linux/kernel/time/timer.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/timer.c
   3 *
   4 *  Kernel internal timers
   5 *
   6 *  Copyright (C) 1991, 1992  Linus Torvalds
   7 *
   8 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
   9 *
  10 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
  11 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
  12 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
  13 *              serialize accesses to xtime/lost_ticks).
  14 *                              Copyright (C) 1998  Andrea Arcangeli
  15 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
  16 *  2002-05-31  Move sys_sysinfo here and make its locking sane, Robert Love
  17 *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
  18 *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
  19 *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
  20 */
  21
  22#include <linux/kernel_stat.h>
  23#include <linux/export.h>
  24#include <linux/interrupt.h>
  25#include <linux/percpu.h>
  26#include <linux/init.h>
  27#include <linux/mm.h>
  28#include <linux/swap.h>
  29#include <linux/pid_namespace.h>
  30#include <linux/notifier.h>
  31#include <linux/thread_info.h>
  32#include <linux/time.h>
  33#include <linux/jiffies.h>
  34#include <linux/posix-timers.h>
  35#include <linux/cpu.h>
  36#include <linux/syscalls.h>
  37#include <linux/delay.h>
  38#include <linux/tick.h>
  39#include <linux/kallsyms.h>
  40#include <linux/irq_work.h>
  41#include <linux/sched/signal.h>
  42#include <linux/sched/sysctl.h>
  43#include <linux/sched/nohz.h>
  44#include <linux/sched/debug.h>
  45#include <linux/slab.h>
  46#include <linux/compat.h>
  47
  48#include <linux/uaccess.h>
  49#include <asm/unistd.h>
  50#include <asm/div64.h>
  51#include <asm/timex.h>
  52#include <asm/io.h>
  53
  54#include "tick-internal.h"
  55
  56#define CREATE_TRACE_POINTS
  57#include <trace/events/timer.h>
  58
  59__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
  60
  61EXPORT_SYMBOL(jiffies_64);
  62
  63/*
  64 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
  65 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
  66 * level has a different granularity.
  67 *
  68 * The level granularity is:            LVL_CLK_DIV ^ lvl
  69 * The level clock frequency is:        HZ / (LVL_CLK_DIV ^ level)
  70 *
  71 * The array level of a newly armed timer depends on the relative expiry
  72 * time. The farther the expiry time is away the higher the array level and
  73 * therefor the granularity becomes.
  74 *
  75 * Contrary to the original timer wheel implementation, which aims for 'exact'
  76 * expiry of the timers, this implementation removes the need for recascading
  77 * the timers into the lower array levels. The previous 'classic' timer wheel
  78 * implementation of the kernel already violated the 'exact' expiry by adding
  79 * slack to the expiry time to provide batched expiration. The granularity
  80 * levels provide implicit batching.
  81 *
  82 * This is an optimization of the original timer wheel implementation for the
  83 * majority of the timer wheel use cases: timeouts. The vast majority of
  84 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
  85 * the timeout expires it indicates that normal operation is disturbed, so it
  86 * does not matter much whether the timeout comes with a slight delay.
  87 *
  88 * The only exception to this are networking timers with a small expiry
  89 * time. They rely on the granularity. Those fit into the first wheel level,
  90 * which has HZ granularity.
  91 *
  92 * We don't have cascading anymore. timers with a expiry time above the
  93 * capacity of the last wheel level are force expired at the maximum timeout
  94 * value of the last wheel level. From data sampling we know that the maximum
  95 * value observed is 5 days (network connection tracking), so this should not
  96 * be an issue.
  97 *
  98 * The currently chosen array constants values are a good compromise between
  99 * array size and granularity.
 100 *
 101 * This results in the following granularity and range levels:
 102 *
 103 * HZ 1000 steps
 104 * Level Offset  Granularity            Range
 105 *  0      0         1 ms                0 ms -         63 ms
 106 *  1     64         8 ms               64 ms -        511 ms
 107 *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
 108 *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
 109 *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
 110 *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
 111 *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
 112 *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
 113 *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
 114 *
 115 * HZ  300
 116 * Level Offset  Granularity            Range
 117 *  0      0         3 ms                0 ms -        210 ms
 118 *  1     64        26 ms              213 ms -       1703 ms (213ms - ~1s)
 119 *  2    128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
 120 *  3    192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
 121 *  4    256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
 122 *  5    320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
 123 *  6    384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
 124 *  7    448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
 125 *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
 126 *
 127 * HZ  250
 128 * Level Offset  Granularity            Range
 129 *  0      0         4 ms                0 ms -        255 ms
 130 *  1     64        32 ms              256 ms -       2047 ms (256ms - ~2s)
 131 *  2    128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
 132 *  3    192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
 133 *  4    256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
 134 *  5    320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
 135 *  6    384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
 136 *  7    448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
 137 *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
 138 *
 139 * HZ  100
 140 * Level Offset  Granularity            Range
 141 *  0      0         10 ms               0 ms -        630 ms
 142 *  1     64         80 ms             640 ms -       5110 ms (640ms - ~5s)
 143 *  2    128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
 144 *  3    192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
 145 *  4    256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
 146 *  5    320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
 147 *  6    384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
 148 *  7    448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
 149 */
 150
 151/* Clock divisor for the next level */
 152#define LVL_CLK_SHIFT   3
 153#define LVL_CLK_DIV     (1UL << LVL_CLK_SHIFT)
 154#define LVL_CLK_MASK    (LVL_CLK_DIV - 1)
 155#define LVL_SHIFT(n)    ((n) * LVL_CLK_SHIFT)
 156#define LVL_GRAN(n)     (1UL << LVL_SHIFT(n))
 157
 158/*
 159 * The time start value for each level to select the bucket at enqueue
 160 * time.
 161 */
 162#define LVL_START(n)    ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
 163
 164/* Size of each clock level */
 165#define LVL_BITS        6
 166#define LVL_SIZE        (1UL << LVL_BITS)
 167#define LVL_MASK        (LVL_SIZE - 1)
 168#define LVL_OFFS(n)     ((n) * LVL_SIZE)
 169
 170/* Level depth */
 171#if HZ > 100
 172# define LVL_DEPTH      9
 173# else
 174# define LVL_DEPTH      8
 175#endif
 176
 177/* The cutoff (max. capacity of the wheel) */
 178#define WHEEL_TIMEOUT_CUTOFF    (LVL_START(LVL_DEPTH))
 179#define WHEEL_TIMEOUT_MAX       (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
 180
 181/*
 182 * The resulting wheel size. If NOHZ is configured we allocate two
 183 * wheels so we have a separate storage for the deferrable timers.
 184 */
 185#define WHEEL_SIZE      (LVL_SIZE * LVL_DEPTH)
 186
 187#ifdef CONFIG_NO_HZ_COMMON
 188# define NR_BASES       2
 189# define BASE_STD       0
 190# define BASE_DEF       1
 191#else
 192# define NR_BASES       1
 193# define BASE_STD       0
 194# define BASE_DEF       0
 195#endif
 196
 197struct timer_base {
 198        raw_spinlock_t          lock;
 199        struct timer_list       *running_timer;
 200        unsigned long           clk;
 201        unsigned long           next_expiry;
 202        unsigned int            cpu;
 203        bool                    is_idle;
 204        bool                    must_forward_clk;
 205        DECLARE_BITMAP(pending_map, WHEEL_SIZE);
 206        struct hlist_head       vectors[WHEEL_SIZE];
 207} ____cacheline_aligned;
 208
 209static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
 210
 211#ifdef CONFIG_NO_HZ_COMMON
 212
 213static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
 214static DEFINE_MUTEX(timer_keys_mutex);
 215
 216static void timer_update_keys(struct work_struct *work);
 217static DECLARE_WORK(timer_update_work, timer_update_keys);
 218
 219#ifdef CONFIG_SMP
 220unsigned int sysctl_timer_migration = 1;
 221
 222DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
 223
 224static void timers_update_migration(void)
 225{
 226        if (sysctl_timer_migration && tick_nohz_active)
 227                static_branch_enable(&timers_migration_enabled);
 228        else
 229                static_branch_disable(&timers_migration_enabled);
 230}
 231#else
 232static inline void timers_update_migration(void) { }
 233#endif /* !CONFIG_SMP */
 234
 235static void timer_update_keys(struct work_struct *work)
 236{
 237        mutex_lock(&timer_keys_mutex);
 238        timers_update_migration();
 239        static_branch_enable(&timers_nohz_active);
 240        mutex_unlock(&timer_keys_mutex);
 241}
 242
 243void timers_update_nohz(void)
 244{
 245        schedule_work(&timer_update_work);
 246}
 247
 248int timer_migration_handler(struct ctl_table *table, int write,
 249                            void __user *buffer, size_t *lenp,
 250                            loff_t *ppos)
 251{
 252        int ret;
 253
 254        mutex_lock(&timer_keys_mutex);
 255        ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 256        if (!ret && write)
 257                timers_update_migration();
 258        mutex_unlock(&timer_keys_mutex);
 259        return ret;
 260}
 261
 262static inline bool is_timers_nohz_active(void)
 263{
 264        return static_branch_unlikely(&timers_nohz_active);
 265}
 266#else
 267static inline bool is_timers_nohz_active(void) { return false; }
 268#endif /* NO_HZ_COMMON */
 269
 270static unsigned long round_jiffies_common(unsigned long j, int cpu,
 271                bool force_up)
 272{
 273        int rem;
 274        unsigned long original = j;
 275
 276        /*
 277         * We don't want all cpus firing their timers at once hitting the
 278         * same lock or cachelines, so we skew each extra cpu with an extra
 279         * 3 jiffies. This 3 jiffies came originally from the mm/ code which
 280         * already did this.
