linux/sound/firewire/amdtp-stream.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
   4 * with Common Isochronous Packet (IEC 61883-1) headers
   5 *
   6 * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
   7 */
   8
   9#include <linux/device.h>
  10#include <linux/err.h>
  11#include <linux/firewire.h>
  12#include <linux/firewire-constants.h>
  13#include <linux/module.h>
  14#include <linux/slab.h>
  15#include <sound/pcm.h>
  16#include <sound/pcm_params.h>
  17#include "amdtp-stream.h"
  18
  19#define TICKS_PER_CYCLE         3072
  20#define CYCLES_PER_SECOND       8000
  21#define TICKS_PER_SECOND        (TICKS_PER_CYCLE * CYCLES_PER_SECOND)
  22
  23/* Always support Linux tracing subsystem. */
  24#define CREATE_TRACE_POINTS
  25#include "amdtp-stream-trace.h"
  26
  27#define TRANSFER_DELAY_TICKS    0x2e00 /* 479.17 microseconds */
  28
  29/* isochronous header parameters */
  30#define ISO_DATA_LENGTH_SHIFT   16
  31#define TAG_NO_CIP_HEADER       0
  32#define TAG_CIP                 1
  33
  34/* common isochronous packet header parameters */
  35#define CIP_EOH_SHIFT           31
  36#define CIP_EOH                 (1u << CIP_EOH_SHIFT)
  37#define CIP_EOH_MASK            0x80000000
  38#define CIP_SID_SHIFT           24
  39#define CIP_SID_MASK            0x3f000000
  40#define CIP_DBS_MASK            0x00ff0000
  41#define CIP_DBS_SHIFT           16
  42#define CIP_SPH_MASK            0x00000400
  43#define CIP_SPH_SHIFT           10
  44#define CIP_DBC_MASK            0x000000ff
  45#define CIP_FMT_SHIFT           24
  46#define CIP_FMT_MASK            0x3f000000
  47#define CIP_FDF_MASK            0x00ff0000
  48#define CIP_FDF_SHIFT           16
  49#define CIP_SYT_MASK            0x0000ffff
  50#define CIP_SYT_NO_INFO         0xffff
  51
  52/* Audio and Music transfer protocol specific parameters */
  53#define CIP_FMT_AM              0x10
  54#define AMDTP_FDF_NO_DATA       0xff
  55
  56// For iso header, tstamp and 2 CIP header.
  57#define IR_CTX_HEADER_SIZE_CIP          16
  58// For iso header and tstamp.
  59#define IR_CTX_HEADER_SIZE_NO_CIP       8
  60#define HEADER_TSTAMP_MASK      0x0000ffff
  61
  62#define IT_PKT_HEADER_SIZE_CIP          8 // For 2 CIP header.
  63#define IT_PKT_HEADER_SIZE_NO_CIP       0 // Nothing.
  64
  65static void pcm_period_tasklet(unsigned long data);
  66
  67/**
  68 * amdtp_stream_init - initialize an AMDTP stream structure
  69 * @s: the AMDTP stream to initialize
  70 * @unit: the target of the stream
  71 * @dir: the direction of stream
  72 * @flags: the packet transmission method to use
  73 * @fmt: the value of fmt field in CIP header
  74 * @process_ctx_payloads: callback handler to process payloads of isoc context
  75 * @protocol_size: the size to allocate newly for protocol
  76 */
  77int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
  78                      enum amdtp_stream_direction dir, enum cip_flags flags,
  79                      unsigned int fmt,
  80                      amdtp_stream_process_ctx_payloads_t process_ctx_payloads,
  81                      unsigned int protocol_size)
  82{
  83        if (process_ctx_payloads == NULL)
  84                return -EINVAL;
  85
  86        s->protocol = kzalloc(protocol_size, GFP_KERNEL);
  87        if (!s->protocol)
  88                return -ENOMEM;
  89
  90        s->unit = unit;
  91        s->direction = dir;
  92        s->flags = flags;
  93        s->context = ERR_PTR(-1);
  94        mutex_init(&s->mutex);
  95        tasklet_init(&s->period_tasklet, pcm_period_tasklet, (unsigned long)s);
  96        s->packet_index = 0;
  97
  98        init_waitqueue_head(&s->callback_wait);
  99        s->callbacked = false;
 100
 101        s->fmt = fmt;
 102        s->process_ctx_payloads = process_ctx_payloads;
 103
 104        if (dir == AMDTP_OUT_STREAM)
 105                s->ctx_data.rx.syt_override = -1;
 106
 107        return 0;
 108}
 109EXPORT_SYMBOL(amdtp_stream_init);
 110
 111/**
 112 * amdtp_stream_destroy - free stream resources
 113 * @s: the AMDTP stream to destroy
 114 */
 115void amdtp_stream_destroy(struct amdtp_stream *s)
 116{
 117        /* Not initialized. */
