linux/fs/userfaultfd.c
<<
>>
Prefs
   1/*
   2 *  fs/userfaultfd.c
   3 *
   4 *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
   5 *  Copyright (C) 2008-2009 Red Hat, Inc.
   6 *  Copyright (C) 2015  Red Hat, Inc.
   7 *
   8 *  This work is licensed under the terms of the GNU GPL, version 2. See
   9 *  the COPYING file in the top-level directory.
  10 *
  11 *  Some part derived from fs/eventfd.c (anon inode setup) and
  12 *  mm/ksm.c (mm hashing).
  13 */
  14
  15#include <linux/list.h>
  16#include <linux/hashtable.h>
  17#include <linux/sched/signal.h>
  18#include <linux/sched/mm.h>
  19#include <linux/mm.h>
  20#include <linux/poll.h>
  21#include <linux/slab.h>
  22#include <linux/seq_file.h>
  23#include <linux/file.h>
  24#include <linux/bug.h>
  25#include <linux/anon_inodes.h>
  26#include <linux/syscalls.h>
  27#include <linux/userfaultfd_k.h>
  28#include <linux/mempolicy.h>
  29#include <linux/ioctl.h>
  30#include <linux/security.h>
  31#include <linux/hugetlb.h>
  32
  33static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
  34
  35enum userfaultfd_state {
  36        UFFD_STATE_WAIT_API,
  37        UFFD_STATE_RUNNING,
  38};
  39
  40/*
  41 * Start with fault_pending_wqh and fault_wqh so they're more likely
  42 * to be in the same cacheline.
  43 */
  44struct userfaultfd_ctx {
  45        /* waitqueue head for the pending (i.e. not read) userfaults */
  46        wait_queue_head_t fault_pending_wqh;
  47        /* waitqueue head for the userfaults */
  48        wait_queue_head_t fault_wqh;
  49        /* waitqueue head for the pseudo fd to wakeup poll/read */
  50        wait_queue_head_t fd_wqh;
  51        /* waitqueue head for events */
  52        wait_queue_head_t event_wqh;
  53        /* a refile sequence protected by fault_pending_wqh lock */
  54        struct seqcount refile_seq;
  55        /* pseudo fd refcounting */
  56        atomic_t refcount;
  57        /* userfaultfd syscall flags */
  58        unsigned int flags;
  59        /* features requested from the userspace */
  60        unsigned int features;
  61        /* state machine */
  62        enum userfaultfd_state state;
  63        /* released */
  64        bool released;
  65        /* memory mappings are changing because of non-cooperative event */
  66        bool mmap_changing;
  67        /* mm with one ore more vmas attached to this userfaultfd_ctx */
  68        struct mm_struct *mm;
  69};
  70
  71struct userfaultfd_fork_ctx {
  72        struct userfaultfd_ctx *orig;
  73        struct userfaultfd_ctx *new;
  74        struct list_head list;
  75};
  76
  77struct userfaultfd_unmap_ctx {
  78        struct userfaultfd_ctx *ctx;
  79        unsigned long start;
  80        unsigned long end;
  81        struct list_head list;
  82};
  83
  84struct userfaultfd_wait_queue {
  85        struct uffd_msg msg;
  86        wait_queue_entry_t wq;
  87        struct userfaultfd_ctx *ctx;
  88        bool waken;
  89};
  90
  91struct userfaultfd_wake_range {
  92        unsigned long start;
  93        unsigned long len;
  94};
  95
  96static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
  97                                     int wake_flags, void *key)
  98{
  99        struct userfaultfd_wake_range *range = key;
 100        int ret;
 101        struct userfaultfd_wait_queue *uwq;
 102        unsigned long start, len;
 103
 104        uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
 105        ret = 0;
 106        /* len == 0 means wake all */
 107        start = range->start;
 108        len = range->len;
 109        if (len && (start > uwq->msg.arg.pagefault.address ||
 110                    start + len <= uwq->msg.arg.pagefault.address))
 111                goto out;
 112        WRITE_ONCE(uwq->waken, true);
 113        /*
 114         * The Program-Order guarantees provided by the scheduler
 115         * ensure uwq->waken is visible before the task is woken.
 116         */
 117        ret = wake_up_state(wq->private, mode);
 118        if (ret) {
 119                /*
 120                 * Wake only once, autoremove behavior.
 121                 *
 122                 * After the effect of list_del_init is visible to the other
 123                 * CPUs, the waitqueue may disappear from under us, see the
 124                 * !list_empty_careful() in handle_userfault().
 125                 *
 126                 * try_to_wake_up() has an implicit smp_mb(), and the
 127                 * wq->private is read before calling the extern function
 128                 * "wake_up_state" (which in turns calls try_to_wake_up).
 129                 */
 130                list_del_init(&wq->entry);
 131        }
 132out:
 133        return ret;
 134}
 135
 136/**
 137 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
 138 * context.
 139 * @ctx: [in] Pointer to the userfaultfd context.
 140 */
 141static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
 142{
 143        if (!atomic_inc_not_zero(&ctx->refcount))
 144                BUG();
 145}
 146
 147/**
 148 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
 149 * context.
 150 * @ctx: [in] Pointer to userfaultfd context.
 151 *
 152 * The userfaultfd context reference must have been previously acquired either
 153 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
 154 */
 155static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
 156{
 157        if (atomic_dec_and_test(&ctx->refcount)) {
 158                VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
 159                VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
 160                VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
 161                VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
 162                VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
 163                VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
 164                VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
 165                VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
 166                mmdrop(ctx->mm);
 167                kmem_cache_free(userfaultfd_ctx_cachep, ctx);
 168        }
 169}
 170
 171static inline void msg_init(struct uffd_msg *msg)
 172{
 173        BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
 174        /*
 175         * Must use memset to zero out the paddings or kernel data is
 176         * leaked to userland.
 177         */
 178        memset(msg, 0, sizeof(struct uffd_msg));
 179}
 180
 181static inline struct uffd_msg userfault_msg(unsigned long address,
 182                                            unsigned int flags,
 183                                            unsigned long reason,
 184                                            unsigned int features)
 185{
 186        struct uffd_msg msg;
 187        msg_init(&msg);
 188        msg.event = UFFD_EVENT_PAGEFAULT;
 189        msg.arg.pagefault.address = address;
 190        if (flags & FAULT_FLAG_WRITE)
 191                /*
 192                 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
 193                 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
 194                 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
 195                 * was a read fault, otherwise if set it means it's
 196                 * a write fault.
 197                 */
 198                msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
 199        if (reason & VM_UFFD_WP)
 200                /*
 201                 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
 202                 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
 203                 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
 204                 * a missing fault, otherwise if set it means it's a
 205                 * write protect fault.
 206                 */
 207                msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
 208        if (features & UFFD_FEATURE_THREAD_ID)
 209                msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
 210        return msg;
 211}
 212
 213#ifdef CONFIG_HUGETLB_PAGE
 214/*
 215 * Same functionality as userfaultfd_must_wait below with modifications for
 216 * hugepmd ranges.
 217 */
 218static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
 219                                         struct vm_area_struct *vma,
 220                                         unsigned long address,
 221                                         unsigned long flags,
 222                                         unsigned long reason)
 223{
 224        struct mm_struct *mm = ctx->mm;
 225        pte_t *ptep, pte;
 226        bool ret = true;
 227
 228        VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
 229
 230        ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
 231
 232        if (!ptep)
 233                goto out;
 234
 235        ret = false;
 236        pte = huge_ptep_get(ptep);
 237
 238        /*
 239         * Lockless access: we're in a wait_event so it's ok if it
 240         * changes under us.
 241         */
 242        if (huge_pte_none(pte))
 243                ret = true;
 244        if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
 245                ret = true;
 246out:
 247        return ret;
 248}
 249#else
 250static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
 251                                         struct vm_area_struct *vma,
 252                                         unsigned long address,
 253                                         unsigned long flags,
 254                                         unsigned long reason)
 255{
 256        return false;   /* should never get here */
 257}
 258#endif /* CONFIG_HUGETLB_PAGE */
 259
 260/*
 261 * Verify the pagetables are still not ok after having reigstered into
 262 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
 263 * userfault that has already been resolved, if userfaultfd_read and
 264 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
 265 * threads.
