag_no = raw_inode->i_frag;
1453        ei->i_frag_size = raw_inode->i_fsize;
1454        ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1455        ei->i_dir_acl = 0;
1456
1457        if (ei->i_file_acl &&
1458            !ext2_data_block_valid(EXT2_SB(sb), ei->i_file_acl, 1)) {
1459                ext2_error(sb, "ext2_iget", "bad extended attribute block %u",
1460                           ei->i_file_acl);
1461                brelse(bh);
1462                ret = -EFSCORRUPTED;
1463                goto bad_inode;
1464        }
1465
1466        if (S_ISREG(inode->i_mode))
1467                inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1468        else
1469                ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1470        if (i_size_read(inode) < 0) {
1471                ret = -EFSCORRUPTED;
1472                goto bad_inode;
1473        }
1474        ei->i_dtime = 0;
1475        inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1476        ei->i_state = 0;
1477        ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1478        ei->i_dir_start_lookup = 0;
1479
1480        /*
1481         * NOTE! The in-memory inode i_data array is in little-endian order
1482         * even on big-endian machines: we do NOT byteswap the block numbers!
1483         */
1484        for (n = 0; n < EXT2_N_BLOCKS; n++)
1485                ei->i_data[n] = raw_inode->i_block[n];
1486
1487        if (S_ISREG(inode->i_mode)) {
1488                ext2_set_file_ops(inode);
1489        } else if (S_ISDIR(inode->i_mode)) {
1490                inode->i_op = &ext2_dir_inode_operations;
1491                inode->i_fop = &ext2_dir_operations;
1492                if (test_opt(inode->i_sb, NOBH))
1493                        inode->i_mapping->a_ops = &ext2_nobh_aops;
1494                else
1495                        inode->i_mapping->a_ops = &ext2_aops;
1496        } else if (S_ISLNK(inode->i_mode)) {
1497                if (ext2_inode_is_fast_symlink(inode)) {
1498                        inode->i_link = (char *)ei->i_data;
1499                        inode->i_op = &ext2_fast_symlink_inode_operations;
1500                        nd_terminate_link(ei->i_data, inode->i_size,
1501                                sizeof(ei->i_data) - 1);
1502                } else {
1503                        inode->i_op = &ext2_symlink_inode_operations;
1504                        inode_nohighmem(inode);
1505                        if (test_opt(inode->i_sb, NOBH))
1506                                inode->i_mapping->a_ops = &ext2_nobh_aops;
1507                        else
1508                                inode->i_mapping->a_ops = &ext2_aops;
1509                }
1510        } else {
1511                inode->i_op = &ext2_special_inode_operations;
1512                if (raw_inode->i_block[0])
1513                        init_special_inode(inode, inode->i_mode,
1514                           old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1515                else 
1516                        init_special_inode(inode, inode->i_mode,
1517                           new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1518        }
1519        brelse (bh);
1520        ext2_set_inode_flags(inode);
1521        unlock_new_inode(inode);
1522        return inode;
1523        
1524bad_inode:
1525        iget_failed(inode);
1526        return ERR_PTR(ret);
1527}
1528
1529static int __ext2_write_inode(struct inode *inode, int do_sync)
1530{
1531        struct ext2_inode_info *ei = EXT2_I(inode);
1532        struct super_block *sb = inode->i_sb;
1533        ino_t ino = inode->i_ino;
1534        uid_t uid = i_uid_read(inode);
1535        gid_t gid = i_gid_read(inode);
1536        struct buffer_head * bh;
1537        struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1538        int n;
1539        int err = 0;
1540
1541        if (IS_ERR(raw_inode))
1542                return -EIO;
1543
1544        /* For fields not not tracking in the in-memory inode,
1545         * initialise them to zero for new inodes. */
1546        if (ei->i_state & EXT2_STATE_NEW)
1547                memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1548
1549        raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1550        if (!(test_opt(sb, NO_UID32))) {
1551                raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1552                raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1553/*
1554 * Fix up interoperability with old kernels. Otherwise, old inodes get
1555 * re-used with the upper 16 bits of the uid/gid intact
1556 */
1557                if (!ei->i_dtime) {
1558                        raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1559                        raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1560                } else {
1561                        raw_inode->i_uid_high = 0;
1562                        raw_inode->i_gid_high = 0;
1563                }
1564        } else {
1565                raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1566                raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1567                raw_inode->i_uid_high = 0;
1568                raw_inode->i_gid_high = 0;
1569        }
1570        raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1571        raw_inode->i_size = cpu_to_le32(inode->i_size);
1572        raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1573        raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1574        raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1575
1576        raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1577        raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1578        raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1579        raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1580        raw_inode->i_frag = ei->i_frag_no;
1581        raw_inode->i_fsize = ei->i_frag_size;
1582        raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1583        if (!S_ISREG(inode->i_mode))
1584                raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1585        else {
1586                raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1587                if (inode->i_size > 0x7fffffffULL) {
1588                        if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1589                                        EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1590                            EXT2_SB(sb)->s_es->s_rev_level ==
1591                                        cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1592                               /* If this is the first large file
1593                                * created, add a flag to the superblock.
1594                                */
1595                                spin_lock(&EXT2_SB(sb)->s_lock);
1596                                ext2_update_dynamic_rev(sb);
1597                                EXT2_SET_RO_COMPAT_FEATURE(sb,
1598                                        EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1599                                spin_unlock(&EXT2_SB(sb)->s_lock);
1600                                ext2_sync_super(sb, EXT2_SB(sb)->s_es, 1);
1601                        }
1602                }
1603        }
1604        
1605        raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1606        if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1607                if (old_valid_dev(inode->i_rdev)) {
1608                        raw_inode->i_block[0] =
1609                                cpu_to_le32(old_encode_dev(inode->i_rdev));
1610                        raw_inode->i_block[1] = 0;
1611                } else {
1612                        raw_inode->i_block[0] = 0;
1613                        raw_inode->i_block[1] =
1614                                cpu_to_le32(new_encode_dev(inode->i_rdev));
1615                        raw_inode->i_block[2] = 0;
1616                }
1617        } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1618                raw_inode->i_block[n] = ei->i_data[n];
1619        mark_buffer_dirty(bh);
1620        if (do_sync) {
1621                sync_dirty_buffer(bh);
1622                if (buffer_req(bh) && !buffer_uptodate(bh)) {
1623                        printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1624                                sb->s_id, (unsigned long) ino);
1625                        err = -EIO;
1626                }
1627        }
1628        ei->i_state &= ~EXT2_STATE_NEW;
1629        brelse (bh);
1630        return err;
1631}
1632
1633int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1634{
1635        return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1636}
1637
1638int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1639{
1640        struct inode *inode = d_inode(dentry);
1641        int error;
1642
1643        error = setattr_prepare(dentry, iattr);
1644        if (error)
1645                return error;
1646
1647        if (is_quota_modification(inode, iattr)) {
1648                error = dquot_initialize(inode);
1649                if (error)
1650                        return error;
1651        }
1652        if ((iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)) ||
1653            (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid))) {
1654                error = dquot_transfer(inode, iattr);
1655                if (error)
1656                        return error;
1657        }
1658        if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1659                error = ext2_setsize(inode, iattr->ia_size);
1660                if (error)
1661                        return error;
1662        }
1663        setattr_copy(inode, iattr);
1664        if (iattr->ia_valid & ATTR_MODE)
1665                error = posix_acl_chmod(inode, inode->i_mode);
1666        mark_inode_dirty(inode);
1667
1668        return error;
1669}
1670