linux/include/linux/gfp.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef __LINUX_GFP_H
   3#define __LINUX_GFP_H
   4
   5#include <linux/mmdebug.h>
   6#include <linux/mmzone.h>
   7#include <linux/stddef.h>
   8#include <linux/linkage.h>
   9#include <linux/topology.h>
  10
  11struct vm_area_struct;
  12
  13/*
  14 * In case of changes, please don't forget to update
  15 * include/trace/events/mmflags.h and tools/perf/builtin-kmem.c
  16 */
  17
  18/* Plain integer GFP bitmasks. Do not use this directly. */
  19#define ___GFP_DMA              0x01u
  20#define ___GFP_HIGHMEM          0x02u
  21#define ___GFP_DMA32            0x04u
  22#define ___GFP_MOVABLE          0x08u
  23#define ___GFP_RECLAIMABLE      0x10u
  24#define ___GFP_HIGH             0x20u
  25#define ___GFP_IO               0x40u
  26#define ___GFP_FS               0x80u
  27#define ___GFP_WRITE            0x100u
  28#define ___GFP_NOWARN           0x200u
  29#define ___GFP_RETRY_MAYFAIL    0x400u
  30#define ___GFP_NOFAIL           0x800u
  31#define ___GFP_NORETRY          0x1000u
  32#define ___GFP_MEMALLOC         0x2000u
  33#define ___GFP_COMP             0x4000u
  34#define ___GFP_ZERO             0x8000u
  35#define ___GFP_NOMEMALLOC       0x10000u
  36#define ___GFP_HARDWALL         0x20000u
  37#define ___GFP_THISNODE         0x40000u
  38#define ___GFP_ATOMIC           0x80000u
  39#define ___GFP_ACCOUNT          0x100000u
  40#define ___GFP_DIRECT_RECLAIM   0x200000u
  41#define ___GFP_KSWAPD_RECLAIM   0x400000u
  42#ifdef CONFIG_LOCKDEP
  43#define ___GFP_NOLOCKDEP        0x800000u
  44#else
  45#define ___GFP_NOLOCKDEP        0
  46#endif
  47/* If the above are modified, __GFP_BITS_SHIFT may need updating */
  48
  49/*
  50 * Physical address zone modifiers (see linux/mmzone.h - low four bits)
  51 *
  52 * Do not put any conditional on these. If necessary modify the definitions
  53 * without the underscores and use them consistently. The definitions here may
  54 * be used in bit comparisons.
  55 */
  56#define __GFP_DMA       ((__force gfp_t)___GFP_DMA)
  57#define __GFP_HIGHMEM   ((__force gfp_t)___GFP_HIGHMEM)
  58#define __GFP_DMA32     ((__force gfp_t)___GFP_DMA32)
  59#define __GFP_MOVABLE   ((__force gfp_t)___GFP_MOVABLE)  /* ZONE_MOVABLE allowed */
  60#define GFP_ZONEMASK    (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE)
  61
  62/*
  63 * Page mobility and placement hints
  64 *
  65 * These flags provide hints about how mobile the page is. Pages with similar
  66 * mobility are placed within the same pageblocks to minimise problems due
  67 * to external fragmentation.
  68 *
  69 * __GFP_MOVABLE (also a zone modifier) indicates that the page can be
  70 *   moved by page migration during memory compaction or can be reclaimed.
  71 *
  72 * __GFP_RECLAIMABLE is used for slab allocations that specify
  73 *   SLAB_RECLAIM_ACCOUNT and whose pages can be freed via shrinkers.
  74 *
  75 * __GFP_WRITE indicates the caller intends to dirty the page. Where possible,
  76 *   these pages will be spread between local zones to avoid all the dirty
  77 *   pages being in one zone (fair zone allocation policy).
  78 *
  79 * __GFP_HARDWALL enforces the cpuset memory allocation policy.
  80 *
  81 * __GFP_THISNODE forces the allocation to be satisified from the requested
  82 *   node with no fallbacks or placement policy enforcements.
  83 *
  84 * __GFP_ACCOUNT causes the allocation to be accounted to kmemcg.