 281         * The skew is done by adding 3*cpunr, then round, then subtract this
 282         * extra offset again.
 283         */
 284        j += cpu * 3;
 285
 286        rem = j % HZ;
 287
 288        /*
 289         * If the target jiffie is just after a whole second (which can happen
 290         * due to delays of the timer irq, long irq off times etc etc) then
 291         * we should round down to the whole second, not up. Use 1/4th second
 292         * as cutoff for this rounding as an extreme upper bound for this.
 293         * But never round down if @force_up is set.
 294         */
 295        if (rem < HZ/4 && !force_up) /* round down */
 296                j = j - rem;
 297        else /* round up */
 298                j = j - rem + HZ;
 299
 300        /* now that we have rounded, subtract the extra skew again */
 301        j -= cpu * 3;
 302
 303        /*
 304         * Make sure j is still in the future. Otherwise return the
 305         * unmodified value.
 306         */
 307        return time_is_after_jiffies(j) ? j : original;
 308}
 309
 310/**
 311 * __round_jiffies - function to round jiffies to a full second
 312 * @j: the time in (absolute) jiffies that should be rounded
 313 * @cpu: the processor number on which the timeout will happen
 314 *
 315 * __round_jiffies() rounds an absolute time in the future (in jiffies)
 316 * up or down to (approximately) full seconds. This is useful for timers
 317 * for which the exact time they fire does not matter too much, as long as
 318 * they fire approximately every X seconds.
 319 *
 320 * By rounding these timers to whole seconds, all such timers will fire
 321 * at the same time, rather than at various times spread out. The goal
 322 * of this is to have the CPU wake up less, which saves power.
 323 *
 324 * The exact rounding is skewed for each processor to avoid all
 325 * processors firing at the exact same time, which could lead
 326 * to lock contention or spurious cache line bouncing.
 327 *
 328 * The return value is the rounded version of the @j parameter.
 329 */
 330unsigned long __round_jiffies(unsigned long j, int cpu)
 331{
 332        return round_jiffies_common(j, cpu, false);
 333}
 334EXPORT_SYMBOL_GPL(__round_jiffies);
 335
 336/**
 337 * __round_jiffies_relative - function to round jiffies to a full second
 338 * @j: the time in (relative) jiffies that should be rounded
 339 * @cpu: the processor number on which the timeout will happen
 340 *
 341 * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
 342 * up or down to (approximately) full seconds. This is useful for timers
 343 * for which the exact time they fire does not matter too much, as long as
 344 * they fire approximately every X seconds.
 345 *
 346 * By rounding these timers to whole seconds, all such timers will fire
 347 * at the same time, rather than at various times spread out. The goal
 348 * of this is to have the CPU wake up less, which saves power.
 349 *
 350 * The exact rounding is skewed for each processor to avoid all
 351 * processors firing at the exact same time, which could lead
 352 * to lock contention or spurious cache line bouncing.
 353 *
 354 * The return value is the rounded version of the @j parameter.
 355 */
 356unsigned long __round_jiffies_relative(unsigned long j, int cpu)
 357{
 358        unsigned long j0 = jiffies;
 359
 360        /* Use j0 because jiffies might change while we run */
 361        return round_jiffies_common(j + j0, cpu, false) - j0;
 362}
 363EXPORT_SYMBOL_GPL(__round_jiffies_relative);
 364
 365/**
 366 * round_jiffies - function to round jiffies to a full second
 367 * @j: the time in (absolute) jiffies that should be rounded
 368 *
 369 * round_jiffies() rounds an absolute time in the future (in jiffies)
 370 * up or down to (approximately) full seconds. This is useful for timers
 371 * for which the exact time they fire does not matter too much, as long as
 372 * they fire approximately every X seconds.
 373 *
 374 * By rounding these timers to whole seconds, all such timers will fire
 375 * at the same time, rather than at various times spread out. The goal
 376 * of this is to have the CPU wake up less, which saves power.
 377 *
 378 * The return value is the rounded version of the @j parameter.
 379 */
 380unsigned long round_jiffies(unsigned long j)
 381{
 382        return round_jiffies_common(j, raw_smp_processor_id(), false);
 383}
 384EXPORT_SYMBOL_GPL(round_jiffies);
 385
 386/**
 387 * round_jiffies_relative - function to round jiffies to a full second
 388 * @j: the time in (relative) jiffies that should be rounded
 389 *
 390 * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
 391 * up or down to (approximately) full seconds. This is useful for timers
 392 * for which the exact time they fire does not matter too much, as long as
 393 * they fire approximately every X seconds.
 394 *
 395 * By rounding these timers to whole seconds, all such timers will fire
 396 * at the same time, rather than at various times spread out. The goal
 397 * of this is to have the CPU wake up less, which saves power.
 398 *
 399 * The return value is the rounded version of the @j parameter.
 400 */
 401unsigned long round_jiffies_relative(unsigned long j)
 402{
 403        return __round_jiffies_relative(j, raw_smp_processor_id());
 404}
 405EXPORT_SYMBOL_GPL(round_jiffies_relative);
 406
 407/**
 408 * __round_jiffies_up - function to round jiffies up to a full second
 409 * @j: the time in (absolute) jiffies that should be rounded
 410 * @cpu: the processor number on which the timeout will happen
 411 *
 412 * This is the same as __round_jiffies() except that it will never
 413 * round down.  This is useful for timeouts for which the exact time
 414 * of firing does not matter too much, as long as they don't fire too
 415 * early.
 416 */
 417unsigned long __round_jiffies_up(unsigned long j, int cpu)
 418{
 419        return round_jiffies_common(j, cpu, true);
 420}
 421EXPORT_SYMBOL_GPL(__round_jiffies_up);
 422
 423/**
 424 * __round_jiffies_up_relative - function to round jiffies up to a full second
 425 * @j: the time in (relative) jiffies that should be rounded
 426 * @cpu: the processor number on which the timeout will happen
 427 *
 428 * This is the same as __round_jiffies_relative() except that it will never
 429 * round down.  This is useful for timeouts for which the exact time
 430 * of firing does not matter too much, as long as they don't fire too
 431 * early.
 432 */
 433unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
 434{
 435        unsigned long j0 = jiffies;
 436
 437        /* Use j0 because jiffies might change while we run */
 438        return round_jiffies_common(j + j0, cpu, true) - j0;
 439}
 440EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
 441
 442/**
 443 * round_jiffies_up - function to round jiffies up to a full second
 444 * @j: the time in (absolute) jiffies that should be rounded
 445 *
 446 * This is the same as round_jiffies() except that it will never
 447 * round down.  This is useful for timeouts for which the exact time
 448 * of firing does not matter too much, as long as they don't fire too
 449 * early.
