1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __LINUX_GFP_H 3#define __LINUX_GFP_H 4 5#include <linux/mmdebug.h> 6#include <linux/mmzone.h> 7#include <linux/stddef.h> 8#include <linux/linkage.h> 9#include <linux/topology.h> 10 11struct vm_area_struct; 12 13/* 14 * In case of changes, please don't forget to update 15 * include/trace/events/mmflags.h and tools/perf/builtin-kmem.c 16 */ 17 18/* Plain integer GFP bitmasks. Do not use this directly. */ 19#define ___GFP_DMA 0x01u 20#define ___GFP_HIGHMEM 0x02u 21#define ___GFP_DMA32 0x04u 22#define ___GFP_MOVABLE 0x08u 23#define ___GFP_RECLAIMABLE 0x10u 24#define ___GFP_HIGH 0x20u 25#define ___GFP_IO 0x40u 26#define ___GFP_FS 0x80u 27#define ___GFP_WRITE 0x100u 28#define ___GFP_NOWARN 0x200u 29#define ___GFP_RETRY_MAYFAIL 0x400u 30#define ___GFP_NOFAIL 0x800u 31#define ___GFP_NORETRY 0x1000u 32#define ___GFP_MEMALLOC 0x2000u 33#define ___GFP_COMP 0x4000u 34#define ___GFP_ZERO 0x8000u 35#define ___GFP_NOMEMALLOC 0x10000u 36#define ___GFP_HARDWALL 0x20000u 37#define ___GFP_THISNODE 0x40000u 38#define ___GFP_ATOMIC 0x80000u 39#define ___GFP_ACCOUNT 0x100000u 40#define ___GFP_DIRECT_RECLAIM 0x200000u 41#define ___GFP_KSWAPD_RECLAIM 0x400000u 42#ifdef CONFIG_LOCKDEP 43#define ___GFP_NOLOCKDEP 0x800000u 44#else 45#define ___GFP_NOLOCKDEP 0 46#endif 47/* If the above are modified, __GFP_BITS_SHIFT may need updating */ 48 49/* 50 * Physical address zone modifiers (see linux/mmzone.h - low four bits) 51 * 52 * Do not put any conditional on these. If necessary modify the definitions 53 * without the underscores and use them consistently. The definitions here may 54 * be used in bit comparisons. 55 */ 56#define __GFP_DMA ((__force gfp_t)___GFP_DMA) 57#define __GFP_HIGHMEM ((__force gfp_t)___GFP_HIGHMEM) 58#define __GFP_DMA32 ((__force gfp_t)___GFP_DMA32) 59#define __GFP_MOVABLE ((__force gfp_t)___GFP_MOVABLE) /* ZONE_MOVABLE allowed */ 60#define GFP_ZONEMASK (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE) 61 62/* 63 * Page mobility and placement hints 64 * 65 * These flags provide hints about how mobile the page is. Pages with similar 66 * mobility are placed within the same pageblocks to minimise problems due 67 * to external fragmentation. 68 * 69 * __GFP_MOVABLE (also a zone modifier) indicates that the page can be 70 * moved by page migration during memory compaction or can be reclaimed. 71 * 72 * __GFP_RECLAIMABLE is used for slab allocations that specify 73 * SLAB_RECLAIM_ACCOUNT and whose pages can be freed via shrinkers. 74 * 75 * __GFP_WRITE indicates the caller intends to dirty the page. Where possible, 76 * these pages will be spread between local zones to avoid all the dirty 77 * pages being in one zone (fair zone allocation policy). 78 * 79 * __GFP_HARDWALL enforces the cpuset memory allocation policy. 80 * 81 * __GFP_THISNODE forces the allocation to be satisified from the requested 82 * node with no fallbacks or placement policy enforcements. 83 * 84 * __GFP_ACCOUNT causes the allocation to be accounted to kmemcg. 85 */ 86#define __GFP_RECLAIMABLE ((__force gfp_t)___GFP_RECLAIMABLE) 87#define __GFP_WRITE ((__force gfp_t)___GFP_WRITE) 88#define __GFP_HARDWALL ((__force gfp_t)___GFP_HARDWALL) 89#define __GFP_THISNODE ((__force gfp_t)___GFP_THISNODE) 90#define __GFP_ACCOUNT ((__force gfp_t)___GFP_ACCOUNT) 91 92/* 93 * Watermark modifiers -- controls access to emergency reserves 94 * 95 * __GFP_HIGH indicates that the caller is high-priority and that granting 96 * the request is necessary before the system can make forward progress. 