  85 */
  86#define __GFP_RECLAIMABLE ((__force gfp_t)___GFP_RECLAIMABLE)
  87#define __GFP_WRITE     ((__force gfp_t)___GFP_WRITE)
  88#define __GFP_HARDWALL   ((__force gfp_t)___GFP_HARDWALL)
  89#define __GFP_THISNODE  ((__force gfp_t)___GFP_THISNODE)
  90#define __GFP_ACCOUNT   ((__force gfp_t)___GFP_ACCOUNT)
  91
  92/*
  93 * Watermark modifiers -- controls access to emergency reserves
  94 *
  95 * __GFP_HIGH indicates that the caller is high-priority and that granting
  96 *   the request is necessary before the system can make forward progress.
  97 *   For example, creating an IO context to clean pages.
  98 *
  99 * __GFP_ATOMIC indicates that the caller cannot reclaim or sleep and is
 100 *   high priority. Users are typically interrupt handlers. This may be
 101 *   used in conjunction with __GFP_HIGH
 102 *
 103 * __GFP_MEMALLOC allows access to all memory. This should only be used when
 104 *   the caller guarantees the allocation will allow more memory to be freed
 105 *   very shortly e.g. process exiting or swapping. Users either should
 106 *   be the MM or co-ordinating closely with the VM (e.g. swap over NFS).
 107 *
 108 * __GFP_NOMEMALLOC is used to explicitly forbid access to emergency reserves.
 109 *   This takes precedence over the __GFP_MEMALLOC flag if both are set.
 110 */
 111#define __GFP_ATOMIC    ((__force gfp_t)___GFP_ATOMIC)
 112#define __GFP_HIGH      ((__force gfp_t)___GFP_HIGH)
 113#define __GFP_MEMALLOC  ((__force gfp_t)___GFP_MEMALLOC)
 114#define __GFP_NOMEMALLOC ((__force gfp_t)___GFP_NOMEMALLOC)
 115
 116/*
 117 * Reclaim modifiers
 118 *
 119 * __GFP_IO can start physical IO.
 120 *
 121 * __GFP_FS can call down to the low-level FS. Clearing the flag avoids the
 122 *   allocator recursing into the filesystem which might already be holding
 123 *   locks.
 124 *
 125 * __GFP_DIRECT_RECLAIM indicates that the caller may enter direct reclaim.
 126 *   This flag can be cleared to avoid unnecessary delays when a fallback
 127 *   option is available.
 128 *
 129 * __GFP_KSWAPD_RECLAIM indicates that the caller wants to wake kswapd when
 130 *   the low watermark is reached and have it reclaim pages until the high
 131 *   watermark is reached. A caller may wish to clear this flag when fallback
 132 *   options are available and the reclaim is likely to disrupt the system. The
 133 *   canonical example is THP allocation where a fallback is cheap but
 134 *   reclaim/compaction may cause indirect stalls.
 135 *
 136 * __GFP_RECLAIM is shorthand to allow/forbid both direct and kswapd reclaim.
 137 *
 138 * The default allocator behavior depends on the request size. We have a concept
 139 * of so called costly allocations (with order > PAGE_ALLOC_COSTLY_ORDER).
 140 * !costly allocations are too essential to fail so they are implicitly
 141 * non-failing by default (with some exceptions like OOM victims might fail so
 142 * the caller still has to check for failures) while costly requests try to be
 143 * not disruptive and back off even without invoking the OOM killer.
 144 * The following three modifiers might be used to override some of these
 145 * implicit rules
 146 *
 147 * __GFP_NORETRY: The VM implementation will try only very lightweight
 148 *   memory direct reclaim to get some memory under memory pressure (thus
 149 *   it can sleep). It will avoid disruptive actions like OOM killer. The
 150 *   caller must handle the failure which is quite likely to happen under
 151 *   heavy memory pressure. The flag is suitable when failure can easily be
 152 *   handled at small cost, such as reduced throughput
 153 *
 154 * __GFP_RETRY_MAYFAIL: The VM implementation will retry memory reclaim
 155 *   procedures that have previously failed if there is some indication
 156 *   that progress has been made else where.  It can wait for other
 157 *   tasks to attempt high level approaches to freeing memory such as
 158 *   compaction (which removes fragmentation) and page-out.
 159 *   There is still a definite limit to the number of retries, but it is
 160 *   a larger limit than with __GFP_NORETRY.
 161 *   Allocations with this flag may fail, but only when there is
 162 *   genuinely little unused memory. While these allocations do not
 163 *   directly trigger the OOM killer, their failure indicates that
 164 *   the system is likely to need to use the OOM killer soon.  The
 165 *   caller must handle failure, but can reasonably do so by failing
 166 *   a higher-level request, or completing it only in a much less
 167 *   efficient manner.