 450 */
 451unsigned long round_jiffies_up(unsigned long j)
 452{
 453        return round_jiffies_common(j, raw_smp_processor_id(), true);
 454}
 455EXPORT_SYMBOL_GPL(round_jiffies_up);
 456
 457/**
 458 * round_jiffies_up_relative - function to round jiffies up to a full second
 459 * @j: the time in (relative) jiffies that should be rounded
 460 *
 461 * This is the same as round_jiffies_relative() except that it will never
 462 * round down.  This is useful for timeouts for which the exact time
 463 * of firing does not matter too much, as long as they don't fire too
 464 * early.
 465 */
 466unsigned long round_jiffies_up_relative(unsigned long j)
 467{
 468        return __round_jiffies_up_relative(j, raw_smp_processor_id());
 469}
 470EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
 471
 472
 473static inline unsigned int timer_get_idx(struct timer_list *timer)
 474{
 475        return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
 476}
 477
 478static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
 479{
 480        timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
 481                        idx << TIMER_ARRAYSHIFT;
 482}
 483
 484/*
 485 * Helper function to calculate the array index for a given expiry
 486 * time.
 487 */
 488static inline unsigned calc_index(unsigned expires, unsigned lvl)
 489{
 490        expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
 491        return LVL_OFFS(lvl) + (expires & LVL_MASK);
 492}
 493
 494static int calc_wheel_index(unsigned long expires, unsigned long clk)
 495{
 496        unsigned long delta = expires - clk;
 497        unsigned int idx;
 498
 499        if (delta < LVL_START(1)) {
 500                idx = calc_index(expires, 0);
 501        } else if (delta < LVL_START(2)) {
 502                idx = calc_index(expires, 1);
 503        } else if (delta < LVL_START(3)) {
 504                idx = calc_index(expires, 2);
 505        } else if (delta < LVL_START(4)) {
 506                idx = calc_index(expires, 3);
 507        } else if (delta < LVL_START(5)) {
 508                idx = calc_index(expires, 4);
 509        } else if (delta < LVL_START(6)) {
 510                idx = calc_index(expires, 5);
 511        } else if (delta < LVL_START(7)) {
 512                idx = calc_index(expires, 6);
 513        } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
 514                idx = calc_index(expires, 7);
 515        } else if ((long) delta < 0) {
 516                idx = clk & LVL_MASK;
 517        } else {
 518                /*
 519                 * Force expire obscene large timeouts to expire at the
 520                 * capacity limit of the wheel.
 521                 */
 522                if (expires >= WHEEL_TIMEOUT_CUTOFF)
 523                        expires = WHEEL_TIMEOUT_MAX;
 524
 525                idx = calc_index(expires, LVL_DEPTH - 1);
 526        }
 527        return idx;
 528}
 529
 530/*
 531 * Enqueue the timer into the hash bucket, mark it pending in
 532 * the bitmap and store the index in the timer flags.
 533 */
 534static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
 535                          unsigned int idx)
 536{
 537        hlist_add_head(&timer->entry, base->vectors + idx);
 538        __set_bit(idx, base->pending_map);
 539        timer_set_idx(timer, idx);
 540
 541        trace_timer_start(timer, timer->expires, timer->flags);
 542}
 543
 544static void
 545__internal_add_timer(struct timer_base *base, struct timer_list *timer)
 546{
 547        unsigned int idx;
 548
 549        idx = calc_wheel_index(timer->expires, base->clk);
 550        enqueue_timer(base, timer, idx);
 551}
 552
 553static void
 554trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
 555{
 556        if (!is_timers_nohz_active())
 557                return;
 558
 559        /*
 560         * TODO: This wants some optimizing similar to the code below, but we
 561         * will do that when we switch from push to pull for deferrable timers.
 562         */
 563        if (timer->flags & TIMER_DEFERRABLE) {
 564                if (tick_nohz_full_cpu(base->cpu))
 565                        wake_up_nohz_cpu(base->cpu);
 566                return;
 567        }
 568
 569        /*
 570         * We might have to IPI the remote CPU if the base is idle and the
 571         * timer is not deferrable. If the other CPU is on the way to idle
 572         * then it can't set base->is_idle as we hold the base lock:
 573         */
 574        if (!base->is_idle)
 575                return;
 576
 577        /* Check whether this is the new first expiring timer: */
 578        if (time_after_eq(timer->expires, base->next_expiry))
 579                return;
 580
 581        /*
 582         * Set the next expiry time and kick the CPU so it can reevaluate the
 583         * wheel:
 584         */
 585        base->next_expiry = timer->expires;
 586                wake_up_nohz_cpu(base->cpu);
 587}
 588
 589static void
 590internal_add_timer(struct timer_base *base, struct timer_list *timer)
 591{
 592        __internal_add_timer(base, timer);
 593        trigger_dyntick_cpu(base, timer);
 594}
 595
 596#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 597
 598static struct debug_obj_descr timer_debug_descr;
 599
 600static void *timer_debug_hint(void *addr)
 601{
 602        return ((struct timer_list *) addr)->function;
 603}
 604
 605static bool timer_is_static_object(void *addr)
 606{
 607        struct timer_list *timer = addr;
 608
 609        return (timer->entry.pprev == NULL &&
 610                timer->entry.next == TIMER_ENTRY_STATIC);
 611}
 612
 613/*
 614 * fixup_init is called when:
 615 * - an active object is initialized
 616 */
 617static bool timer_fixup_init(void *addr, enum debug_obj_state state)
 618{
 619        struct timer_list *timer = addr;
 620
 621        switch (state) {
 622        case ODEBUG_STATE_ACTIVE:
 623                del_timer_sync(timer);
 624                debug_object_init(timer, &timer_debug_descr);
 625                return true;
 626        default:
 627                return false;
 628        }
 629}
 630
 631/* Stub timer callback for improperly used timers. */
 632static void stub_timer(struct timer_list *unused)
 633{
 634        WARN_ON(1);
 635}
 636
 637/*
 638 * fixup_activate is called when:
 639 * - an active object is activated
 640 * - an unknown non-static object is activated
 641 */
 642static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
 643{
 644        struct timer_list *timer = addr;
 645
 646        switch (state) {
 647        case ODEBUG_STATE_NOTAVAILABLE:
 648                timer_setup(timer, stub_timer, 0);
 649                return true;
 650
 651        case ODEBUG_STATE_ACTIVE:
 652                WARN_ON(1);
 653
 654        default:
 655                return false;
 656        }
 657}
 658
 659/*
 660 * fixup_free is called when:
 661 * - an active object is freed
 662 */
 663static bool timer_fixup_free(void *addr, enum debug_obj_state state)
 664{
 665        struct timer_list *timer = addr;
 666
 667        switch (state) {
 668        case ODEBUG_STATE_ACTIVE:
 669                del_timer_sync(timer);
 670                debug_object_free(timer, &timer_debug_descr);
 671                return true;
 672        default:
 673                return false;
 674        }
 675}
 676
 677/*
 678 * fixup_assert_init is called when:
 679 * - an untracked/uninit-ed object is found
 680 */
 681static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
 682{
 683        struct timer_list *timer = addr;
 684
 685        switch (state) {
 686        case ODEBUG_STATE_NOTAVAILABLE:
 687                timer_setup(timer, stub_timer, 0);
 688                return true;
 689        default:
 690                return false;
 691        }
 692}
 693
 694static struct debug_obj_descr timer_debug_descr = {
 695        .name                   = "timer_list",
 696        .debug_hint             = timer_debug_hint,
 697        .is_static_object       = timer_is_static_object,
 698        .fixup_init             = timer_fixup_init,
 699        .fixup_activate         = timer_fixup_activate,
 700        .fixup_free             = timer_fixup_free,
 701        .fixup_assert_init      = timer_fixup_assert_init,
 702};
 703
 704static inline void debug_timer_init(struct timer_list *timer)
 705{
 706        debug_object_init(timer, &timer_debug_descr);
 707}
 708
 709static inline void debug_timer_activate(struct timer_list *timer)
 710{
 711        debug_object_activate(timer, &timer_debug_descr);
 712}
 713
 714static inline void debug_timer_deactivate(struct timer_list *timer)
 715{
 716        debug_object_deactivate(timer, &timer_debug_descr);
 717}
 718
 719static inline void debug_timer_free(struct timer_list *timer)
 720{
 721        debug_object_free(timer, &timer_debug_descr);
 722}
 723
 724static inline void debug_timer_assert_init(struct timer_list *timer)
 725{
 726        debug_object_assert_init(timer, &timer_debug_descr);
 727}
 728
 729static void do_init_timer(struct timer_list *timer,
 730                          void (*func)(struct timer_list *),
 731                          unsigned int flags,
 732                          const char *name, struct lock_class_key *key);
 733
 734void init_timer_on_stack_key(struct timer_list *timer,
 735                             void (*func)(struct timer_list *),
 736                             unsigned int flags,
 737                             const char *name, struct lock_class_key *key)
 738{
 739        debug_object_init_on_stack(timer, &timer_debug_descr);
 740        do_init_timer(timer, func, flags, name, key);
 741}
 742EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
 743
 744void destroy_timer_on_stack(struct timer_list *timer)
 745{
 746        debug_object_free(timer, &timer_debug_descr);
 747}
 748EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
 749
 750#else
 751static inline void debug_timer_init(struct timer_list *timer) { }
 752static inline void debug_timer_activate(struct timer_list *timer) { }
 753static inline void debug_timer_deactivate(struct timer_list *timer) { }
 754static inline void debug_timer_assert_init(struct timer_list *timer) { }
 755#endif
 756
 757static inline void debug_init(struct timer_list *timer)
 758{
 759        debug_timer_init(timer);
 760        trace_timer_init(timer);
 761}
 762
 763static inline void debug_deactivate(struct timer_list *timer)
 764{
 765        debug_timer_deactivate(timer);
 766        trace_timer_cancel(timer);
 767}
 768
 769static inline void debug_assert_init(struct timer_list *timer)
 770{
 771        debug_timer_assert_init(timer);
 772}
 773
 774static void do_init_timer(struct timer_list *timer,
 775                          void (*func)(struct timer_list *),
 776                          unsigned int flags,
 777                          const char *name, struct lock_class_key *key)
 778{
 779        timer->entry.pprev = NULL;
 780        timer->function = func;
 781        timer->flags = flags | raw_smp_processor_id();
 782        lockdep_init_map(&timer->lockdep_map, name, key, 0);
 783}
 784
 785/**
 786 * init_timer_key - initialize a timer
 787 * @timer: the timer to be initialized
 788 * @func: timer callback function
 789 * @flags: timer flags
 790 * @name: name of the timer
 791 * @key: lockdep class key of the fake lock used for tracking timer
 792 *       sync lock dependencies
 793 *
 794 * init_timer_key() must be done to a timer prior calling *any* of the
 795 * other timer functions.