97 * For example, creating an IO context to clean pages. 98 * 99 * __GFP_ATOMIC indicates that the caller cannot reclaim or sleep and is 100 * high priority. Users are typically interrupt handlers. This may be 101 * used in conjunction with __GFP_HIGH 102 * 103 * __GFP_MEMALLOC allows access to all memory. This should only be used when 104 * the caller guarantees the allocation will allow more memory to be freed 105 * very shortly e.g. process exiting or swapping. Users either should 106 * be the MM or co-ordinating closely with the VM (e.g. swap over NFS). 107 * 108 * __GFP_NOMEMALLOC is used to explicitly forbid access to emergency reserves. 109 * This takes precedence over the __GFP_MEMALLOC flag if both are set. 110 */ 111#define __GFP_ATOMIC ((__force gfp_t)___GFP_ATOMIC) 112#define __GFP_HIGH ((__force gfp_t)___GFP_HIGH) 113#define __GFP_MEMALLOC ((__force gfp_t)___GFP_MEMALLOC) 114#define __GFP_NOMEMALLOC ((__force gfp_t)___GFP_NOMEMALLOC) 115 116/* 117 * Reclaim modifiers 118 * 119 * __GFP_IO can start physical IO. 120 * 121 * __GFP_FS can call down to the low-level FS. Clearing the flag avoids the 122 * allocator recursing into the filesystem which might already be holding 123 * locks. 124 * 125 * __GFP_DIRECT_RECLAIM indicates that the caller may enter direct reclaim. 126 * This flag can be cleared to avoid unnecessary delays when a fallback 127 * option is available. 128 * 129 * __GFP_KSWAPD_RECLAIM indicates that the caller wants to wake kswapd when 130 * the low watermark is reached and have it reclaim pages until the high 131 * watermark is reached. A caller may wish to clear this flag when fallback 132 * options are available and the reclaim is likely to disrupt the system. The 133 * canonical example is THP allocation where a fallback is cheap but 134 * reclaim/compaction may cause indirect stalls. 135 * 136 * __GFP_RECLAIM is shorthand to allow/forbid both direct and kswapd reclaim. 137 * 138 * The default allocator behavior depends on the request size. We have a concept 139 * of so called costly allocations (with order > PAGE_ALLOC_COSTLY_ORDER). 140 * !costly allocations are too essential to fail so they are implicitly 141 * non-failing by default (with some exceptions like OOM victims might fail so 142 * the caller still has to check for failures) while costly requests try to be 143 * not disruptive and back off even without invoking the OOM killer. 144 * The following three modifiers might be used to override some of these 145 * implicit rules 146 * 147 * __GFP_NORETRY: The VM implementation will try only very lightweight 148 * memory direct reclaim to get some memory under memory pressure (thus 149 * it can sleep). It will avoid disruptive actions like OOM killer. The 150 * caller must handle the failure which is quite likely to happen under 151 * heavy memory pressure. The flag is suitable when failure can easily be 152 * handled at small cost, such as reduced throughput 153 * 154 * __GFP_RETRY_MAYFAIL: The VM implementation will retry memory reclaim 155 * procedures that have previously failed if there is some indication 156 * that progress has been made else where. It can wait for other 157 * tasks to attempt high level approaches to freeing memory such as 158 * compaction (which removes fragmentation) and page-out. 159 * There is still a definite limit to the number of retries, but it is 160 * a larger limit than with __GFP_NORETRY. 