 118        if (s->protocol == NULL)
 119                return;
 120
 121        WARN_ON(amdtp_stream_running(s));
 122        kfree(s->protocol);
 123        mutex_destroy(&s->mutex);
 124}
 125EXPORT_SYMBOL(amdtp_stream_destroy);
 126
 127const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
 128        [CIP_SFC_32000]  =  8,
 129        [CIP_SFC_44100]  =  8,
 130        [CIP_SFC_48000]  =  8,
 131        [CIP_SFC_88200]  = 16,
 132        [CIP_SFC_96000]  = 16,
 133        [CIP_SFC_176400] = 32,
 134        [CIP_SFC_192000] = 32,
 135};
 136EXPORT_SYMBOL(amdtp_syt_intervals);
 137
 138const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
 139        [CIP_SFC_32000]  =  32000,
 140        [CIP_SFC_44100]  =  44100,
 141        [CIP_SFC_48000]  =  48000,
 142        [CIP_SFC_88200]  =  88200,
 143        [CIP_SFC_96000]  =  96000,
 144        [CIP_SFC_176400] = 176400,
 145        [CIP_SFC_192000] = 192000,
 146};
 147EXPORT_SYMBOL(amdtp_rate_table);
 148
 149static int apply_constraint_to_size(struct snd_pcm_hw_params *params,
 150                                    struct snd_pcm_hw_rule *rule)
 151{
 152        struct snd_interval *s = hw_param_interval(params, rule->var);
 153        const struct snd_interval *r =
 154                hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
 155        struct snd_interval t = {0};
 156        unsigned int step = 0;
 157        int i;
 158
 159        for (i = 0; i < CIP_SFC_COUNT; ++i) {
 160                if (snd_interval_test(r, amdtp_rate_table[i]))
 161                        step = max(step, amdtp_syt_intervals[i]);
 162        }
 163
 164        t.min = roundup(s->min, step);
 165        t.max = rounddown(s->max, step);
 166        t.integer = 1;
 167
 168        return snd_interval_refine(s, &t);
 169}
 170
 171/**
 172 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
 173 * @s:          the AMDTP stream, which must be initialized.
 174 * @runtime:    the PCM substream runtime
 175 */
 176int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
 177                                        struct snd_pcm_runtime *runtime)
 178{
 179        struct snd_pcm_hardware *hw = &runtime->hw;
 180        unsigned int ctx_header_size;
 181        unsigned int maximum_usec_per_period;
 182        int err;
 183
 184        hw->info = SNDRV_PCM_INFO_BATCH |
 185                   SNDRV_PCM_INFO_BLOCK_TRANSFER |
 186                   SNDRV_PCM_INFO_INTERLEAVED |
 187                   SNDRV_PCM_INFO_JOINT_DUPLEX |
 188                   SNDRV_PCM_INFO_MMAP |
 189                   SNDRV_PCM_INFO_MMAP_VALID;
 190
 191        /* SNDRV_PCM_INFO_BATCH */
 192        hw->periods_min = 2;
 193        hw->periods_max = UINT_MAX;
 194
 195        /* bytes for a frame */
 196        hw->period_bytes_min = 4 * hw->channels_max;
 197
 198        /* Just to prevent from allocating much pages. */
 199        hw->period_bytes_max = hw->period_bytes_min * 2048;
 200        hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min;
 201
 202        // Linux driver for 1394 OHCI controller voluntarily flushes isoc
 203        // context when total size of accumulated context header reaches
 204        // PAGE_SIZE. This kicks tasklet for the isoc context and brings
 205        // callback in the middle of scheduled interrupts.
 206        // Although AMDTP streams in the same domain use the same events per
 207        // IRQ, use the largest size of context header between IT/IR contexts.
 208        // Here, use the value of context header in IR context is for both
 209        // contexts.
 210        if (!(s->flags & CIP_NO_HEADER))
 211                ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
 212        else
 213                ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
 214        maximum_usec_per_period = USEC_PER_SEC * PAGE_SIZE /
 215                                  CYCLES_PER_SECOND / ctx_header_size;
 216
 217        // In IEC 61883-6, one isoc packet can transfer events up to the value
 218        // of syt interval. This comes from the interval of isoc cycle. As 1394
 219        // OHCI controller can generate hardware IRQ per isoc packet, the
 220        // interval is 125 usec.
