linux/net/ipv4/udp.c
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              The User Datagram Protocol (UDP).
   7 *
   8 * Authors:     Ross Biro
   9 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  11 *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
  12 *              Hirokazu Takahashi, <taka@valinux.co.jp>
  13 *
  14 * Fixes:
  15 *              Alan Cox        :       verify_area() calls
  16 *              Alan Cox        :       stopped close while in use off icmp
  17 *                                      messages. Not a fix but a botch that
  18 *                                      for udp at least is 'valid'.
  19 *              Alan Cox        :       Fixed icmp handling properly
  20 *              Alan Cox        :       Correct error for oversized datagrams
  21 *              Alan Cox        :       Tidied select() semantics.
  22 *              Alan Cox        :       udp_err() fixed properly, also now
  23 *                                      select and read wake correctly on errors
  24 *              Alan Cox        :       udp_send verify_area moved to avoid mem leak
  25 *              Alan Cox        :       UDP can count its memory
  26 *              Alan Cox        :       send to an unknown connection causes
  27 *                                      an ECONNREFUSED off the icmp, but
  28 *                                      does NOT close.
  29 *              Alan Cox        :       Switched to new sk_buff handlers. No more backlog!
  30 *              Alan Cox        :       Using generic datagram code. Even smaller and the PEEK
  31 *                                      bug no longer crashes it.
  32 *              Fred Van Kempen :       Net2e support for sk->broadcast.
  33 *              Alan Cox        :       Uses skb_free_datagram
  34 *              Alan Cox        :       Added get/set sockopt support.
  35 *              Alan Cox        :       Broadcasting without option set returns EACCES.
  36 *              Alan Cox        :       No wakeup calls. Instead we now use the callbacks.
  37 *              Alan Cox        :       Use ip_tos and ip_ttl
  38 *              Alan Cox        :       SNMP Mibs
  39 *              Alan Cox        :       MSG_DONTROUTE, and 0.0.0.0 support.
  40 *              Matt Dillon     :       UDP length checks.
  41 *              Alan Cox        :       Smarter af_inet used properly.
  42 *              Alan Cox        :       Use new kernel side addressing.
  43 *              Alan Cox        :       Incorrect return on truncated datagram receive.
  44 *      Arnt Gulbrandsen        :       New udp_send and stuff
  45 *              Alan Cox        :       Cache last socket
  46 *              Alan Cox        :       Route cache
  47 *              Jon Peatfield   :       Minor efficiency fix to sendto().
  48 *              Mike Shaver     :       RFC1122 checks.
  49 *              Alan Cox        :       Nonblocking error fix.
  50 *      Willy Konynenberg       :       Transparent proxying support.
  51 *              Mike McLagan    :       Routing by source
  52 *              David S. Miller :       New socket lookup architecture.
  53 *                                      Last socket cache retained as it
  54 *                                      does have a high hit rate.
  55 *              Olaf Kirch      :       Don't linearise iovec on sendmsg.
  56 *              Andi Kleen      :       Some cleanups, cache destination entry
  57 *                                      for connect.
  58 *      Vitaly E. Lavrov        :       Transparent proxy revived after year coma.
  59 *              Melvin Smith    :       Check msg_name not msg_namelen in sendto(),
  60 *                                      return ENOTCONN for unconnected sockets (POSIX)
  61 *              Janos Farkas    :       don't deliver multi/broadcasts to a different
  62 *                                      bound-to-device socket
  63 *      Hirokazu Takahashi      :       HW checksumming for outgoing UDP
  64 *                                      datagrams.
  65 *      Hirokazu Takahashi      :       sendfile() on UDP works now.
  66 *              Arnaldo C. Melo :       convert /proc/net/udp to seq_file
  67 *      YOSHIFUJI Hideaki @USAGI and:   Support IPV6_V6ONLY socket option, which
  68 *      Alexey Kuznetsov:               allow both IPv4 and IPv6 sockets to bind
  69 *                                      a single port at the same time.
  70 *      Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
  71 *      James Chapman           :       Add L2TP encapsulation type.
  72 *
  73 *
  74 *              This program is free software; you can redistribute it and/or
  75 *              modify it under the terms of the GNU General Public License
  76 *              as published by the Free Software Foundation; either version
  77 *              2 of the License, or (at your option) any later version.
  78 */
  79
  80#define pr_fmt(fmt) "UDP: " fmt
  81
  82#include <linux/uaccess.h>
  83#include <asm/ioctls.h>
  84#include <linux/bootmem.h>
  85#include <linux/highmem.h>
  86#include <linux/swap.h>
  87#include <linux/types.h>
  88#include <linux/fcntl.h>
  89#include <linux/module.h>
  90#include <linux/socket.h>
  91#include <linux/sockios.h>
  92#include <linux/igmp.h>
  93#include <linux/inetdevice.h>
  94#include <linux/in.h>
  95#include <linux/errno.h>
  96#include <linux/timer.h>
  97#include <linux/mm.h>
  98#include <linux/inet.h>
  99#include <linux/netdevice.h>
 100#include <linux/slab.h>
 101#include <net/tcp_states.h>
 102#include <linux/skbuff.h>
 103#include <linux/proc_fs.h>
 104#include <linux/seq_file.h>
 105#include <net/net_namespace.h>
 106#include <net/icmp.h>
 107#include <net/inet_hashtables.h>
 108#include <net/route.h>
 109#include <net/checksum.h>
 110#include <net/xfrm.h>
 111#include <trace/events/udp.h>
 112#include <linux/static_key.h>
 113#include <trace/events/skb.h>
 114#include <net/busy_poll.h>
 115#include "udp_impl.h"
 116#include <net/sock_reuseport.h>
 117#include <net/addrconf.h>
 118
 119struct udp_table udp_table __read_mostly;
 120EXPORT_SYMBOL(udp_table);
 121
 122long sysctl_udp_mem[3] __read_mostly;
 123EXPORT_SYMBOL(sysctl_udp_mem);
 124
 125atomic_long_t udp_memory_allocated;
 126EXPORT_SYMBOL(udp_memory_allocated);
 127
 128#define MAX_UDP_PORTS 65536
 129#define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
 130
 131/* IPCB reference means this can not be used from early demux */
 132static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb)
 133{
 134#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 135        if (!net->ipv4.sysctl_udp_l3mdev_accept &&
 136            skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
 137                return true;
 138#endif
 139        return false;
 140}
 141
 142static int udp_lib_lport_inuse(struct net *net, __u16 num,
 143                               const struct udp_hslot *hslot,
 144                               unsigned long *bitmap,
 145                               struct sock *sk, unsigned int log)
 146{
 147        struct sock *sk2;
 148        kuid_t uid = sock_i_uid(sk);
 149
 150        sk_for_each(sk2, &hslot->head) {
 151                if (net_eq(sock_net(sk2), net) &&
 152                    sk2 != sk &&
 153                    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
 154                    (!sk2->sk_reuse || !sk->sk_reuse) &&
 155                    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
 156                     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 157                    inet_rcv_saddr_equal(sk, sk2, true)) {
 158                        if (sk2->sk_reuseport && sk->sk_reuseport &&
 159                            !rcu_access_pointer(sk->sk_reuseport_cb) &&
 160                            uid_eq(uid, sock_i_uid(sk2))) {
 161                                if (!bitmap)
 162                                        return 0;
 163                        } else {
 164                                if (!bitmap)
 165                                        return 1;
 166                                __set_bit(udp_sk(sk2)->udp_port_hash >> log,
 167                                          bitmap);
 168                        }
 169                }
 170        }
 171        return 0;
 172}
 173
 174/*
 175 * Note: we still hold spinlock of primary hash chain, so no other writer
 176 * can insert/delete a socket with local_port == num
 177 */
 178static int udp_lib_lport_inuse2(struct net *net, __u16 num,
 179                                struct udp_hslot *hslot2,
 180                                struct sock *sk)
 181{
 182        struct sock *sk2;
 183        kuid_t uid = sock_i_uid(sk);
 184        int res = 0;
 185
 186        spin_lock(&hslot2->lock);
 187        udp_portaddr_for_each_entry(sk2, &hslot2->head) {
 188                if (net_eq(sock_net(sk2), net) &&
 189                    sk2 != sk &&
 190                    (udp_sk(sk2)->udp_port_hash == num) &&
 191                    (!sk2->sk_reuse || !sk->sk_reuse) &&
 192                    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
 193                     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 194                    inet_rcv_saddr_equal(sk, sk2, true)) {
 195                        if (sk2->sk_reuseport && sk->sk_reuseport &&
 196                            !rcu_access_pointer(sk->sk_reuseport_cb) &&
 197                            uid_eq(uid, sock_i_uid(sk2))) {
 198                                res = 0;
 199                        } else {
 200                                res = 1;
 201                        }
 202                        break;
 203                }
 204        }
 205        spin_unlock(&hslot2->lock);
 206        return res;
 207}
 208
 209static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
 210{
 211        struct net *net = sock_net(sk);
 212        kuid_t uid = sock_i_uid(sk);
 213        struct sock *sk2;
 214
 215        sk_for_each(sk2, &hslot->head) {
 216                if (net_eq(sock_net(sk2), net) &&
 217                    sk2 != sk &&
 218                    sk2->sk_family == sk->sk_family &&
 219                    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
 220                    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
 221                    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 222                    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
 223                    inet_rcv_saddr_equal(sk, sk2, false)) {
 224                        return reuseport_add_sock(sk, sk2,
 225                                                  inet_rcv_saddr_any(sk));
 226                }
 227        }
 228
 229        return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
 230}
 231
 232/**
 233 *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
 234 *
 235 *  @sk:          socket struct in question
 236 *  @snum:        port number to look up
 237 *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
 238 *                   with NULL address
 239 */
 240int udp_lib_get_port(struct sock *sk, unsigned short snum,
 241                     unsigned int hash2_nulladdr)
 242{
 243        struct udp_hslot *hslot, *hslot2;
 244        struct udp_table *udptable = sk->sk_prot->h.udp_table;
 245        int    error = 1;
 246        struct net *net = sock_net(sk);
 247
 248        if (!snum) {
 249                int low, high, remaining;
 250                unsigned int rand;
 251                unsigned short first, last;
 252                DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
 253
 254                inet_get_local_port_range(net, &low, &high);
 255                remaining = (high - low) + 1;
 256
 257                rand = prandom_u32();
 258                first = reciprocal_scale(rand, remaining) + low;
 259                /*
 260                 * force rand to be an odd multiple of UDP_HTABLE_SIZE
 261                 */
 262                rand = (rand | 1) * (udptable->mask + 1);
 263                last = first + udptable->mask + 1;
 264                do {
 265                        hslot = udp_hashslot(udptable, net, first);
 266                        bitmap_zero(bitmap, PORTS_PER_CHAIN);
 267                        spin_lock_bh(&hslot->lock);
 268                        udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
 269                                            udptable->log);
 270
 271                        snum = first;
 272                        /*
 273                         * Iterate on all possible values of snum for this hash.
 274                         * Using steps of an odd multiple of UDP_HTABLE_SIZE
 275                         * give us randomization and full range coverage.