 168 *   If the allocation does fail, and the caller is in a position to
 169 *   free some non-essential memory, doing so could benefit the system
 170 *   as a whole.
 171 *
 172 * __GFP_NOFAIL: The VM implementation _must_ retry infinitely: the caller
 173 *   cannot handle allocation failures. The allocation could block
 174 *   indefinitely but will never return with failure. Testing for
 175 *   failure is pointless.
 176 *   New users should be evaluated carefully (and the flag should be
 177 *   used only when there is no reasonable failure policy) but it is
 178 *   definitely preferable to use the flag rather than opencode endless
 179 *   loop around allocator.
 180 *   Using this flag for costly allocations is _highly_ discouraged.
 181 */
 182#define __GFP_IO        ((__force gfp_t)___GFP_IO)
 183#define __GFP_FS        ((__force gfp_t)___GFP_FS)
 184#define __GFP_DIRECT_RECLAIM    ((__force gfp_t)___GFP_DIRECT_RECLAIM) /* Caller can reclaim */
 185#define __GFP_KSWAPD_RECLAIM    ((__force gfp_t)___GFP_KSWAPD_RECLAIM) /* kswapd can wake */
 186#define __GFP_RECLAIM ((__force gfp_t)(___GFP_DIRECT_RECLAIM|___GFP_KSWAPD_RECLAIM))
 187#define __GFP_RETRY_MAYFAIL     ((__force gfp_t)___GFP_RETRY_MAYFAIL)
 188#define __GFP_NOFAIL    ((__force gfp_t)___GFP_NOFAIL)
 189#define __GFP_NORETRY   ((__force gfp_t)___GFP_NORETRY)
 190
 191/*
 192 * Action modifiers
 193 *
 194 * __GFP_NOWARN suppresses allocation failure reports.
 195 *
 196 * __GFP_COMP address compound page metadata.
 197 *
 198 * __GFP_ZERO returns a zeroed page on success.
 199 */
 200#define __GFP_NOWARN    ((__force gfp_t)___GFP_NOWARN)
 201#define __GFP_COMP      ((__force gfp_t)___GFP_COMP)
 202#define __GFP_ZERO      ((__force gfp_t)___GFP_ZERO)
 203
 204/* Disable lockdep for GFP context tracking */
 205#define __GFP_NOLOCKDEP ((__force gfp_t)___GFP_NOLOCKDEP)
 206
 207/* Room for N __GFP_FOO bits */
 208#define __GFP_BITS_SHIFT (23 + IS_ENABLED(CONFIG_LOCKDEP))
 209#define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1))
 210
 211/*
 212 * Useful GFP flag combinations that are commonly used. It is recommended
 213 * that subsystems start with one of these combinations and then set/clear
 214 * __GFP_FOO flags as necessary.
 215 *
 216 * GFP_ATOMIC users can not sleep and need the allocation to succeed. A lower
 217 *   watermark is applied to allow access to "atomic reserves"
 218 *
 219 * GFP_KERNEL is typical for kernel-internal allocations. The caller requires
 220 *   ZONE_NORMAL or a lower zone for direct access but can direct reclaim.
 221 *
 222 * GFP_KERNEL_ACCOUNT is the same as GFP_KERNEL, except the allocation is
 223 *   accounted to kmemcg.
 224 *
 225 * GFP_NOWAIT is for kernel allocations that should not stall for direct
 226 *   reclaim, start physical IO or use any filesystem callback.
 227 *
 228 * GFP_NOIO will use direct reclaim to discard clean pages or slab pages
 229 *   that do not require the starting of any physical IO.
 230 *   Please try to avoid using this flag directly and instead use
 231 *   memalloc_noio_{save,restore} to mark the whole scope which cannot
 232 *   perform any IO with a short explanation why. All allocation requests
 233 *   will inherit GFP_NOIO implicitly.
 234 *
 235 * GFP_NOFS will use direct reclaim but will not use any filesystem interfaces.
 236 *   Please try to avoid using this flag directly and instead use
 237 *   memalloc_nofs_{save,restore} to mark the whole scope which cannot/shouldn't
 238 *   recurse into the FS layer with a short explanation why. All allocation
 239 *   requests will inherit GFP_NOFS implicitly.