 266 */
 267static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
 268                                         unsigned long address,
 269                                         unsigned long flags,
 270                                         unsigned long reason)
 271{
 272        struct mm_struct *mm = ctx->mm;
 273        pgd_t *pgd;
 274        p4d_t *p4d;
 275        pud_t *pud;
 276        pmd_t *pmd, _pmd;
 277        pte_t *pte;
 278        bool ret = true;
 279
 280        VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
 281
 282        pgd = pgd_offset(mm, address);
 283        if (!pgd_present(*pgd))
 284                goto out;
 285        p4d = p4d_offset(pgd, address);
 286        if (!p4d_present(*p4d))
 287                goto out;
 288        pud = pud_offset(p4d, address);
 289        if (!pud_present(*pud))
 290                goto out;
 291        pmd = pmd_offset(pud, address);
 292        /*
 293         * READ_ONCE must function as a barrier with narrower scope
 294         * and it must be equivalent to:
 295         *      _pmd = *pmd; barrier();
 296         *
 297         * This is to deal with the instability (as in
 298         * pmd_trans_unstable) of the pmd.
 299         */
 300        _pmd = READ_ONCE(*pmd);
 301        if (pmd_none(_pmd))
 302                goto out;
 303
 304        ret = false;
 305        if (!pmd_present(_pmd))
 306                goto out;
 307
 308        if (pmd_trans_huge(_pmd))
 309                goto out;
 310
 311        /*
 312         * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
 313         * and use the standard pte_offset_map() instead of parsing _pmd.
 314         */
 315        pte = pte_offset_map(pmd, address);
 316        /*
 317         * Lockless access: we're in a wait_event so it's ok if it
 318         * changes under us.
 319         */
 320        if (pte_none(*pte))
 321                ret = true;
 322        pte_unmap(pte);
 323
 324out:
 325        return ret;
 326}
 327
 328/*
 329 * The locking rules involved in returning VM_FAULT_RETRY depending on
 330 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
 331 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
 332 * recommendation in __lock_page_or_retry is not an understatement.
 333 *
 334 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
 335 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
 336 * not set.
 337 *
 338 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
 339 * set, VM_FAULT_RETRY can still be returned if and only if there are
 340 * fatal_signal_pending()s, and the mmap_sem must be released before
 341 * returning it.
 342 */
 343vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
 344{
 345        struct mm_struct *mm = vmf->vma->vm_mm;
 346        struct userfaultfd_ctx *ctx;
 347        struct userfaultfd_wait_queue uwq;
 348        vm_fault_t ret = VM_FAULT_SIGBUS;
 349        bool must_wait, return_to_userland;
 350        long blocking_state;
 351
 352        /*
 353         * We don't do userfault handling for the final child pid update.
 354         *
 355         * We also don't do userfault handling during
 356         * coredumping. hugetlbfs has the special
 357         * follow_hugetlb_page() to skip missing pages in the
 358         * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
 359         * the no_page_table() helper in follow_page_mask(), but the
 360         * shmem_vm_ops->fault method is invoked even during
 361         * coredumping without mmap_sem and it ends up here.
 362         */
 363        if (current->flags & (PF_EXITING|PF_DUMPCORE))
 364                goto out;
 365
 366        /*
 367         * Coredumping runs without mmap_sem so we can only check that
 368         * the mmap_sem is held, if PF_DUMPCORE was not set.
 369         */
 370        WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
 371
 372        ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
 373        if (!ctx)
 374                goto out;
 375
 376        BUG_ON(ctx->mm != mm);
 377
 378        VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
 379        VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
 380
 381        if (ctx->features & UFFD_FEATURE_SIGBUS)
 382                goto out;
 383
 384        /*
 385         * If it's already released don't get it. This avoids to loop
 386         * in __get_user_pages if userfaultfd_release waits on the
 387         * caller of handle_userfault to release the mmap_sem.
 388         */
 389        if (unlikely(READ_ONCE(ctx->released))) {
 390                /*
 391                 * Don't return VM_FAULT_SIGBUS in this case, so a non
 392                 * cooperative manager can close the uffd after the
 393                 * last UFFDIO_COPY, without risking to trigger an
 394                 * involuntary SIGBUS if the process was starting the
 395                 * userfaultfd while the userfaultfd was still armed
 396                 * (but after the last UFFDIO_COPY). If the uffd
 397                 * wasn't already closed when the userfault reached
 398                 * this point, that would normally be solved by
 399                 * userfaultfd_must_wait returning 'false'.
 400                 *
 401                 * If we were to return VM_FAULT_SIGBUS here, the non
 402                 * cooperative manager would be instead forced to
 403                 * always call UFFDIO_UNREGISTER before it can safely
 404                 * close the uffd.
 405                 */
 406                ret = VM_FAULT_NOPAGE;
 407                goto out;
 408        }
 409
 410        /*
 411         * Check that we can return VM_FAULT_RETRY.
 412         *
 413         * NOTE: it should become possible to return VM_FAULT_RETRY
 414         * even if FAULT_FLAG_TRIED is set without leading to gup()
 415         * -EBUSY failures, if the userfaultfd is to be extended for
 416         * VM_UFFD_WP tracking and we intend to arm the userfault
 417         * without first stopping userland access to the memory. For
 418         * VM_UFFD_MISSING userfaults this is enough for now.
 419         */
 420        if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
 421                /*
 422                 * Validate the invariant that nowait must allow retry
 423                 * to be sure not to return SIGBUS erroneously on
 424                 * nowait invocations.
 425                 */
 426                BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
 427#ifdef CONFIG_DEBUG_VM
 428                if (printk_ratelimit()) {
 429                        printk(KERN_WARNING
 430                               "FAULT_FLAG_ALLOW_RETRY missing %x\n",
 431                               vmf->flags);
 432                        dump_stack();
 433                }
 434#endif
 435                goto out;
 436        }
 437
 438        /*
 439         * Handle nowait, not much to do other than tell it to retry
 440         * and wait.
 441         */
 442        ret = VM_FAULT_RETRY;
 443        if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
 444                goto out;
 445
 446        /* take the reference before dropping the mmap_sem */
 447        userfaultfd_ctx_get(ctx);
 448
 449        init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
 450        uwq.wq.private = current;
 451        uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
 452                        ctx->features);
 453        uwq.ctx = ctx;
 454        uwq.waken = false;
 455
 456        return_to_userland =
 457                (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
 458                (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
 459        blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
 460                         TASK_KILLABLE;
 461
 462        spin_lock(&ctx->fault_pending_wqh.lock);
 463        /*
 464         * After the __add_wait_queue the uwq is visible to userland
 465         * through poll/read().
 466         */
 467        __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
 468        /*
 469         * The smp_mb() after __set_current_state prevents the reads
 470         * following the spin_unlock to happen before the list_add in
 471         * __add_wait_queue.
 472         */
 473        set_current_state(blocking_state);
 474        spin_unlock(&ctx->fault_pending_wqh.lock);
 475
 476        if (!is_vm_hugetlb_page(vmf->vma))
 477                must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
 478                                                  reason);
 479        else
 480                must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
 481                                                       vmf->address,
 482                                                       vmf->flags, reason);
 483        up_read(&mm->mmap_sem);
 484
 485        if (likely(must_wait && !READ_ONCE(ctx->released) &&
 486                   (return_to_userland ? !signal_pending(current) :
 487                    !fatal_signal_pending(current)))) {
 488                wake_up_poll(&ctx->fd_wqh, EPOLLIN);
 489                schedule();
 490                ret |= VM_FAULT_MAJOR;
 491
 492                /*
 493                 * False wakeups can orginate even from rwsem before
 494                 * up_read() however userfaults will wait either for a
 495                 * targeted wakeup on the specific uwq waitqueue from
 496                 * wake_userfault() or for signals or for uffd
 497                 * release.