 276                         */
 277                        do {
 278                                if (low <= snum && snum <= high &&
 279                                    !test_bit(snum >> udptable->log, bitmap) &&
 280                                    !inet_is_local_reserved_port(net, snum))
 281                                        goto found;
 282                                snum += rand;
 283                        } while (snum != first);
 284                        spin_unlock_bh(&hslot->lock);
 285                        cond_resched();
 286                } while (++first != last);
 287                goto fail;
 288        } else {
 289                hslot = udp_hashslot(udptable, net, snum);
 290                spin_lock_bh(&hslot->lock);
 291                if (hslot->count > 10) {
 292                        int exist;
 293                        unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
 294
 295                        slot2          &= udptable->mask;
 296                        hash2_nulladdr &= udptable->mask;
 297
 298                        hslot2 = udp_hashslot2(udptable, slot2);
 299                        if (hslot->count < hslot2->count)
 300                                goto scan_primary_hash;
 301
 302                        exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
 303                        if (!exist && (hash2_nulladdr != slot2)) {
 304                                hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
 305                                exist = udp_lib_lport_inuse2(net, snum, hslot2,
 306                                                             sk);
 307                        }
 308                        if (exist)
 309                                goto fail_unlock;
 310                        else
 311                                goto found;
 312                }
 313scan_primary_hash:
 314                if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
 315                        goto fail_unlock;
 316        }
 317found:
 318        inet_sk(sk)->inet_num = snum;
 319        udp_sk(sk)->udp_port_hash = snum;
 320        udp_sk(sk)->udp_portaddr_hash ^= snum;
 321        if (sk_unhashed(sk)) {
 322                if (sk->sk_reuseport &&
 323                    udp_reuseport_add_sock(sk, hslot)) {
 324                        inet_sk(sk)->inet_num = 0;
 325                        udp_sk(sk)->udp_port_hash = 0;
 326                        udp_sk(sk)->udp_portaddr_hash ^= snum;
 327                        goto fail_unlock;
 328                }
 329
 330                sk_add_node_rcu(sk, &hslot->head);
 331                hslot->count++;
 332                sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
 333
 334                hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
 335                spin_lock(&hslot2->lock);
 336                if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 337                    sk->sk_family == AF_INET6)
 338                        hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
 339                                           &hslot2->head);
 340                else
 341                        hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
 342                                           &hslot2->head);
 343                hslot2->count++;
 344                spin_unlock(&hslot2->lock);
 345        }
 346        sock_set_flag(sk, SOCK_RCU_FREE);
 347        error = 0;
 348fail_unlock:
 349        spin_unlock_bh(&hslot->lock);
 350fail:
 351        return error;
 352}
 353EXPORT_SYMBOL(udp_lib_get_port);
 354
 355int udp_v4_get_port(struct sock *sk, unsigned short snum)
 356{
 357        unsigned int hash2_nulladdr =
 358                ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
 359        unsigned int hash2_partial =
 360                ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
 361
 362        /* precompute partial secondary hash */
 363        udp_sk(sk)->udp_portaddr_hash = hash2_partial;
 364        return udp_lib_get_port(sk, snum, hash2_nulladdr);
 365}
 366
 367static int compute_score(struct sock *sk, struct net *net,
 368                         __be32 saddr, __be16 sport,
 369                         __be32 daddr, unsigned short hnum,
 370                         int dif, int sdif, bool exact_dif)
 371{
 372        int score;
 373        struct inet_sock *inet;
 374
 375        if (!net_eq(sock_net(sk), net) ||
 376            udp_sk(sk)->udp_port_hash != hnum ||
 377            ipv6_only_sock(sk))
 378                return -1;
 379
 380        if (sk->sk_rcv_saddr != daddr)
 381                return -1;
 382
 383        score = (sk->sk_family == PF_INET) ? 2 : 1;
 384
 385        inet = inet_sk(sk);
 386        if (inet->inet_daddr) {
 387                if (inet->inet_daddr != saddr)
 388                        return -1;
 389                score += 4;
 390        }
 391
 392        if (inet->inet_dport) {
 393                if (inet->inet_dport != sport)
 394                        return -1;
 395                score += 4;
 396        }
 397
 398        if (sk->sk_bound_dev_if || exact_dif) {
 399                bool dev_match = (sk->sk_bound_dev_if == dif ||
 400                                  sk->sk_bound_dev_if == sdif);
 401
 402                if (!dev_match)
 403                        return -1;
 404                if (sk->sk_bound_dev_if)
 405                        score += 4;
 406        }
 407
 408        if (sk->sk_incoming_cpu == raw_smp_processor_id())
 409                score++;
 410        return score;
 411}
 412
 413static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
 414                       const __u16 lport, const __be32 faddr,
 415                       const __be16 fport)
 416{
 417        static u32 udp_ehash_secret __read_mostly;
 418
 419        net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
 420
 421        return __inet_ehashfn(laddr, lport, faddr, fport,
 422                              udp_ehash_secret + net_hash_mix(net));
 423}
 424
 425/* called with rcu_read_lock() */
 426static struct sock *udp4_lib_lookup2(struct net *net,
 427                                     __be32 saddr, __be16 sport,
 428                                     __be32 daddr, unsigned int hnum,
 429                                     int dif, int sdif, bool exact_dif,
 430                                     struct udp_hslot *hslot2,
 431                                     struct sk_buff *skb)
 432{
 433        struct sock *sk, *result;
 434        int score, badness;
 435        u32 hash = 0;
 436
 437        result = NULL;
 438        badness = 0;
 439        udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
 440                score = compute_score(sk, net, saddr, sport,
 441                                      daddr, hnum, dif, sdif, exact_dif);
 442                if (score > badness) {
 443                        if (sk->sk_reuseport &&
 444                            sk->sk_state != TCP_ESTABLISHED) {
 445                                hash = udp_ehashfn(net, daddr, hnum,
 446                                                   saddr, sport);
 447                                result = reuseport_select_sock(sk, hash, skb,
 448                                                        sizeof(struct udphdr));
 449                                if (result && !reuseport_has_conns(sk, false))
 450                                        return result;
 451                        }
 452                        badness = score;
 453                        result = sk;
 454                }
 455        }
 456        return result;
 457}
 458
 459/* UDP is nearly always wildcards out the wazoo, it makes no sense to try
 460 * harder than this. -DaveM
 461 */
 462struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
 463                __be16 sport, __be32 daddr, __be16 dport, int dif,
 464                int sdif, struct udp_table *udptable, struct sk_buff *skb)
 465{
 466        struct sock *result;
 467        unsigned short hnum = ntohs(dport);
 468        unsigned int hash2, slot2;
 469        struct udp_hslot *hslot2;
 470        bool exact_dif = udp_lib_exact_dif_match(net, skb);
 471
 472        hash2 = ipv4_portaddr_hash(net, daddr, hnum);
 473        slot2 = hash2 & udptable->mask;
 474        hslot2 = &udptable->hash2[slot2];
 475
 476        result = udp4_lib_lookup2(net, saddr, sport,
 477                                  daddr, hnum, dif, sdif,
 478                                  exact_dif, hslot2, skb);
 479        if (!result) {
 480                hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
 481                slot2 = hash2 & udptable->mask;
 482                hslot2 = &udptable->hash2[slot2];
 483
 484                result = udp4_lib_lookup2(net, saddr, sport,
 485                                          htonl(INADDR_ANY), hnum, dif, sdif,
 486                                          exact_dif, hslot2, skb);
 487        }
 488        if (unlikely(IS_ERR(result)))
 489                return NULL;
 490        return result;
 491}
 492EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
 493
 494static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
 495                                                 __be16 sport, __be16 dport,
 496                                                 struct udp_table *udptable)
 497{
 498        const struct iphdr *iph = ip_hdr(skb);
 499
 500        return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
 501                                 iph->daddr, dport, inet_iif(skb),
 502                                 inet_sdif(skb), udptable, skb);
 503}
 504
 505struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
 506                                 __be16 sport, __be16 dport)
 507{
 508        const struct iphdr *iph = ip_hdr(skb);
 509
 510        return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
 511                                 iph->daddr, dport, inet_iif(skb),
 512                                 inet_sdif(skb), &udp_table, NULL);
 513}
 514EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
 515
 516/* Must be called under rcu_read_lock().
 517 * Does increment socket refcount.
 518 */
 519#if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
 520struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
 521                             __be32 daddr, __be16 dport, int dif)
 522{
 523        struct sock *sk;
 524
 525        sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
 526                               dif, 0, &udp_table, NULL);
 527        if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
 528                sk = NULL;
 529        return sk;
 530}
 531EXPORT_SYMBOL_GPL(udp4_lib_lookup);
 532#endif
 533
 534static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
 535                                       __be16 loc_port, __be32 loc_addr,
 536                                       __be16 rmt_port, __be32 rmt_addr,
 537                                       int dif, int sdif, unsigned short hnum)
 538{
 539        struct inet_sock *inet = inet_sk(sk);
 540
 541        if (!net_eq(sock_net(sk), net) ||
 542            udp_sk(sk)->udp_port_hash != hnum ||
 543            (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
 544            (inet->inet_dport != rmt_port && inet->inet_dport) ||
 545            (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
 546            ipv6_only_sock(sk) ||
 547            (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif &&
 548             sk->sk_bound_dev_if != sdif))
 549                return false;
 550        if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
 551                return false;
 552        return true;
 553}
 554
 555DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
 556void udp_encap_enable(void)
 557{
 558        static_branch_enable(&udp_encap_needed_key);
 559}
 560EXPORT_SYMBOL(udp_encap_enable);
 561
 562/* Try to match ICMP errors to UDP tunnels by looking up a socket without
 563 * reversing source and destination port: this will match tunnels that force the
 564 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
 565 * lwtunnels might actually break this assumption by being configured with
 566 * different destination ports on endpoints, in this case we won't be able to
 567 * trace ICMP messages back to them.
 568 *
 569 * Then ask the tunnel implementation to match the error against a valid
 570 * association.
 571 *
 572 * Return the socket if we have a match.
 573 */
 574static struct sock *__udp4_lib_err_encap(struct net *net,
 575                                         const struct iphdr *iph,
 576                                         struct udphdr *uh,
 577                                         struct udp_table *udptable,
 578                                         struct sk_buff *skb)
 579{
 580        int (*lookup)(struct sock *sk, struct sk_buff *skb);
 581        int network_offset, transport_offset;
 582        struct udp_sock *up;
 583        struct sock *sk;
 584
 585        sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
 586                               iph->saddr, uh->dest, skb->dev->ifindex, 0,
 587                               udptable, NULL);
 588        if (!sk)
 589                return NULL;
 590
 591        network_offset = skb_network_offset(skb);
 592        transport_offset = skb_transport_offset(skb);
 593
 594        /* Network header needs to point to the outer IPv4 header inside ICMP */
 595        skb_reset_network_header(skb);
 596
 597        /* Transport header needs to point to the UDP header */
 598        skb_set_transport_header(skb, iph->ihl << 2);
 599
 600        up = udp_sk(sk);
 601        lookup = READ_ONCE(up->encap_err_lookup);
 602        if (!lookup || lookup(sk, skb))
 603                sk = NULL;
 604
 605        skb_set_transport_header(skb, transport_offset);
 606        skb_set_network_header(skb, network_offset);
 607
 608        return sk;
 609}
 610
 611/*
 612 * This routine is called by the ICMP module when it gets some
 613 * sort of error condition.  If err < 0 then the socket should
 614 * be closed and the error returned to the user.  If err > 0
 615 * it's just the icmp type << 8 | icmp code.
 616 * Header points to the ip header of the error packet. We move
 617 * on past this. Then (as it used to claim before adjustment)
 618 * header points to the first 8 bytes of the udp header.  We need
 619 * to find the appropriate port.
 620 */
 621
 622void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
 623{
 624        struct inet_sock *inet;
 625        const struct iphdr *iph = (const struct iphdr *)skb->data;
 626        struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
 627        const int type = icmp_hdr(skb)->type;
 628        const int code = icmp_hdr(skb)->code;
 629        bool tunnel = false;
 630        struct sock *sk;
 631        int harderr;
 632        int err;
 633        struct net *net = dev_net(skb->dev);
 634
 635        sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
 636                               iph->saddr, uh->source, skb->dev->ifindex, 0,
 637                               udptable, NULL);
 638        if (!sk) {
 639                /* No socket for error: try tunnels before discarding */
 640                if (static_branch_unlikely(&udp_encap_needed_key))
 641                        sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb);
 642
 643                if (!sk) {
 644                        __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
 645                        return;
 646                }
 647                tunnel = true;
 648        }
 649
 650        err = 0;
 651        harderr = 0;
 652        inet = inet_sk(sk);
 653
 654        switch (type) {
 655        default:
 656        case ICMP_TIME_EXCEEDED:
 657                err = EHOSTUNREACH;
 658                break;
 659        case ICMP_SOURCE_QUENCH:
 660                goto out;
 661        case ICMP_PARAMETERPROB:
 662                err = EPROTO;
 663                harderr = 1;
 664                break;
 665        case ICMP_DEST_UNREACH:
 666                if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
 667                        ipv4_sk_update_pmtu(skb, sk, info);
 668                        if (inet->pmtudisc != IP_PMTUDISC_DONT) {
 669                                err = EMSGSIZE;
 670                                harderr = 1;
 671                                break;
 672                        }
 673                        goto out;
 674                }
 675                err = EHOSTUNREACH;
 676                if (code <= NR_ICMP_UNREACH) {
 677                        harderr = icmp_err_convert[code].fatal;
 678                        err = icmp_err_convert[code].errno;
 679                }
 680                break;
 681        case ICMP_REDIRECT:
 682                ipv4_sk_redirect(skb, sk);
 683                goto out;
 684        }
 685
 686        /*
 687         *      RFC1122: OK.  Passes ICMP errors back to application, as per
 688         *      4.1.3.3.