161 * Allocations with this flag may fail, but only when there is 162 * genuinely little unused memory. While these allocations do not 163 * directly trigger the OOM killer, their failure indicates that 164 * the system is likely to need to use the OOM killer soon. The 165 * caller must handle failure, but can reasonably do so by failing 166 * a higher-level request, or completing it only in a much less 167 * efficient manner. 168 * If the allocation does fail, and the caller is in a position to 169 * free some non-essential memory, doing so could benefit the system 170 * as a whole. 171 * 172 * __GFP_NOFAIL: The VM implementation _must_ retry infinitely: the caller 173 * cannot handle allocation failures. The allocation could block 174 * indefinitely but will never return with failure. Testing for 175 * failure is pointless. 176 * New users should be evaluated carefully (and the flag should be 177 * used only when there is no reasonable failure policy) but it is 178 * definitely preferable to use the flag rather than opencode endless 179 * loop around allocator. 180 * Using this flag for costly allocations is _highly_ discouraged. 181 */ 182#define __GFP_IO ((__force gfp_t)___GFP_IO) 183#define __GFP_FS ((__force gfp_t)___GFP_FS) 184#define __GFP_DIRECT_RECLAIM ((__force gfp_t)___GFP_DIRECT_RECLAIM) /* Caller can reclaim */ 185#define __GFP_KSWAPD_RECLAIM ((__force gfp_t)___GFP_KSWAPD_RECLAIM) /* kswapd can wake */ 186#define __GFP_RECLAIM ((__force gfp_t)(___GFP_DIRECT_RECLAIM|___GFP_KSWAPD_RECLAIM)) 187#define __GFP_RETRY_MAYFAIL ((__force gfp_t)___GFP_RETRY_MAYFAIL) 188#define __GFP_NOFAIL ((__force gfp_t)___GFP_NOFAIL) 189#define __GFP_NORETRY ((__force gfp_t)___GFP_NORETRY) 190 191/* 192 * Action modifiers 193 * 194 * __GFP_NOWARN suppresses allocation failure reports. 195 * 196 * __GFP_COMP address compound page metadata. 197 * 198 * __GFP_ZERO returns a zeroed page on success. 199 */ 200#define __GFP_NOWARN ((__force gfp_t)___GFP_NOWARN) 201#define __GFP_COMP ((__force gfp_t)___GFP_COMP) 202#define __GFP_ZERO ((__force gfp_t)___GFP_ZERO) 203 204/* Disable lockdep for GFP context tracking */ 205#define __GFP_NOLOCKDEP ((__force gfp_t)___GFP_NOLOCKDEP) 206 207/* Room for N __GFP_FOO bits */ 208#define __GFP_BITS_SHIFT (23 + IS_ENABLED(CONFIG_LOCKDEP)) 209#define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1)) 210 211/* 212 * Useful GFP flag combinations that are commonly used. It is recommended 213 * that subsystems start with one of these combinations and then set/clear 214 * __GFP_FOO flags as necessary. 215 * 216 * GFP_ATOMIC users can not sleep and need the allocation to succeed. A lower 217 * watermark is applied to allow access to "atomic reserves" 218 * 219 * GFP_KERNEL is typical for kernel-internal allocations. The caller requires 220 * ZONE_NORMAL or a lower zone for direct access but can direct reclaim. 221 * 222 * GFP_KERNEL_ACCOUNT is the same as GFP_KERNEL, except the allocation is 223 * accounted to kmemcg. 224 * 225 * GFP_NOWAIT is for kernel allocations that should not stall for direct 226 * reclaim, start physical IO or use any filesystem callback. 227 * 228 * GFP_NOIO will use direct reclaim to discard clean pages or slab pages 229 * that do not require the starting of any physical IO. 230 * Please try to avoid using this flag directly and instead use 231 * memalloc_noio_{save,restore} to mark the whole scope which cannot 232 * perform any IO with a short explanation why. All allocation requests 233 * will inherit GFP_NOIO implicitly. 