 796 */
 797void init_timer_key(struct timer_list *timer,
 798                    void (*func)(struct timer_list *), unsigned int flags,
 799                    const char *name, struct lock_class_key *key)
 800{
 801        debug_init(timer);
 802        do_init_timer(timer, func, flags, name, key);
 803}
 804EXPORT_SYMBOL(init_timer_key);
 805
 806static inline void detach_timer(struct timer_list *timer, bool clear_pending)
 807{
 808        struct hlist_node *entry = &timer->entry;
 809
 810        debug_deactivate(timer);
 811
 812        __hlist_del(entry);
 813        if (clear_pending)
 814                entry->pprev = NULL;
 815        entry->next = LIST_POISON2;
 816}
 817
 818static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
 819                             bool clear_pending)
 820{
 821        unsigned idx = timer_get_idx(timer);
 822
 823        if (!timer_pending(timer))
 824                return 0;
 825
 826        if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
 827                __clear_bit(idx, base->pending_map);
 828
 829        detach_timer(timer, clear_pending);
 830        return 1;
 831}
 832
 833static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
 834{
 835        struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
 836
 837        /*
 838         * If the timer is deferrable and NO_HZ_COMMON is set then we need
 839         * to use the deferrable base.
 840         */
 841        if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
 842                base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
 843        return base;
 844}
 845
 846static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
 847{
 848        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
 849
 850        /*
 851         * If the timer is deferrable and NO_HZ_COMMON is set then we need
 852         * to use the deferrable base.
 853         */
 854        if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
 855                base = this_cpu_ptr(&timer_bases[BASE_DEF]);
 856        return base;
 857}
 858
 859static inline struct timer_base *get_timer_base(u32 tflags)
 860{
 861        return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
 862}
 863
 864static inline struct timer_base *
 865get_target_base(struct timer_base *base, unsigned tflags)
 866{
 867#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
 868        if (static_branch_likely(&timers_migration_enabled) &&
 869            !(tflags & TIMER_PINNED))
 870                return get_timer_cpu_base(tflags, get_nohz_timer_target());
 871#endif
 872        return get_timer_this_cpu_base(tflags);
 873}
 874
 875static inline void forward_timer_base(struct timer_base *base)
 876{
 877#ifdef CONFIG_NO_HZ_COMMON
 878        unsigned long jnow;
 879
 880        /*
 881         * We only forward the base when we are idle or have just come out of
 882         * idle (must_forward_clk logic), and have a delta between base clock
 883         * and jiffies. In the common case, run_timers will take care of it.
 884         */
 885        if (likely(!base->must_forward_clk))
 886                return;
 887
 888        jnow = READ_ONCE(jiffies);
 889        base->must_forward_clk = base->is_idle;
 890        if ((long)(jnow - base->clk) < 2)
 891                return;
 892
 893        /*
 894         * If the next expiry value is > jiffies, then we fast forward to
 895         * jiffies otherwise we forward to the next expiry value.
 896         */
 897        if (time_after(base->next_expiry, jnow))
 898                base->clk = jnow;
 899        else
 900                base->clk = base->next_expiry;
 901#endif
 902}
 903
 904
 905/*
 906 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
 907 * that all timers which are tied to this base are locked, and the base itself
 908 * is locked too.
 909 *
 910 * So __run_timers/migrate_timers can safely modify all timers which could
 911 * be found in the base->vectors array.
 912 *
 913 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
 914 * to wait until the migration is done.
 915 */
 916static struct timer_base *lock_timer_base(struct timer_list *timer,
 917                                          unsigned long *flags)
 918        __acquires(timer->base->lock)
 919{
 920        for (;;) {
 921                struct timer_base *base;
 922                u32 tf;
 923
 924                /*
 925                 * We need to use READ_ONCE() here, otherwise the compiler
 926                 * might re-read @tf between the check for TIMER_MIGRATING
 927                 * and spin_lock().
 928                 */
 929                tf = READ_ONCE(timer->flags);
 930
 931                if (!(tf & TIMER_MIGRATING)) {
 932                        base = get_timer_base(tf);
 933                        raw_spin_lock_irqsave(&base->lock, *flags);
 934                        if (timer->flags == tf)
 935                                return base;
 936                        raw_spin_unlock_irqrestore(&base->lock, *flags);
 937                }
 938                cpu_relax();
 939        }
 940}
 941
 942#define MOD_TIMER_PENDING_ONLY          0x01
 943#define MOD_TIMER_REDUCE                0x02
 944
 945static inline int
 946__mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
 947{
 948        struct timer_base *base, *new_base;
 949        unsigned int idx = UINT_MAX;
 950        unsigned long clk = 0, flags;
 951        int ret = 0;
 952
 953        BUG_ON(!timer->function);
 954
 955        /*
 956         * This is a common optimization triggered by the networking code - if
 957         * the timer is re-modified to have the same timeout or ends up in the
 958         * same array bucket then just return:
 959         */
 960        if (timer_pending(timer)) {
 961                /*
 962                 * The downside of this optimization is that it can result in
 963                 * larger granularity than you would get from adding a new
 964                 * timer with this expiry.
 965                 */
 966                long diff = timer->expires - expires;
 967
 968                if (!diff)
 969                        return 1;
 970                if (options & MOD_TIMER_REDUCE && diff <= 0)
 971                        return 1;
 972
 973                /*
 974                 * We lock timer base and calculate the bucket index right
 975                 * here. If the timer ends up in the same bucket, then we
 976                 * just update the expiry time and avoid the whole
 977                 * dequeue/enqueue dance.
 978                 */
 979                base = lock_timer_base(timer, &flags);
 980                forward_timer_base(base);
 981
 982                if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
 983                    time_before_eq(timer->expires, expires)) {
 984                        ret = 1;
 985                        goto out_unlock;
 986                }
 987
 988                clk = base->clk;
 989                idx = calc_wheel_index(expires, clk);
 990
 991                /*
 992                 * Retrieve and compare the array index of the pending
 993                 * timer. If it matches set the expiry to the new value so a
 994                 * subsequent call will exit in the expires check above.
