linux/security/keys/key.c
<<
>>
Prefs
   1/* Basic authentication token and access key management
   2 *
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
   4 * Written by David Howells (dhowells@redhat.com)
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/poison.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/security.h>
  18#include <linux/workqueue.h>
  19#include <linux/random.h>
  20#include <linux/err.h>
  21#include "internal.h"
  22
  23struct kmem_cache *key_jar;
  24struct rb_root          key_serial_tree; /* tree of keys indexed by serial */
  25DEFINE_SPINLOCK(key_serial_lock);
  26
  27struct rb_root  key_user_tree; /* tree of quota records indexed by UID */
  28DEFINE_SPINLOCK(key_user_lock);
  29
  30unsigned int key_quota_root_maxkeys = 1000000;  /* root's key count quota */
  31unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
  32unsigned int key_quota_maxkeys = 200;           /* general key count quota */
  33unsigned int key_quota_maxbytes = 20000;        /* general key space quota */
  34
  35static LIST_HEAD(key_types_list);
  36static DECLARE_RWSEM(key_types_sem);
  37
  38/* We serialise key instantiation and link */
  39DEFINE_MUTEX(key_construction_mutex);
  40
  41#ifdef KEY_DEBUGGING
  42void __key_check(const struct key *key)
  43{
  44        printk("__key_check: key %p {%08x} should be {%08x}\n",
  45               key, key->magic, KEY_DEBUG_MAGIC);
  46        BUG();
  47}
  48#endif
  49
  50/*
  51 * Get the key quota record for a user, allocating a new record if one doesn't
  52 * already exist.
  53 */
  54struct key_user *key_user_lookup(kuid_t uid)
  55{
  56        struct key_user *candidate = NULL, *user;
  57        struct rb_node *parent, **p;
  58
  59try_again:
  60        parent = NULL;
  61        p = &key_user_tree.rb_node;
  62        spin_lock(&key_user_lock);
  63
  64        /* search the tree for a user record with a matching UID */
  65        while (*p) {
  66                parent = *p;
  67                user = rb_entry(parent, struct key_user, node);
  68
  69                if (uid_lt(uid, user->uid))
  70                        p = &(*p)->rb_left;
  71                else if (uid_gt(uid, user->uid))
  72                        p = &(*p)->rb_right;
  73                else
  74                        goto found;
  75        }
  76
  77        /* if we get here, we failed to find a match in the tree */
  78        if (!candidate) {
  79                /* allocate a candidate user record if we don't already have
  80                 * one */
  81                spin_unlock(&key_user_lock);
  82
  83                user = NULL;
  84                candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
  85                if (unlikely(!candidate))
  86                        goto out;
  87
  88                /* the allocation may have scheduled, so we need to repeat the
  89                 * search lest someone else added the record whilst we were
  90                 * asleep */
  91                goto try_again;
  92        }
  93
  94        /* if we get here, then the user record still hadn't appeared on the
  95         * second pass - so we use the candidate record */
  96        refcount_set(&candidate->usage, 1);
  97        atomic_set(&candidate->nkeys, 0);
  98        atomic_set(&candidate->nikeys, 0);
  99        candidate->uid = uid;
 100        candidate->qnkeys = 0;
 101        candidate->qnbytes = 0;
 102        spin_lock_init(&candidate->lock);
 103        mutex_init(&candidate->cons_lock);
 104
 105        rb_link_node(&candidate->node, parent, p);
 106        rb_insert_color(&candidate->node, &key_user_tree);
 107        spin_unlock(&key_user_lock);
 108        user = candidate;
 109        goto out;
 110
 111        /* okay - we found a user record for this UID */
 112found:
 113        refcount_inc(&user->usage);
 114        spin_unlock(&key_user_lock);
 115        kfree(candidate);
 116out:
 117        return user;
 118}
 119
 120/*
 121 * Dispose of a user structure
 122 */
 123void key_user_put(struct key_user *user)
 124{
 125        if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
 126                rb_erase(&user->node, &key_user_tree);
 127                spin_unlock(&key_user_lock);
 128
 129                kfree(user);
 130        }
 131}
 132
 133/*
 134 * Allocate a serial number for a key.  These are assigned randomly to avoid
 135 * security issues through covert channel problems.