 240 *
 241 * GFP_USER is for userspace allocations that also need to be directly
 242 *   accessibly by the kernel or hardware. It is typically used by hardware
 243 *   for buffers that are mapped to userspace (e.g. graphics) that hardware
 244 *   still must DMA to. cpuset limits are enforced for these allocations.
 245 *
 246 * GFP_DMA exists for historical reasons and should be avoided where possible.
 247 *   The flags indicates that the caller requires that the lowest zone be
 248 *   used (ZONE_DMA or 16M on x86-64). Ideally, this would be removed but
 249 *   it would require careful auditing as some users really require it and
 250 *   others use the flag to avoid lowmem reserves in ZONE_DMA and treat the
 251 *   lowest zone as a type of emergency reserve.
 252 *
 253 * GFP_DMA32 is similar to GFP_DMA except that the caller requires a 32-bit
 254 *   address.
 255 *
 256 * GFP_HIGHUSER is for userspace allocations that may be mapped to userspace,
 257 *   do not need to be directly accessible by the kernel but that cannot
 258 *   move once in use. An example may be a hardware allocation that maps
 259 *   data directly into userspace but has no addressing limitations.
 260 *
 261 * GFP_HIGHUSER_MOVABLE is for userspace allocations that the kernel does not
 262 *   need direct access to but can use kmap() when access is required. They
 263 *   are expected to be movable via page reclaim or page migration. Typically,
 264 *   pages on the LRU would also be allocated with GFP_HIGHUSER_MOVABLE.
 265 *
 266 * GFP_TRANSHUGE and GFP_TRANSHUGE_LIGHT are used for THP allocations. They are
 267 *   compound allocations that will generally fail quickly if memory is not
 268 *   available and will not wake kswapd/kcompactd on failure. The _LIGHT
 269 *   version does not attempt reclaim/compaction at all and is by default used
 270 *   in page fault path, while the non-light is used by khugepaged.
 271 */
 272#define GFP_ATOMIC      (__GFP_HIGH|__GFP_ATOMIC|__GFP_KSWAPD_RECLAIM)
 273#define GFP_KERNEL      (__GFP_RECLAIM | __GFP_IO | __GFP_FS)
 274#define GFP_KERNEL_ACCOUNT (GFP_KERNEL | __GFP_ACCOUNT)
 275#define GFP_NOWAIT      (__GFP_KSWAPD_RECLAIM)
 276#define GFP_NOIO        (__GFP_RECLAIM)
 277#define GFP_NOFS        (__GFP_RECLAIM | __GFP_IO)
 278#define GFP_USER        (__GFP_RECLAIM | __GFP_IO | __GFP_FS | __GFP_HARDWALL)
 279#define GFP_DMA         __GFP_DMA
 280#define GFP_DMA32       __GFP_DMA32
 281#define GFP_HIGHUSER    (GFP_USER | __GFP_HIGHMEM)
 282#define GFP_HIGHUSER_MOVABLE    (GFP_HIGHUSER | __GFP_MOVABLE)
 283#define GFP_TRANSHUGE_LIGHT     ((GFP_HIGHUSER_MOVABLE | __GFP_COMP | \
 284                         __GFP_NOMEMALLOC | __GFP_NOWARN) & ~__GFP_RECLAIM)
 285#define GFP_TRANSHUGE   (GFP_TRANSHUGE_LIGHT | __GFP_DIRECT_RECLAIM)
 286
 287/* Convert GFP flags to their corresponding migrate type */
 288#define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE)
 289#define GFP_MOVABLE_SHIFT 3
 290
 291static inline int gfpflags_to_migratetype(const gfp_t gfp_flags)
 292{
 293        VM_WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);
 294        BUILD_BUG_ON((1UL << GFP_MOVABLE_SHIFT) != ___GFP_MOVABLE);
 295        BUILD_BUG_ON((___GFP_MOVABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_MOVABLE);
 296
 297        if (unlikely(page_group_by_mobility_disabled))
 298                return MIGRATE_UNMOVABLE;
 299
 300        /* Group based on mobility */
 301        return (gfp_flags & GFP_MOVABLE_MASK) >> GFP_MOVABLE_SHIFT;
 302}
 303#undef GFP_MOVABLE_MASK
 304#undef GFP_MOVABLE_SHIFT
 305
 306static inline bool gfpflags_allow_blocking(const gfp_t gfp_flags)
 307{
 308        return !!(gfp_flags & __GFP_DIRECT_RECLAIM);
 309}
 310
 311#ifdef CONFIG_HIGHMEM
 312#define OPT_ZONE_HIGHMEM ZONE_HIGHMEM
 313#else
 314#define OPT_ZONE_HIGHMEM ZONE_NORMAL
 315#endif
 316
 317#ifdef CONFIG_ZONE_DMA
 318#define OPT_ZONE_DMA ZONE_DMA
 319#else
 320#define OPT_ZONE_DMA ZONE_NORMAL
 321#endif
 322
 323#ifdef CONFIG_ZONE_DMA32
 324#define OPT_ZONE_DMA32 ZONE_DMA32
 325#else
 326#define OPT_ZONE_DMA32 ZONE_NORMAL
 327#endif
 328
 329/*
 330 * GFP_ZONE_TABLE is a word size bitstring that is used for looking up the
 331 * zone to use given the lowest 4 bits of gfp_t. Entries are GFP_ZONES_SHIFT
 332 * bits long and there are 16 of them to cover all possible combinations of
 333 * __GFP_DMA, __GFP_DMA32, __GFP_MOVABLE and __GFP_HIGHMEM.