 498                 */
 499                while (!READ_ONCE(uwq.waken)) {
 500                        /*
 501                         * This needs the full smp_store_mb()
 502                         * guarantee as the state write must be
 503                         * visible to other CPUs before reading
 504                         * uwq.waken from other CPUs.
 505                         */
 506                        set_current_state(blocking_state);
 507                        if (READ_ONCE(uwq.waken) ||
 508                            READ_ONCE(ctx->released) ||
 509                            (return_to_userland ? signal_pending(current) :
 510                             fatal_signal_pending(current)))
 511                                break;
 512                        schedule();
 513                }
 514        }
 515
 516        __set_current_state(TASK_RUNNING);
 517
 518        if (return_to_userland) {
 519                if (signal_pending(current) &&
 520                    !fatal_signal_pending(current)) {
 521                        /*
 522                         * If we got a SIGSTOP or SIGCONT and this is
 523                         * a normal userland page fault, just let
 524                         * userland return so the signal will be
 525                         * handled and gdb debugging works.  The page
 526                         * fault code immediately after we return from
 527                         * this function is going to release the
 528                         * mmap_sem and it's not depending on it
 529                         * (unlike gup would if we were not to return
 530                         * VM_FAULT_RETRY).
 531                         *
 532                         * If a fatal signal is pending we still take
 533                         * the streamlined VM_FAULT_RETRY failure path
 534                         * and there's no need to retake the mmap_sem
 535                         * in such case.
 536                         */
 537                        down_read(&mm->mmap_sem);
 538                        ret = VM_FAULT_NOPAGE;
 539                }
 540        }
 541
 542        /*
 543         * Here we race with the list_del; list_add in
 544         * userfaultfd_ctx_read(), however because we don't ever run
 545         * list_del_init() to refile across the two lists, the prev
 546         * and next pointers will never point to self. list_add also
 547         * would never let any of the two pointers to point to
 548         * self. So list_empty_careful won't risk to see both pointers
 549         * pointing to self at any time during the list refile. The
 550         * only case where list_del_init() is called is the full
 551         * removal in the wake function and there we don't re-list_add
 552         * and it's fine not to block on the spinlock. The uwq on this
 553         * kernel stack can be released after the list_del_init.
 554         */
 555        if (!list_empty_careful(&uwq.wq.entry)) {
 556                spin_lock(&ctx->fault_pending_wqh.lock);
 557                /*
 558                 * No need of list_del_init(), the uwq on the stack
 559                 * will be freed shortly anyway.
 560                 */
 561                list_del(&uwq.wq.entry);
 562                spin_unlock(&ctx->fault_pending_wqh.lock);
 563        }
 564
 565        /*
 566         * ctx may go away after this if the userfault pseudo fd is
 567         * already released.
 568         */
 569        userfaultfd_ctx_put(ctx);
 570
 571out:
 572        return ret;
 573}
 574
 575static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
 576                                              struct userfaultfd_wait_queue *ewq)
 577{
 578        struct userfaultfd_ctx *release_new_ctx;
 579
 580        if (WARN_ON_ONCE(current->flags & PF_EXITING))
 581                goto out;
 582
 583        ewq->ctx = ctx;
 584        init_waitqueue_entry(&ewq->wq, current);
 585        release_new_ctx = NULL;
 586
 587        spin_lock(&ctx->event_wqh.lock);
 588        /*
 589         * After the __add_wait_queue the uwq is visible to userland
 590         * through poll/read().
 591         */
 592        __add_wait_queue(&ctx->event_wqh, &ewq->wq);
 593        for (;;) {
 594                set_current_state(TASK_KILLABLE);
 595                if (ewq->msg.event == 0)
 596                        break;
 597                if (READ_ONCE(ctx->released) ||
 598                    fatal_signal_pending(current)) {
 599                        /*
 600                         * &ewq->wq may be queued in fork_event, but
 601                         * __remove_wait_queue ignores the head
 602                         * parameter. It would be a problem if it
 603                         * didn't.
 604                         */
 605                        __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
 606                        if (ewq->msg.event == UFFD_EVENT_FORK) {
 607                                struct userfaultfd_ctx *new;
 608
 609                                new = (struct userfaultfd_ctx *)
 610                                        (unsigned long)
 611                                        ewq->msg.arg.reserved.reserved1;
 612                                release_new_ctx = new;
 613                        }
 614                        break;
 615                }
 616
 617                spin_unlock(&ctx->event_wqh.lock);
 618
 619                wake_up_poll(&ctx->fd_wqh, EPOLLIN);
 620                schedule();
 621
 622                spin_lock(&ctx->event_wqh.lock);
 623        }
 624        __set_current_state(TASK_RUNNING);
 625        spin_unlock(&ctx->event_wqh.lock);
 626
 627        if (release_new_ctx) {
 628                struct vm_area_struct *vma;
 629                struct mm_struct *mm = release_new_ctx->mm;
 630
 631                /* the various vma->vm_userfaultfd_ctx still points to it */
 632                down_write(&mm->mmap_sem);
 633                /* no task can run (and in turn coredump) yet */
 634                VM_WARN_ON(!mmget_still_valid(mm));
 635                for (vma = mm->mmap; vma; vma = vma->vm_next)
 636                        if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
 637                                vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 638                                vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
 639                        }
 640                up_write(&mm->mmap_sem);
 641
 642                userfaultfd_ctx_put(release_new_ctx);
 643        }
 644
 645        /*
 646         * ctx may go away after this if the userfault pseudo fd is
 647         * already released.