234 * 235 * GFP_NOFS will use direct reclaim but will not use any filesystem interfaces. 236 * Please try to avoid using this flag directly and instead use 237 * memalloc_nofs_{save,restore} to mark the whole scope which cannot/shouldn't 238 * recurse into the FS layer with a short explanation why. All allocation 239 * requests will inherit GFP_NOFS implicitly. 240 * 241 * GFP_USER is for userspace allocations that also need to be directly 242 * accessibly by the kernel or hardware. It is typically used by hardware 243 * for buffers that are mapped to userspace (e.g. graphics) that hardware 244 * still must DMA to. cpuset limits are enforced for these allocations. 245 * 246 * GFP_DMA exists for historical reasons and should be avoided where possible. 247 * The flags indicates that the caller requires that the lowest zone be 248 * used (ZONE_DMA or 16M on x86-64). Ideally, this would be removed but 249 * it would require careful auditing as some users really require it and 250 * others use the flag to avoid lowmem reserves in ZONE_DMA and treat the 251 * lowest zone as a type of emergency reserve. 252 * 253 * GFP_DMA32 is similar to GFP_DMA except that the caller requires a 32-bit 254 * address. 255 * 256 * GFP_HIGHUSER is for userspace allocations that may be mapped to userspace, 257 * do not need to be directly accessible by the kernel but that cannot 258 * move once in use. An example may be a hardware allocation that maps 259 * data directly into userspace but has no addressing limitations. 260 * 261 * GFP_HIGHUSER_MOVABLE is for userspace allocations that the kernel does not 262 * need direct access to but can use kmap() when access is required. They 263 * are expected to be movable via page reclaim or page migration. Typically, 264 * pages on the LRU would also be allocated with GFP_HIGHUSER_MOVABLE. 265 * 266 * GFP_TRANSHUGE and GFP_TRANSHUGE_LIGHT are used for THP allocations. They are 267 * compound allocations that will generally fail quickly if memory is not 268 * available and will not wake kswapd/kcompactd on failure. The _LIGHT 269 * version does not attempt reclaim/compaction at all and is by default used 270 * in page fault path, while the non-light is used by khugepaged. 271 */ 272#define GFP_ATOMIC (__GFP_HIGH|__GFP_ATOMIC|__GFP_KSWAPD_RECLAIM) 273#define GFP_KERNEL (__GFP_RECLAIM | __GFP_IO | __GFP_FS) 274#define GFP_KERNEL_ACCOUNT (GFP_KERNEL | __GFP_ACCOUNT) 275#define GFP_NOWAIT (__GFP_KSWAPD_RECLAIM) 276#define GFP_NOIO (__GFP_RECLAIM) 277#define GFP_NOFS (__GFP_RECLAIM | __GFP_IO) 278#define GFP_USER (__GFP_RECLAIM | __GFP_IO | __GFP_FS | __GFP_HARDWALL) 279#define GFP_DMA __GFP_DMA 280#define GFP_DMA32 __GFP_DMA32 281#define GFP_HIGHUSER (GFP_USER | __GFP_HIGHMEM) 282#define GFP_HIGHUSER_MOVABLE (GFP_HIGHUSER | __GFP_MOVABLE) 283#define GFP_TRANSHUGE_LIGHT ((GFP_HIGHUSER_MOVABLE | __GFP_COMP | \ 284 __GFP_NOMEMALLOC | __GFP_NOWARN) & ~__GFP_RECLAIM) 285#define GFP_TRANSHUGE (GFP_TRANSHUGE_LIGHT | __GFP_DIRECT_RECLAIM) 286 287/* Convert GFP flags to their corresponding migrate type */ 288#define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE) 289#define GFP_MOVABLE_SHIFT 3 290 291static inline int gfpflags_to_migratetype(const gfp_t gfp_flags) 292{ 293 VM_WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK); 294 BUILD_BUG_ON((1UL << GFP_MOVABLE_SHIFT) != ___GFP_MOVABLE); 295 BUILD_BUG_ON((___GFP_MOVABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_MOVABLE); 296 297 if (unlikely(page_group_by_mobility_disabled)) 298 return MIGRATE_UNMOVABLE; 299 300 /* Group based on mobility */ 301 return (gfp_flags & GFP_MOVABLE_MASK) >> GFP_MOVABLE_SHIFT; 302} 303#undef GFP_MOVABLE_MASK 304#undef GFP_MOVABLE_SHIFT 305 306static inline bool gfpflags_allow_blocking(const gfp_t gfp_flags) 307{ 308 return !!