 689         */
 690        if (tunnel) {
 691                /* ...not for tunnels though: we don't have a sending socket */
 692                goto out;
 693        }
 694        if (!inet->recverr) {
 695                if (!harderr || sk->sk_state != TCP_ESTABLISHED)
 696                        goto out;
 697        } else
 698                ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
 699
 700        sk->sk_err = err;
 701        sk->sk_error_report(sk);
 702out:
 703        return;
 704}
 705
 706void udp_err(struct sk_buff *skb, u32 info)
 707{
 708        __udp4_lib_err(skb, info, &udp_table);
 709}
 710
 711/*
 712 * Throw away all pending data and cancel the corking. Socket is locked.
 713 */
 714void udp_flush_pending_frames(struct sock *sk)
 715{
 716        struct udp_sock *up = udp_sk(sk);
 717
 718        if (up->pending) {
 719                up->len = 0;
 720                up->pending = 0;
 721                ip_flush_pending_frames(sk);
 722        }
 723}
 724EXPORT_SYMBOL(udp_flush_pending_frames);
 725
 726/**
 727 *      udp4_hwcsum  -  handle outgoing HW checksumming
 728 *      @skb:   sk_buff containing the filled-in UDP header
 729 *              (checksum field must be zeroed out)
 730 *      @src:   source IP address
 731 *      @dst:   destination IP address
 732 */
 733void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
 734{
 735        struct udphdr *uh = udp_hdr(skb);
 736        int offset = skb_transport_offset(skb);
 737        int len = skb->len - offset;
 738        int hlen = len;
 739        __wsum csum = 0;
 740
 741        if (!skb_has_frag_list(skb)) {
 742                /*
 743                 * Only one fragment on the socket.
 744                 */
 745                skb->csum_start = skb_transport_header(skb) - skb->head;
 746                skb->csum_offset = offsetof(struct udphdr, check);
 747                uh->check = ~csum_tcpudp_magic(src, dst, len,
 748                                               IPPROTO_UDP, 0);
 749        } else {
 750                struct sk_buff *frags;
 751
 752                /*
 753                 * HW-checksum won't work as there are two or more
 754                 * fragments on the socket so that all csums of sk_buffs
 755                 * should be together
 756                 */
 757                skb_walk_frags(skb, frags) {
 758                        csum = csum_add(csum, frags->csum);
 759                        hlen -= frags->len;
 760                }
 761
 762                csum = skb_checksum(skb, offset, hlen, csum);
 763                skb->ip_summed = CHECKSUM_NONE;
 764
 765                uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
 766                if (uh->check == 0)
 767                        uh->check = CSUM_MANGLED_0;
 768        }
 769}
 770EXPORT_SYMBOL_GPL(udp4_hwcsum);
 771
 772/* Function to set UDP checksum for an IPv4 UDP packet. This is intended
 773 * for the simple case like when setting the checksum for a UDP tunnel.
 774 */
 775void udp_set_csum(bool nocheck, struct sk_buff *skb,
 776                  __be32 saddr, __be32 daddr, int len)
 777{
 778        struct udphdr *uh = udp_hdr(skb);
 779
 780        if (nocheck) {
 781                uh->check = 0;
 782        } else if (skb_is_gso(skb)) {
 783                uh->check = ~udp_v4_check(len, saddr, daddr, 0);
 784        } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
 785                uh->check = 0;
 786                uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
 787                if (uh->check == 0)
 788                        uh->check = CSUM_MANGLED_0;
 789        } else {
 790                skb->ip_summed = CHECKSUM_PARTIAL;
 791                skb->csum_start = skb_transport_header(skb) - skb->head;
 792                skb->csum_offset = offsetof(struct udphdr, check);
 793                uh->check = ~udp_v4_check(len, saddr, daddr, 0);
 794        }
 795}
 796EXPORT_SYMBOL(udp_set_csum);
 797
 798static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
 799                        struct inet_cork *cork)
 800{
 801        struct sock *sk = skb->sk;
 802        struct inet_sock *inet = inet_sk(sk);
 803        struct udphdr *uh;
 804        int err = 0;
 805        int is_udplite = IS_UDPLITE(sk);
 806        int offset = skb_transport_offset(skb);
 807        int len = skb->len - offset;
 808        int datalen = len - sizeof(*uh);
 809        __wsum csum = 0;
 810
 811        /*
 812         * Create a UDP header
 813         */
 814        uh = udp_hdr(skb);
 815        uh->source = inet->inet_sport;
 816        uh->dest = fl4->fl4_dport;
 817        uh->len = htons(len);
 818        uh->check = 0;
 819
 820        if (cork->gso_size) {
 821                const int hlen = skb_network_header_len(skb) +
 822                                 sizeof(struct udphdr);
 823
 824                if (hlen + cork->gso_size > cork->fragsize) {
 825                        kfree_skb(skb);
 826                        return -EINVAL;
 827                }
 828                if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) {
 829                        kfree_skb(skb);
 830                        return -EINVAL;
 831                }
 832                if (sk->sk_no_check_tx) {
 833                        kfree_skb(skb);
 834                        return -EINVAL;
 835                }
 836                if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
 837                    dst_xfrm(skb_dst(skb))) {
 838                        kfree_skb(skb);
 839                        return -EIO;
 840                }
 841
 842                if (datalen > cork->gso_size) {
 843                        skb_shinfo(skb)->gso_size = cork->gso_size;
 844                        skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
 845                        skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
 846                                                                 cork->gso_size);
 847                }
 848                goto csum_partial;
 849        }
 850
 851        if (is_udplite)                                  /*     UDP-Lite      */
 852                csum = udplite_csum(skb);
 853
 854        else if (sk->sk_no_check_tx) {                   /* UDP csum off */
 855
 856                skb->ip_summed = CHECKSUM_NONE;
 857                goto send;
 858
 859        } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
 860csum_partial:
 861
 862                udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
 863                goto send;
 864
 865        } else
 866                csum = udp_csum(skb);
 867
 868        /* add protocol-dependent pseudo-header */
 869        uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
 870                                      sk->sk_protocol, csum);
 871        if (uh->check == 0)
 872                uh->check = CSUM_MANGLED_0;
 873
 874send:
 875        err = ip_send_skb(sock_net(sk), skb);
 876        if (err) {
 877                if (err == -ENOBUFS && !inet->recverr) {
 878                        UDP_INC_STATS(sock_net(sk),
 879                                      UDP_MIB_SNDBUFERRORS, is_udplite);
 880                        err = 0;
 881                }
 882        } else
 883                UDP_INC_STATS(sock_net(sk),
 884                              UDP_MIB_OUTDATAGRAMS, is_udplite);
 885        return err;
 886}
 887
 888/*
 889 * Push out all pending data as one UDP datagram. Socket is locked.
 890 */
 891int udp_push_pending_frames(struct sock *sk)
 892{
 893        struct udp_sock  *up = udp_sk(sk);
 894        struct inet_sock *inet = inet_sk(sk);
 895        struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
 896        struct sk_buff *skb;
 897        int err = 0;
 898
 899        skb = ip_finish_skb(sk, fl4);
 900        if (!skb)
 901                goto out;
 902
 903        err = udp_send_skb(skb, fl4, &inet->cork.base);
 904
 905out:
 906        up->len = 0;
 907        up->pending = 0;
 908        return err;
 909}
 910EXPORT_SYMBOL(udp_push_pending_frames);
 911
 912static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
 913{
 914        switch (cmsg->cmsg_type) {
 915        case UDP_SEGMENT:
 916                if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
 917                        return -EINVAL;
 918                *gso_size = *(__u16 *)CMSG_DATA(cmsg);
 919                return 0;
 920        default:
 921                return -EINVAL;
 922        }
 923}
 924
 925int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
 926{
 927        struct cmsghdr *cmsg;
 928        bool need_ip = false;
 929        int err;
 930
 931        for_each_cmsghdr(cmsg, msg) {
 932                if (!CMSG_OK(msg, cmsg))
 933                        return -EINVAL;
 934
 935                if (cmsg->cmsg_level != SOL_UDP) {
 936                        need_ip = true;
 937                        continue;
 938                }
 939
 940                err = __udp_cmsg_send(cmsg, gso_size);
 941                if (err)
 942                        return err;
 943        }
 944
 945        return need_ip;
 946}
 947EXPORT_SYMBOL_GPL(udp_cmsg_send);
 948
 949int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
 950{
 951        struct inet_sock *inet = inet_sk(sk);
 952        struct udp_sock *up = udp_sk(sk);
 953        DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
 954        struct flowi4 fl4_stack;
 955        struct flowi4 *fl4;
 956        int ulen = len;
 957        struct ipcm_cookie ipc;
 958        struct rtable *rt = NULL;
 959        int free = 0;
 960        int connected = 0;
 961        __be32 daddr, faddr, saddr;
 962        __be16 dport;
 963        u8  tos;
 964        int err, is_udplite = IS_UDPLITE(sk);
 965        int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
 966        int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
 967        struct sk_buff *skb;
 968        struct ip_options_data opt_copy;
 969
 970        if (len > 0xFFFF)
 971                return -EMSGSIZE;
 972
 973        /*
 974         *      Check the flags.
 975         */
 976
 977        if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
 978                return -EOPNOTSUPP;
 979
 980        ipc.opt = NULL;
 981        ipc.tx_flags = 0;
 982        ipc.ttl = 0;
 983        ipc.tos = -1;
 984        ipc.sockc.transmit_time = 0;
 985
 986        getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
 987
 988        fl4 = &inet->cork.fl.u.ip4;
 989        if (up->pending) {
 990                /*
 991                 * There are pending frames.
 992                 * The socket lock must be held while it's corked.
 993                 */
 994                lock_sock(sk);
 995                if (likely(up->pending)) {
 996                        if (unlikely(up->pending != AF_INET)) {
 997                                release_sock(sk);
 998                                return -EINVAL;
 999                        }
1000                        goto do_append_data;
1001                }
1002                release_sock(sk);
1003        }
1004        ulen += sizeof(struct udphdr);
1005
1006        /*
1007         *      Get and verify the address.
1008         */
1009        if (usin) {
1010                if (msg->msg_namelen < sizeof(*usin))
1011                        return -EINVAL;
1012                if (usin->sin_family != AF_INET) {
1013                        if (usin->sin_family != AF_UNSPEC)
1014                                return -EAFNOSUPPORT;
1015                }
1016
1017                daddr = usin->sin_addr.s_addr;
1018                dport = usin->sin_port;
1019                if (dport == 0)
1020                        return -EINVAL;
1021        } else {
1022                if (sk->sk_state != TCP_ESTABLISHED)
1023                        return -EDESTADDRREQ;
1024                daddr = inet->inet_daddr;
1025                dport = inet->inet_dport;
1026                /* Open fast path for connected socket.