 648         */
 649out:
 650        WRITE_ONCE(ctx->mmap_changing, false);
 651        userfaultfd_ctx_put(ctx);
 652}
 653
 654static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
 655                                       struct userfaultfd_wait_queue *ewq)
 656{
 657        ewq->msg.event = 0;
 658        wake_up_locked(&ctx->event_wqh);
 659        __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
 660}
 661
 662int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
 663{
 664        struct userfaultfd_ctx *ctx = NULL, *octx;
 665        struct userfaultfd_fork_ctx *fctx;
 666
 667        octx = vma->vm_userfaultfd_ctx.ctx;
 668        if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
 669                vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 670                vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
 671                return 0;
 672        }
 673
 674        list_for_each_entry(fctx, fcs, list)
 675                if (fctx->orig == octx) {
 676                        ctx = fctx->new;
 677                        break;
 678                }
 679
 680        if (!ctx) {
 681                fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
 682                if (!fctx)
 683                        return -ENOMEM;
 684
 685                ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
 686                if (!ctx) {
 687                        kfree(fctx);
 688                        return -ENOMEM;
 689                }
 690
 691                atomic_set(&ctx->refcount, 1);
 692                ctx->flags = octx->flags;
 693                ctx->state = UFFD_STATE_RUNNING;
 694                ctx->features = octx->features;
 695                ctx->released = false;
 696                ctx->mmap_changing = false;
 697                ctx->mm = vma->vm_mm;
 698                mmgrab(ctx->mm);
 699
 700                userfaultfd_ctx_get(octx);
 701                WRITE_ONCE(octx->mmap_changing, true);
 702                fctx->orig = octx;
 703                fctx->new = ctx;
 704                list_add_tail(&fctx->list, fcs);
 705        }
 706
 707        vma->vm_userfaultfd_ctx.ctx = ctx;
 708        return 0;
 709}
 710
 711static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
 712{
 713        struct userfaultfd_ctx *ctx = fctx->orig;
 714        struct userfaultfd_wait_queue ewq;
 715
 716        msg_init(&ewq.msg);
 717
 718        ewq.msg.event = UFFD_EVENT_FORK;
 719        ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
 720
 721        userfaultfd_event_wait_completion(ctx, &ewq);
 722}
 723
 724void dup_userfaultfd_complete(struct list_head *fcs)
 725{
 726        struct userfaultfd_fork_ctx *fctx, *n;
 727
 728        list_for_each_entry_safe(fctx, n, fcs, list) {
 729                dup_fctx(fctx);
 730                list_del(&fctx->list);
 731                kfree(fctx);
 732        }
 733}
 734
 735void mremap_userfaultfd_prep(struct vm_area_struct *vma,
 736                             struct vm_userfaultfd_ctx *vm_ctx)
 737{
 738        struct userfaultfd_ctx *ctx;
 739
 740        ctx = vma->vm_userfaultfd_ctx.ctx;
 741
 742        if (!ctx)
 743                return;
 744
 745        if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
 746                vm_ctx->ctx = ctx;
 747                userfaultfd_ctx_get(ctx);
 748                WRITE_ONCE(ctx->mmap_changing, true);
 749        } else {
 750                /* Drop uffd context if remap feature not enabled */
 751                vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 752                vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
 753        }
 754}
 755
 756void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
 757                                 unsigned long from, unsigned long to,
 758                                 unsigned long len)
 759{
 760        struct userfaultfd_ctx *ctx = vm_ctx->ctx;
 761        struct userfaultfd_wait_queue ewq;
 762
 763        if (!ctx)
 764                return;
 765
 766        if (to & ~PAGE_MASK) {
 767                userfaultfd_ctx_put(ctx);
 768                return;
 769        }
 770
 771        msg_init(&ewq.msg);
 772
 773        ewq.msg.event = UFFD_EVENT_REMAP;
 774        ewq.msg.arg.remap.from = from;
 775        ewq.msg.arg.remap.to = to;
 776        ewq.msg.arg.remap.len = len;
 777
 778        userfaultfd_event_wait_completion(ctx, &ewq);
 779}
 780
 781bool userfaultfd_remove(struct vm_area_struct *vma,
 782                        unsigned long start, unsigned long end)
 783{
 784        struct mm_struct *mm = vma->vm_mm;
 785        struct userfaultfd_ctx *ctx;
 786        struct userfaultfd_wait_queue ewq;
 787
 788        ctx = vma->vm_userfaultfd_ctx.ctx;
 789        if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
 790                return true;
 791
 792        userfaultfd_ctx_get(ctx);
 793        WRITE_ONCE(ctx->mmap_changing, true);
 794        up_read(&mm->mmap_sem);
 795
 796        msg_init(&ewq.msg);
 797
 798        ewq.msg.event = UFFD_EVENT_REMOVE;
 799        ewq.msg.arg.remove.start = start;
 800        ewq.msg.arg.remove.end = end;
 801
 802        userfaultfd_event_wait_completion(ctx, &ewq);
 803
 804        return false;
 805}
 806
 807static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
 808                          unsigned long start, unsigned long end)
 809{
 810        struct userfaultfd_unmap_ctx *unmap_ctx;
 811
 812        list_for_each_entry(unmap_ctx, unmaps, list)
 813                if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
 814                    unmap_ctx->end == end)
 815                        return true;
 816
 817        return false;
 818}
 819
 820int userfaultfd_unmap_prep(struct vm_area_struct *vma,
 821                           unsigned long start, unsigned long end,
 822                           struct list_head *unmaps)
 823{
 824        for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
 825                struct userfaultfd_unmap_ctx *unmap_ctx;
 826                struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
 827
 828                if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
 829                    has_unmap_ctx(ctx, unmaps, start, end))
 830                        continue;
 831
 832                unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
 833                if (!unmap_ctx)
 834                        return -ENOMEM;
 835
 836                userfaultfd_ctx_get(ctx);
 837                WRITE_ONCE(ctx->mmap_changing, true);
 838                unmap_ctx->ctx = ctx;
 839                unmap_ctx->start = start;
 840                unmap_ctx->end = end;
 841                list_add_tail(&unmap_ctx->list, unmaps);
 842        }
 843
 844        return 0;
 845}
 846
 847void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
 848{
 849        struct userfaultfd_unmap_ctx *ctx, *n;
 850        struct userfaultfd_wait_queue ewq;
 851
 852        list_for_each_entry_safe(ctx, n, uf, list) {
 853                msg_init(&ewq.msg);
 854
 855                ewq.msg.event = UFFD_EVENT_UNMAP;
 856                ewq.msg.arg.remove.start = ctx->start;
 857                ewq.msg.arg.remove.end = ctx->end;
 858
 859                userfaultfd_event_wait_completion(ctx->ctx, &ewq);
 860
 861                list_del(&ctx->list);
 862                kfree(ctx);
 863        }
 864}
 865
 866static int userfaultfd_release(struct inode *inode, struct file *file)
 867{
 868        struct userfaultfd_ctx *ctx = file->private_data;
 869        struct mm_struct *mm = ctx->mm;
 870        struct vm_area_struct *vma, *prev;
 871        /* len == 0 means wake all */
 872        struct userfaultfd_wake_range range = { .len = 0, };
 873        unsigned long new_flags;
 874        bool still_valid;
 875
 876        WRITE_ONCE(ctx->released, true);
 877
 878        if (!mmget_not_zero(mm))
 879                goto wakeup;
 880
 881        /*
 882         * Flush page faults out of all CPUs. NOTE: all page faults
 883         * must be retried without returning VM_FAULT_SIGBUS if
 884         * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
 885         * changes while handle_userfault released the mmap_sem. So
 886         * it's critical that released is set to true (above), before
 887         * taking the mmap_sem for writing.
 888         */
 889        down_write(&mm->mmap_sem);
 890        still_valid = mmget_still_valid(mm);
 891        prev = NULL;
 892        for (vma = mm->mmap; vma; vma = vma->vm_next) {
 893                cond_resched();
 894                BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
 895                       !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
 896                if (vma->vm_userfaultfd_ctx.ctx != ctx) {
 897                        prev = vma;
 898                        continue;
 899                }
 900                new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
 901                if (still_valid) {
 902                        prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
 903                                         new_flags, vma->anon_vma,
 904                                         vma->vm_file, vma->vm_pgoff,
 905                                         vma_policy(vma),
 906                                         NULL_VM_UFFD_CTX);
 907                        if (prev)
 908                                vma = prev;
 909                        else
 910                                prev = vma;
 911                }
 912                vma->vm_flags = new_flags;
 913                vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 914        }
 915        up_write(&mm->mmap_sem);
 916        mmput(mm);
 917wakeup:
 918        /*
 919         * After no new page faults can wait on this fault_*wqh, flush
 920         * the last page faults that may have been already waiting on
 921         * the fault_*wqh.
 922         */
 923        spin_lock(&ctx->fault_pending_wqh.lock);
 924        __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
 925        __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
 926        spin_unlock(&ctx->fault_pending_wqh.lock);
 927
 928        /* Flush pending events that may still wait on event_wqh */
 929        wake_up_all(&ctx->event_wqh);
 930
 931        wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
 932        userfaultfd_ctx_put(ctx);
 933        return 0;
 934}
 935
 936/* fault_pending_wqh.lock must be hold by the caller */
 937static inline struct userfaultfd_wait_queue *find_userfault_in(
 938                wait_queue_head_t *wqh)
 939{
 940        wait_queue_entry_t *wq;
 941        struct userfaultfd_wait_queue *uwq;
 942
 943        lockdep_assert_held(&wqh->lock);
 944
 945        uwq = NULL;
 946        if (!waitqueue_active(wqh))
 947                goto out;
 948        /* walk in reverse to provide FIFO behavior to read userfaults */
 949        wq = list_last_entry(&wqh->head, typeof(*wq), entry);
 950        uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
 951out:
 952        return uwq;
 953}
 954
 955static inline struct userfaultfd_wait_queue *find_userfault(
 956                struct userfaultfd_ctx *ctx)
 957{
 958        return find_userfault_in(&ctx->fault_pending_wqh);
 959}
 960
 961static inline struct userfaultfd_wait_queue *find_userfault_evt(
 962                struct userfaultfd_ctx *ctx)
 963{
 964        return find_userfault_in(&ctx->event_wqh);
 965}
 966
 967static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
 968{
 969        struct userfaultfd_ctx *ctx = file->private_data;
 970        __poll_t ret;
 971
 972        poll_wait(file, &ctx->fd_wqh, wait);
 973
 974        switch (ctx->state) {
 975        case UFFD_STATE_WAIT_API:
 976                return EPOLLERR;
 977        case UFFD_STATE_RUNNING:
 978                /*
 979                 * poll() never guarantees that read won't block.