 136 */
 137static inline void key_alloc_serial(struct key *key)
 138{
 139        struct rb_node *parent, **p;
 140        struct key *xkey;
 141
 142        /* propose a random serial number and look for a hole for it in the
 143         * serial number tree */
 144        do {
 145                get_random_bytes(&key->serial, sizeof(key->serial));
 146
 147                key->serial >>= 1; /* negative numbers are not permitted */
 148        } while (key->serial < 3);
 149
 150        spin_lock(&key_serial_lock);
 151
 152attempt_insertion:
 153        parent = NULL;
 154        p = &key_serial_tree.rb_node;
 155
 156        while (*p) {
 157                parent = *p;
 158                xkey = rb_entry(parent, struct key, serial_node);
 159
 160                if (key->serial < xkey->serial)
 161                        p = &(*p)->rb_left;
 162                else if (key->serial > xkey->serial)
 163                        p = &(*p)->rb_right;
 164                else
 165                        goto serial_exists;
 166        }
 167
 168        /* we've found a suitable hole - arrange for this key to occupy it */
 169        rb_link_node(&key->serial_node, parent, p);
 170        rb_insert_color(&key->serial_node, &key_serial_tree);
 171
 172        spin_unlock(&key_serial_lock);
 173        return;
 174
 175        /* we found a key with the proposed serial number - walk the tree from
 176         * that point looking for the next unused serial number */
 177serial_exists:
 178        for (;;) {
 179                key->serial++;
 180                if (key->serial < 3) {
 181                        key->serial = 3;
 182                        goto attempt_insertion;
 183                }
 184
 185                parent = rb_next(parent);
 186                if (!parent)
 187                        goto attempt_insertion;
 188
 189                xkey = rb_entry(parent, struct key, serial_node);
 190                if (key->serial < xkey->serial)
 191                        goto attempt_insertion;
 192        }
 193}
 194
 195/**
 196 * key_alloc - Allocate a key of the specified type.
 197 * @type: The type of key to allocate.
 198 * @desc: The key description to allow the key to be searched out.
 199 * @uid: The owner of the new key.
 200 * @gid: The group ID for the new key's group permissions.
 201 * @cred: The credentials specifying UID namespace.
 202 * @perm: The permissions mask of the new key.
 203 * @flags: Flags specifying quota properties.
 204 * @restrict_link: Optional link restriction for new keyrings.
 205 *
 206 * Allocate a key of the specified type with the attributes given.  The key is
 207 * returned in an uninstantiated state and the caller needs to instantiate the
 208 * key before returning.
 209 *
 210 * The restrict_link structure (if not NULL) will be freed when the
 211 * keyring is destroyed, so it must be dynamically allocated.
 212 *
 213 * The user's key count quota is updated to reflect the creation of the key and
 214 * the user's key data quota has the default for the key type reserved.  The
 215 * instantiation function should amend this as necessary.  If insufficient
 216 * quota is available, -EDQUOT will be returned.
 217 *
 218 * The LSM security modules can prevent a key being created, in which case
 219 * -EACCES will be returned.
 220 *
 221 * Returns a pointer to the new key if successful and an error code otherwise.
 222 *
 223 * Note that the caller needs to ensure the key type isn't uninstantiated.
 224 * Internally this can be done by locking key_types_sem.  Externally, this can
 225 * be done by either never unregistering the key type, or making sure
 226 * key_alloc() calls don't race with module unloading.
 227 */
 228struct key *key_alloc(struct key_type *type, const char *desc,
 229                      kuid_t uid, kgid_t gid, const struct cred *cred,
 230                      key_perm_t perm, unsigned long flags,
 231                      struct key_restriction *restrict_link)
 232{
 233        struct key_user *user = NULL;
 234        struct key *key;
 235        size_t desclen, quotalen;
 236        int ret;
 237
 238        key = ERR_PTR(-EINVAL);
 239        if (!desc || !*desc)
 240                goto error;
 241
 242        if (type->vet_description) {
 243                ret = type->vet_description(desc);
 244                if (ret < 0) {
 245                        key = ERR_PTR(ret);
 246                        goto error;
 247                }
 248        }
 249
 250        desclen = strlen(desc);
 251        quotalen = desclen + 1 + type->def_datalen;
 252
 253        /* get hold of the key tracking for this user */
 254        user = key_user_lookup(uid);
 255        if (!user)
 256                goto no_memory_1;
 257
 258        /* check that the user's quota permits allocation of another key and
 259         * its description */
 260        if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 261                unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
 262                        key_quota_root_maxkeys : key_quota_maxkeys;
 263                unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
 264                        key_quota_root_maxbytes : key_quota_maxbytes;
 265
 266                spin_lock(&user->lock);
 267                if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
 268                        if (user->qnkeys + 1 >= maxkeys ||