 334 *
 335 * The zone fallback order is MOVABLE=>HIGHMEM=>NORMAL=>DMA32=>DMA.
 336 * But GFP_MOVABLE is not only a zone specifier but also an allocation
 337 * policy. Therefore __GFP_MOVABLE plus another zone selector is valid.
 338 * Only 1 bit of the lowest 3 bits (DMA,DMA32,HIGHMEM) can be set to "1".
 339 *
 340 *       bit       result
 341 *       =================
 342 *       0x0    => NORMAL
 343 *       0x1    => DMA or NORMAL
 344 *       0x2    => HIGHMEM or NORMAL
 345 *       0x3    => BAD (DMA+HIGHMEM)
 346 *       0x4    => DMA32 or NORMAL
 347 *       0x5    => BAD (DMA+DMA32)
 348 *       0x6    => BAD (HIGHMEM+DMA32)
 349 *       0x7    => BAD (HIGHMEM+DMA32+DMA)
 350 *       0x8    => NORMAL (MOVABLE+0)
 351 *       0x9    => DMA or NORMAL (MOVABLE+DMA)
 352 *       0xa    => MOVABLE (Movable is valid only if HIGHMEM is set too)
 353 *       0xb    => BAD (MOVABLE+HIGHMEM+DMA)
 354 *       0xc    => DMA32 or NORMAL (MOVABLE+DMA32)
 355 *       0xd    => BAD (MOVABLE+DMA32+DMA)
 356 *       0xe    => BAD (MOVABLE+DMA32+HIGHMEM)
 357 *       0xf    => BAD (MOVABLE+DMA32+HIGHMEM+DMA)
 358 *
 359 * GFP_ZONES_SHIFT must be <= 2 on 32 bit platforms.
 360 */
 361
 362#if defined(CONFIG_ZONE_DEVICE) && (MAX_NR_ZONES-1) <= 4
 363/* ZONE_DEVICE is not a valid GFP zone specifier */
 364#define GFP_ZONES_SHIFT 2
 365#else
 366#define GFP_ZONES_SHIFT ZONES_SHIFT
 367#endif
 368
 369#if 16 * GFP_ZONES_SHIFT > BITS_PER_LONG
 370#error GFP_ZONES_SHIFT too large to create GFP_ZONE_TABLE integer
 371#endif
 372
 373#define GFP_ZONE_TABLE ( \
 374        (ZONE_NORMAL << 0 * GFP_ZONES_SHIFT)                                   \
 375        | (OPT_ZONE_DMA << ___GFP_DMA * GFP_ZONES_SHIFT)                       \
 376        | (OPT_ZONE_HIGHMEM << ___GFP_HIGHMEM * GFP_ZONES_SHIFT)               \
 377        | (OPT_ZONE_DMA32 << ___GFP_DMA32 * GFP_ZONES_SHIFT)                   \
 378        | (ZONE_NORMAL << ___GFP_MOVABLE * GFP_ZONES_SHIFT)                    \
 379        | (OPT_ZONE_DMA << (___GFP_MOVABLE | ___GFP_DMA) * GFP_ZONES_SHIFT)    \
 380        | (ZONE_MOVABLE << (___GFP_MOVABLE | ___GFP_HIGHMEM) * GFP_ZONES_SHIFT)\
 381        | (OPT_ZONE_DMA32 << (___GFP_MOVABLE | ___GFP_DMA32) * GFP_ZONES_SHIFT)\
 382)
 383
 384/*
 385 * GFP_ZONE_BAD is a bitmap for all combinations of __GFP_DMA, __GFP_DMA32
 386 * __GFP_HIGHMEM and __GFP_MOVABLE that are not permitted. One flag per
 387 * entry starting with bit 0. Bit is set if the combination is not
 388 * allowed.
