linux/include/linux/ktime.h
<<
>>
Prefs
   1/*
   2 *  include/linux/ktime.h
   3 *
   4 *  ktime_t - nanosecond-resolution time format.
   5 *
   6 *   Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
   7 *   Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
   8 *
   9 *  data type definitions, declarations, prototypes and macros.
  10 *
  11 *  Started by: Thomas Gleixner and Ingo Molnar
  12 *
  13 *  Credits:
  14 *
  15 *      Roman Zippel provided the ideas and primary code snippets of
  16 *      the ktime_t union and further simplifications of the original
  17 *      code.
  18 *
  19 *  For licencing details see kernel-base/COPYING
  20 */
  21#ifndef _LINUX_KTIME_H
  22#define _LINUX_KTIME_H
  23
  24#include <linux/time.h>
  25#include <linux/jiffies.h>
  26
  27/* Nanosecond scalar representation for kernel time values */
  28typedef s64     ktime_t;
  29
  30/**
  31 * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value
  32 * @secs:       seconds to set
  33 * @nsecs:      nanoseconds to set
  34 *
  35 * Return: The ktime_t representation of the value.
  36 */
  37static inline ktime_t ktime_set(const s64 secs, const unsigned long nsecs)
  38{
  39        if (unlikely(secs >= KTIME_SEC_MAX))
  40                return KTIME_MAX;
  41
  42        return secs * NSEC_PER_SEC + (s64)nsecs;
  43}
  44
  45/* Subtract two ktime_t variables. rem = lhs -rhs: */
  46#define ktime_sub(lhs, rhs)     ((lhs) - (rhs))
  47
  48/* Add two ktime_t variables. res = lhs + rhs: */
  49#define ktime_add(lhs, rhs)     ((lhs) + (rhs))
  50
  51/*
  52 * Same as ktime_add(), but avoids undefined behaviour on overflow; however,
  53 * this means that you must check the result for overflow yourself.
  54 */
  55#define ktime_add_unsafe(lhs, rhs)      ((u64) (lhs) + (rhs))
  56
  57/*
  58 * Add a ktime_t variable and a scalar nanosecond value.
  59 * res = kt + nsval:
  60 */
  61#define ktime_add_ns(kt, nsval)         ((kt) + (nsval))
  62
  63/*
  64 * Subtract a scalar nanosecod from a ktime_t variable
  65 * res = kt - nsval:
  66 */
  67#define ktime_sub_ns(kt, nsval)         ((kt) - (nsval))
  68
  69/* convert a timespec to ktime_t format: */
  70static inline ktime_t timespec_to_ktime(struct timespec ts)
  71{
  72        return ktime_set(ts.tv_sec, ts.tv_nsec);
  73}
  74
  75/* convert a timespec64 to ktime_t format: */
  76static inline ktime_t timespec64_to_ktime(struct timespec64 ts)
  77{
  78        return ktime_set(ts.tv_sec, ts.tv_nsec);
  79}
  80
  81/* convert a timeval to ktime_t format: */
  82static inline ktime_t timeval_to_ktime(struct timeval tv)
  83{
  84        return ktime_set(tv.tv_sec, tv.tv_usec * NSEC_PER_USEC);
  85}
  86
  87/* Map the ktime_t to timespec conversion to ns_to_timespec function */
  88#define ktime_to_timespec(kt)           ns_to_timespec((kt))
  89
  90/* Map the ktime_t to timespec conversion to ns_to_timespec function */
  91#define ktime_to_timespec64(kt)         ns_to_timespec64((kt))
  92
  93/* Map the ktime_t to timeval conversion to ns_to_timeval function */
  94#define ktime_to_timeval(kt)            ns_to_timeval((kt))
  95
  96/* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */
  97#define ktime_to_ns(kt)                 (kt)
  98
  99/**
 100 * ktime_compare - Compares two ktime_t variables for less, greater or equal
 101 * @cmp1:       comparable1
 102 * @cmp2:       comparable2
 103 *
 104 * Return: ...
 105 *   cmp1  < cmp2: return <0
 106 *   cmp1 == cmp2: return 0
 107 *   cmp1  > cmp2: return >0
 108 */
 109static inline int ktime_compare(const ktime_t cmp1, const ktime_t cmp2)
 110{
 111        if (cmp1 < cmp2)
 112                return -1;
 113        if (cmp1 > cmp2)
 114                return 1;
 115        return 0;
 116}
 117
 118/**
 119 * ktime_after - Compare if a ktime_t value is bigger than another one.
 120 * @cmp1:       comparable1
 121 * @cmp2:       comparable2
 122 *
 123 * Return: true if cmp1 happened after cmp2.
 124 */
 125static inline bool ktime_after(const ktime_t cmp1, const ktime_t cmp2)
 126{
 127        return ktime_compare(cmp1, cmp2) > 0;
 128}
 129
 130/**
 131 * ktime_before - Compare if a ktime_t value is smaller than another one.