 269                            user->qnbytes + quotalen >= maxbytes ||
 270                            user->qnbytes + quotalen < user->qnbytes)
 271                                goto no_quota;
 272                }
 273
 274                user->qnkeys++;
 275                user->qnbytes += quotalen;
 276                spin_unlock(&user->lock);
 277        }
 278
 279        /* allocate and initialise the key and its description */
 280        key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
 281        if (!key)
 282                goto no_memory_2;
 283
 284        key->index_key.desc_len = desclen;
 285        key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
 286        if (!key->index_key.description)
 287                goto no_memory_3;
 288
 289        refcount_set(&key->usage, 1);
 290        init_rwsem(&key->sem);
 291        lockdep_set_class(&key->sem, &type->lock_class);
 292        key->index_key.type = type;
 293        key->user = user;
 294        key->quotalen = quotalen;
 295        key->datalen = type->def_datalen;
 296        key->uid = uid;
 297        key->gid = gid;
 298        key->perm = perm;
 299        key->restrict_link = restrict_link;
 300
 301        if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
 302                key->flags |= 1 << KEY_FLAG_IN_QUOTA;
 303        if (flags & KEY_ALLOC_BUILT_IN)
 304                key->flags |= 1 << KEY_FLAG_BUILTIN;
 305        if (flags & KEY_ALLOC_UID_KEYRING)
 306                key->flags |= 1 << KEY_FLAG_UID_KEYRING;
 307
 308#ifdef KEY_DEBUGGING
 309        key->magic = KEY_DEBUG_MAGIC;
 310#endif
 311
 312        /* let the security module know about the key */
 313        ret = security_key_alloc(key, cred, flags);
 314        if (ret < 0)
 315                goto security_error;
 316
 317        /* publish the key by giving it a serial number */
 318        atomic_inc(&user->nkeys);
 319        key_alloc_serial(key);
 320
 321error:
 322        return key;
 323
 324security_error:
 325        kfree(key->description);
 326        kmem_cache_free(key_jar, key);
 327        if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 328                spin_lock(&user->lock);
 329                user->qnkeys--;
 330                user->qnbytes -= quotalen;
 331                spin_unlock(&user->lock);
 332        }
 333        key_user_put(user);
 334        key = ERR_PTR(ret);
 335        goto error;
 336
 337no_memory_3:
 338        kmem_cache_free(key_jar, key);
 339no_memory_2:
 340        if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 341                spin_lock(&user->lock);
 342                user->qnkeys--;
 343                user->qnbytes -= quotalen;
 344                spin_unlock(&user->lock);
 345        }
 346        key_user_put(user);
 347no_memory_1:
 348        key = ERR_PTR(-ENOMEM);
 349        goto error;
 350
 351no_quota:
 352        spin_unlock(&user->lock);
 353        key_user_put(user);
 354        key = ERR_PTR(-EDQUOT);
 355        goto error;
 356}
 357EXPORT_SYMBOL(key_alloc);
 358
 359/**
 360 * key_payload_reserve - Adjust data quota reservation for the key's payload
 361 * @key: The key to make the reservation for.
 362 * @datalen: The amount of data payload the caller now wants.
 363 *
 364 * Adjust the amount of the owning user's key data quota that a key reserves.
 365 * If the amount is increased, then -EDQUOT may be returned if there isn't
 366 * enough free quota available.
 367 *
 368 * If successful, 0 is returned.
 369 */
 370int key_payload_reserve(struct key *key, size_t datalen)
 371{
 372        int delta = (int)datalen - key->datalen;
 373        int ret = 0;
 374
 375        key_check(key);
 376
 377        /* contemplate the quota adjustment */
 378        if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 379                unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
 380                        key_quota_root_maxbytes : key_quota_maxbytes;
 381
 382                spin_lock(&key->user->lock);
 383
 384                if (delta > 0 &&
 385                    (key->user->qnbytes + delta >= maxbytes ||
 386                     key->user->qnbytes + delta < key->user->qnbytes)) {
 387                        ret = -EDQUOT;
 388                }
 389                else {
 390                        key->user->qnbytes += delta;
 391                        key->quotalen += delta;
 392                }
 393                spin_unlock(&key->user->lock);
 394        }
 395
 396        /* change the recorded data length if that didn't generate an error */
 397        if (ret == 0)
 398                key->datalen = datalen;
 399
 400        return ret;
 401}
 402EXPORT_SYMBOL(key_payload_reserve);
 403
 404/*
 405 * Change the key state to being instantiated.
 406 */
 407static void mark_key_instantiated(struct key *key, int reject_error)
 408{
 409        /* Commit the payload before setting the state; barrier versus
 410         * key_read_state().
 411         */
 412        smp_store_release(&key->state,
 413                          (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
 414}
 415
 416/*
 417 * Instantiate a key and link it into the target keyring atomically.  Must be
 418 * called with the target keyring's semaphore writelocked.  The target key's
 419 * semaphore need not be locked as instantiation is serialised by
 420 * key_construction_mutex.