 995                 */
 996                if (idx == timer_get_idx(timer)) {
 997                        if (!(options & MOD_TIMER_REDUCE))
 998                                timer->expires = expires;
 999                        else if (time_after(timer->expires, expires))
1000                                timer->expires = expires;
1001                        ret = 1;
1002                        goto out_unlock;
1003                }
1004        } else {
1005                base = lock_timer_base(timer, &flags);
1006                forward_timer_base(base);
1007        }
1008
1009        ret = detach_if_pending(timer, base, false);
1010        if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1011                goto out_unlock;
1012
1013        new_base = get_target_base(base, timer->flags);
1014
1015        if (base != new_base) {
1016                /*
1017                 * We are trying to schedule the timer on the new base.
1018                 * However we can't change timer's base while it is running,
1019                 * otherwise del_timer_sync() can't detect that the timer's
1020                 * handler yet has not finished. This also guarantees that the
1021                 * timer is serialized wrt itself.
1022                 */
1023                if (likely(base->running_timer != timer)) {
1024                        /* See the comment in lock_timer_base() */
1025                        timer->flags |= TIMER_MIGRATING;
1026
1027                        raw_spin_unlock(&base->lock);
1028                        base = new_base;
1029                        raw_spin_lock(&base->lock);
1030                        WRITE_ONCE(timer->flags,
1031                                   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1032                        forward_timer_base(base);
1033                }
1034        }
1035
1036        debug_timer_activate(timer);
1037
1038        timer->expires = expires;
1039        /*
1040         * If 'idx' was calculated above and the base time did not advance
1041         * between calculating 'idx' and possibly switching the base, only
1042         * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
1043         * we need to (re)calculate the wheel index via
1044         * internal_add_timer().
1045         */
1046        if (idx != UINT_MAX && clk == base->clk) {
1047                enqueue_timer(base, timer, idx);
1048                trigger_dyntick_cpu(base, timer);
1049        } else {
1050                internal_add_timer(base, timer);
1051        }
1052
1053out_unlock:
1054        raw_spin_unlock_irqrestore(&base->lock, flags);
1055
1056        return ret;
1057}
1058
1059/**
1060 * mod_timer_pending - modify a pending timer's timeout
1061 * @timer: the pending timer to be modified
1062 * @expires: new timeout in jiffies
1063 *
1064 * mod_timer_pending() is the same for pending timers as mod_timer(),
1065 * but will not re-activate and modify already deleted timers.
1066 *
1067 * It is useful for unserialized use of timers.
1068 */
1069int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1070{
1071        return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1072}
1073EXPORT_SYMBOL(mod_timer_pending);
1074
1075/**
1076 * mod_timer - modify a timer's timeout
1077 * @timer: the timer to be modified
1078 * @expires: new timeout in jiffies
1079 *
1080 * mod_timer() is a more efficient way to update the expire field of an
1081 * active timer (if the timer is inactive it will be activated)
1082 *
1083 * mod_timer(timer, expires) is equivalent to:
1084 *
1085 *     del_timer(timer); timer->expires = expires; add_timer(timer);
1086 *
1087 * Note that if there are multiple unserialized concurrent users of the
1088 * same timer, then mod_timer() is the only safe way to modify the timeout,
1089 * since add_timer() cannot modify an already running timer.
1090 *
1091 * The function returns whether it has modified a pending timer or not.
1092 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1093 * active timer returns 1.)
1094 */
1095int mod_timer(struct timer_list *timer, unsigned long expires)
1096{
1097        return __mod_timer(timer, expires, 0);
1098}
1099EXPORT_SYMBOL(mod_timer);
1100
1101/**
1102 * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1103 * @timer:      The timer to be modified
1104 * @expires:    New timeout in jiffies
1105 *
1106 * timer_reduce() is very similar to mod_timer(), except that it will only
1107 * modify a running timer if that would reduce the expiration time (it will
1108 * start a timer that isn't running).
1109 */
1110int timer_reduce(struct timer_list *timer, unsigned long expires)
1111{
1112        return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1113}
1114EXPORT_SYMBOL(timer_reduce);
1115
1116/**
1117 * add_timer - start a timer
1118 * @timer: the timer to be added
1119 *
1120 * The kernel will do a ->function(@timer) callback from the
1121 * timer interrupt at the ->expires point in the future. The
1122 * current time is 'jiffies'.
1123 *
1124 * The timer's ->expires, ->function fields must be set prior calling this
1125 * function.
1126 *
1127 * Timers with an ->expires field in the past will be executed in the next
1128 * timer tick.
1129 */
1130void add_timer(struct timer_list *timer)
1131{
1132        BUG_ON(timer_pending(timer));
1133        mod_timer(timer, timer->expires);
1134}
1135EXPORT_SYMBOL(add_timer);
1136
1137/**
1138 * add_timer_on - start a timer on a particular CPU
1139 * @timer: the timer to be added
1140 * @cpu: the CPU to start it on
1141 *
1142 * This is not very scalable on SMP. Double adds are not possible.
1143 */
1144void add_timer_on(struct timer_list *timer, int cpu)
1145{
1146        struct timer_base *new_base, *base;
1147        unsigned long flags;
1148
1149        BUG_ON(timer_pending(timer) || !timer->function);
1150
1151        new_base = get_timer_cpu_base(timer->flags, cpu);
1152
1153        /*
1154         * If @timer was on a different CPU, it should be migrated with the
1155         * old base locked to prevent other operations proceeding with the
1156         * wrong base locked.  See lock_timer_base().
1157         */
1158        base = lock_timer_base(timer, &flags);
1159        if (base != new_base) {
1160                timer->flags |= TIMER_MIGRATING;
1161
1162                raw_spin_unlock(&base->lock);
1163                base = new_base;
1164                raw_spin_lock(&base->lock);
1165                WRITE_ONCE(timer->flags,
1166                           (timer->flags & ~TIMER_BASEMASK) | cpu);
1167        }
1168        forward_timer_base(base);
1169
1170        debug_timer_activate(timer);
1171        internal_add_timer(base, timer);
1172        raw_spin_unlock_irqrestore(&base->lock, flags);
1173}
1174EXPORT_SYMBOL_GPL(add_timer_on);
1175
1176/**
1177 * del_timer - deactivate a timer.
1178 * @timer: the timer to be deactivated
1179 *
1180 * del_timer() deactivates a timer - this works on both active and inactive
1181 * timers.
1182 *
1183 * The function returns whether it has deactivated a pending timer or not.
1184 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1185 * active timer returns 1.)
1186 */
1187int del_timer(struct timer_list *timer)
1188{
1189        struct timer_base *base;
1190        unsigned long flags;
1191        int ret = 0;
1192
1193        debug_assert_init(timer);
1194
1195        if (timer_pending(timer)) {
1196                base = lock_timer_base(timer, &flags);
1197                ret = detach_if_pending(timer, base, true);
1198                raw_spin_unlock_irqrestore(&base->lock, flags);
1199        }
1200
1201        return ret;
1202}
1203EXPORT_SYMBOL(del_timer);
1204
1205/**
1206 * try_to_del_timer_sync - Try to deactivate a timer
1207 * @timer: timer to delete
1208 *
1209 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1210 * exit the timer is not queued and the handler is not running on any CPU.
1211 */
1212int try_to_del_timer_sync(struct timer_list *timer)
1213{
1214        struct timer_base *base;
1215        unsigned long flags;
1216        int ret = -1;
1217
1218        debug_assert_init(timer);
1219
1220        base = lock_timer_base(timer, &flags);
1221
1222        if (base->running_timer != timer)
1223                ret = detach_if_pending(timer, base, true);
1224
1225        raw_spin_unlock_irqrestore(&base->lock, flags);
1226
1227        return ret;
1228}
1229EXPORT_SYMBOL(try_to_del_timer_sync);
1230
1231#ifdef CONFIG_SMP
1232/**
1233 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1234 * @timer: the timer to be deactivated
1235 *
1236 * This function only differs from del_timer() on SMP: besides deactivating
1237 * the timer it also makes sure the handler has finished executing on other
1238 * CPUs.
1239 *
1240 * Synchronization rules: Callers must prevent restarting of the timer,
1241 * otherwise this function is meaningless. It must not be called from
1242 * interrupt contexts unless the timer is an irqsafe one. The caller must
1243 * not hold locks which would prevent completion of the timer's
1244 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1245 * timer is not queued and the handler is not running on any CPU.