1027                   Route will not be used, if at least one option is set.
1028                 */
1029                connected = 1;
1030        }
1031
1032        ipc.sockc.tsflags = sk->sk_tsflags;
1033        ipc.addr = inet->inet_saddr;
1034        ipc.oif = sk->sk_bound_dev_if;
1035        ipc.gso_size = up->gso_size;
1036
1037        if (msg->msg_controllen) {
1038                err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1039                if (err > 0)
1040                        err = ip_cmsg_send(sk, msg, &ipc,
1041                                           sk->sk_family == AF_INET6);
1042                if (unlikely(err < 0)) {
1043                        kfree(ipc.opt);
1044                        return err;
1045                }
1046                if (ipc.opt)
1047                        free = 1;
1048                connected = 0;
1049        }
1050        if (!ipc.opt) {
1051                struct ip_options_rcu *inet_opt;
1052
1053                rcu_read_lock();
1054                inet_opt = rcu_dereference(inet->inet_opt);
1055                if (inet_opt) {
1056                        memcpy(&opt_copy, inet_opt,
1057                               sizeof(*inet_opt) + inet_opt->opt.optlen);
1058                        ipc.opt = &opt_copy.opt;
1059                }
1060                rcu_read_unlock();
1061        }
1062
1063        if (cgroup_bpf_enabled && !connected) {
1064                err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1065                                            (struct sockaddr *)usin, &ipc.addr);
1066                if (err)
1067                        goto out_free;
1068                if (usin) {
1069                        if (usin->sin_port == 0) {
1070                                /* BPF program set invalid port. Reject it. */
1071                                err = -EINVAL;
1072                                goto out_free;
1073                        }
1074                        daddr = usin->sin_addr.s_addr;
1075                        dport = usin->sin_port;
1076                }
1077        }
1078
1079        saddr = ipc.addr;
1080        ipc.addr = faddr = daddr;
1081
1082        sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags);
1083
1084        if (ipc.opt && ipc.opt->opt.srr) {
1085                if (!daddr) {
1086                        err = -EINVAL;
1087                        goto out_free;
1088                }
1089                faddr = ipc.opt->opt.faddr;
1090                connected = 0;
1091        }
1092        tos = get_rttos(&ipc, inet);
1093        if (sock_flag(sk, SOCK_LOCALROUTE) ||
1094            (msg->msg_flags & MSG_DONTROUTE) ||
1095            (ipc.opt && ipc.opt->opt.is_strictroute)) {
1096                tos |= RTO_ONLINK;
1097                connected = 0;
1098        }
1099
1100        if (ipv4_is_multicast(daddr)) {
1101                if (!ipc.oif)
1102                        ipc.oif = inet->mc_index;
1103                if (!saddr)
1104                        saddr = inet->mc_addr;
1105                connected = 0;
1106        } else if (!ipc.oif) {
1107                ipc.oif = inet->uc_index;
1108        } else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1109                /* oif is set, packet is to local broadcast and
1110                 * and uc_index is set. oif is most likely set
1111                 * by sk_bound_dev_if. If uc_index != oif check if the
1112                 * oif is an L3 master and uc_index is an L3 slave.
1113                 * If so, we want to allow the send using the uc_index.
1114                 */
1115                if (ipc.oif != inet->uc_index &&
1116                    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1117                                                              inet->uc_index)) {
1118                        ipc.oif = inet->uc_index;
1119                }
1120        }
1121
1122        if (connected)
1123                rt = (struct rtable *)sk_dst_check(sk, 0);
1124
1125        if (!rt) {
1126                struct net *net = sock_net(sk);
1127                __u8 flow_flags = inet_sk_flowi_flags(sk);
1128
1129                fl4 = &fl4_stack;
1130
1131                flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1132                                   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1133                                   flow_flags,
1134                                   faddr, saddr, dport, inet->inet_sport,
1135                                   sk->sk_uid);
1136
1137                security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1138                rt = ip_route_output_flow(net, fl4, sk);
1139                if (IS_ERR(rt)) {
1140                        err = PTR_ERR(rt);
1141                        rt = NULL;
1142                        if (err == -ENETUNREACH)
1143                                IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1144                        goto out;
1145                }
1146
1147                err = -EACCES;
1148                if ((rt->rt_flags & RTCF_BROADCAST) &&
1149                    !sock_flag(sk, SOCK_BROADCAST))
1150                        goto out;
1151                if (connected)
1152                        sk_dst_set(sk, dst_clone(&rt->dst));
1153        }
1154
1155        if (msg->msg_flags&MSG_CONFIRM)
1156                goto do_confirm;
1157back_from_confirm:
1158
1159        saddr = fl4->saddr;
1160        if (!ipc.addr)
1161                daddr = ipc.addr = fl4->daddr;
1162
1163        /* Lockless fast path for the non-corking case. */
1164        if (!corkreq) {
1165                struct inet_cork cork;
1166
1167                skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1168                                  sizeof(struct udphdr), &ipc, &rt,
1169                                  &cork, msg->msg_flags);
1170                err = PTR_ERR(skb);
1171                if (!IS_ERR_OR_NULL(skb))
1172                        err = udp_send_skb(skb, fl4, &cork);
1173                goto out;
1174        }
1175
1176        lock_sock(sk);
1177        if (unlikely(up->pending)) {
1178                /* The socket is already corked while preparing it. */
1179                /* ... which is an evident application bug. --ANK */
1180                release_sock(sk);
1181
1182                net_dbg_ratelimited("socket already corked\n");
1183                err = -EINVAL;
1184                goto out;
1185        }
1186        /*
1187         *      Now cork the socket to pend data.
1188         */
1189        fl4 = &inet->cork.fl.u.ip4;
1190        fl4->daddr = daddr;
1191        fl4->saddr = saddr;
1192        fl4->fl4_dport = dport;
1193        fl4->fl4_sport = inet->inet_sport;
1194        up->pending = AF_INET;
1195
1196do_append_data:
1197        up->len += ulen;
1198        err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1199                             sizeof(struct udphdr), &ipc, &rt,
1200                             corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1201        if (err)
1202                udp_flush_pending_frames(sk);
1203        else if (!corkreq)
1204                err = udp_push_pending_frames(sk);
1205        else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1206                up->pending = 0;
1207        release_sock(sk);
1208
1209out:
1210        ip_rt_put(rt);
1211out_free:
1212        if (free)
1213                kfree(ipc.opt);
1214        if (!err)
1215                return len;
1216        /*
1217         * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1218         * ENOBUFS might not be good (it's not tunable per se), but otherwise
1219         * we don't have a good statistic (IpOutDiscards but it can be too many
1220         * things).  We could add another new stat but at least for now that
1221         * seems like overkill.
1222         */
1223        if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1224                UDP_INC_STATS(sock_net(sk),
1225                              UDP_MIB_SNDBUFERRORS, is_udplite);
1226        }
1227        return err;
1228
1229do_confirm:
1230        if (msg->msg_flags & MSG_PROBE)
1231                dst_confirm_neigh(&rt->dst, &fl4->daddr);
1232        if (!(msg->msg_flags&MSG_PROBE) || len)
1233                goto back_from_confirm;
1234        err = 0;
1235        goto out;
1236}
1237EXPORT_SYMBOL(udp_sendmsg);
1238
1239int udp_sendpage(struct sock *sk, struct page *page, int offset,
1240                 size_t size, int flags)
1241{
1242        struct inet_sock *inet = inet_sk(sk);
1243        struct udp_sock *up = udp_sk(sk);
1244        int ret;
1245
1246        if (flags & MSG_SENDPAGE_NOTLAST)
1247                flags |= MSG_MORE;
1248
1249        if (!up->pending) {
1250                struct msghdr msg = {   .msg_flags = flags|MSG_MORE };
1251
1252                /* Call udp_sendmsg to specify destination address which
1253                 * sendpage interface can't pass.
1254                 * This will succeed only when the socket is connected.
1255                 */
1256                ret = udp_sendmsg(sk, &msg, 0);
1257                if (ret < 0)
1258                        return ret;
1259        }
1260
1261        lock_sock(sk);
1262
1263        if (unlikely(!up->pending)) {
1264                release_sock(sk);
1265
1266                net_dbg_ratelimited("cork failed\n");
1267                return -EINVAL;
1268        }
1269
1270        ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1271                             page, offset, size, flags);
1272        if (ret == -EOPNOTSUPP) {
1273                release_sock(sk);
1274                return sock_no_sendpage(sk->sk_socket, page, offset,
1275                                        size, flags);
1276        }
1277        if (ret < 0) {
1278                udp_flush_pending_frames(sk);
1279                goto out;
1280        }
1281
1282        up->len += size;
1283        if (!(up->corkflag || (flags&MSG_MORE)))
1284                ret = udp_push_pending_frames(sk);
1285        if (!ret)
1286                ret = size;
1287out:
1288        release_sock(sk);
1289        return ret;
1290}
1291
1292#define UDP_SKB_IS_STATELESS 0x80000000
1293
1294static void udp_set_dev_scratch(struct sk_buff *skb)
1295{
1296        struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1297
1298        BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1299        scratch->_tsize_state = skb->truesize;
1300#if BITS_PER_LONG == 64
1301        scratch->len = skb->len;
1302        scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1303        scratch->is_linear = !skb_is_nonlinear(skb);
1304#endif
1305        /* all head states execept sp (dst, sk, nf) are always cleared by
1306         * udp_rcv() and we need to preserve secpath, if present, to eventually
1307         * process IP_CMSG_PASSSEC at recvmsg() time
1308         */
1309        if (likely(!skb_sec_path(skb)))
1310                scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1311}
1312
1313static int udp_skb_truesize(struct sk_buff *skb)
1314{
1315        return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1316}
1317
1318static bool udp_skb_has_head_state(struct sk_buff *skb)
1319{
1320        return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1321}
1322
1323/* fully reclaim rmem/fwd memory allocated for skb */
1324static void udp_rmem_release(struct sock *sk, int size, int partial,
1325                             bool rx_queue_lock_held)
1326{
1327        struct udp_sock *up = udp_sk(sk);
1328        struct sk_buff_head *sk_queue;
1329        int amt;
1330
1331        if (likely(partial)) {
1332                up->forward_deficit += size;
1333                size = up->forward_deficit;
1334                if (size < (sk->sk_rcvbuf >> 2))
1335                        return;
1336        } else {
1337                size += up->forward_deficit;
1338        }
1339        up->forward_deficit = 0;
1340
1341        /* acquire the sk_receive_queue for fwd allocated memory scheduling,
1342         * if the called don't held it already
1343         */
1344        sk_queue = &sk->sk_receive_queue;
1345        if (!rx_queue_lock_held)
1346                spin_lock(&sk_queue->lock);
1347
1348
1349        sk->sk_forward_alloc += size;
1350        amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1351        sk->sk_forward_alloc -= amt;
1352
1353        if (amt)
1354                __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1355
1356        atomic_sub(size, &sk->sk_rmem_alloc);
1357
1358        /* this can save us from acquiring the rx queue lock on next receive */
1359        skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1360
1361        if (!rx_queue_lock_held)
1362                spin_unlock(&sk_queue->lock);
1363}
1364
1365/* Note: called with reader_queue.lock held.
1366 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1367 * This avoids a cache line miss while receive_queue lock is held.
1368 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1369 */
1370void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1371{
1372        prefetch(&skb->data);
1373        udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1374}
1375EXPORT_SYMBOL(udp_skb_destructor);
1376
1377/* as above, but the caller held the rx queue lock, too */
1378static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1379{
1380        prefetch(&skb->data);
1381        udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1382}
1383
1384/* Idea of busylocks is to let producers grab an extra spinlock
1385 * to relieve pressure on the receive_queue spinlock shared by consumer.
1386 * Under flood, this means that only one producer can be in line
1387 * trying to acquire the receive_queue spinlock.