 421 */
 422static int __key_instantiate_and_link(struct key *key,
 423                                      struct key_preparsed_payload *prep,
 424                                      struct key *keyring,
 425                                      struct key *authkey,
 426                                      struct assoc_array_edit **_edit)
 427{
 428        int ret, awaken;
 429
 430        key_check(key);
 431        key_check(keyring);
 432
 433        awaken = 0;
 434        ret = -EBUSY;
 435
 436        mutex_lock(&key_construction_mutex);
 437
 438        /* can't instantiate twice */
 439        if (key->state == KEY_IS_UNINSTANTIATED) {
 440                /* instantiate the key */
 441                ret = key->type->instantiate(key, prep);
 442
 443                if (ret == 0) {
 444                        /* mark the key as being instantiated */
 445                        atomic_inc(&key->user->nikeys);
 446                        mark_key_instantiated(key, 0);
 447
 448                        if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 449                                awaken = 1;
 450
 451                        /* and link it into the destination keyring */
 452                        if (keyring) {
 453                                if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
 454                                        set_bit(KEY_FLAG_KEEP, &key->flags);
 455
 456                                __key_link(key, _edit);
 457                        }
 458
 459                        /* disable the authorisation key */
 460                        if (authkey)
 461                                key_revoke(authkey);
 462
 463                        if (prep->expiry != TIME64_MAX) {
 464                                key->expiry = prep->expiry;
 465                                key_schedule_gc(prep->expiry + key_gc_delay);
 466                        }
 467                }
 468        }
 469
 470        mutex_unlock(&key_construction_mutex);
 471
 472        /* wake up anyone waiting for a key to be constructed */
 473        if (awaken)
 474                wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 475
 476        return ret;
 477}
 478
 479/**
 480 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
 481 * @key: The key to instantiate.
 482 * @data: The data to use to instantiate the keyring.
 483 * @datalen: The length of @data.
 484 * @keyring: Keyring to create a link in on success (or NULL).
 485 * @authkey: The authorisation token permitting instantiation.
 486 *
 487 * Instantiate a key that's in the uninstantiated state using the provided data
 488 * and, if successful, link it in to the destination keyring if one is
 489 * supplied.
 490 *
 491 * If successful, 0 is returned, the authorisation token is revoked and anyone
 492 * waiting for the key is woken up.  If the key was already instantiated,
 493 * -EBUSY will be returned.
 494 */
 495int key_instantiate_and_link(struct key *key,
 496                             const void *data,
 497                             size_t datalen,
 498                             struct key *keyring,
 499                             struct key *authkey)
 500{
 501        struct key_preparsed_payload prep;
 502        struct assoc_array_edit *edit;
 503        int ret;
 504
 505        memset(&prep, 0, sizeof(prep));
 506        prep.data = data;
 507        prep.datalen = datalen;
 508        prep.quotalen = key->type->def_datalen;
 509        prep.expiry = TIME64_MAX;
 510        if (key->type->preparse) {
 511                ret = key->type->preparse(&prep);
 512                if (ret < 0)
 513                        goto error;
 514        }
 515
 516        if (keyring) {
 517                ret = __key_link_begin(keyring, &key->index_key, &edit);
 518                if (ret < 0)
 519                        goto error;
 520
 521                if (keyring->restrict_link && keyring->restrict_link->check) {
 522                        struct key_restriction *keyres = keyring->restrict_link;
 523
 524                        ret = keyres->check(keyring, key->type, &prep.payload,
 525                                            keyres->key);
 526                        if (ret < 0)
 527                                goto error_link_end;
 528                }
 529        }
 530
 531        ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
 532
 533error_link_end:
 534        if (keyring)
 535                __key_link_end(keyring, &key->index_key, edit);
 536
 537error:
 538        if (key->type->preparse)
 539                key->type->free_preparse(&prep);
 540        return ret;
 541}
 542
 543EXPORT_SYMBOL(key_instantiate_and_link);
 544
 545/**
 546 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
 547 * @key: The key to instantiate.
 548 * @timeout: The timeout on the negative key.
 549 * @error: The error to return when the key is hit.
 550 * @keyring: Keyring to create a link in on success (or NULL).
 551 * @authkey: The authorisation token permitting instantiation.
 552 *
 553 * Negatively instantiate a key that's in the uninstantiated state and, if
 554 * successful, set its timeout and stored error and link it in to the
 555 * destination keyring if one is supplied.  The key and any links to the key
 556 * will be automatically garbage collected after the timeout expires.
 557 *
 558 * Negative keys are used to rate limit repeated request_key() calls by causing
 559 * them to return the stored error code (typically ENOKEY) until the negative
 560 * key expires.
 561 *
 562 * If successful, 0 is returned, the authorisation token is revoked and anyone
 563 * waiting for the key is woken up.  If the key was already instantiated,
 564 * -EBUSY will be returned.