(gfp_flags & __GFP_DIRECT_RECLAIM); 309} 310 311#ifdef CONFIG_HIGHMEM 312#define OPT_ZONE_HIGHMEM ZONE_HIGHMEM 313#else 314#define OPT_ZONE_HIGHMEM ZONE_NORMAL 315#endif 316 317#ifdef CONFIG_ZONE_DMA 318#define OPT_ZONE_DMA ZONE_DMA 319#else 320#define OPT_ZONE_DMA ZONE_NORMAL 321#endif 322 323#ifdef CONFIG_ZONE_DMA32 324#define OPT_ZONE_DMA32 ZONE_DMA32 325#else 326#define OPT_ZONE_DMA32 ZONE_NORMAL 327#endif 328 329/* 330 * GFP_ZONE_TABLE is a word size bitstring that is used for looking up the 331 * zone to use given the lowest 4 bits of gfp_t. Entries are GFP_ZONES_SHIFT 332 * bits long and there are 16 of them to cover all possible combinations of 333 * __GFP_DMA, __GFP_DMA32, __GFP_MOVABLE and __GFP_HIGHMEM. 334 * 335 * The zone fallback order is MOVABLE=>HIGHMEM=>NORMAL=>DMA32=>DMA. 336 * But GFP_MOVABLE is not only a zone specifier but also an allocation 337 * policy. Therefore __GFP_MOVABLE plus another zone selector is valid. 338 * Only 1 bit of the lowest 3 bits (DMA,DMA32,HIGHMEM) can be set to "1". 339 * 340 * bit result 341 * ================= 342 * 0x0 => NORMAL 343 * 0x1 => DMA or NORMAL 344 * 0x2 => HIGHMEM or NORMAL 345 * 0x3 => BAD (DMA+HIGHMEM) 346 * 0x4 => DMA32 or NORMAL 347 * 0x5 => BAD (DMA+DMA32) 348 * 0x6 => BAD (HIGHMEM+DMA32) 349 * 0x7 => BAD (HIGHMEM+DMA32+DMA) 350 * 0x8 => NORMAL (MOVABLE+0) 351 * 0x9 => DMA or NORMAL (MOVABLE+DMA) 352 * 0xa => MOVABLE (Movable is valid only if HIGHMEM is set too) 353 * 0xb => BAD (MOVABLE+HIGHMEM+DMA) 354 * 0xc => DMA32 or NORMAL (MOVABLE+DMA32) 355 * 0xd => BAD (MOVABLE+DMA32+DMA) 356 * 0xe => BAD (MOVABLE+DMA32+HIGHMEM) 357 * 0xf => BAD (MOVABLE+DMA32+HIGHMEM+DMA) 358 * 359 * GFP_ZONES_SHIFT must be <= 2 on 32 bit platforms. 360 */ 361 362#if defined(CONFIG_ZONE_DEVICE) && (MAX_NR_ZONES-1) <= 4 363/* ZONE_DEVICE is not a valid GFP zone specifier */ 364#define GFP_ZONES_SHIFT 2 365#else 366#define GFP_ZONES_SHIFT ZONES_SHIFT 367#endif 368 369#if 16 * GFP_ZONES_SHIFT > BITS_PER_LONG 370#error GFP_ZONES_SHIFT too large to create GFP_ZONE_TABLE integer 371#endif 372 373#define GFP_ZONE_TABLE ( \ 374 (ZONE_NORMAL << 0 * GFP_ZONES_SHIFT) \ 375 | (OPT_ZONE_DMA << ___GFP_DMA * GFP_ZONES_SHIFT) \ 376 | (OPT_ZONE_HIGHMEM << ___GFP_HIGHMEM * GFP_ZONES_SHIFT) \ 377 | (OPT_ZONE_DMA32 << ___GFP_DMA32 * GFP_ZONES_SHIFT) \ 378 | (ZONE_NORMAL << ___GFP_MOVABLE * GFP_ZONES_SHIFT) \ 379 | (OPT_ZONE_DMA << (___GFP_MOVABLE | ___GFP_DMA) * GFP_ZONES_SHIFT) \ 380 | (ZONE_MOVABLE << (___GFP_MOVABLE | ___GFP_HIGHMEM) * GFP_ZONES_SHIFT)\ 381 | (OPT_ZONE_DMA32 << (___GFP_MOVABLE | ___GFP_DMA32) * GFP_ZONES_SHIFT)\ 382) 383 384/* 385 * GFP_ZONE_BAD is a bitmap for all combinations of __GFP_DMA, __GFP_DMA32 386 * __GFP_HIGHMEM and __GFP_MOVABLE that are not permitted. One flag per 387 * entry starting with bit 0. Bit is set if the combination is not 388 * allowed. 