 132 * @cmp1:       comparable1
 133 * @cmp2:       comparable2
 134 *
 135 * Return: true if cmp1 happened before cmp2.
 136 */
 137static inline bool ktime_before(const ktime_t cmp1, const ktime_t cmp2)
 138{
 139        return ktime_compare(cmp1, cmp2) < 0;
 140}
 141
 142#if BITS_PER_LONG < 64
 143extern s64 __ktime_divns(const ktime_t kt, s64 div);
 144static inline s64 ktime_divns(const ktime_t kt, s64 div)
 145{
 146        /*
 147         * Negative divisors could cause an inf loop,
 148         * so bug out here.
 149         */
 150        BUG_ON(div < 0);
 151        if (__builtin_constant_p(div) && !(div >> 32)) {
 152                s64 ns = kt;
 153                u64 tmp = ns < 0 ? -ns : ns;
 154
 155                do_div(tmp, div);
 156                return ns < 0 ? -tmp : tmp;
 157        } else {
 158                return __ktime_divns(kt, div);
 159        }
 160}
 161#else /* BITS_PER_LONG < 64 */
 162static inline s64 ktime_divns(const ktime_t kt, s64 div)
 163{
 164        /*
 165         * 32-bit implementation cannot handle negative divisors,
 166         * so catch them on 64bit as well.
 167         */
 168        WARN_ON(div < 0);
 169        return kt / div;
 170}
 171#endif
 172
 173static inline s64 ktime_to_us(const ktime_t kt)
 174{
 175        return ktime_divns(kt, NSEC_PER_USEC);
 176}
 177
 178static inline s64 ktime_to_ms(const ktime_t kt)
 179{
 180        return ktime_divns(kt, NSEC_PER_MSEC);
 181}
 182
 183static inline s64 ktime_us_delta(const ktime_t later, const ktime_t earlier)
 184{
 185       return ktime_to_us(ktime_sub(later, earlier));
 186}
 187
 188static inline s64 ktime_ms_delta(const ktime_t later, const ktime_t earlier)
 189{
 190        return ktime_to_ms(ktime_sub(later, earlier));
 191}
 192
 193static inline ktime_t ktime_add_us(const ktime_t kt, const u64 usec)
 194{
 195        return ktime_add_ns(kt, usec * NSEC_PER_USEC);
 196}
 197
 198static inline ktime_t ktime_add_ms(const ktime_t kt, const u64 msec)
 199{
 200        return ktime_add_ns(kt, msec * NSEC_PER_MSEC);
 201}
 202
 203static inline ktime_t ktime_sub_us(const ktime_t kt, const u64 usec)
 204{
 205        return ktime_sub_ns(kt, usec * NSEC_PER_USEC);
 206}
 207
 208static inline ktime_t ktime_sub_ms(const ktime_t kt, const u64 msec)
 209{
 210        return ktime_sub_ns(kt, msec * NSEC_PER_MSEC);
 211}
 212
 213extern ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs);
 214
 215/**
 216 * ktime_to_timespec_cond - convert a ktime_t variable to timespec
 217 *                          format only if the variable contains data
 218 * @kt:         the ktime_t variable to convert
 219 * @ts:         the timespec variable to store the result in
 220 *
 221 * Return: %true if there was a successful conversion, %false if kt was 0.
 222 */
 223static inline __must_check bool ktime_to_timespec_cond(const ktime_t kt,
 224                                                       struct timespec *ts)
 225{
 226        if (kt) {
 227                *ts = ktime_to_timespec(kt);
 228                return true;
 229        } else {
 230                return false;
 231        }
 232}
 233
 234/**
 235 * ktime_to_timespec64_cond - convert a ktime_t variable to timespec64
 236 *                          format only if the variable contains data
 237 * @kt:         the ktime_t variable to convert
 238 * @ts:         the timespec variable to store the result in
 239 *
 240 * Return: %true if there was a successful conversion, %false if kt was 0.
 241 */
 242static inline __must_check bool ktime_to_timespec64_cond(const ktime_t kt,
 243                                                       struct timespec64 *ts)
 244{
 245        if (kt) {
 246                *ts = ktime_to_timespec64(kt);
 247                return true;
 248        } else {
 249                return false;
 250        }
 251}
 252
 253/*
 254 * The resolution of the clocks. The resolution value is returned in
 255 * the clock_getres() system call to give application programmers an
 256 * idea of the (in)accuracy of timers. Timer values are rounded up to
 257 * this resolution values.
 258 */
 259#define LOW_RES_NSEC            TICK_NSEC
 260#define KTIME_LOW_RES           (LOW_RES_NSEC)
 261
 262static inline ktime_t ns_to_ktime(u64 ns)
 263{
 264        return ns;
 265}
 266
 267static inline ktime_t ms_to_ktime(u64 ms)
 268{
 269        return ms * NSEC_PER_MSEC;
 270}
 271
 272# include <linux/timekeeping.h>
 273# include <linux/timekeeping32.h>
 274
 275#endif
 276