 565 */
 566int key_reject_and_link(struct key *key,
 567                        unsigned timeout,
 568                        unsigned error,
 569                        struct key *keyring,
 570                        struct key *authkey)
 571{
 572        struct assoc_array_edit *edit;
 573        int ret, awaken, link_ret = 0;
 574
 575        key_check(key);
 576        key_check(keyring);
 577
 578        awaken = 0;
 579        ret = -EBUSY;
 580
 581        if (keyring) {
 582                if (keyring->restrict_link)
 583                        return -EPERM;
 584
 585                link_ret = __key_link_begin(keyring, &key->index_key, &edit);
 586        }
 587
 588        mutex_lock(&key_construction_mutex);
 589
 590        /* can't instantiate twice */
 591        if (key->state == KEY_IS_UNINSTANTIATED) {
 592                /* mark the key as being negatively instantiated */
 593                atomic_inc(&key->user->nikeys);
 594                mark_key_instantiated(key, -error);
 595                key->expiry = ktime_get_real_seconds() + timeout;
 596                key_schedule_gc(key->expiry + key_gc_delay);
 597
 598                if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 599                        awaken = 1;
 600
 601                ret = 0;
 602
 603                /* and link it into the destination keyring */
 604                if (keyring && link_ret == 0)
 605                        __key_link(key, &edit);
 606
 607                /* disable the authorisation key */
 608                if (authkey)
 609                        key_revoke(authkey);
 610        }
 611
 612        mutex_unlock(&key_construction_mutex);
 613
 614        if (keyring && link_ret == 0)
 615                __key_link_end(keyring, &key->index_key, edit);
 616
 617        /* wake up anyone waiting for a key to be constructed */
 618        if (awaken)
 619                wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 620
 621        return ret == 0 ? link_ret : ret;
 622}
 623EXPORT_SYMBOL(key_reject_and_link);
 624
 625/**
 626 * key_put - Discard a reference to a key.
 627 * @key: The key to discard a reference from.
 628 *
 629 * Discard a reference to a key, and when all the references are gone, we
 630 * schedule the cleanup task to come and pull it out of the tree in process
 631 * context at some later time.
 632 */
 633void key_put(struct key *key)
 634{
 635        if (key) {
 636                key_check(key);
 637
 638                if (refcount_dec_and_test(&key->usage))
 639                        schedule_work(&key_gc_work);
 640        }
 641}
 642EXPORT_SYMBOL(key_put);
 643
 644/*
 645 * Find a key by its serial number.
 646 */
 647struct key *key_lookup(key_serial_t id)
 648{
 649        struct rb_node *n;
 650        struct key *key;
 651
 652        spin_lock(&key_serial_lock);
 653
 654        /* search the tree for the specified key */
 655        n = key_serial_tree.rb_node;
 656        while (n) {
 657                key = rb_entry(n, struct key, serial_node);
 658
 659                if (id < key->serial)
 660                        n = n->rb_left;
 661                else if (id > key->serial)
 662                        n = n->rb_right;
 663                else
 664                        goto found;
 665        }
 666
 667not_found:
 668        key = ERR_PTR(-ENOKEY);
 669        goto error;
 670
 671found:
 672        /* A key is allowed to be looked up only if someone still owns a
 673         * reference to it - otherwise it's awaiting the gc.
 674         */
 675        if (!refcount_inc_not_zero(&key->usage))
 676                goto not_found;
 677
 678error:
 679        spin_unlock(&key_serial_lock);
 680        return key;
 681}
 682
 683/*
 684 * Find and lock the specified key type against removal.
 685 *
 686 * We return with the sem read-locked if successful.  If the type wasn't
 687 * available -ENOKEY is returned instead.
 688 */
 689struct key_type *key_type_lookup(const char *type)
 690{
 691        struct key_type *ktype;
 692
 693        down_read(&key_types_sem);
 694
 695        /* look up the key type to see if it's one of the registered kernel
 696         * types */
 697        list_for_each_entry(ktype, &key_types_list, link) {
 698                if (strcmp(ktype->name, type) == 0)
 699                        goto found_kernel_type;
 700        }
 701
 702        up_read(&key_types_sem);
 703        ktype = ERR_PTR(-ENOKEY);
 704
 705found_kernel_type:
 706        return ktype;
 707}
 708
 709void key_set_timeout(struct key *key, unsigned timeout)
 710{
 711        time64_t expiry = 0;
 712
 713        /* make the changes with the locks held to prevent races */
 714        down_write(&key->sem);
 715
 716        if (timeout > 0)
 717                expiry = ktime_get_real_seconds() + timeout;
 718
 719        key->expiry = expiry;
 720        key_schedule_gc(key->expiry + key_gc_delay);
 721
 722        up_write(&key->sem);
 723}
 724EXPORT_SYMBOL_GPL(key_set_timeout);
 725
 726/*
 727 * Unlock a key type locked by key_type_lookup().
 728 */
 729void key_type_put(struct key_type *ktype)
 730{
 731        up_read(&key_types_sem);
 732}
 733
 734/*
 735 * Attempt to update an existing key.
 736 *
 737 * The key is given to us with an incremented refcount that we need to discard
 738 * if we get an error.