389 */ 390#define GFP_ZONE_BAD ( \ 391 1 << (___GFP_DMA | ___GFP_HIGHMEM) \ 392 | 1 << (___GFP_DMA | ___GFP_DMA32) \ 393 | 1 << (___GFP_DMA32 | ___GFP_HIGHMEM) \ 394 | 1 << (___GFP_DMA | ___GFP_DMA32 | ___GFP_HIGHMEM) \ 395 | 1 << (___GFP_MOVABLE | ___GFP_HIGHMEM | ___GFP_DMA) \ 396 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA) \ 397 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_HIGHMEM) \ 398 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA | ___GFP_HIGHMEM) \ 399) 400 401static inline enum zone_type gfp_zone(gfp_t flags) 402{ 403 enum zone_type z; 404 int bit = (__force int) (flags & GFP_ZONEMASK); 405 406 z = (GFP_ZONE_TABLE >> (bit * GFP_ZONES_SHIFT)) & 407 ((1 << GFP_ZONES_SHIFT) - 1); 408 VM_BUG_ON((GFP_ZONE_BAD >> bit) & 1); 409 return z; 410} 411 412/* 413 * There is only one page-allocator function, and two main namespaces to 414 * it. The alloc_page*() variants return 'struct page *' and as such 415 * can allocate highmem pages, the *get*page*() variants return 416 * virtual kernel addresses to the allocated page(s). 417 */ 418 419static inline int gfp_zonelist(gfp_t flags) 420{ 421#ifdef CONFIG_NUMA 422 if (unlikely(flags & __GFP_THISNODE)) 423 return ZONELIST_NOFALLBACK; 424#endif 425 return ZONELIST_FALLBACK; 426} 427 428/* 429 * We get the zone list from the current node and the gfp_mask. 430 * This zone list contains a maximum of MAXNODES*MAX_NR_ZONES zones. 431 * There are two zonelists per node, one for all zones with memory and 432 * one containing just zones from the node the zonelist belongs to. 433 * 434 * For the normal case of non-DISCONTIGMEM systems the NODE_DATA() gets 435 * optimized to &contig_page_data at compile-time. 436 */ 437static inline struct zonelist *node_zonelist(int nid, gfp_t flags) 438{ 439 return NODE_DATA(nid)->node_zonelists + gfp_zonelist(flags); 440} 441 442#ifndef HAVE_ARCH_FREE_PAGE 443static inline void arch_free_page(struct page *page, int order) { } 444#endif 445#ifndef HAVE_ARCH_ALLOC_PAGE 446static inline void arch_alloc_page(struct page *page, int order) { } 447#endif 448 449struct page * 450__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 451 nodemask_t *nodemask); 452 453static inline struct page * 454__alloc_pages(gfp_t gfp_mask, unsigned int order, int preferred_nid) 455{ 456 return __alloc_pages_nodemask(gfp_mask, order, preferred_nid, NULL); 457} 458 459/* 460 * Allocate pages, preferring the node given as nid. The node must be valid and 461 * online. For more general interface, see alloc_pages_node(). 462 */ 463static inline struct page * 464__alloc_pages_node(int nid, gfp_t gfp_mask, unsigned int order) 465{ 466 VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES); 467 VM_WARN_ON((gfp_mask & __GFP_THISNODE) && !node_online(nid)); 468 469 return __alloc_pages(gfp_mask, order, nid); 470} 471 472/* 473 * Allocate pages, preferring the node given as nid. When nid == NUMA_NO_NODE, 474 * prefer the current CPU's closest node. Otherwise node must be valid and 475 * online. 476 */ 477static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask, 478 unsigned int order) 479{ 480 if (nid == NUMA_NO_NODE) 481 nid = numa_mem_id(); 482 483 return __alloc_pages_node(nid, gfp_mask, order); 484} 485 486#ifdef CONFIG_NUMA 487extern struct page *alloc_pages_current(gfp_t gfp_mask, unsigned order); 488 489static inline struct page * 490alloc_pages(gfp_t gfp_mask, unsigned int order) 491{ 492 return alloc_pages_current(gfp_mask, order); 493} 494extern struct page *alloc_pages_vma(gfp_t gfp_mask, int