 980                 * userfaults can be waken before they're read().
 981                 */
 982                if (unlikely(!(file->f_flags & O_NONBLOCK)))
 983                        return EPOLLERR;
 984                /*
 985                 * lockless access to see if there are pending faults
 986                 * __pollwait last action is the add_wait_queue but
 987                 * the spin_unlock would allow the waitqueue_active to
 988                 * pass above the actual list_add inside
 989                 * add_wait_queue critical section. So use a full
 990                 * memory barrier to serialize the list_add write of
 991                 * add_wait_queue() with the waitqueue_active read
 992                 * below.
 993                 */
 994                ret = 0;
 995                smp_mb();
 996                if (waitqueue_active(&ctx->fault_pending_wqh))
 997                        ret = EPOLLIN;
 998                else if (waitqueue_active(&ctx->event_wqh))
 999                        ret = EPOLLIN;
1000
1001                return ret;
1002        default:
1003                WARN_ON_ONCE(1);
1004                return EPOLLERR;
1005        }
1006}
1007
1008static const struct file_operations userfaultfd_fops;
1009
1010static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
1011                                  struct userfaultfd_ctx *new,
1012                                  struct uffd_msg *msg)
1013{
1014        int fd;
1015
1016        fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
1017                              O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
1018        if (fd < 0)
1019                return fd;
1020
1021        msg->arg.reserved.reserved1 = 0;
1022        msg->arg.fork.ufd = fd;
1023        return 0;
1024}
1025
1026static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1027                                    struct uffd_msg *msg)
1028{
1029        ssize_t ret;
1030        DECLARE_WAITQUEUE(wait, current);
1031        struct userfaultfd_wait_queue *uwq;
1032        /*
1033         * Handling fork event requires sleeping operations, so
1034         * we drop the event_wqh lock, then do these ops, then
1035         * lock it back and wake up the waiter. While the lock is
1036         * dropped the ewq may go away so we keep track of it
1037         * carefully.
1038         */
1039        LIST_HEAD(fork_event);
1040        struct userfaultfd_ctx *fork_nctx = NULL;
1041
1042        /* always take the fd_wqh lock before the fault_pending_wqh lock */
1043        spin_lock_irq(&ctx->fd_wqh.lock);
1044        __add_wait_queue(&ctx->fd_wqh, &wait);
1045        for (;;) {
1046                set_current_state(TASK_INTERRUPTIBLE);
1047                spin_lock(&ctx->fault_pending_wqh.lock);
1048                uwq = find_userfault(ctx);
1049                if (uwq) {
1050                        /*
1051                         * Use a seqcount to repeat the lockless check
1052                         * in wake_userfault() to avoid missing
1053                         * wakeups because during the refile both
1054                         * waitqueue could become empty if this is the
1055                         * only userfault.
1056                         */
1057                        write_seqcount_begin(&ctx->refile_seq);
1058
1059                        /*
1060                         * The fault_pending_wqh.lock prevents the uwq
1061                         * to disappear from under us.
1062                         *
1063                         * Refile this userfault from
1064                         * fault_pending_wqh to fault_wqh, it's not
1065                         * pending anymore after we read it.
1066                         *
1067                         * Use list_del() by hand (as
1068                         * userfaultfd_wake_function also uses
1069                         * list_del_init() by hand) to be sure nobody
1070                         * changes __remove_wait_queue() to use
1071                         * list_del_init() in turn breaking the
1072                         * !list_empty_careful() check in
1073                         * handle_userfault(). The uwq->wq.head list
1074                         * must never be empty at any time during the
1075                         * refile, or the waitqueue could disappear
1076                         * from under us. The "wait_queue_head_t"
1077                         * parameter of __remove_wait_queue() is unused
1078                         * anyway.
1079                         */
1080                        list_del(&uwq->wq.entry);
1081                        __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1082
1083                        write_seqcount_end(&ctx->refile_seq);
1084
1085                        /* careful to always initialize msg if ret == 0 */
1086                        *msg = uwq->msg;
1087                        spin_unlock(&ctx->fault_pending_wqh.lock);
1088                        ret = 0;
1089                        break;
1090                }
1091                spin_unlock(&ctx->fault_pending_wqh.lock);
1092
1093                spin_lock(&ctx->event_wqh.lock);
1094                uwq = find_userfault_evt(ctx);
1095                if (uwq) {
1096                        *msg = uwq->msg;
1097
1098                        if (uwq->msg.event == UFFD_EVENT_FORK) {
1099                                fork_nctx = (struct userfaultfd_ctx *)
1100                                        (unsigned long)
1101                                        uwq->msg.arg.reserved.reserved1;
1102                                list_move(&uwq->wq.entry, &fork_event);
1103                                /*
1104                                 * fork_nctx can be freed as soon as
1105                                 * we drop the lock, unless we take a
1106                                 * reference on it.
1107                                 */
1108                                userfaultfd_ctx_get(fork_nctx);
1109                                spin_unlock(&ctx->event_wqh.lock);
1110                                ret = 0;
1111                                break;
1112                        }
1113
1114                        userfaultfd_event_complete(ctx, uwq);
1115                        spin_unlock(&ctx->event_wqh.lock);
1116                        ret = 0;
1117                        break;
1118                }
1119                spin_unlock(&ctx->event_wqh.lock);
1120
1121                if (signal_pending(current)) {
1122                        ret = -ERESTARTSYS;
1123                        break;
1124                }
1125                if (no_wait) {
1126                        ret = -EAGAIN;
1127                        break;
1128                }
1129                spin_unlock_irq(&ctx->fd_wqh.lock);
1130                schedule();
1131                spin_lock_irq(&ctx->fd_wqh.lock);
1132        }
1133        __remove_wait_queue(&ctx->fd_wqh, &wait);
1134        __set_current_state(TASK_RUNNING);
1135        spin_unlock_irq(&ctx->fd_wqh.lock);
1136
1137        if (!ret && msg->event == UFFD_EVENT_FORK) {
1138                ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1139                spin_lock(&ctx->event_wqh.lock);
1140                if (!list_empty(&fork_event)) {
1141                        /*
1142                         * The fork thread didn't abort, so we can
1143                         * drop the temporary refcount.
1144                         */
1145                        userfaultfd_ctx_put(fork_nctx);
1146
1147                        uwq = list_first_entry(&fork_event,
1148                                               typeof(*uwq),
1149                                               wq.entry);
1150                        /*
1151                         * If fork_event list wasn't empty and in turn
1152                         * the event wasn't already released by fork
1153                         * (the event is allocated on fork kernel
1154                         * stack), put the event back to its place in
1155                         * the event_wq. fork_event head will be freed
1156                         * as soon as we return so the event cannot
1157                         * stay queued there no matter the current
1158                         * "ret" value.
1159                         */
1160                        list_del(&uwq->wq.entry);
1161                        __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1162
1163                        /*
1164                         * Leave the event in the waitqueue and report
1165                         * error to userland if we failed to resolve
1166                         * the userfault fork.
1167                         */
1168                        if (likely(!ret))
1169                                userfaultfd_event_complete(ctx, uwq);
1170                } else {
1171                        /*
1172                         * Here the fork thread aborted and the
1173                         * refcount from the fork thread on fork_nctx
1174                         * has already been released. We still hold
1175                         * the reference we took before releasing the
1176                         * lock above. If resolve_userfault_fork
1177                         * failed we've to drop it because the
1178                         * fork_nctx has to be freed in such case. If
1179                         * it succeeded we'll hold it because the new
1180                         * uffd references it.