 739 */
 740static inline key_ref_t __key_update(key_ref_t key_ref,
 741                                     struct key_preparsed_payload *prep)
 742{
 743        struct key *key = key_ref_to_ptr(key_ref);
 744        int ret;
 745
 746        /* need write permission on the key to update it */
 747        ret = key_permission(key_ref, KEY_NEED_WRITE);
 748        if (ret < 0)
 749                goto error;
 750
 751        ret = -EEXIST;
 752        if (!key->type->update)
 753                goto error;
 754
 755        down_write(&key->sem);
 756
 757        ret = key->type->update(key, prep);
 758        if (ret == 0)
 759                /* Updating a negative key positively instantiates it */
 760                mark_key_instantiated(key, 0);
 761
 762        up_write(&key->sem);
 763
 764        if (ret < 0)
 765                goto error;
 766out:
 767        return key_ref;
 768
 769error:
 770        key_put(key);
 771        key_ref = ERR_PTR(ret);
 772        goto out;
 773}
 774
 775/**
 776 * key_create_or_update - Update or create and instantiate a key.
 777 * @keyring_ref: A pointer to the destination keyring with possession flag.
 778 * @type: The type of key.
 779 * @description: The searchable description for the key.
 780 * @payload: The data to use to instantiate or update the key.
 781 * @plen: The length of @payload.
 782 * @perm: The permissions mask for a new key.
 783 * @flags: The quota flags for a new key.
 784 *
 785 * Search the destination keyring for a key of the same description and if one
 786 * is found, update it, otherwise create and instantiate a new one and create a
 787 * link to it from that keyring.
 788 *
 789 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
 790 * concocted.
 791 *
 792 * Returns a pointer to the new key if successful, -ENODEV if the key type
 793 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
 794 * caller isn't permitted to modify the keyring or the LSM did not permit
 795 * creation of the key.
 796 *
 797 * On success, the possession flag from the keyring ref will be tacked on to
 798 * the key ref before it is returned.
 799 */
 800key_ref_t key_create_or_update(key_ref_t keyring_ref,
 801                               const char *type,
 802                               const char *description,
 803                               const void *payload,
 804                               size_t plen,
 805                               key_perm_t perm,
 806                               unsigned long flags)
 807{
 808        struct keyring_index_key index_key = {
 809                .description    = description,
 810        };
 811        struct key_preparsed_payload prep;
 812        struct assoc_array_edit *edit;
 813        const struct cred *cred = current_cred();
 814        struct key *keyring, *key = NULL;
 815        key_ref_t key_ref;
 816        int ret;
 817        struct key_restriction *restrict_link = NULL;
 818
 819        /* look up the key type to see if it's one of the registered kernel
 820         * types */
 821        index_key.type = key_type_lookup(type);
 822        if (IS_ERR(index_key.type)) {
 823                key_ref = ERR_PTR(-ENODEV);
 824                goto error;
 825        }
 826
 827        key_ref = ERR_PTR(-EINVAL);
 828        if (!index_key.type->instantiate ||
 829            (!index_key.description && !index_key.type->preparse))
 830                goto error_put_type;
 831
 832        keyring = key_ref_to_ptr(keyring_ref);
 833
 834        key_check(keyring);
 835
 836        if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
 837                restrict_link = keyring->restrict_link;
 838
 839        key_ref = ERR_PTR(-ENOTDIR);
 840        if (keyring->type != &key_type_keyring)
 841                goto error_put_type;
 842
 843        memset(&prep, 0, sizeof(prep));
 844        prep.data = payload;
 845        prep.datalen = plen;
 846        prep.quotalen = index_key.type->def_datalen;
 847        prep.expiry = TIME64_MAX;
 848        if (index_key.type->preparse) {
 849                ret = index_key.type->preparse(&prep);
 850                if (ret < 0) {
 851                        key_ref = ERR_PTR(ret);
 852                        goto error_free_prep;
 853                }
 854                if (!index_key.description)
 855                        index_key.description = prep.description;
 856                key_ref = ERR_PTR(-EINVAL);
 857                if (!index_key.description)
 858                        goto error_free_prep;
 859        }
 860        index_key.desc_len = strlen(index_key.description);
 861
 862        ret = __key_link_begin(keyring, &index_key, &edit);
 863        if (ret < 0) {
 864                key_ref = ERR_PTR(ret);
 865                goto error_free_prep;
 866        }
 867
 868        if (restrict_link && restrict_link->check) {
 869                ret = restrict_link->check(keyring, index_key.type,
 870                                           &prep.payload, restrict_link->key);
 871                if (ret < 0) {
 872                        key_ref = ERR_PTR(ret);
 873                        goto error_link_end;
 874                }
 875        }
 876
 877        /* if we're going to allocate a new key, we're going to have