1388 * These busylock can be allocated on a per cpu manner, instead of a
1389 * per socket one (that would consume a cache line per socket)
1390 */
1391static int udp_busylocks_log __read_mostly;
1392static spinlock_t *udp_busylocks __read_mostly;
1393
1394static spinlock_t *busylock_acquire(void *ptr)
1395{
1396        spinlock_t *busy;
1397
1398        busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1399        spin_lock(busy);
1400        return busy;
1401}
1402
1403static void busylock_release(spinlock_t *busy)
1404{
1405        if (busy)
1406                spin_unlock(busy);
1407}
1408
1409int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1410{
1411        struct sk_buff_head *list = &sk->sk_receive_queue;
1412        int rmem, delta, amt, err = -ENOMEM;
1413        spinlock_t *busy = NULL;
1414        int size;
1415
1416        /* try to avoid the costly atomic add/sub pair when the receive
1417         * queue is full; always allow at least a packet
1418         */
1419        rmem = atomic_read(&sk->sk_rmem_alloc);
1420        if (rmem > sk->sk_rcvbuf)
1421                goto drop;
1422
1423        /* Under mem pressure, it might be helpful to help udp_recvmsg()
1424         * having linear skbs :
1425         * - Reduce memory overhead and thus increase receive queue capacity
1426         * - Less cache line misses at copyout() time
1427         * - Less work at consume_skb() (less alien page frag freeing)
1428         */
1429        if (rmem > (sk->sk_rcvbuf >> 1)) {
1430                skb_condense(skb);
1431
1432                busy = busylock_acquire(sk);
1433        }
1434        size = skb->truesize;
1435        udp_set_dev_scratch(skb);
1436
1437        /* we drop only if the receive buf is full and the receive
1438         * queue contains some other skb
1439         */
1440        rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1441        if (rmem > (size + sk->sk_rcvbuf))
1442                goto uncharge_drop;
1443
1444        spin_lock(&list->lock);
1445        if (size >= sk->sk_forward_alloc) {
1446                amt = sk_mem_pages(size);
1447                delta = amt << SK_MEM_QUANTUM_SHIFT;
1448                if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1449                        err = -ENOBUFS;
1450                        spin_unlock(&list->lock);
1451                        goto uncharge_drop;
1452                }
1453
1454                sk->sk_forward_alloc += delta;
1455        }
1456
1457        sk->sk_forward_alloc -= size;
1458
1459        /* no need to setup a destructor, we will explicitly release the
1460         * forward allocated memory on dequeue
1461         */
1462        sock_skb_set_dropcount(sk, skb);
1463
1464        __skb_queue_tail(list, skb);
1465        spin_unlock(&list->lock);
1466
1467        if (!sock_flag(sk, SOCK_DEAD))
1468                sk->sk_data_ready(sk);
1469
1470        busylock_release(busy);
1471        return 0;
1472
1473uncharge_drop:
1474        atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1475
1476drop:
1477        atomic_inc(&sk->sk_drops);
1478        busylock_release(busy);
1479        return err;
1480}
1481EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1482
1483void udp_destruct_sock(struct sock *sk)
1484{
1485        /* reclaim completely the forward allocated memory */
1486        struct udp_sock *up = udp_sk(sk);
1487        unsigned int total = 0;
1488        struct sk_buff *skb;
1489
1490        skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1491        while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1492                total += skb->truesize;
1493                kfree_skb(skb);
1494        }
1495        udp_rmem_release(sk, total, 0, true);
1496
1497        inet_sock_destruct(sk);
1498}
1499EXPORT_SYMBOL_GPL(udp_destruct_sock);
1500
1501int udp_init_sock(struct sock *sk)
1502{
1503        skb_queue_head_init(&udp_sk(sk)->reader_queue);
1504        sk->sk_destruct = udp_destruct_sock;
1505        return 0;
1506}
1507EXPORT_SYMBOL_GPL(udp_init_sock);
1508
1509void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1510{
1511        if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1512                bool slow = lock_sock_fast(sk);
1513
1514                sk_peek_offset_bwd(sk, len);
1515                unlock_sock_fast(sk, slow);
1516        }
1517
1518        if (!skb_unref(skb))
1519                return;
1520
1521        /* In the more common cases we cleared the head states previously,
1522         * see __udp_queue_rcv_skb().
1523         */
1524        if (unlikely(udp_skb_has_head_state(skb)))
1525                skb_release_head_state(skb);
1526        __consume_stateless_skb(skb);
1527}
1528EXPORT_SYMBOL_GPL(skb_consume_udp);
1529
1530static struct sk_buff *__first_packet_length(struct sock *sk,
1531                                             struct sk_buff_head *rcvq,
1532                                             int *total)
1533{
1534        struct sk_buff *skb;
1535
1536        while ((skb = skb_peek(rcvq)) != NULL) {
1537                if (udp_lib_checksum_complete(skb)) {
1538                        __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1539                                        IS_UDPLITE(sk));
1540                        __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1541                                        IS_UDPLITE(sk));
1542                        atomic_inc(&sk->sk_drops);
1543                        __skb_unlink(skb, rcvq);
1544                        *total += skb->truesize;
1545                        kfree_skb(skb);
1546                } else {
1547                        /* the csum related bits could be changed, refresh
1548                         * the scratch area
1549                         */
1550                        udp_set_dev_scratch(skb);
1551                        break;
1552                }
1553        }
1554        return skb;
1555}
1556
1557/**
1558 *      first_packet_length     - return length of first packet in receive queue
1559 *      @sk: socket
1560 *
1561 *      Drops all bad checksum frames, until a valid one is found.
1562 *      Returns the length of found skb, or -1 if none is found.
1563 */
1564static int first_packet_length(struct sock *sk)
1565{
1566        struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1567        struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1568        struct sk_buff *skb;
1569        int total = 0;
1570        int res;
1571
1572        spin_lock_bh(&rcvq->lock);
1573        skb = __first_packet_length(sk, rcvq, &total);
1574        if (!skb && !skb_queue_empty(sk_queue)) {
1575                spin_lock(&sk_queue->lock);
1576                skb_queue_splice_tail_init(sk_queue, rcvq);
1577                spin_unlock(&sk_queue->lock);
1578
1579                skb = __first_packet_length(sk, rcvq, &total);
1580        }
1581        res = skb ? skb->len : -1;
1582        if (total)
1583                udp_rmem_release(sk, total, 1, false);
1584        spin_unlock_bh(&rcvq->lock);
1585        return res;
1586}
1587
1588/*
1589 *      IOCTL requests applicable to the UDP protocol
1590 */
1591
1592int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1593{
1594        switch (cmd) {
1595        case SIOCOUTQ:
1596        {
1597                int amount = sk_wmem_alloc_get(sk);
1598
1599                return put_user(amount, (int __user *)arg);
1600        }
1601
1602        case SIOCINQ:
1603        {
1604                int amount = max_t(int, 0, first_packet_length(sk));
1605
1606                return put_user(amount, (int __user *)arg);
1607        }
1608
1609        default:
1610                return -ENOIOCTLCMD;
1611        }
1612
1613        return 0;
1614}
1615EXPORT_SYMBOL(udp_ioctl);
1616
1617struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1618                               int noblock, int *peeked, int *off, int *err)
1619{
1620        struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1621        struct sk_buff_head *queue;
1622        struct sk_buff *last;
1623        long timeo;
1624        int error;
1625
1626        queue = &udp_sk(sk)->reader_queue;
1627        flags |= noblock ? MSG_DONTWAIT : 0;
1628        timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1629        do {
1630                struct sk_buff *skb;
1631
1632                error = sock_error(sk);
1633                if (error)
1634                        break;
1635
1636                error = -EAGAIN;
1637                *peeked = 0;
1638                do {
1639                        spin_lock_bh(&queue->lock);
1640                        skb = __skb_try_recv_from_queue(sk, queue, flags,
1641                                                        udp_skb_destructor,
1642                                                        peeked, off, err,
1643                                                        &last);
1644                        if (skb) {
1645                                spin_unlock_bh(&queue->lock);
1646                                return skb;
1647                        }
1648
1649                        if (skb_queue_empty(sk_queue)) {
1650                                spin_unlock_bh(&queue->lock);
1651                                goto busy_check;
1652                        }
1653
1654                        /* refill the reader queue and walk it again
1655                         * keep both queues locked to avoid re-acquiring
1656                         * the sk_receive_queue lock if fwd memory scheduling
1657                         * is needed.
1658                         */
1659                        spin_lock(&sk_queue->lock);
1660                        skb_queue_splice_tail_init(sk_queue, queue);
1661
1662                        skb = __skb_try_recv_from_queue(sk, queue, flags,
1663                                                        udp_skb_dtor_locked,
1664                                                        peeked, off, err,
1665                                                        &last);
1666                        spin_unlock(&sk_queue->lock);
1667                        spin_unlock_bh(&queue->lock);
1668                        if (skb)
1669                                return skb;
1670
1671busy_check:
1672                        if (!sk_can_busy_loop(sk))
1673                                break;
1674
1675                        sk_busy_loop(sk, flags & MSG_DONTWAIT);
1676                } while (!skb_queue_empty(sk_queue));
1677
1678                /* sk_queue is empty, reader_queue may contain peeked packets */
1679        } while (timeo &&
1680                 !__skb_wait_for_more_packets(sk, &error, &timeo,
1681                                              (struct sk_buff *)sk_queue));
1682
1683        *err = error;
1684        return NULL;
1685}
1686EXPORT_SYMBOL(__skb_recv_udp);
1687
1688/*
1689 *      This should be easy, if there is something there we
1690 *      return it, otherwise we block.
1691 */
1692
1693int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1694                int flags, int *addr_len)
1695{
1696        struct inet_sock *inet = inet_sk(sk);
1697        DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1698        struct sk_buff *skb;
1699        unsigned int ulen, copied;
1700        int peeked, peeking, off;
1701        int err;
1702        int is_udplite = IS_UDPLITE(sk);
1703        bool checksum_valid = false;
1704
1705        if (flags & MSG_ERRQUEUE)
1706                return ip_recv_error(sk, msg, len, addr_len);
1707
1708try_again:
1709        peeking = flags & MSG_PEEK;
1710        off = sk_peek_offset(sk, flags);
1711        skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err);
1712        if (!skb)
1713                return err;
1714
1715        ulen = udp_skb_len(skb);
1716        copied = len;
1717        if (copied > ulen - off)
1718                copied = ulen - off;
1719        else if (copied < ulen)
1720                msg->msg_flags |= MSG_TRUNC;
1721
1722        /*
1723         * If checksum is needed at all, try to do it while copying the
1724         * data.  If the data is truncated, or if we only want a partial
1725         * coverage checksum (UDP-Lite), do it before the copy.
1726         */
1727
1728        if (copied < ulen || peeking ||
1729            (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1730                checksum_valid = udp_skb_csum_unnecessary(skb) ||
1731                                !__udp_lib_checksum_complete(skb);
1732                if (!checksum_valid)
1733                        goto csum_copy_err;
1734        }
1735
1736        if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1737                if (udp_skb_is_linear(skb))
1738                        err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1739                else
1740                        err = skb_copy_datagram_msg(skb, off, msg, copied);
1741        } else {
1742                err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1743
1744                if (err == -EINVAL)
1745                        goto csum_copy_err;
1746        }
1747
1748        if (unlikely(err)) {
1749                if (!peeked) {
1750                        atomic_inc(&sk->sk_drops);
1751                        UDP_INC_STATS(sock_net(sk),
1752                                      UDP_MIB_INERRORS, is_udplite);
1753                }
1754                kfree_skb(skb);
1755                return err;
1756        }
1757
1758        if (!peeked)
1759                UDP_INC_STATS(sock_net(sk),
1760                              UDP_MIB_INDATAGRAMS, is_udplite);
1761
1762        sock_recv_ts_and_drops(msg, sk, skb);
1763
1764        /* Copy the address. */
1765        if (sin) {
1766                sin->sin_family = AF_INET;
1767                sin->sin_port = udp_hdr(skb)->source;
1768                sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1769                memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1770                *addr_len = sizeof(*sin);
1771
1772                if (cgroup_bpf_enabled)
1773                        BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1774                                                        (struct sockaddr *)sin);
1775        }
1776        if (inet->cmsg_flags)
1777                ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1778
1779        err = copied;
1780        if (flags & MSG_TRUNC)
1781                err = ulen;
1782
1783        skb_consume_udp(sk, skb, peeking ? -err : err);
1784        return err;
1785
1786csum_copy_err:
1787        if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1788                                 udp_skb_destructor)) {
1789                UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1790                UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1791        }
1792        kfree_skb(skb);
1793
1794        /* starting over for a new packet, but check if we need to yield */
1795        cond_resched();
1796        msg->msg_flags &= ~MSG_TRUNC;
1797        goto try_again;
1798}
1799
1800int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1801{
1802        /* This check is replicated from __ip4_datagram_connect() and
1803         * intended to prevent BPF program called below from accessing bytes
1804         * that are out of the bound specified by user in addr_len.
1805         */
1806        if (addr_len < sizeof(struct sockaddr_in))
1807                return -EINVAL;
1808
1809        return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1810}
1811EXPORT_SYMBOL(udp_pre_connect);
1812
1813int __udp_disconnect(struct sock *sk, int flags)
1814{
1815        struct inet_sock *inet = inet_sk(sk);
1816        /*
1817         *      1003.1g - break association.