 221        // However, there are two ways of transmission in IEC 61883-6; blocking
 222        // and non-blocking modes. In blocking mode, the sequence of isoc packet
 223        // includes 'empty' or 'NODATA' packets which include no event. In
 224        // non-blocking mode, the number of events per packet is variable up to
 225        // the syt interval.
 226        // Due to the above protocol design, the minimum PCM frames per
 227        // interrupt should be double of the value of syt interval, thus it is
 228        // 250 usec.
 229        err = snd_pcm_hw_constraint_minmax(runtime,
 230                                           SNDRV_PCM_HW_PARAM_PERIOD_TIME,
 231                                           250, maximum_usec_per_period);
 232        if (err < 0)
 233                goto end;
 234
 235        /* Non-Blocking stream has no more constraints */
 236        if (!(s->flags & CIP_BLOCKING))
 237                goto end;
 238
 239        /*
 240         * One AMDTP packet can include some frames. In blocking mode, the
 241         * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
 242         * depending on its sampling rate. For accurate period interrupt, it's
 243         * preferrable to align period/buffer sizes to current SYT_INTERVAL.
 244         */
 245        err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
 246                                  apply_constraint_to_size, NULL,
 247                                  SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
 248                                  SNDRV_PCM_HW_PARAM_RATE, -1);
 249        if (err < 0)
 250                goto end;
 251        err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
 252                                  apply_constraint_to_size, NULL,
 253                                  SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
 254                                  SNDRV_PCM_HW_PARAM_RATE, -1);
 255        if (err < 0)
 256                goto end;
 257end:
 258        return err;
 259}
 260EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);
 261
 262/**
 263 * amdtp_stream_set_parameters - set stream parameters
 264 * @s: the AMDTP stream to configure
 265 * @rate: the sample rate
 266 * @data_block_quadlets: the size of a data block in quadlet unit
 267 *
 268 * The parameters must be set before the stream is started, and must not be
 269 * changed while the stream is running.
 270 */
 271int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate,
 272                                unsigned int data_block_quadlets)
 273{
 274        unsigned int sfc;
 275
 276        for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) {
 277                if (amdtp_rate_table[sfc] == rate)
 278                        break;
 279        }
 280        if (sfc == ARRAY_SIZE(amdtp_rate_table))
 281                return -EINVAL;
 282
 283        s->sfc = sfc;
 284        s->data_block_quadlets = data_block_quadlets;
 285        s->syt_interval = amdtp_syt_intervals[sfc];
 286
 287        // default buffering in the device.
 288        if (s->direction == AMDTP_OUT_STREAM) {
 289                s->ctx_data.rx.transfer_delay =
 290                                        TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
 291
 292                if (s->flags & CIP_BLOCKING) {
 293                        // additional buffering needed to adjust for no-data
 294                        // packets.
 295                        s->ctx_data.rx.transfer_delay +=
 296                                TICKS_PER_SECOND * s->syt_interval / rate;
 297                }
 298        }
 299
 300        return 0;
 301}
 302EXPORT_SYMBOL(amdtp_stream_set_parameters);
 303
 304/**
 305 * amdtp_stream_get_max_payload - get the stream's packet size
 306 * @s: the AMDTP stream
 307 *
 308 * This function must not be called before the stream has been configured
 309 * with amdtp_stream_set_parameters().
 310 */
 311unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
 312{
 313        unsigned int multiplier = 1;
 314        unsigned int cip_header_size = 0;
 315
 316        if (s->flags & CIP_JUMBO_PAYLOAD)
 317                multiplier = 5;
 318        if (!(s->flags & CIP_NO_HEADER))
 319                cip_header_size = sizeof(__be32) * 2;
 320
 321        return cip_header_size +
 322                s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier;
 323}
 324EXPORT_SYMBOL(amdtp_stream_get_max_payload);
 325
 326/**
 327 * amdtp_stream_pcm_prepare - prepare PCM device for running
 328 * @s: the AMDTP stream
 329 *
 330 * This function should be called from the PCM device's .prepare callback.