 878         * to modify the keyring */
 879        ret = key_permission(keyring_ref, KEY_NEED_WRITE);
 880        if (ret < 0) {
 881                key_ref = ERR_PTR(ret);
 882                goto error_link_end;
 883        }
 884
 885        /* if it's possible to update this type of key, search for an existing
 886         * key of the same type and description in the destination keyring and
 887         * update that instead if possible
 888         */
 889        if (index_key.type->update) {
 890                key_ref = find_key_to_update(keyring_ref, &index_key);
 891                if (key_ref)
 892                        goto found_matching_key;
 893        }
 894
 895        /* if the client doesn't provide, decide on the permissions we want */
 896        if (perm == KEY_PERM_UNDEF) {
 897                perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
 898                perm |= KEY_USR_VIEW;
 899
 900                if (index_key.type->read)
 901                        perm |= KEY_POS_READ;
 902
 903                if (index_key.type == &key_type_keyring ||
 904                    index_key.type->update)
 905                        perm |= KEY_POS_WRITE;
 906        }
 907
 908        /* allocate a new key */
 909        key = key_alloc(index_key.type, index_key.description,
 910                        cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
 911        if (IS_ERR(key)) {
 912                key_ref = ERR_CAST(key);
 913                goto error_link_end;
 914        }
 915
 916        /* instantiate it and link it into the target keyring */
 917        ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
 918        if (ret < 0) {
 919                key_put(key);
 920                key_ref = ERR_PTR(ret);
 921                goto error_link_end;
 922        }
 923
 924        key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
 925
 926error_link_end:
 927        __key_link_end(keyring, &index_key, edit);
 928error_free_prep:
 929        if (index_key.type->preparse)
 930                index_key.type->free_preparse(&prep);
 931error_put_type:
 932        key_type_put(index_key.type);
 933error:
 934        return key_ref;
 935
 936 found_matching_key:
 937        /* we found a matching key, so we're going to try to update it
 938         * - we can drop the locks first as we have the key pinned
 939         */
 940        __key_link_end(keyring, &index_key, edit);
 941
 942        key = key_ref_to_ptr(key_ref);
 943        if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
 944                ret = wait_for_key_construction(key, true);
 945                if (ret < 0) {
 946                        key_ref_put(key_ref);
 947                        key_ref = ERR_PTR(ret);
 948                        goto error_free_prep;
 949                }
 950        }
 951
 952        key_ref = __key_update(key_ref, &prep);
 953        goto error_free_prep;
 954}
 955EXPORT_SYMBOL(key_create_or_update);
 956
 957/**
 958 * key_update - Update a key's contents.
 959 * @key_ref: The pointer (plus possession flag) to the key.
 960 * @payload: The data to be used to update the key.
 961 * @plen: The length of @payload.
 962 *
 963 * Attempt to update the contents of a key with the given payload data.  The
 964 * caller must be granted Write permission on the key.  Negative keys can be
 965 * instantiated by this method.
 966 *
 967 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
 968 * type does not support updating.  The key type may return other errors.
 969 */
 970int key_update(key_ref_t key_ref, const void *payload, size_t plen)
 971{
 972        struct key_preparsed_payload prep;
 973        struct key *key = key_ref_to_ptr(key_ref);
 974        int ret;
 975
 976        key_check(key);
 977
 978        /* the key must be writable */
 979        ret = key_permission(key_ref, KEY_NEED_WRITE);
 980        if (ret < 0)
 981                return ret;
 982
 983        /* attempt to update it if supported */
 984        if (!key->type->update)
 985                return -EOPNOTSUPP;
 986
 987        memset(&prep, 0, sizeof(prep));
 988        prep.data = payload;
 989        prep.datalen = plen;
 990        prep.quotalen = key->type->def_datalen;
 991        prep.expiry = TIME64_MAX;
 992        if (key->type->preparse) {
 993                ret = key->type->preparse(&prep);
 994                if (ret < 0)
 995                        goto error;
 996        }
 997
 998        down_write(&key->sem);
 999
1000        ret = key->type->update(key, &prep);
1001        if (ret == 0)
1002                /* Updating a negative key positively instantiates it */
1003                mark_key_instantiated(key, 0);
1004
1005        up_write(&key->sem);
1006
1007error:
1008        if (key->type->preparse)
1009                key->type->free_preparse(&prep);
1010        return ret;
1011}
1012EXPORT_SYMBOL(key_update);
1013
1014/**
1015 * key_revoke - Revoke a key.
1016 * @key: The key to be revoked.
1017 *
1018 * Mark a key as being revoked and ask the type to free up its resources.  The
1019 * revocation timeout is set and the key and all its links will be
1020 * automatically garbage collected after key_gc_delay amount of time if they
1021 * are not manually dealt with first.