1181                         */
1182                        if (ret)
1183                                userfaultfd_ctx_put(fork_nctx);
1184                }
1185                spin_unlock(&ctx->event_wqh.lock);
1186        }
1187
1188        return ret;
1189}
1190
1191static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1192                                size_t count, loff_t *ppos)
1193{
1194        struct userfaultfd_ctx *ctx = file->private_data;
1195        ssize_t _ret, ret = 0;
1196        struct uffd_msg msg;
1197        int no_wait = file->f_flags & O_NONBLOCK;
1198
1199        if (ctx->state == UFFD_STATE_WAIT_API)
1200                return -EINVAL;
1201
1202        for (;;) {
1203                if (count < sizeof(msg))
1204                        return ret ? ret : -EINVAL;
1205                _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1206                if (_ret < 0)
1207                        return ret ? ret : _ret;
1208                if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1209                        return ret ? ret : -EFAULT;
1210                ret += sizeof(msg);
1211                buf += sizeof(msg);
1212                count -= sizeof(msg);
1213                /*
1214                 * Allow to read more than one fault at time but only
1215                 * block if waiting for the very first one.
1216                 */
1217                no_wait = O_NONBLOCK;
1218        }
1219}
1220
1221static void __wake_userfault(struct userfaultfd_ctx *ctx,
1222                             struct userfaultfd_wake_range *range)
1223{
1224        spin_lock(&ctx->fault_pending_wqh.lock);
1225        /* wake all in the range and autoremove */
1226        if (waitqueue_active(&ctx->fault_pending_wqh))
1227                __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1228                                     range);
1229        if (waitqueue_active(&ctx->fault_wqh))
1230                __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
1231        spin_unlock(&ctx->fault_pending_wqh.lock);
1232}
1233
1234static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1235                                           struct userfaultfd_wake_range *range)
1236{
1237        unsigned seq;
1238        bool need_wakeup;
1239
1240        /*
1241         * To be sure waitqueue_active() is not reordered by the CPU
1242         * before the pagetable update, use an explicit SMP memory
1243         * barrier here. PT lock release or up_read(mmap_sem) still
1244         * have release semantics that can allow the
1245         * waitqueue_active() to be reordered before the pte update.
1246         */
1247        smp_mb();
1248
1249        /*
1250         * Use waitqueue_active because it's very frequent to
1251         * change the address space atomically even if there are no
1252         * userfaults yet. So we take the spinlock only when we're
1253         * sure we've userfaults to wake.
1254         */
1255        do {
1256                seq = read_seqcount_begin(&ctx->refile_seq);
1257                need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1258                        waitqueue_active(&ctx->fault_wqh);
1259                cond_resched();
1260        } while (read_seqcount_retry(&ctx->refile_seq, seq));
1261        if (need_wakeup)
1262                __wake_userfault(ctx, range);
1263}
1264
1265static __always_inline int validate_range(struct mm_struct *mm,
1266                                          __u64 start, __u64 len)
1267{
1268        __u64 task_size = mm->task_size;
1269
1270        if (start & ~PAGE_MASK)
1271                return -EINVAL;
1272        if (len & ~PAGE_MASK)
1273                return -EINVAL;
1274        if (!len)
1275                return -EINVAL;
1276        if (start < mmap_min_addr)
1277                return -EINVAL;
1278        if (start >= task_size)
1279                return -EINVAL;
1280        if (len > task_size - start)
1281                return -EINVAL;
1282        return 0;
1283}
1284
1285static inline bool vma_can_userfault(struct vm_area_struct *vma)
1286{
1287        return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1288                vma_is_shmem(vma);
1289}
1290
1291static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1292                                unsigned long arg)
1293{
1294        struct mm_struct *mm = ctx->mm;
1295        struct vm_area_struct *vma, *prev, *cur;
1296        int ret;
1297        struct uffdio_register uffdio_register;
1298        struct uffdio_register __user *user_uffdio_register;
1299        unsigned long vm_flags, new_flags;
1300        bool found;
1301        bool basic_ioctls;
1302        unsigned long start, end, vma_end;
1303
1304        user_uffdio_register = (struct uffdio_register __user *) arg;
1305
1306        ret = -EFAULT;
1307        if (copy_from_user(&uffdio_register, user_uffdio_register,
1308                           sizeof(uffdio_register)-sizeof(__u64)))
1309                goto out;
1310
1311        ret = -EINVAL;
1312        if (!uffdio_register.mode)
1313                goto out;
1314        if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1315                                     UFFDIO_REGISTER_MODE_WP))
1316                goto out;
1317        vm_flags = 0;
1318        if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1319                vm_flags |= VM_UFFD_MISSING;
1320        if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1321                vm_flags |= VM_UFFD_WP;
1322                /*
1323                 * FIXME: remove the below error constraint by
1324                 * implementing the wprotect tracking mode.
1325                 */
1326                ret = -EINVAL;
1327                goto out;
1328        }
1329
1330        ret = validate_range(mm, uffdio_register.range.start,
1331                             uffdio_register.range.len);
1332        if (ret)
1333                goto out;
1334
1335        start = uffdio_register.range.start;
1336        end = start + uffdio_register.range.len;
1337
1338        ret = -ENOMEM;
1339        if (!mmget_not_zero(mm))
1340                goto out;
1341
1342        down_write(&mm->mmap_sem);
1343        if (!mmget_still_valid(mm))
1344                goto out_unlock;
1345        vma = find_vma_prev(mm, start, &prev);
1346        if (!vma)
1347                goto out_unlock;
1348
1349        /* check that there's at least one vma in the range */
1350        ret = -EINVAL;
1351        if (vma->vm_start >= end)
1352                goto out_unlock;
1353
1354        /*
1355         * If the first vma contains huge pages, make sure start address
1356         * is aligned to huge page size.
1357         */
1358        if (is_vm_hugetlb_page(vma)) {
1359                unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1360
1361                if (start & (vma_hpagesize - 1))
1362                        goto out_unlock;
1363        }
1364
1365        /*
1366         * Search for not compatible vmas.
1367         */
1368        found = false;
1369        basic_ioctls = false;
1370        for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1371                cond_resched();
1372
1373                BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1374                       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1375
1376                /* check not compatible vmas */
1377                ret = -EINVAL;
1378                if (!vma_can_userfault(cur))
1379                        goto out_unlock;
1380
1381                /*
1382                 * UFFDIO_COPY will fill file holes even without
1383                 * PROT_WRITE. This check enforces that if this is a
1384                 * MAP_SHARED, the process has write permission to the backing
1385                 * file. If VM_MAYWRITE is set it also enforces that on a
1386                 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1387                 * F_WRITE_SEAL can be taken until the vma is destroyed.
1388                 */
1389                ret = -EPERM;
1390                if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1391                        goto out_unlock;
1392
1393                /*
1394                 * If this vma contains ending address, and huge pages
1395                 * check alignment.
1396                 */
1397                if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1398                    end > cur->vm_start) {
1399                        unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1400
1401                        ret = -EINVAL;
1402
1403                        if (end & (vma_hpagesize - 1))
1404                                goto out_unlock;
1405                }
1406
1407                /*
1408                 * Check that this vma isn't already owned by a
1409                 * different userfaultfd. We can't allow more than one
1410                 * userfaultfd to own a single vma simultaneously or we
1411                 * wouldn't know which one to deliver the userfaults to.
1412                 */
1413                ret = -EBUSY;
1414                if (cur->vm_userfaultfd_ctx.ctx &&
1415                    cur->vm_userfaultfd_ctx.ctx != ctx)
1416                        goto out_unlock;
1417
1418                /*
1419                 * Note vmas containing huge pages
1420                 */
1421                if (is_vm_hugetlb_page(cur))
1422                        basic_ioctls = true;
1423
1424                found = true;
1425        }
1426        BUG_ON(!found);
1427
1428        if (vma->vm_start < start)
1429                prev = vma;
1430
1431        ret = 0;
1432        do {
1433                cond_resched();
1434
1435                BUG_ON(!vma_can_userfault(vma));
1436                BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1437                       vma->vm_userfaultfd_ctx.ctx != ctx);
1438                WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1439
1440                /*
1441                 * Nothing to do: this vma is already registered into this
1442                 * userfaultfd and with the right tracking mode too.