order, 495 struct vm_area_struct *vma, unsigned long addr, 496 int node, bool hugepage); 497#define alloc_hugepage_vma(gfp_mask, vma, addr, order) \ 498 alloc_pages_vma(gfp_mask, order, vma, addr, numa_node_id(), true) 499#else 500#define alloc_pages(gfp_mask, order) \ 501 alloc_pages_node(numa_node_id(), gfp_mask, order) 502#define alloc_pages_vma(gfp_mask, order, vma, addr, node, false)\ 503 alloc_pages(gfp_mask, order) 504#define alloc_hugepage_vma(gfp_mask, vma, addr, order) \ 505 alloc_pages(gfp_mask, order) 506#endif 507#define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0) 508#define alloc_page_vma(gfp_mask, vma, addr) \ 509 alloc_pages_vma(gfp_mask, 0, vma, addr, numa_node_id(), false) 510#define alloc_page_vma_node(gfp_mask, vma, addr, node) \ 511 alloc_pages_vma(gfp_mask, 0, vma, addr, node, false) 512 513extern unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order); 514extern unsigned long get_zeroed_page(gfp_t gfp_mask); 515 516void *alloc_pages_exact(size_t size, gfp_t gfp_mask); 517void free_pages_exact(void *virt, size_t size); 518void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask); 519 520#define __get_free_page(gfp_mask) \ 521 __get_free_pages((gfp_mask), 0) 522 523#define __get_dma_pages(gfp_mask, order) \ 524 __get_free_pages((gfp_mask) | GFP_DMA, (order)) 525 526extern void __free_pages(struct page *page, unsigned int order); 527extern void free_pages(unsigned long addr, unsigned int order); 528extern void free_unref_page(struct page *page); 529extern void free_unref_page_list(struct list_head *list); 530 531struct page_frag_cache; 532extern void __page_frag_cache_drain(struct page *page, unsigned int count); 533extern void *page_frag_alloc(struct page_frag_cache *nc, 534 unsigned int fragsz, gfp_t gfp_mask); 535extern void page_frag_free(void *addr); 536 537#define __free_page(page) __free_pages((page), 0) 538#define free_page(addr) free_pages((addr), 0) 539 540void page_alloc_init(void); 541void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp); 542void drain_all_pages(struct zone *zone); 543void drain_local_pages(struct zone *zone); 544 545void page_alloc_init_late(void); 546 547/* 548 * gfp_allowed_mask is set to GFP_BOOT_MASK during early boot to restrict what 549 * GFP flags are used before interrupts are enabled. Once interrupts are 550 * enabled, it is set to __GFP_BITS_MASK while the system is running. During 551 * hibernation, it is used by PM to avoid I/O during memory allocation while 552 * devices are suspended. 553 */ 554extern gfp_t gfp_allowed_mask; 555 556/* Returns true if the gfp_mask allows use of ALLOC_NO_WATERMARK */ 557bool gfp_pfmemalloc_allowed(gfp_t gfp_mask); 558 559extern void pm_restrict_gfp_mask(void); 560extern void pm_restore_gfp_mask(void); 561 562#ifdef CONFIG_PM_SLEEP 563extern bool pm_suspended_storage(void); 564#else 565static inline bool pm_suspended_storage(void) 566{ 567 return false; 568} 569#endif /* CONFIG_PM_SLEEP */ 570 571#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) 572/* The below functions must be run on a range from a single zone. */ 573extern int alloc_contig_range(unsigned long start, unsigned long end, 574 unsigned migratetype, gfp_t gfp_mask); 575extern void free_contig_range(unsigned long pfn, unsigned nr_pages); 576#endif 577 578#ifdef CONFIG_CMA 579/* CMA stuff */ 580extern void init_cma_reserved_pageblock(struct page *page); 581#endif 582 583#endif /* __LINUX_GFP_H */ 584