1246 *
1247 * Note: For !irqsafe timers, you must not hold locks that are held in
1248 *   interrupt context while calling this function. Even if the lock has
1249 *   nothing to do with the timer in question.  Here's why::
1250 *
1251 *    CPU0                             CPU1
1252 *    ----                             ----
1253 *                                     <SOFTIRQ>
1254 *                                       call_timer_fn();
1255 *                                       base->running_timer = mytimer;
1256 *    spin_lock_irq(somelock);
1257 *                                     <IRQ>
1258 *                                        spin_lock(somelock);
1259 *    del_timer_sync(mytimer);
1260 *    while (base->running_timer == mytimer);
1261 *
1262 * Now del_timer_sync() will never return and never release somelock.
1263 * The interrupt on the other CPU is waiting to grab somelock but
1264 * it has interrupted the softirq that CPU0 is waiting to finish.
1265 *
1266 * The function returns whether it has deactivated a pending timer or not.
1267 */
1268int del_timer_sync(struct timer_list *timer)
1269{
1270#ifdef CONFIG_LOCKDEP
1271        unsigned long flags;
1272
1273        /*
1274         * If lockdep gives a backtrace here, please reference
1275         * the synchronization rules above.
1276         */
1277        local_irq_save(flags);
1278        lock_map_acquire(&timer->lockdep_map);
1279        lock_map_release(&timer->lockdep_map);
1280        local_irq_restore(flags);
1281#endif
1282        /*
1283         * don't use it in hardirq context, because it
1284         * could lead to deadlock.
1285         */
1286        WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1287        for (;;) {
1288                int ret = try_to_del_timer_sync(timer);
1289                if (ret >= 0)
1290                        return ret;
1291                cpu_relax();
1292        }
1293}
1294EXPORT_SYMBOL(del_timer_sync);
1295#endif
1296
1297static void call_timer_fn(struct timer_list *timer,
1298                          void (*fn)(struct timer_list *),
1299                          unsigned long baseclk)
1300{
1301        int count = preempt_count();
1302
1303#ifdef CONFIG_LOCKDEP
1304        /*
1305         * It is permissible to free the timer from inside the
1306         * function that is called from it, this we need to take into
1307         * account for lockdep too. To avoid bogus "held lock freed"
1308         * warnings as well as problems when looking into
1309         * timer->lockdep_map, make a copy and use that here.
1310         */
1311        struct lockdep_map lockdep_map;
1312
1313        lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1314#endif
1315        /*
1316         * Couple the lock chain with the lock chain at
1317         * del_timer_sync() by acquiring the lock_map around the fn()
1318         * call here and in del_timer_sync().
1319         */
1320        lock_map_acquire(&lockdep_map);
1321
1322        trace_timer_expire_entry(timer, baseclk);
1323        fn(timer);
1324        trace_timer_expire_exit(timer);
1325
1326        lock_map_release(&lockdep_map);
1327
1328        if (count != preempt_count()) {
1329                WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1330                          fn, count, preempt_count());
1331                /*
1332                 * Restore the preempt count. That gives us a decent
1333                 * chance to survive and extract information. If the
1334                 * callback kept a lock held, bad luck, but not worse
1335                 * than the BUG() we had.
1336                 */
1337                preempt_count_set(count);
1338        }
1339}
1340
1341static void expire_timers(struct timer_base *base, struct hlist_head *head)
1342{
1343        /*
1344         * This value is required only for tracing. base->clk was
1345         * incremented directly before expire_timers was called. But expiry
1346         * is related to the old base->clk value.
1347         */
1348        unsigned long baseclk = base->clk - 1;
1349
1350        while (!hlist_empty(head)) {
1351                struct timer_list *timer;
1352                void (*fn)(struct timer_list *);
1353
1354                timer = hlist_entry(head->first, struct timer_list, entry);
1355
1356                base->running_timer = timer;
1357                detach_timer(timer, true);
1358
1359                fn = timer->function;
1360
1361                if (timer->flags & TIMER_IRQSAFE) {
1362                        raw_spin_unlock(&base->lock);
1363                        call_timer_fn(timer, fn, baseclk);
1364                        raw_spin_lock(&base->lock);
1365                } else {
1366                        raw_spin_unlock_irq(&base->lock);
1367                        call_timer_fn(timer, fn, baseclk);
1368                        raw_spin_lock_irq(&base->lock);
1369                }
1370        }
1371}
1372
1373static int __collect_expired_timers(struct timer_base *base,
1374                                    struct hlist_head *heads)
1375{
1376        unsigned long clk = base->clk;
1377        struct hlist_head *vec;
1378        int i, levels = 0;
1379        unsigned int idx;
1380
1381        for (i = 0; i < LVL_DEPTH; i++) {
1382                idx = (clk & LVL_MASK) + i * LVL_SIZE;
1383
1384                if (__test_and_clear_bit(idx, base->pending_map)) {
1385                        vec = base->vectors + idx;
1386                        hlist_move_list(vec, heads++);
1387                        levels++;
1388                }
1389                /* Is it time to look at the next level? */
1390                if (clk & LVL_CLK_MASK)
1391                        break;
1392                /* Shift clock for the next level granularity */
1393                clk >>= LVL_CLK_SHIFT;
1394        }
1395        return levels;
1396}
1397
1398#ifdef CONFIG_NO_HZ_COMMON
1399/*
1400 * Find the next pending bucket of a level. Search from level start (@offset)
1401 * + @clk upwards and if nothing there, search from start of the level
1402 * (@offset) up to @offset + clk.
1403 */
1404static int next_pending_bucket(struct timer_base *base, unsigned offset,
1405                               unsigned clk)
1406{
1407        unsigned pos, start = offset + clk;
1408        unsigned end = offset + LVL_SIZE;
1409
1410        pos = find_next_bit(base->pending_map, end, start);
1411        if (pos < end)
1412                return pos - start;
1413
1414        pos = find_next_bit(base->pending_map, start, offset);
1415        return pos < start ? pos + LVL_SIZE - start : -1;
1416}
1417
1418/*
1419 * Search the first expiring timer in the various clock levels. Caller must
1420 * hold base->lock.
1421 */
1422static unsigned long __next_timer_interrupt(struct timer_base *base)
1423{
1424        unsigned long clk, next, adj;
1425        unsigned lvl, offset = 0;
1426
1427        next = base->clk + NEXT_TIMER_MAX_DELTA;
1428        clk = base->clk;
1429        for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1430                int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1431
1432                if (pos >= 0) {
1433                        unsigned long tmp = clk + (unsigned long) pos;
1434
1435                        tmp <<= LVL_SHIFT(lvl);
1436                        if (time_before(tmp, next))
1437                                next = tmp;
1438                }
1439                /*
1440                 * Clock for the next level. If the current level clock lower
1441                 * bits are zero, we look at the next level as is. If not we
1442                 * need to advance it by one because that's going to be the
1443                 * next expiring bucket in that level. base->clk is the next
1444                 * expiring jiffie. So in case of:
1445                 *
1446                 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1447                 *  0    0    0    0    0    0
1448                 *
1449                 * we have to look at all levels @index 0. With
1450                 *
1451                 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1452                 *  0    0    0    0    0    2
1453                 *
1454                 * LVL0 has the next expiring bucket @index 2. The upper
1455                 * levels have the next expiring bucket @index 1.
1456                 *
1457                 * In case that the propagation wraps the next level the same
1458                 * rules apply:
1459                 *
1460                 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1461                 *  0    0    0    0    F    2
1462                 *
1463                 * So after looking at LVL0 we get:
1464                 *
1465                 * LVL5 LVL4 LVL3 LVL2 LVL1
1466                 *  0    0    0    1    0
1467                 *
1468                 * So no propagation from LVL1 to LVL2 because that happened
1469                 * with the add already, but then we need to propagate further
1470                 * from LVL2 to LVL3.
1471                 *
1472                 * So the simple check whether the lower bits of the current
1473                 * level are 0 or not is sufficient for all cases.