1818         */
1819
1820        sk->sk_state = TCP_CLOSE;
1821        inet->inet_daddr = 0;
1822        inet->inet_dport = 0;
1823        sock_rps_reset_rxhash(sk);
1824        sk->sk_bound_dev_if = 0;
1825        if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1826                inet_reset_saddr(sk);
1827
1828        if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1829                sk->sk_prot->unhash(sk);
1830                inet->inet_sport = 0;
1831        }
1832        sk_dst_reset(sk);
1833        return 0;
1834}
1835EXPORT_SYMBOL(__udp_disconnect);
1836
1837int udp_disconnect(struct sock *sk, int flags)
1838{
1839        lock_sock(sk);
1840        __udp_disconnect(sk, flags);
1841        release_sock(sk);
1842        return 0;
1843}
1844EXPORT_SYMBOL(udp_disconnect);
1845
1846void udp_lib_unhash(struct sock *sk)
1847{
1848        if (sk_hashed(sk)) {
1849                struct udp_table *udptable = sk->sk_prot->h.udp_table;
1850                struct udp_hslot *hslot, *hslot2;
1851
1852                hslot  = udp_hashslot(udptable, sock_net(sk),
1853                                      udp_sk(sk)->udp_port_hash);
1854                hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1855
1856                spin_lock_bh(&hslot->lock);
1857                if (rcu_access_pointer(sk->sk_reuseport_cb))
1858                        reuseport_detach_sock(sk);
1859                if (sk_del_node_init_rcu(sk)) {
1860                        hslot->count--;
1861                        inet_sk(sk)->inet_num = 0;
1862                        sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1863
1864                        spin_lock(&hslot2->lock);
1865                        hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1866                        hslot2->count--;
1867                        spin_unlock(&hslot2->lock);
1868                }
1869                spin_unlock_bh(&hslot->lock);
1870        }
1871}
1872EXPORT_SYMBOL(udp_lib_unhash);
1873
1874/*
1875 * inet_rcv_saddr was changed, we must rehash secondary hash
1876 */
1877void udp_lib_rehash(struct sock *sk, u16 newhash)
1878{
1879        if (sk_hashed(sk)) {
1880                struct udp_table *udptable = sk->sk_prot->h.udp_table;
1881                struct udp_hslot *hslot, *hslot2, *nhslot2;
1882
1883                hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1884                nhslot2 = udp_hashslot2(udptable, newhash);
1885                udp_sk(sk)->udp_portaddr_hash = newhash;
1886
1887                if (hslot2 != nhslot2 ||
1888                    rcu_access_pointer(sk->sk_reuseport_cb)) {
1889                        hslot = udp_hashslot(udptable, sock_net(sk),
1890                                             udp_sk(sk)->udp_port_hash);
1891                        /* we must lock primary chain too */
1892                        spin_lock_bh(&hslot->lock);
1893                        if (rcu_access_pointer(sk->sk_reuseport_cb))
1894                                reuseport_detach_sock(sk);
1895
1896                        if (hslot2 != nhslot2) {
1897                                spin_lock(&hslot2->lock);
1898                                hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1899                                hslot2->count--;
1900                                spin_unlock(&hslot2->lock);
1901
1902                                spin_lock(&nhslot2->lock);
1903                                hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1904                                                         &nhslot2->head);
1905                                nhslot2->count++;
1906                                spin_unlock(&nhslot2->lock);
1907                        }
1908
1909                        spin_unlock_bh(&hslot->lock);
1910                }
1911        }
1912}
1913EXPORT_SYMBOL(udp_lib_rehash);
1914
1915void udp_v4_rehash(struct sock *sk)
1916{
1917        u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
1918                                          inet_sk(sk)->inet_rcv_saddr,
1919                                          inet_sk(sk)->inet_num);
1920        udp_lib_rehash(sk, new_hash);
1921}
1922
1923static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1924{
1925        int rc;
1926
1927        if (inet_sk(sk)->inet_daddr) {
1928                sock_rps_save_rxhash(sk, skb);
1929                sk_mark_napi_id(sk, skb);
1930                sk_incoming_cpu_update(sk);
1931        } else {
1932                sk_mark_napi_id_once(sk, skb);
1933        }
1934
1935        rc = __udp_enqueue_schedule_skb(sk, skb);
1936        if (rc < 0) {
1937                int is_udplite = IS_UDPLITE(sk);
1938
1939                /* Note that an ENOMEM error is charged twice */
1940                if (rc == -ENOMEM)
1941                        UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1942                                        is_udplite);
1943                UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1944                kfree_skb(skb);
1945                trace_udp_fail_queue_rcv_skb(rc, sk);
1946                return -1;
1947        }
1948
1949        return 0;
1950}
1951
1952/* returns:
1953 *  -1: error
1954 *   0: success
1955 *  >0: "udp encap" protocol resubmission
1956 *
1957 * Note that in the success and error cases, the skb is assumed to
1958 * have either been requeued or freed.
1959 */
1960static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1961{
1962        struct udp_sock *up = udp_sk(sk);
1963        int is_udplite = IS_UDPLITE(sk);
1964
1965        /*
1966         *      Charge it to the socket, dropping if the queue is full.
1967         */
1968        if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1969                goto drop;
1970        nf_reset(skb);
1971
1972        if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
1973                int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1974
1975                /*
1976                 * This is an encapsulation socket so pass the skb to
1977                 * the socket's udp_encap_rcv() hook. Otherwise, just
1978                 * fall through and pass this up the UDP socket.
1979                 * up->encap_rcv() returns the following value:
1980                 * =0 if skb was successfully passed to the encap
1981                 *    handler or was discarded by it.
1982                 * >0 if skb should be passed on to UDP.
1983                 * <0 if skb should be resubmitted as proto -N
1984                 */
1985
1986                /* if we're overly short, let UDP handle it */
1987                encap_rcv = READ_ONCE(up->encap_rcv);
1988                if (encap_rcv) {
1989                        int ret;
1990
1991                        /* Verify checksum before giving to encap */
1992                        if (udp_lib_checksum_complete(skb))
1993                                goto csum_error;
1994
1995                        ret = encap_rcv(sk, skb);
1996                        if (ret <= 0) {
1997                                __UDP_INC_STATS(sock_net(sk),
1998                                                UDP_MIB_INDATAGRAMS,
1999                                                is_udplite);
2000                                return -ret;
2001                        }
2002                }
2003
2004                /* FALLTHROUGH -- it's a UDP Packet */
2005        }
2006
2007        /*
2008         *      UDP-Lite specific tests, ignored on UDP sockets
2009         */
2010        if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2011
2012                /*
2013                 * MIB statistics other than incrementing the error count are
2014                 * disabled for the following two types of errors: these depend
2015                 * on the application settings, not on the functioning of the
2016                 * protocol stack as such.
2017                 *
2018                 * RFC 3828 here recommends (sec 3.3): "There should also be a
2019                 * way ... to ... at least let the receiving application block
2020                 * delivery of packets with coverage values less than a value
2021                 * provided by the application."
2022                 */
2023                if (up->pcrlen == 0) {          /* full coverage was set  */
2024                        net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2025                                            UDP_SKB_CB(skb)->cscov, skb->len);
2026                        goto drop;
2027                }
2028                /* The next case involves violating the min. coverage requested
2029                 * by the receiver. This is subtle: if receiver wants x and x is
2030                 * greater than the buffersize/MTU then receiver will complain
2031                 * that it wants x while sender emits packets of smaller size y.
2032                 * Therefore the above ...()->partial_cov statement is essential.
2033                 */
2034                if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2035                        net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2036                                            UDP_SKB_CB(skb)->cscov, up->pcrlen);
2037                        goto drop;
2038                }
2039        }
2040
2041        prefetch(&sk->sk_rmem_alloc);
2042        if (rcu_access_pointer(sk->sk_filter) &&
2043            udp_lib_checksum_complete(skb))
2044                        goto csum_error;
2045
2046        if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
2047                goto drop;
2048
2049        udp_csum_pull_header(skb);
2050
2051        ipv4_pktinfo_prepare(sk, skb);
2052        return __udp_queue_rcv_skb(sk, skb);
2053
2054csum_error:
2055        __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2056drop:
2057        __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2058        atomic_inc(&sk->sk_drops);
2059        kfree_skb(skb);
2060        return -1;
2061}
2062
2063/* For TCP sockets, sk_rx_dst is protected by socket lock
2064 * For UDP, we use xchg() to guard against concurrent changes.
2065 */
2066bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2067{
2068        struct dst_entry *old;
2069
2070        if (dst_hold_safe(dst)) {
2071                old = xchg(&sk->sk_rx_dst, dst);
2072                dst_release(old);
2073                return old != dst;
2074        }
2075        return false;
2076}
2077EXPORT_SYMBOL(udp_sk_rx_dst_set);
2078
2079/*
2080 *      Multicasts and broadcasts go to each listener.
2081 *
2082 *      Note: called only from the BH handler context.
2083 */
2084static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2085                                    struct udphdr  *uh,
2086                                    __be32 saddr, __be32 daddr,
2087                                    struct udp_table *udptable,
2088                                    int proto)
2089{
2090        struct sock *sk, *first = NULL;
2091        unsigned short hnum = ntohs(uh->dest);
2092        struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2093        unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2094        unsigned int offset = offsetof(typeof(*sk), sk_node);
2095        int dif = skb->dev->ifindex;
2096        int sdif = inet_sdif(skb);
2097        struct hlist_node *node;
2098        struct sk_buff *nskb;
2099
2100        if (use_hash2) {
2101                hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2102                            udptable->mask;
2103                hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2104start_lookup:
2105                hslot = &udptable->hash2[hash2];
2106                offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2107        }
2108
2109        sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2110                if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2111                                         uh->source, saddr, dif, sdif, hnum))
2112                        continue;
2113
2114                if (!first) {
2115                        first = sk;
2116                        continue;
2117                }
2118                nskb = skb_clone(skb, GFP_ATOMIC);
2119
2120                if (unlikely(!nskb)) {
2121                        atomic_inc(&sk->sk_drops);
2122                        __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2123                                        IS_UDPLITE(sk));
2124                        __UDP_INC_STATS(net, UDP_MIB_INERRORS,
2125                                        IS_UDPLITE(sk));
2126                        continue;
2127                }
2128                if (udp_queue_rcv_skb(sk, nskb) > 0)
2129                        consume_skb(nskb);
2130        }
2131
2132        /* Also lookup *:port if we are using hash2 and haven't done so yet. */
2133        if (use_hash2 && hash2 != hash2_any) {
2134                hash2 = hash2_any;
2135                goto start_lookup;
2136        }
2137
2138        if (first) {
2139                if (udp_queue_rcv_skb(first, skb) > 0)
2140                        consume_skb(skb);
2141        } else {
2142                kfree_skb(skb);
2143                __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2144                                proto == IPPROTO_UDPLITE);
2145        }
2146        return 0;
2147}
2148
2149/* Initialize UDP checksum. If exited with zero value (success),
2150 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2151 * Otherwise, csum completion requires chacksumming packet body,
2152 * including udp header and folding it to skb->csum.
2153 */
2154static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2155                                 int proto)
2156{
2157        int err;
2158
2159        UDP_SKB_CB(skb)->partial_cov = 0;
2160        UDP_SKB_CB(skb)->cscov = skb->len;
2161
2162        if (proto == IPPROTO_UDPLITE) {
2163                err = udplite_checksum_init(skb, uh);
2164                if (err)
2165                        return err;
2166
2167                if (UDP_SKB_CB(skb)->partial_cov) {
2168                        skb->csum = inet_compute_pseudo(skb, proto);
2169                        return 0;
2170                }
2171        }
2172
2173        /* Note, we are only interested in != 0 or == 0, thus the
2174         * force to int.
2175         */
2176        err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2177                                                        inet_compute_pseudo);
2178        if (err)
2179                return err;
2180
2181        if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2182                /* If SW calculated the value, we know it's bad */
2183                if (skb->csum_complete_sw)
2184                        return 1;
2185
2186                /* HW says the value is bad. Let's validate that.
2187                 * skb->csum is no longer the full packet checksum,
2188                 * so don't treat it as such.
2189                 */
2190                skb_checksum_complete_unset(skb);
2191        }
2192
2193        return 0;
2194}
2195
2196/* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2197 * return code conversion for ip layer consumption
2198 */
2199static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2200                               struct udphdr *uh)
2201{
2202        int ret;
2203
2204        if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2205                skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
2206                                         inet_compute_pseudo);
2207
2208        ret = udp_queue_rcv_skb(sk, skb);
2209
2210        /* a return value > 0 means to resubmit the input, but
2211         * it wants the return to be -protocol, or 0
2212         */
2213        if (ret > 0)
2214                return -ret;
2215        return 0;
2216}
2217
2218/*
2219 *      All we need to do is get the socket, and then do a checksum.