 389 */
 390#define GFP_ZONE_BAD ( \
 391        1 << (___GFP_DMA | ___GFP_HIGHMEM)                                    \
 392        | 1 << (___GFP_DMA | ___GFP_DMA32)                                    \
 393        | 1 << (___GFP_DMA32 | ___GFP_HIGHMEM)                                \
 394        | 1 << (___GFP_DMA | ___GFP_DMA32 | ___GFP_HIGHMEM)                   \
 395        | 1 << (___GFP_MOVABLE | ___GFP_HIGHMEM | ___GFP_DMA)                 \
 396        | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA)                   \
 397        | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_HIGHMEM)               \
 398        | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA | ___GFP_HIGHMEM)  \
 399)
 400
 401static inline enum zone_type gfp_zone(gfp_t flags)
 402{
 403        enum zone_type z;
 404        int bit = (__force int) (flags & GFP_ZONEMASK);
 405
 406        z = (GFP_ZONE_TABLE >> (bit * GFP_ZONES_SHIFT)) &
 407                                         ((1 << GFP_ZONES_SHIFT) - 1);
 408        VM_BUG_ON((GFP_ZONE_BAD >> bit) & 1);
 409        return z;
 410}
 411
 412/*
 413 * There is only one page-allocator function, and two main namespaces to
 414 * it. The alloc_page*() variants return 'struct page *' and as such
 415 * can allocate highmem pages, the *get*page*() variants return
 416 * virtual kernel addresses to the allocated page(s).
 417 */
 418
 419static inline int gfp_zonelist(gfp_t flags)
 420{
 421#ifdef CONFIG_NUMA
 422        if (unlikely(flags & __GFP_THISNODE))
 423                return ZONELIST_NOFALLBACK;
 424#endif
 425        return ZONELIST_FALLBACK;
 426}
 427
 428/*
 429 * We get the zone list from the current node and the gfp_mask.
 430 * This zone list contains a maximum of MAXNODES*MAX_NR_ZONES zones.
 431 * There are two zonelists per node, one for all zones with memory and
 432 * one containing just zones from the node the zonelist belongs to.
 433 *
 434 * For the normal case of non-DISCONTIGMEM systems the NODE_DATA() gets
 435 * optimized to &contig_page_data at compile-time.
 436 */
 437static inline struct zonelist *node_zonelist(int nid, gfp_t flags)
 438{
 439        return NODE_DATA(nid)->node_zonelists + gfp_zonelist(flags);
 440}
 441
 442#ifndef HAVE_ARCH_FREE_PAGE
 443static inline void arch_free_page(struct page *page, int order) { }
 444#endif
 445#ifndef HAVE_ARCH_ALLOC_PAGE
 446static inline void arch_alloc_page(struct page *page, int order) { }
 447#endif
 448
 449struct page *
 450__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
 451                                                        nodemask_t *nodemask);
 452
 453static inline struct page *
 454__alloc_pages(gfp_t gfp_mask, unsigned int order, int preferred_nid)
 455{
 456        return __alloc_pages_nodemask(gfp_mask, order, preferred_nid, NULL);
 457}
 458
 459/*
 460 * Allocate pages, preferring the node given as nid. The node must be valid and
 461 * online. For more general interface, see alloc_pages_node().
 462 */
 463static inline struct page *
 464__alloc_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
 465{
 466        VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES);
 467        VM_WARN_ON((gfp_mask & __GFP_THISNODE) && !node_online(nid));
 468
 469        return __alloc_pages(gfp_mask, order, nid);
 470}
 471
 472/*
 473 * Allocate pages, preferring the node given as nid. When nid == NUMA_NO_NODE,
 474 * prefer the current CPU's closest node. Otherwise node must be valid and
 475 * online.