1474                 */
1475                adj = clk & LVL_CLK_MASK ? 1 : 0;
1476                clk >>= LVL_CLK_SHIFT;
1477                clk += adj;
1478        }
1479        return next;
1480}
1481
1482/*
1483 * Check, if the next hrtimer event is before the next timer wheel
1484 * event:
1485 */
1486static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1487{
1488        u64 nextevt = hrtimer_get_next_event();
1489
1490        /*
1491         * If high resolution timers are enabled
1492         * hrtimer_get_next_event() returns KTIME_MAX.
1493         */
1494        if (expires <= nextevt)
1495                return expires;
1496
1497        /*
1498         * If the next timer is already expired, return the tick base
1499         * time so the tick is fired immediately.
1500         */
1501        if (nextevt <= basem)
1502                return basem;
1503
1504        /*
1505         * Round up to the next jiffie. High resolution timers are
1506         * off, so the hrtimers are expired in the tick and we need to
1507         * make sure that this tick really expires the timer to avoid
1508         * a ping pong of the nohz stop code.
1509         *
1510         * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1511         */
1512        return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1513}
1514
1515/**
1516 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1517 * @basej:      base time jiffies
1518 * @basem:      base time clock monotonic
1519 *
1520 * Returns the tick aligned clock monotonic time of the next pending
1521 * timer or KTIME_MAX if no timer is pending.
1522 */
1523u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1524{
1525        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1526        u64 expires = KTIME_MAX;
1527        unsigned long nextevt;
1528        bool is_max_delta;
1529
1530        /*
1531         * Pretend that there is no timer pending if the cpu is offline.
1532         * Possible pending timers will be migrated later to an active cpu.
1533         */
1534        if (cpu_is_offline(smp_processor_id()))
1535                return expires;
1536
1537        raw_spin_lock(&base->lock);
1538        nextevt = __next_timer_interrupt(base);
1539        is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
1540        base->next_expiry = nextevt;
1541        /*
1542         * We have a fresh next event. Check whether we can forward the
1543         * base. We can only do that when @basej is past base->clk
1544         * otherwise we might rewind base->clk.
1545         */
1546        if (time_after(basej, base->clk)) {
1547                if (time_after(nextevt, basej))
1548                        base->clk = basej;
1549                else if (time_after(nextevt, base->clk))
1550                        base->clk = nextevt;
1551        }
1552
1553        if (time_before_eq(nextevt, basej)) {
1554                expires = basem;
1555                base->is_idle = false;
1556        } else {
1557                if (!is_max_delta)
1558                        expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
1559                /*
1560                 * If we expect to sleep more than a tick, mark the base idle.
1561                 * Also the tick is stopped so any added timer must forward
1562                 * the base clk itself to keep granularity small. This idle
1563                 * logic is only maintained for the BASE_STD base, deferrable
1564                 * timers may still see large granularity skew (by design).
1565                 */
1566                if ((expires - basem) > TICK_NSEC) {
1567                        base->must_forward_clk = true;
1568                        base->is_idle = true;
1569                }
1570        }
1571        raw_spin_unlock(&base->lock);
1572
1573        return cmp_next_hrtimer_event(basem, expires);
1574}
1575
1576/**
1577 * timer_clear_idle - Clear the idle state of the timer base
1578 *
1579 * Called with interrupts disabled
1580 */
1581void timer_clear_idle(void)
1582{
1583        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1584
1585        /*
1586         * We do this unlocked. The worst outcome is a remote enqueue sending
1587         * a pointless IPI, but taking the lock would just make the window for
1588         * sending the IPI a few instructions smaller for the cost of taking
1589         * the lock in the exit from idle path.
1590         */
1591        base->is_idle = false;
1592}
1593
1594static int collect_expired_timers(struct timer_base *base,
1595                                  struct hlist_head *heads)
1596{
1597        /*
1598         * NOHZ optimization. After a long idle sleep we need to forward the
1599         * base to current jiffies. Avoid a loop by searching the bitfield for
1600         * the next expiring timer.
1601         */
1602        if ((long)(jiffies - base->clk) > 2) {
1603                unsigned long next = __next_timer_interrupt(base);
1604
1605                /*
1606                 * If the next timer is ahead of time forward to current
1607                 * jiffies, otherwise forward to the next expiry time:
1608                 */
1609                if (time_after(next, jiffies)) {
1610                        /*
1611                         * The call site will increment base->clk and then
1612                         * terminate the expiry loop immediately.
1613                         */
1614                        base->clk = jiffies;
1615                        return 0;
1616                }
1617                base->clk = next;
1618        }
1619        return __collect_expired_timers(base, heads);
1620}
1621#else
1622static inline int collect_expired_timers(struct timer_base *base,
1623                                         struct hlist_head *heads)
1624{
1625        return __collect_expired_timers(base, heads);
1626}
1627#endif
1628
1629/*
1630 * Called from the timer interrupt handler to charge one tick to the current
1631 * process.  user_tick is 1 if the tick is user time, 0 for system.
1632 */
1633void update_process_times(int user_tick)
1634{
1635        struct task_struct *p = current;
1636
1637        /* Note: this timer irq context must be accounted for as well. */
1638        account_process_tick(p, user_tick);
1639        run_local_timers();
1640        rcu_sched_clock_irq(user_tick);
1641#ifdef CONFIG_IRQ_WORK
1642        if (in_irq())
1643                irq_work_tick();
1644#endif
1645        scheduler_tick();
1646        if (IS_ENABLED(CONFIG_POSIX_TIMERS))
1647                run_posix_cpu_timers(p);
1648}
1649
1650/**
1651 * __run_timers - run all expired timers (if any) on this CPU.
1652 * @base: the timer vector to be processed.
1653 */
1654static inline void __run_timers(struct timer_base *base)
1655{
1656        struct hlist_head heads[LVL_DEPTH];
1657        int levels;
1658
1659        if (!time_after_eq(jiffies, base->clk))
1660                return;
1661
1662        raw_spin_lock_irq(&base->lock);
1663
1664        /*
1665         * timer_base::must_forward_clk must be cleared before running
1666         * timers so that any timer functions that call mod_timer() will
1667         * not try to forward the base. Idle tracking / clock forwarding
1668         * logic is only used with BASE_STD timers.
1669         *
1670         * The must_forward_clk flag is cleared unconditionally also for
1671         * the deferrable base. The deferrable base is not affected by idle
1672         * tracking and never forwarded, so clearing the flag is a NOOP.
1673         *
1674         * The fact that the deferrable base is never forwarded can cause
1675         * large variations in granularity for deferrable timers, but they
1676         * can be deferred for long periods due to idle anyway.
1677         */
1678        base->must_forward_clk = false;
1679
1680        while (time_after_eq(jiffies, base->clk)) {
1681
1682                levels = collect_expired_timers(base, heads);
1683                base->clk++;
1684
1685                while (levels--)
1686                        expire_timers(base, heads + levels);
1687        }
1688        base->running_timer = NULL;
1689        raw_spin_unlock_irq(&base->lock);
1690}
1691
1692/*
1693 * This function runs timers and the timer-tq in bottom half context.
1694 */
1695static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1696{
1697        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1698
1699        __run_timers(base);
1700        if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
1701                __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1702}
1703
1704/*
1705 * Called by the local, per-CPU timer interrupt on SMP.
1706 */
1707void run_local_timers(void)
1708{
1709        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1710
1711        hrtimer_run_queues();
1712        /* Raise the softirq only if required. */
1713        if (time_before(jiffies, base->clk)) {
1714                if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
1715                        return;
1716                /* CPU is awake, so check the deferrable base. */
1717                base++;
1718                if (time_before(jiffies, base->clk))
1719                        return;
1720        }
1721        raise_softirq(TIMER_SOFTIRQ);
1722}
1723
1724/*
1725 * Since schedule_timeout()'s timer is defined on the stack, it must store
1726 * the target task on the stack as well.
1727 */
1728struct process_timer {
1729        struct timer_list timer;
1730        struct task_struct *task;
1731};
1732
1733static void process_timeout(struct timer_list *t)
1734{
1735        struct process_timer *timeout = from_timer(timeout, t, timer);
1736
1737        wake_up_process(timeout->task);
1738}
1739
1740/**
1741 * schedule_timeout - sleep until timeout
1742 * @timeout: timeout value in jiffies
1743 *
1744 * Make the current task sleep until @timeout jiffies have
1745 * elapsed. The routine will return immediately unless
1746 * the current task state has been set (see set_current_state()).