2220 */
2221
2222int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2223                   int proto)
2224{
2225        struct sock *sk;
2226        struct udphdr *uh;
2227        unsigned short ulen;
2228        struct rtable *rt = skb_rtable(skb);
2229        __be32 saddr, daddr;
2230        struct net *net = dev_net(skb->dev);
2231
2232        /*
2233         *  Validate the packet.
2234         */
2235        if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2236                goto drop;              /* No space for header. */
2237
2238        uh   = udp_hdr(skb);
2239        ulen = ntohs(uh->len);
2240        saddr = ip_hdr(skb)->saddr;
2241        daddr = ip_hdr(skb)->daddr;
2242
2243        if (ulen > skb->len)
2244                goto short_packet;
2245
2246        if (proto == IPPROTO_UDP) {
2247                /* UDP validates ulen. */
2248                if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2249                        goto short_packet;
2250                uh = udp_hdr(skb);
2251        }
2252
2253        if (udp4_csum_init(skb, uh, proto))
2254                goto csum_error;
2255
2256        sk = skb_steal_sock(skb);
2257        if (sk) {
2258                struct dst_entry *dst = skb_dst(skb);
2259                int ret;
2260
2261                if (unlikely(sk->sk_rx_dst != dst))
2262                        udp_sk_rx_dst_set(sk, dst);
2263
2264                ret = udp_unicast_rcv_skb(sk, skb, uh);
2265                sock_put(sk);
2266                return ret;
2267        }
2268
2269        if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2270                return __udp4_lib_mcast_deliver(net, skb, uh,
2271                                                saddr, daddr, udptable, proto);
2272
2273        sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2274        if (sk)
2275                return udp_unicast_rcv_skb(sk, skb, uh);
2276
2277        if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2278                goto drop;
2279        nf_reset(skb);
2280
2281        /* No socket. Drop packet silently, if checksum is wrong */
2282        if (udp_lib_checksum_complete(skb))
2283                goto csum_error;
2284
2285        __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2286        icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2287
2288        /*
2289         * Hmm.  We got an UDP packet to a port to which we
2290         * don't wanna listen.  Ignore it.
2291         */
2292        kfree_skb(skb);
2293        return 0;
2294
2295short_packet:
2296        net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2297                            proto == IPPROTO_UDPLITE ? "Lite" : "",
2298                            &saddr, ntohs(uh->source),
2299                            ulen, skb->len,
2300                            &daddr, ntohs(uh->dest));
2301        goto drop;
2302
2303csum_error:
2304        /*
2305         * RFC1122: OK.  Discards the bad packet silently (as far as
2306         * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2307         */
2308        net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2309                            proto == IPPROTO_UDPLITE ? "Lite" : "",
2310                            &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2311                            ulen);
2312        __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2313drop:
2314        __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2315        kfree_skb(skb);
2316        return 0;
2317}
2318
2319/* We can only early demux multicast if there is a single matching socket.
2320 * If more than one socket found returns NULL
2321 */
2322static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2323                                                  __be16 loc_port, __be32 loc_addr,
2324                                                  __be16 rmt_port, __be32 rmt_addr,
2325                                                  int dif, int sdif)
2326{
2327        struct sock *sk, *result;
2328        unsigned short hnum = ntohs(loc_port);
2329        unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2330        struct udp_hslot *hslot = &udp_table.hash[slot];
2331
2332        /* Do not bother scanning a too big list */
2333        if (hslot->count > 10)
2334                return NULL;
2335
2336        result = NULL;
2337        sk_for_each_rcu(sk, &hslot->head) {
2338                if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2339                                        rmt_port, rmt_addr, dif, sdif, hnum)) {
2340                        if (result)
2341                                return NULL;
2342                        result = sk;
2343                }
2344        }
2345
2346        return result;
2347}
2348
2349/* For unicast we should only early demux connected sockets or we can
2350 * break forwarding setups.  The chains here can be long so only check
2351 * if the first socket is an exact match and if not move on.
2352 */
2353static struct sock *__udp4_lib_demux_lookup(struct net *net,
2354                                            __be16 loc_port, __be32 loc_addr,
2355                                            __be16 rmt_port, __be32 rmt_addr,
2356                                            int dif, int sdif)
2357{
2358        unsigned short hnum = ntohs(loc_port);
2359        unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2360        unsigned int slot2 = hash2 & udp_table.mask;
2361        struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2362        INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2363        const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2364        struct sock *sk;
2365
2366        udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2367                if (INET_MATCH(sk, net, acookie, rmt_addr,
2368                               loc_addr, ports, dif, sdif))
2369                        return sk;
2370                /* Only check first socket in chain */
2371                break;
2372        }
2373        return NULL;
2374}
2375
2376int udp_v4_early_demux(struct sk_buff *skb)
2377{
2378        struct net *net = dev_net(skb->dev);
2379        struct in_device *in_dev = NULL;
2380        const struct iphdr *iph;
2381        const struct udphdr *uh;
2382        struct sock *sk = NULL;
2383        struct dst_entry *dst;
2384        int dif = skb->dev->ifindex;
2385        int sdif = inet_sdif(skb);
2386        int ours;
2387
2388        /* validate the packet */
2389        if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2390                return 0;
2391
2392        iph = ip_hdr(skb);
2393        uh = udp_hdr(skb);
2394
2395        if (skb->pkt_type == PACKET_MULTICAST) {
2396                in_dev = __in_dev_get_rcu(skb->dev);
2397
2398                if (!in_dev)
2399                        return 0;
2400
2401                ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2402                                       iph->protocol);
2403                if (!ours)
2404                        return 0;
2405
2406                sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2407                                                   uh->source, iph->saddr,
2408                                                   dif, sdif);
2409        } else if (skb->pkt_type == PACKET_HOST) {
2410                sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2411                                             uh->source, iph->saddr, dif, sdif);
2412        }
2413
2414        if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2415                return 0;
2416
2417        skb->sk = sk;
2418        skb->destructor = sock_efree;
2419        dst = READ_ONCE(sk->sk_rx_dst);
2420
2421        if (dst)
2422                dst = dst_check(dst, 0);
2423        if (dst) {
2424                u32 itag = 0;
2425
2426                /* set noref for now.
2427                 * any place which wants to hold dst has to call
2428                 * dst_hold_safe()
2429                 */
2430                skb_dst_set_noref(skb, dst);
2431
2432                /* for unconnected multicast sockets we need to validate
2433                 * the source on each packet
2434                 */
2435                if (!inet_sk(sk)->inet_daddr && in_dev)
2436                        return ip_mc_validate_source(skb, iph->daddr,
2437                                                     iph->saddr, iph->tos,
2438                                                     skb->dev, in_dev, &itag);
2439        }
2440        return 0;
2441}
2442
2443int udp_rcv(struct sk_buff *skb)
2444{
2445        return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2446}
2447
2448void udp_destroy_sock(struct sock *sk)
2449{
2450        struct udp_sock *up = udp_sk(sk);
2451        bool slow = lock_sock_fast(sk);
2452        udp_flush_pending_frames(sk);
2453        unlock_sock_fast(sk, slow);
2454        if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2455                void (*encap_destroy)(struct sock *sk);
2456                encap_destroy = READ_ONCE(up->encap_destroy);
2457                if (encap_destroy)
2458                        encap_destroy(sk);
2459        }
2460}
2461
2462/*
2463 *      Socket option code for UDP
2464 */
2465int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2466                       char __user *optval, unsigned int optlen,
2467                       int (*push_pending_frames)(struct sock *))
2468{
2469        struct udp_sock *up = udp_sk(sk);
2470        int val, valbool;
2471        int err = 0;
2472        int is_udplite = IS_UDPLITE(sk);
2473
2474        if (optlen < sizeof(int))
2475                return -EINVAL;
2476
2477        if (get_user(val, (int __user *)optval))
2478                return -EFAULT;
2479
2480        valbool = val ? 1 : 0;
2481
2482        switch (optname) {
2483        case UDP_CORK:
2484                if (val != 0) {
2485                        up->corkflag = 1;
2486                } else {
2487                        up->corkflag = 0;
2488                        lock_sock(sk);
2489                        push_pending_frames(sk);
2490                        release_sock(sk);
2491                }
2492                break;
2493
2494        case UDP_ENCAP:
2495                switch (val) {
2496                case 0:
2497                case UDP_ENCAP_ESPINUDP:
2498                case UDP_ENCAP_ESPINUDP_NON_IKE:
2499                        up->encap_rcv = xfrm4_udp_encap_rcv;
2500                        /* FALLTHROUGH */
2501                case UDP_ENCAP_L2TPINUDP:
2502                        up->encap_type = val;
2503                        udp_encap_enable();
2504                        break;
2505                default:
2506                        err = -ENOPROTOOPT;
2507                        break;
2508                }
2509                break;
2510
2511        case UDP_NO_CHECK6_TX:
2512                up->no_check6_tx = valbool;
2513                break;
2514
2515        case UDP_NO_CHECK6_RX:
2516                up->no_check6_rx = valbool;
2517                break;
2518
2519        case UDP_SEGMENT:
2520                if (val < 0 || val > USHRT_MAX)
2521                        return -EINVAL;
2522                up->gso_size = val;
2523                break;
2524
2525        /*
2526         *      UDP-Lite's partial checksum coverage (RFC 3828).
2527         */
2528        /* The sender sets actual checksum coverage length via this option.
2529         * The case coverage > packet length is handled by send module. */
2530        case UDPLITE_SEND_CSCOV:
2531                if (!is_udplite)         /* Disable the option on UDP sockets */
2532                        return -ENOPROTOOPT;
2533                if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2534                        val = 8;
2535                else if (val > USHRT_MAX)
2536                        val = USHRT_MAX;
2537                up->pcslen = val;
2538                up->pcflag |= UDPLITE_SEND_CC;
2539                break;
2540
2541        /* The receiver specifies a minimum checksum coverage value. To make
2542         * sense, this should be set to at least 8 (as done below). If zero is
2543         * used, this again means full checksum coverage.                     */
2544        case UDPLITE_RECV_CSCOV:
2545                if (!is_udplite)         /* Disable the option on UDP sockets */
2546                        return -ENOPROTOOPT;
2547                if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2548                        val = 8;
2549                else if (val > USHRT_MAX)
2550                        val = USHRT_MAX;
2551                up->pcrlen = val;
2552                up->pcflag |= UDPLITE_RECV_CC;
2553                break;
2554
2555        default:
2556                err = -ENOPROTOOPT;
2557                break;
2558        }
2559
2560        return err;
2561}
2562EXPORT_SYMBOL(udp_lib_setsockopt);
2563
2564int udp_setsockopt(struct sock *sk, int level, int optname,
2565                   char __user *optval, unsigned int optlen)
2566{
2567        if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2568                return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2569                                          udp_push_pending_frames);
2570        return ip_setsockopt(sk, level, optname, optval, optlen);
2571}
2572
2573#ifdef CONFIG_COMPAT
2574int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2575                          char __user *optval, unsigned int optlen)
2576{
2577        if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2578                return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2579                                          udp_push_pending_frames);
2580        return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2581}
2582#endif
2583
2584int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2585                       char __user *optval, int __user *optlen)
2586{
2587        struct udp_sock *up = udp_sk(sk);
2588        int val, len;
2589
2590        if (get_user(len, optlen))
2591                return -EFAULT;
2592
2593        len = min_t(unsigned int, len, sizeof(int));
2594
2595        if (len < 0)
2596                return -EINVAL;
2597
2598        switch (optname) {
2599        case UDP_CORK:
2600                val = up->corkflag;
2601                break;
2602
2603        case UDP_ENCAP:
2604                val = up->encap_type;
2605                break;
2606
2607        case UDP_NO_CHECK6_TX:
2608                val = up->no_check6_tx;
2609                break;
2610
2611        case UDP_NO_CHECK6_RX:
2612                val = up->no_check6_rx;
2613                break;
2614
2615        case UDP_SEGMENT:
2616                val = up->gso_size;
2617                break;
2618
2619        /* The following two cannot be changed on UDP sockets, the return is
2620         * always 0 (which corresponds to the full checksum coverage of UDP). */
2621        case UDPLITE_SEND_CSCOV:
2622                val = up->pcslen;
2623                break;
2624
2625        case UDPLITE_RECV_CSCOV:
2626                val = up->pcrlen;
2627                break;
2628
2629        default:
2630                return -ENOPROTOOPT;
2631        }
2632
2633        if (put_user(len, optlen))
2634                return -EFAULT;
2635        if (copy_to_user(optval, &val, len))
2636                return -EFAULT;
2637        return 0;
2638}
2639EXPORT_SYMBOL(udp_lib_getsockopt);
2640
2641int udp_getsockopt(struct sock *sk, int level, int optname,
2642                   char __user *optval, int __user *optlen)
2643{
2644        if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2645                return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2646        return ip_getsockopt(sk, level, optname, optval, optlen);
2647}
2648
2649#ifdef CONFIG_COMPAT
2650int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2651                                 char __user *optval, int __user *optlen)
2652{
2653        if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2654                return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2655        return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2656}
2657#endif
2658/**
2659 *      udp_poll - wait for a UDP event.