1443                 */
1444                if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1445                    (vma->vm_flags & vm_flags) == vm_flags)
1446                        goto skip;
1447
1448                if (vma->vm_start > start)
1449                        start = vma->vm_start;
1450                vma_end = min(end, vma->vm_end);
1451
1452                new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1453                prev = vma_merge(mm, prev, start, vma_end, new_flags,
1454                                 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1455                                 vma_policy(vma),
1456                                 ((struct vm_userfaultfd_ctx){ ctx }));
1457                if (prev) {
1458                        vma = prev;
1459                        goto next;
1460                }
1461                if (vma->vm_start < start) {
1462                        ret = split_vma(mm, vma, start, 1);
1463                        if (ret)
1464                                break;
1465                }
1466                if (vma->vm_end > end) {
1467                        ret = split_vma(mm, vma, end, 0);
1468                        if (ret)
1469                                break;
1470                }
1471        next:
1472                /*
1473                 * In the vma_merge() successful mprotect-like case 8:
1474                 * the next vma was merged into the current one and
1475                 * the current one has not been updated yet.
1476                 */
1477                vma->vm_flags = new_flags;
1478                vma->vm_userfaultfd_ctx.ctx = ctx;
1479
1480        skip:
1481                prev = vma;
1482                start = vma->vm_end;
1483                vma = vma->vm_next;
1484        } while (vma && vma->vm_start < end);
1485out_unlock:
1486        up_write(&mm->mmap_sem);
1487        mmput(mm);
1488        if (!ret) {
1489                /*
1490                 * Now that we scanned all vmas we can already tell
1491                 * userland which ioctls methods are guaranteed to
1492                 * succeed on this range.
1493                 */
1494                if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1495                             UFFD_API_RANGE_IOCTLS,
1496                             &user_uffdio_register->ioctls))
1497                        ret = -EFAULT;
1498        }
1499out:
1500        return ret;
1501}
1502
1503static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1504                                  unsigned long arg)
1505{
1506        struct mm_struct *mm = ctx->mm;
1507        struct vm_area_struct *vma, *prev, *cur;
1508        int ret;
1509        struct uffdio_range uffdio_unregister;
1510        unsigned long new_flags;
1511        bool found;
1512        unsigned long start, end, vma_end;
1513        const void __user *buf = (void __user *)arg;
1514
1515        ret = -EFAULT;
1516        if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1517                goto out;
1518
1519        ret = validate_range(mm, uffdio_unregister.start,
1520                             uffdio_unregister.len);
1521        if (ret)
1522                goto out;
1523
1524        start = uffdio_unregister.start;
1525        end = start + uffdio_unregister.len;
1526
1527        ret = -ENOMEM;
1528        if (!mmget_not_zero(mm))
1529                goto out;
1530
1531        down_write(&mm->mmap_sem);
1532        if (!mmget_still_valid(mm))
1533                goto out_unlock;
1534        vma = find_vma_prev(mm, start, &prev);
1535        if (!vma)
1536                goto out_unlock;
1537
1538        /* check that there's at least one vma in the range */
1539        ret = -EINVAL;
1540        if (vma->vm_start >= end)
1541                goto out_unlock;
1542
1543        /*
1544         * If the first vma contains huge pages, make sure start address
1545         * is aligned to huge page size.
1546         */
1547        if (is_vm_hugetlb_page(vma)) {
1548                unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1549
1550                if (start & (vma_hpagesize - 1))
1551                        goto out_unlock;
1552        }
1553
1554        /*
1555         * Search for not compatible vmas.
1556         */
1557        found = false;
1558        ret = -EINVAL;
1559        for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1560                cond_resched();
1561
1562                BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1563                       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1564
1565                /*
1566                 * Check not compatible vmas, not strictly required
1567                 * here as not compatible vmas cannot have an
1568                 * userfaultfd_ctx registered on them, but this
1569                 * provides for more strict behavior to notice
1570                 * unregistration errors.
1571                 */
1572                if (!vma_can_userfault(cur))
1573                        goto out_unlock;
1574
1575                found = true;
1576        }
1577        BUG_ON(!found);
1578
1579        if (vma->vm_start < start)
1580                prev = vma;
1581
1582        ret = 0;
1583        do {
1584                cond_resched();
1585
1586                BUG_ON(!vma_can_userfault(vma));
1587
1588                /*
1589                 * Nothing to do: this vma is already registered into this
1590                 * userfaultfd and with the right tracking mode too.
1591                 */
1592                if (!vma->vm_userfaultfd_ctx.ctx)
1593                        goto skip;
1594
1595                WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1596
1597                if (vma->vm_start > start)
1598                        start = vma->vm_start;
1599                vma_end = min(end, vma->vm_end);
1600
1601                if (userfaultfd_missing(vma)) {
1602                        /*
1603                         * Wake any concurrent pending userfault while
1604                         * we unregister, so they will not hang
1605                         * permanently and it avoids userland to call
1606                         * UFFDIO_WAKE explicitly.
1607                         */
1608                        struct userfaultfd_wake_range range;
1609                        range.start = start;
1610                        range.len = vma_end - start;
1611                        wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1612                }
1613
1614                new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1615                prev = vma_merge(mm, prev, start, vma_end, new_flags,
1616                                 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1617                                 vma_policy(vma),
1618                                 NULL_VM_UFFD_CTX);
1619                if (prev) {
1620                        vma = prev;
1621                        goto next;
1622                }
1623                if (vma->vm_start < start) {
1624                        ret = split_vma(mm, vma, start, 1);
1625                        if (ret)
1626                                break;
1627                }
1628                if (vma->vm_end > end) {
1629                        ret = split_vma(mm, vma, end, 0);
1630                        if (ret)
1631                                break;
1632                }
1633        next:
1634                /*
1635                 * In the vma_merge() successful mprotect-like case 8:
1636                 * the next vma was merged into the current one and
1637                 * the current one has not been updated yet.
1638                 */
1639                vma->vm_flags = new_flags;
1640                vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1641
1642        skip:
1643                prev = vma;
1644                start = vma->vm_end;
1645                vma = vma->vm_next;
1646        } while (vma && vma->vm_start < end);
1647out_unlock:
1648        up_write(&mm->mmap_sem);
1649        mmput(mm);
1650out:
1651        return ret;
1652}
1653
1654/*
1655 * userfaultfd_wake may be used in combination with the
1656 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1657 */
1658static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1659                            unsigned long arg)
1660{
1661        int ret;
1662        struct uffdio_range uffdio_wake;
1663        struct userfaultfd_wake_range range;
1664        const void __user *buf = (void __user *)arg;
1665
1666        ret = -EFAULT;
1667        if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1668                goto out;
1669
1670        ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1671        if (ret)
1672                goto out;
1673
1674        range.start = uffdio_wake.start;
1675        range.len = uffdio_wake.len;
1676
1677        /*
1678         * len == 0 means wake all and we don't want to wake all here,
1679         * so check it again to be sure.
1680         */
1681        VM_BUG_ON(!range.len);
1682
1683        wake_userfault(ctx, &range);
1684        ret = 0;
1685
1686out:
1687        return ret;
1688}
1689
1690static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1691                            unsigned long arg)
1692{
1693        __s64 ret;
1694        struct uffdio_copy uffdio_copy;
1695        struct uffdio_copy __user *user_uffdio_copy;
1696        struct userfaultfd_wake_range range;
1697
1698        user_uffdio_copy = (struct uffdio_copy __user *) arg;
1699
1700        ret = -EAGAIN;
1701        if (READ_ONCE(ctx->mmap_changing))
1702                goto out;
1703
1704        ret = -EFAULT;
1705        if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1706                           /* don't copy "copy" last field */
1707                           sizeof(uffdio_copy)-sizeof(__s64)))
1708                goto out;
1709
1710        ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1711        if (ret)
1712                goto out;
1713        /*
1714         * double check for wraparound just in case. copy_from_user()
1715         * will later check uffdio_copy.src + uffdio_copy.len to fit
1716         * in the userland range.