1747 *
1748 * You can set the task state as follows -
1749 *
1750 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1751 * pass before the routine returns unless the current task is explicitly
1752 * woken up, (e.g. by wake_up_process())".
1753 *
1754 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1755 * delivered to the current task or the current task is explicitly woken
1756 * up.
1757 *
1758 * The current task state is guaranteed to be TASK_RUNNING when this
1759 * routine returns.
1760 *
1761 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1762 * the CPU away without a bound on the timeout. In this case the return
1763 * value will be %MAX_SCHEDULE_TIMEOUT.
1764 *
1765 * Returns 0 when the timer has expired otherwise the remaining time in
1766 * jiffies will be returned.  In all cases the return value is guaranteed
1767 * to be non-negative.
1768 */
1769signed long __sched schedule_timeout(signed long timeout)
1770{
1771        struct process_timer timer;
1772        unsigned long expire;
1773
1774        switch (timeout)
1775        {
1776        case MAX_SCHEDULE_TIMEOUT:
1777                /*
1778                 * These two special cases are useful to be comfortable
1779                 * in the caller. Nothing more. We could take
1780                 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1781                 * but I' d like to return a valid offset (>=0) to allow
1782                 * the caller to do everything it want with the retval.
1783                 */
1784                schedule();
1785                goto out;
1786        default:
1787                /*
1788                 * Another bit of PARANOID. Note that the retval will be
1789                 * 0 since no piece of kernel is supposed to do a check
1790                 * for a negative retval of schedule_timeout() (since it
1791                 * should never happens anyway). You just have the printk()
1792                 * that will tell you if something is gone wrong and where.
1793                 */
1794                if (timeout < 0) {
1795                        printk(KERN_ERR "schedule_timeout: wrong timeout "
1796                                "value %lx\n", timeout);
1797                        dump_stack();
1798                        current->state = TASK_RUNNING;
1799                        goto out;
1800                }
1801        }
1802
1803        expire = timeout + jiffies;
1804
1805        timer.task = current;
1806        timer_setup_on_stack(&timer.timer, process_timeout, 0);
1807        __mod_timer(&timer.timer, expire, 0);
1808        schedule();
1809        del_singleshot_timer_sync(&timer.timer);
1810
1811        /* Remove the timer from the object tracker */
1812        destroy_timer_on_stack(&timer.timer);
1813
1814        timeout = expire - jiffies;
1815
1816 out:
1817        return timeout < 0 ? 0 : timeout;
1818}
1819EXPORT_SYMBOL(schedule_timeout);
1820
1821/*
1822 * We can use __set_current_state() here because schedule_timeout() calls
1823 * schedule() unconditionally.
1824 */
1825signed long __sched schedule_timeout_interruptible(signed long timeout)
1826{
1827        __set_current_state(TASK_INTERRUPTIBLE);
1828        return schedule_timeout(timeout);
1829}
1830EXPORT_SYMBOL(schedule_timeout_interruptible);
1831
1832signed long __sched schedule_timeout_killable(signed long timeout)
1833{
1834        __set_current_state(TASK_KILLABLE);
1835        return schedule_timeout(timeout);
1836}
1837EXPORT_SYMBOL(schedule_timeout_killable);
1838
1839signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1840{
1841        __set_current_state(TASK_UNINTERRUPTIBLE);
1842        return schedule_timeout(timeout);
1843}
1844EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1845
1846/*
1847 * Like schedule_timeout_uninterruptible(), except this task will not contribute
1848 * to load average.
1849 */
1850signed long __sched schedule_timeout_idle(signed long timeout)
1851{
1852        __set_current_state(TASK_IDLE);
1853        return schedule_timeout(timeout);
1854}
1855EXPORT_SYMBOL(schedule_timeout_idle);
1856
1857#ifdef CONFIG_HOTPLUG_CPU
1858static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1859{
1860        struct timer_list *timer;
1861        int cpu = new_base->cpu;
1862
1863        while (!hlist_empty(head)) {
1864                timer = hlist_entry(head->first, struct timer_list, entry);
1865                detach_timer(timer, false);
1866                timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1867                internal_add_timer(new_base, timer);
1868        }
1869}
1870
1871int timers_prepare_cpu(unsigned int cpu)
1872{
1873        struct timer_base *base;
1874        int b;
1875
1876        for (b = 0; b < NR_BASES; b++) {
1877                base = per_cpu_ptr(&timer_bases[b], cpu);
1878                base->clk = jiffies;
1879                base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
1880                base->is_idle = false;
1881                base->must_forward_clk = true;
1882        }
1883        return 0;
1884}
1885
1886int timers_dead_cpu(unsigned int cpu)
1887{
1888        struct timer_base *old_base;
1889        struct timer_base *new_base;
1890        int b, i;
1891
1892        BUG_ON(cpu_online(cpu));
1893
1894        for (b = 0; b < NR_BASES; b++) {
1895                old_base = per_cpu_ptr(&timer_bases[b], cpu);
1896                new_base = get_cpu_ptr(&timer_bases[b]);
1897                /*
1898                 * The caller is globally serialized and nobody else
1899                 * takes two locks at once, deadlock is not possible.
1900                 */
1901                raw_spin_lock_irq(&new_base->lock);
1902                raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1903
1904                /*
1905                 * The current CPUs base clock might be stale. Update it
1906                 * before moving the timers over.
1907                 */
1908                forward_timer_base(new_base);
1909
1910                BUG_ON(old_base->running_timer);
1911
1912                for (i = 0; i < WHEEL_SIZE; i++)
1913                        migrate_timer_list(new_base, old_base->vectors + i);
1914
1915                raw_spin_unlock(&old_base->lock);
1916                raw_spin_unlock_irq(&new_base->lock);
1917                put_cpu_ptr(&timer_bases);
1918        }
1919        return 0;
1920}
1921
1922#endif /* CONFIG_HOTPLUG_CPU */
1923
1924static void __init init_timer_cpu(int cpu)
1925{
1926        struct timer_base *base;
1927        int i;
1928
1929        for (i = 0; i < NR_BASES; i++) {
1930                base = per_cpu_ptr(&timer_bases[i], cpu);
1931                base->cpu = cpu;
1932                raw_spin_lock_init(&base->lock);
1933                base->clk = jiffies;
1934        }
1935}
1936
1937static void __init init_timer_cpus(void)
1938{
1939        int cpu;
1940
1941        for_each_possible_cpu(cpu)
1942                init_timer_cpu(cpu);
1943}
1944
1945void __init init_timers(void)
1946{
1947        init_timer_cpus();
1948        open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1949}
1950
1951/**
1952 * msleep - sleep safely even with waitqueue interruptions
1953 * @msecs: Time in milliseconds to sleep for
1954 */
1955void msleep(unsigned int msecs)
1956{
1957        unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1958
1959        while (timeout)
1960                timeout = schedule_timeout_uninterruptible(timeout);
1961}
1962
1963EXPORT_SYMBOL(msleep);
1964
1965/**
1966 * msleep_interruptible - sleep waiting for signals
1967 * @msecs: Time in milliseconds to sleep for
1968 */
1969unsigned long msleep_interruptible(unsigned int msecs)
1970{
1971        unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1972
1973        while (timeout && !signal_pending(current))
1974                timeout = schedule_timeout_interruptible(timeout);
1975        return jiffies_to_msecs(timeout);
1976}
1977
1978EXPORT_SYMBOL(msleep_interruptible);
1979
1980/**
1981 * usleep_range - Sleep for an approximate time
1982 * @min: Minimum time in usecs to sleep
1983 * @max: Maximum time in usecs to sleep
1984 *
1985 * In non-atomic context where the exact wakeup time is flexible, use
1986 * usleep_range() instead of udelay().  The sleep improves responsiveness
1987 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
1988 * power usage by allowing hrtimers to take advantage of an already-
1989 * scheduled interrupt instead of scheduling a new one just for this sleep.
1990 */
1991void __sched usleep_range(unsigned long min, unsigned long max)
1992{
1993        ktime_t exp = ktime_add_us(ktime_get(), min);
1994        u64 delta = (u64)(max - min) * NSEC_PER_USEC;
1995
1996        for (;;) {
1997                __set_current_state(TASK_UNINTERRUPTIBLE);
1998                /* Do not return before the requested sleep time has elapsed */
1999                if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
2000                        break;
2001        }
2002}
2003EXPORT_SYMBOL(usleep_range);
2004