2660 *      @file - file struct
2661 *      @sock - socket
2662 *      @wait - poll table
2663 *
2664 *      This is same as datagram poll, except for the special case of
2665 *      blocking sockets. If application is using a blocking fd
2666 *      and a packet with checksum error is in the queue;
2667 *      then it could get return from select indicating data available
2668 *      but then block when reading it. Add special case code
2669 *      to work around these arguably broken applications.
2670 */
2671__poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2672{
2673        __poll_t mask = datagram_poll(file, sock, wait);
2674        struct sock *sk = sock->sk;
2675
2676        if (!skb_queue_empty(&udp_sk(sk)->reader_queue))
2677                mask |= EPOLLIN | EPOLLRDNORM;
2678
2679        /* Check for false positives due to checksum errors */
2680        if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2681            !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2682                mask &= ~(EPOLLIN | EPOLLRDNORM);
2683
2684        return mask;
2685
2686}
2687EXPORT_SYMBOL(udp_poll);
2688
2689int udp_abort(struct sock *sk, int err)
2690{
2691        lock_sock(sk);
2692
2693        sk->sk_err = err;
2694        sk->sk_error_report(sk);
2695        __udp_disconnect(sk, 0);
2696
2697        release_sock(sk);
2698
2699        return 0;
2700}
2701EXPORT_SYMBOL_GPL(udp_abort);
2702
2703struct proto udp_prot = {
2704        .name                   = "UDP",
2705        .owner                  = THIS_MODULE,
2706        .close                  = udp_lib_close,
2707        .pre_connect            = udp_pre_connect,
2708        .connect                = ip4_datagram_connect,
2709        .disconnect             = udp_disconnect,
2710        .ioctl                  = udp_ioctl,
2711        .init                   = udp_init_sock,
2712        .destroy                = udp_destroy_sock,
2713        .setsockopt             = udp_setsockopt,
2714        .getsockopt             = udp_getsockopt,
2715        .sendmsg                = udp_sendmsg,
2716        .recvmsg                = udp_recvmsg,
2717        .sendpage               = udp_sendpage,
2718        .release_cb             = ip4_datagram_release_cb,
2719        .hash                   = udp_lib_hash,
2720        .unhash                 = udp_lib_unhash,
2721        .rehash                 = udp_v4_rehash,
2722        .get_port               = udp_v4_get_port,
2723        .memory_allocated       = &udp_memory_allocated,
2724        .sysctl_mem             = sysctl_udp_mem,
2725        .sysctl_wmem_offset     = offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2726        .sysctl_rmem_offset     = offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2727        .obj_size               = sizeof(struct udp_sock),
2728        .h.udp_table            = &udp_table,
2729#ifdef CONFIG_COMPAT
2730        .compat_setsockopt      = compat_udp_setsockopt,
2731        .compat_getsockopt      = compat_udp_getsockopt,
2732#endif
2733        .diag_destroy           = udp_abort,
2734};
2735EXPORT_SYMBOL(udp_prot);
2736
2737/* ------------------------------------------------------------------------ */
2738#ifdef CONFIG_PROC_FS
2739
2740static struct sock *udp_get_first(struct seq_file *seq, int start)
2741{
2742        struct sock *sk;
2743        struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2744        struct udp_iter_state *state = seq->private;
2745        struct net *net = seq_file_net(seq);
2746
2747        for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2748             ++state->bucket) {
2749                struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2750
2751                if (hlist_empty(&hslot->head))
2752                        continue;
2753
2754                spin_lock_bh(&hslot->lock);
2755                sk_for_each(sk, &hslot->head) {
2756                        if (!net_eq(sock_net(sk), net))
2757                                continue;
2758                        if (sk->sk_family == afinfo->family)
2759                                goto found;
2760                }
2761                spin_unlock_bh(&hslot->lock);
2762        }
2763        sk = NULL;
2764found:
2765        return sk;
2766}
2767
2768static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2769{
2770        struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2771        struct udp_iter_state *state = seq->private;
2772        struct net *net = seq_file_net(seq);
2773
2774        do {
2775                sk = sk_next(sk);
2776        } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != afinfo->family));
2777
2778        if (!sk) {
2779                if (state->bucket <= afinfo->udp_table->mask)
2780                        spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2781                return udp_get_first(seq, state->bucket + 1);
2782        }
2783        return sk;
2784}
2785
2786static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2787{
2788        struct sock *sk = udp_get_first(seq, 0);
2789
2790        if (sk)
2791                while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2792                        --pos;
2793        return pos ? NULL : sk;
2794}
2795
2796void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2797{
2798        struct udp_iter_state *state = seq->private;
2799        state->bucket = MAX_UDP_PORTS;
2800
2801        return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2802}
2803EXPORT_SYMBOL(udp_seq_start);
2804
2805void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2806{
2807        struct sock *sk;
2808
2809        if (v == SEQ_START_TOKEN)
2810                sk = udp_get_idx(seq, 0);
2811        else
2812                sk = udp_get_next(seq, v);
2813
2814        ++*pos;
2815        return sk;
2816}
2817EXPORT_SYMBOL(udp_seq_next);
2818
2819void udp_seq_stop(struct seq_file *seq, void *v)
2820{
2821        struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2822        struct udp_iter_state *state = seq->private;
2823
2824        if (state->bucket <= afinfo->udp_table->mask)
2825                spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2826}
2827EXPORT_SYMBOL(udp_seq_stop);
2828
2829/* ------------------------------------------------------------------------ */
2830static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2831                int bucket)
2832{
2833        struct inet_sock *inet = inet_sk(sp);
2834        __be32 dest = inet->inet_daddr;
2835        __be32 src  = inet->inet_rcv_saddr;
2836        __u16 destp       = ntohs(inet->inet_dport);
2837        __u16 srcp        = ntohs(inet->inet_sport);
2838
2839        seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2840                " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
2841                bucket, src, srcp, dest, destp, sp->sk_state,
2842                sk_wmem_alloc_get(sp),
2843                udp_rqueue_get(sp),
2844                0, 0L, 0,
2845                from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2846                0, sock_i_ino(sp),
2847                refcount_read(&sp->sk_refcnt), sp,
2848                atomic_read(&sp->sk_drops));
2849}
2850
2851int udp4_seq_show(struct seq_file *seq, void *v)
2852{
2853        seq_setwidth(seq, 127);
2854        if (v == SEQ_START_TOKEN)
2855                seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2856                           "rx_queue tr tm->when retrnsmt   uid  timeout "
2857                           "inode ref pointer drops");
2858        else {
2859                struct udp_iter_state *state = seq->private;
2860
2861                udp4_format_sock(v, seq, state->bucket);
2862        }
2863        seq_pad(seq, '\n');
2864        return 0;
2865}
2866
2867const struct seq_operations udp_seq_ops = {
2868        .start          = udp_seq_start,
2869        .next           = udp_seq_next,
2870        .stop           = udp_seq_stop,
2871        .show           = udp4_seq_show,
2872};
2873EXPORT_SYMBOL(udp_seq_ops);
2874
2875static struct udp_seq_afinfo udp4_seq_afinfo = {
2876        .family         = AF_INET,
2877        .udp_table      = &udp_table,
2878};
2879
2880static int __net_init udp4_proc_init_net(struct net *net)
2881{
2882        if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
2883                        sizeof(struct udp_iter_state), &udp4_seq_afinfo))
2884                return -ENOMEM;
2885        return 0;
2886}
2887
2888static void __net_exit udp4_proc_exit_net(struct net *net)
2889{
2890        remove_proc_entry("udp", net->proc_net);
2891}
2892
2893static struct pernet_operations udp4_net_ops = {
2894        .init = udp4_proc_init_net,
2895        .exit = udp4_proc_exit_net,
2896};
2897
2898int __init udp4_proc_init(void)
2899{
2900        return register_pernet_subsys(&udp4_net_ops);
2901}
2902
2903void udp4_proc_exit(void)
2904{
2905        unregister_pernet_subsys(&udp4_net_ops);
2906}
2907#endif /* CONFIG_PROC_FS */
2908
2909static __initdata unsigned long uhash_entries;
2910static int __init set_uhash_entries(char *str)
2911{
2912        ssize_t ret;
2913
2914        if (!str)
2915                return 0;
2916
2917        ret = kstrtoul(str, 0, &uhash_entries);
2918        if (ret)
2919                return 0;
2920
2921        if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2922                uhash_entries = UDP_HTABLE_SIZE_MIN;
2923        return 1;
2924}
2925__setup("uhash_entries=", set_uhash_entries);
2926
2927void __init udp_table_init(struct udp_table *table, const char *name)
2928{
2929        unsigned int i;
2930
2931        table->hash = alloc_large_system_hash(name,
2932                                              2 * sizeof(struct udp_hslot),
2933                                              uhash_entries,
2934                                              21, /* one slot per 2 MB */
2935                                              0,
2936                                              &table->log,
2937                                              &table->mask,
2938                                              UDP_HTABLE_SIZE_MIN,
2939                                              64 * 1024);
2940
2941        table->hash2 = table->hash + (table->mask + 1);
2942        for (i = 0; i <= table->mask; i++) {
2943                INIT_HLIST_HEAD(&table->hash[i].head);
2944                table->hash[i].count = 0;
2945                spin_lock_init(&table->hash[i].lock);
2946        }
2947        for (i = 0; i <= table->mask; i++) {
2948                INIT_HLIST_HEAD(&table->hash2[i].head);
2949                table->hash2[i].count = 0;
2950                spin_lock_init(&table->hash2[i].lock);
2951        }
2952}
2953
2954u32 udp_flow_hashrnd(void)
2955{
2956        static u32 hashrnd __read_mostly;
2957
2958        net_get_random_once(&hashrnd, sizeof(hashrnd));
2959
2960        return hashrnd;
2961}
2962EXPORT_SYMBOL(udp_flow_hashrnd);
2963
2964static void __udp_sysctl_init(struct net *net)
2965{
2966        net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2967        net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2968
2969#ifdef CONFIG_NET_L3_MASTER_DEV
2970        net->ipv4.sysctl_udp_l3mdev_accept = 0;
2971#endif
2972}
2973
2974static int __net_init udp_sysctl_init(struct net *net)
2975{
2976        __udp_sysctl_init(net);
2977        return 0;
2978}
2979
2980static struct pernet_operations __net_initdata udp_sysctl_ops = {
2981        .init   = udp_sysctl_init,
2982};
2983
2984void __init udp_init(void)
2985{
2986        unsigned long limit;
2987        unsigned int i;
2988
2989        udp_table_init(&udp_table, "UDP");
2990        limit = nr_free_buffer_pages() / 8;
2991        limit = max(limit, 128UL);
2992        sysctl_udp_mem[0] = limit / 4 * 3;
2993        sysctl_udp_mem[1] = limit;
2994        sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2995
2996        __udp_sysctl_init(&init_net);
2997
2998        /* 16 spinlocks per cpu */
2999        udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3000        udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3001                                GFP_KERNEL);
3002        if (!udp_busylocks)
3003                panic("UDP: failed to alloc udp_busylocks\n");
3004        for (i = 0; i < (1U << udp_busylocks_log); i++)
3005                spin_lock_init(udp_busylocks + i);
3006
3007        if (register_pernet_subsys(&udp_sysctl_ops))
3008                panic("UDP: failed to init sysctl parameters.\n");
3009}
3010