1022 */
1023void key_revoke(struct key *key)
1024{
1025        time64_t time;
1026
1027        key_check(key);
1028
1029        /* make sure no one's trying to change or use the key when we mark it
1030         * - we tell lockdep that we might nest because we might be revoking an
1031         *   authorisation key whilst holding the sem on a key we've just
1032         *   instantiated
1033         */
1034        down_write_nested(&key->sem, 1);
1035        if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
1036            key->type->revoke)
1037                key->type->revoke(key);
1038
1039        /* set the death time to no more than the expiry time */
1040        time = ktime_get_real_seconds();
1041        if (key->revoked_at == 0 || key->revoked_at > time) {
1042                key->revoked_at = time;
1043                key_schedule_gc(key->revoked_at + key_gc_delay);
1044        }
1045
1046        up_write(&key->sem);
1047}
1048EXPORT_SYMBOL(key_revoke);
1049
1050/**
1051 * key_invalidate - Invalidate a key.
1052 * @key: The key to be invalidated.
1053 *
1054 * Mark a key as being invalidated and have it cleaned up immediately.  The key
1055 * is ignored by all searches and other operations from this point.
1056 */
1057void key_invalidate(struct key *key)
1058{
1059        kenter("%d", key_serial(key));
1060
1061        key_check(key);
1062
1063        if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1064                down_write_nested(&key->sem, 1);
1065                if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1066                        key_schedule_gc_links();
1067                up_write(&key->sem);
1068        }
1069}
1070EXPORT_SYMBOL(key_invalidate);
1071
1072/**
1073 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1074 * @key: The key to be instantiated
1075 * @prep: The preparsed data to load.
1076 *
1077 * Instantiate a key from preparsed data.  We assume we can just copy the data
1078 * in directly and clear the old pointers.
1079 *
1080 * This can be pointed to directly by the key type instantiate op pointer.
1081 */
1082int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1083{
1084        int ret;
1085
1086        pr_devel("==>%s()\n", __func__);
1087
1088        ret = key_payload_reserve(key, prep->quotalen);
1089        if (ret == 0) {
1090                rcu_assign_keypointer(key, prep->payload.data[0]);
1091                key->payload.data[1] = prep->payload.data[1];
1092                key->payload.data[2] = prep->payload.data[2];
1093                key->payload.data[3] = prep->payload.data[3];
1094                prep->payload.data[0] = NULL;
1095                prep->payload.data[1] = NULL;
1096                prep->payload.data[2] = NULL;
1097                prep->payload.data[3] = NULL;
1098        }
1099        pr_devel("<==%s() = %d\n", __func__, ret);
1100        return ret;
1101}
1102EXPORT_SYMBOL(generic_key_instantiate);
1103
1104/**
1105 * register_key_type - Register a type of key.
1106 * @ktype: The new key type.
1107 *
1108 * Register a new key type.
1109 *
1110 * Returns 0 on success or -EEXIST if a type of this name already exists.
1111 */
1112int register_key_type(struct key_type *ktype)
1113{
1114        struct key_type *p;
1115        int ret;
1116
1117        memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1118
1119        ret = -EEXIST;
1120        down_write(&key_types_sem);
1121
1122        /* disallow key types with the same name */
1123        list_for_each_entry(p, &key_types_list, link) {
1124                if (strcmp(p->name, ktype->name) == 0)
1125                        goto out;
1126        }
1127
1128        /* store the type */
1129        list_add(&ktype->link, &key_types_list);
1130
1131        pr_notice("Key type %s registered\n", ktype->name);
1132        ret = 0;
1133
1134out:
1135        up_write(&key_types_sem);
1136        return ret;
1137}
1138EXPORT_SYMBOL(register_key_type);
1139
1140/**
1141 * unregister_key_type - Unregister a type of key.
1142 * @ktype: The key type.
1143 *
1144 * Unregister a key type and mark all the extant keys of this type as dead.
1145 * Those keys of this type are then destroyed to get rid of their payloads and
1146 * they and their links will be garbage collected as soon as possible.
1147 */
1148void unregister_key_type(struct key_type *ktype)
1149{
1150        down_write(&key_types_sem);
1151        list_del_init(&ktype->link);
1152        downgrade_write(&key_types_sem);
1153        key_gc_keytype(ktype);
1154        pr_notice("Key type %s unregistered\n", ktype->name);
1155        up_read(&key_types_sem);
1156}
1157EXPORT_SYMBOL(unregister_key_type);
1158
1159/*
1160 * Initialise the key management state.
1161 */
1162void __init key_init(void)
1163{
1164        /* allocate a slab in which we can store keys */
1165        key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1166                        0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1167
1168        /* add the special key types */
1169        list_add_tail(&key_type_keyring.link, &key_types_list);
1170        list_add_tail(&key_type_dead.link, &key_types_list);
1171        list_add_tail(&key_type_user.link, &key_types_list);
1172        list_add_tail(&key_type_logon.link, &key_types_list);
1173
1174        /* record the root user tracking */
1175        rb_link_node(&root_key_user.node,
1176                     NULL,
1177                     &key_user_tree.rb_node);
1178
1179        rb_insert_color(&root_key_user.node,
1180                        &key_user_tree);
1181}
1182