1717         */
1718        ret = -EINVAL;
1719        if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1720                goto out;
1721        if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1722                goto out;
1723        if (mmget_not_zero(ctx->mm)) {
1724                ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1725                                   uffdio_copy.len, &ctx->mmap_changing);
1726                mmput(ctx->mm);
1727        } else {
1728                return -ESRCH;
1729        }
1730        if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1731                return -EFAULT;
1732        if (ret < 0)
1733                goto out;
1734        BUG_ON(!ret);
1735        /* len == 0 would wake all */
1736        range.len = ret;
1737        if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1738                range.start = uffdio_copy.dst;
1739                wake_userfault(ctx, &range);
1740        }
1741        ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1742out:
1743        return ret;
1744}
1745
1746static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1747                                unsigned long arg)
1748{
1749        __s64 ret;
1750        struct uffdio_zeropage uffdio_zeropage;
1751        struct uffdio_zeropage __user *user_uffdio_zeropage;
1752        struct userfaultfd_wake_range range;
1753
1754        user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1755
1756        ret = -EAGAIN;
1757        if (READ_ONCE(ctx->mmap_changing))
1758                goto out;
1759
1760        ret = -EFAULT;
1761        if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1762                           /* don't copy "zeropage" last field */
1763                           sizeof(uffdio_zeropage)-sizeof(__s64)))
1764                goto out;
1765
1766        ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1767                             uffdio_zeropage.range.len);
1768        if (ret)
1769                goto out;
1770        ret = -EINVAL;
1771        if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1772                goto out;
1773
1774        if (mmget_not_zero(ctx->mm)) {
1775                ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1776                                     uffdio_zeropage.range.len,
1777                                     &ctx->mmap_changing);
1778                mmput(ctx->mm);
1779        } else {
1780                return -ESRCH;
1781        }
1782        if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1783                return -EFAULT;
1784        if (ret < 0)
1785                goto out;
1786        /* len == 0 would wake all */
1787        BUG_ON(!ret);
1788        range.len = ret;
1789        if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1790                range.start = uffdio_zeropage.range.start;
1791                wake_userfault(ctx, &range);
1792        }
1793        ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1794out:
1795        return ret;
1796}
1797
1798static inline unsigned int uffd_ctx_features(__u64 user_features)
1799{
1800        /*
1801         * For the current set of features the bits just coincide
1802         */
1803        return (unsigned int)user_features;
1804}
1805
1806/*
1807 * userland asks for a certain API version and we return which bits
1808 * and ioctl commands are implemented in this kernel for such API
1809 * version or -EINVAL if unknown.
1810 */
1811static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1812                           unsigned long arg)
1813{
1814        struct uffdio_api uffdio_api;
1815        void __user *buf = (void __user *)arg;
1816        int ret;
1817        __u64 features;
1818
1819        ret = -EINVAL;
1820        if (ctx->state != UFFD_STATE_WAIT_API)
1821                goto out;
1822        ret = -EFAULT;
1823        if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1824                goto out;
1825        features = uffdio_api.features;
1826        if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1827                memset(&uffdio_api, 0, sizeof(uffdio_api));
1828                if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1829                        goto out;
1830                ret = -EINVAL;
1831                goto out;
1832        }
1833        /* report all available features and ioctls to userland */
1834        uffdio_api.features = UFFD_API_FEATURES;
1835        uffdio_api.ioctls = UFFD_API_IOCTLS;
1836        ret = -EFAULT;
1837        if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1838                goto out;
1839        ctx->state = UFFD_STATE_RUNNING;
1840        /* only enable the requested features for this uffd context */
1841        ctx->features = uffd_ctx_features(features);
1842        ret = 0;
1843out:
1844        return ret;
1845}
1846
1847static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1848                              unsigned long arg)
1849{
1850        int ret = -EINVAL;
1851        struct userfaultfd_ctx *ctx = file->private_data;
1852
1853        if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1854                return -EINVAL;
1855
1856        switch(cmd) {
1857        case UFFDIO_API:
1858                ret = userfaultfd_api(ctx, arg);
1859                break;
1860        case UFFDIO_REGISTER:
1861                ret = userfaultfd_register(ctx, arg);
1862                break;
1863        case UFFDIO_UNREGISTER:
1864                ret = userfaultfd_unregister(ctx, arg);
1865                break;
1866        case UFFDIO_WAKE:
1867                ret = userfaultfd_wake(ctx, arg);
1868                break;
1869        case UFFDIO_COPY:
1870                ret = userfaultfd_copy(ctx, arg);
1871                break;
1872        case UFFDIO_ZEROPAGE:
1873                ret = userfaultfd_zeropage(ctx, arg);
1874                break;
1875        }
1876        return ret;
1877}
1878
1879#ifdef CONFIG_PROC_FS
1880static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1881{
1882        struct userfaultfd_ctx *ctx = f->private_data;
1883        wait_queue_entry_t *wq;
1884        unsigned long pending = 0, total = 0;
1885
1886        spin_lock(&ctx->fault_pending_wqh.lock);
1887        list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1888                pending++;
1889                total++;
1890        }
1891        list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1892                total++;
1893        }
1894        spin_unlock(&ctx->fault_pending_wqh.lock);
1895
1896        /*
1897         * If more protocols will be added, there will be all shown
1898         * separated by a space. Like this:
1899         *      protocols: aa:... bb:...
1900         */
1901        seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1902                   pending, total, UFFD_API, ctx->features,
1903                   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1904}
1905#endif
1906
1907static const struct file_operations userfaultfd_fops = {
1908#ifdef CONFIG_PROC_FS
1909        .show_fdinfo    = userfaultfd_show_fdinfo,
1910#endif
1911        .release        = userfaultfd_release,
1912        .poll           = userfaultfd_poll,
1913        .read           = userfaultfd_read,
1914        .unlocked_ioctl = userfaultfd_ioctl,
1915        .compat_ioctl   = userfaultfd_ioctl,
1916        .llseek         = noop_llseek,
1917};
1918
1919static void init_once_userfaultfd_ctx(void *mem)
1920{
1921        struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1922
1923        init_waitqueue_head(&ctx->fault_pending_wqh);
1924        init_waitqueue_head(&ctx->fault_wqh);
1925        init_waitqueue_head(&ctx->event_wqh);
1926        init_waitqueue_head(&ctx->fd_wqh);
1927        seqcount_init(&ctx->refile_seq);
1928}
1929
1930SYSCALL_DEFINE1(userfaultfd, int, flags)
1931{
1932        struct userfaultfd_ctx *ctx;
1933        int fd;
1934
1935        BUG_ON(!current->mm);
1936
1937        /* Check the UFFD_* constants for consistency.  */
1938        BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1939        BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1940
1941        if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1942                return -EINVAL;
1943
1944        ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1945        if (!ctx)
1946                return -ENOMEM;
1947
1948        atomic_set(&ctx->refcount, 1);
1949        ctx->flags = flags;
1950        ctx->features = 0;
1951        ctx->state = UFFD_STATE_WAIT_API;
1952        ctx->released = false;
1953        ctx->mmap_changing = false;
1954        ctx->mm = current->mm;
1955        /* prevent the mm struct to be freed */
1956        mmgrab(ctx->mm);
1957
1958        fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1959                              O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1960        if (fd < 0) {
1961                mmdrop(ctx->mm);
1962                kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1963        }
1964        return fd;
1965}
1966
1967static int __init userfaultfd_init(void)
1968{
1969        userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1970                                                sizeof(struct userfaultfd_ctx),
1971                                                0,
1972                                                SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1973                                                init_once_userfaultfd_ctx);
1974        return 0;
1975}
1976__initcall(userfaultfd_init);
1977