 476 */
 477static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask,
 478                                                unsigned int order)
 479{
 480        if (nid == NUMA_NO_NODE)
 481                nid = numa_mem_id();
 482
 483        return __alloc_pages_node(nid, gfp_mask, order);
 484}
 485
 486#ifdef CONFIG_NUMA
 487extern struct page *alloc_pages_current(gfp_t gfp_mask, unsigned order);
 488
 489static inline struct page *
 490alloc_pages(gfp_t gfp_mask, unsigned int order)
 491{
 492        return alloc_pages_current(gfp_mask, order);
 493}
 494extern struct page *alloc_pages_vma(gfp_t gfp_mask, int order,
 495                        struct vm_area_struct *vma, unsigned long addr,
 496                        int node, bool hugepage);
 497#define alloc_hugepage_vma(gfp_mask, vma, addr, order)  \
 498        alloc_pages_vma(gfp_mask, order, vma, addr, numa_node_id(), true)
 499#else
 500#define alloc_pages(gfp_mask, order) \
 501                alloc_pages_node(numa_node_id(), gfp_mask, order)
 502#define alloc_pages_vma(gfp_mask, order, vma, addr, node, false)\
 503        alloc_pages(gfp_mask, order)
 504#define alloc_hugepage_vma(gfp_mask, vma, addr, order)  \
 505        alloc_pages(gfp_mask, order)
 506#endif
 507#define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0)
 508#define alloc_page_vma(gfp_mask, vma, addr)                     \
 509        alloc_pages_vma(gfp_mask, 0, vma, addr, numa_node_id(), false)
 510#define alloc_page_vma_node(gfp_mask, vma, addr, node)          \
 511        alloc_pages_vma(gfp_mask, 0, vma, addr, node, false)
 512
 513extern unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order);
 514extern unsigned long get_zeroed_page(gfp_t gfp_mask);
 515
 516void *alloc_pages_exact(size_t size, gfp_t gfp_mask);
 517void free_pages_exact(void *virt, size_t size);
 518void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask);
 519
 520#define __get_free_page(gfp_mask) \
 521                __get_free_pages((gfp_mask), 0)
 522
 523#define __get_dma_pages(gfp_mask, order) \
 524                __get_free_pages((gfp_mask) | GFP_DMA, (order))
 525
 526extern void __free_pages(struct page *page, unsigned int order);
 527extern void free_pages(unsigned long addr, unsigned int order);
 528extern void free_unref_page(struct page *page);
 529extern void free_unref_page_list(struct list_head *list);
 530
 531struct page_frag_cache;
 532extern void __page_frag_cache_drain(struct page *page, unsigned int count);
 533extern void *page_frag_alloc(struct page_frag_cache *nc,
 534                             unsigned int fragsz, gfp_t gfp_mask);
 535extern void page_frag_free(void *addr);
 536
 537#define __free_page(page) __free_pages((page), 0)
 538#define free_page(addr) free_pages((addr), 0)
 539
 540void page_alloc_init(void);
 541void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp);
 542void drain_all_pages(struct zone *zone);
 543void drain_local_pages(struct zone *zone);
 544
 545void page_alloc_init_late(void);
 546
 547/*
 548 * gfp_allowed_mask is set to GFP_BOOT_MASK during early boot to restrict what
 549 * GFP flags are used before interrupts are enabled. Once interrupts are
 550 * enabled, it is set to __GFP_BITS_MASK while the system is running. During
 551 * hibernation, it is used by PM to avoid I/O during memory allocation while
 552 * devices are suspended.
 553 */
 554extern gfp_t gfp_allowed_mask;
 555
 556/* Returns true if the gfp_mask allows use of ALLOC_NO_WATERMARK */
 557bool gfp_pfmemalloc_allowed(gfp_t gfp_mask);
 558
 559extern void pm_restrict_gfp_mask(void);
 560extern void pm_restore_gfp_mask(void);
 561
 562#ifdef CONFIG_PM_SLEEP
 563extern bool pm_suspended_storage(void);
 564#else
 565static inline bool pm_suspended_storage(void)
 566{
 567        return false;
 568}
 569#endif /* CONFIG_PM_SLEEP */
 570
 571#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
 572/* The below functions must be run on a range from a single zone. */
 573extern int alloc_contig_range(unsigned long start, unsigned long end,
 574                              unsigned migratetype, gfp_t gfp_mask);
 575extern void free_contig_range(unsigned long pfn, unsigned nr_pages);
 576#endif
 577
 578#ifdef CONFIG_CMA
 579/* CMA stuff */
 580extern void init_cma_reserved_pageblock(struct page *page);
 581#endif
 582
 583#endif /* __LINUX_GFP_H */
 584