 331 */
 332void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
 333{
 334        tasklet_kill(&s->period_tasklet);
 335        s->pcm_buffer_pointer = 0;
 336        s->pcm_period_pointer = 0;
 337}
 338EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
 339
 340static unsigned int calculate_data_blocks(struct amdtp_stream *s,
 341                                          unsigned int syt)
 342{
 343        unsigned int phase, data_blocks;
 344
 345        /* Blocking mode. */
 346        if (s->flags & CIP_BLOCKING) {
 347                /* This module generate empty packet for 'no data'. */
 348                if (syt == CIP_SYT_NO_INFO)
 349                        data_blocks = 0;
 350                else
 351                        data_blocks = s->syt_interval;
 352        /* Non-blocking mode. */
 353        } else {
 354                if (!cip_sfc_is_base_44100(s->sfc)) {
 355                        // Sample_rate / 8000 is an integer, and precomputed.
 356                        data_blocks = s->ctx_data.rx.data_block_state;
 357                } else {
 358                        phase = s->ctx_data.rx.data_block_state;
 359
 360                /*
 361                 * This calculates the number of data blocks per packet so that
 362                 * 1) the overall rate is correct and exactly synchronized to
 363                 *    the bus clock, and
 364                 * 2) packets with a rounded-up number of blocks occur as early
 365                 *    as possible in the sequence (to prevent underruns of the
 366                 *    device's buffer).
 367                 */
 368                        if (s->sfc == CIP_SFC_44100)
 369                                /* 6 6 5 6 5 6 5 ... */
 370                                data_blocks = 5 + ((phase & 1) ^
 371                                                   (phase == 0 || phase >= 40));
 372                        else
 373                                /* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
 374                                data_blocks = 11 * (s->sfc >> 1) + (phase == 0);
 375                        if (++phase >= (80 >> (s->sfc >> 1)))
 376                                phase = 0;
 377                        s->ctx_data.rx.data_block_state = phase;
 378                }
 379        }
 380
 381        return data_blocks;
 382}
 383
 384static unsigned int calculate_syt(struct amdtp_stream *s,
 385                                  unsigned int cycle)
 386{
 387        unsigned int syt_offset, phase, index, syt;
 388
 389        if (s->ctx_data.rx.last_syt_offset < TICKS_PER_CYCLE) {
 390                if (!cip_sfc_is_base_44100(s->sfc))
 391                        syt_offset = s->ctx_data.rx.last_syt_offset +
 392                                     s->ctx_data.rx.syt_offset_state;
 393                else {
 394                /*
 395                 * The time, in ticks, of the n'th SYT_INTERVAL sample is:
 396                 *   n * SYT_INTERVAL * 24576000 / sample_rate
 397                 * Modulo TICKS_PER_CYCLE, the difference between successive
 398                 * elements is about 1386.23.  Rounding the results of this
 399                 * formula to the SYT precision results in a sequence of
 400                 * differences that begins with:
 401                 *   1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
 402                 * This code generates _exactly_ the same sequence.
 403                 */
 404                        phase = s->ctx_data.rx.syt_offset_state;
 405                        index = phase % 13;
 406                        syt_offset = s->ctx_data.rx.last_syt_offset;
 407                        syt_offset += 1386 + ((index && !(index & 3)) ||
 408                                              phase == 146);
 409                        if (++phase >= 147)
 410                                phase = 0;
 411                        s->ctx_data.rx.syt_offset_state = phase;
 412                }
 413        } else
 414                syt_offset = s->ctx_data.rx.last_syt_offset - TICKS_PER_CYCLE;
 415        s->ctx_data.rx.last_syt_offset = syt_offset;
 416
 417        if (syt_offset < TICKS_PER_CYCLE) {
 418                syt_offset += s->ctx_data.rx.transfer_delay;
 419                syt = (cycle + syt_offset / TICKS_PER_CYCLE) << 12;
 420                syt += syt_offset % TICKS_PER_CYCLE;
 421
 422                return syt & CIP_SYT_MASK;
 423        } else {
 424                return CIP_SYT_NO_INFO;
 425        }
 426}
 427
 428static void update_pcm_pointers(struct amdtp_stream *s,
 429                                struct snd_pcm_substream *pcm,
 430                                unsigned int frames)
 431{
 432        unsigned int ptr;
 433
 434        ptr = s->pcm_buffer_pointer + frames;
 435        if (ptr >= pcm->runtime->buffer_size)
 436                ptr -= pcm->runtime->buffer_size;
 437        WRITE_ONCE(s->pcm_buffer_pointer, ptr);
 438
 439        s->pcm_period_pointer += frames;
 440        if (s->pcm_period_pointer >= pcm->runtime->period_size) {
 441                s->pcm_period_pointer -= pcm->runtime->period_size;
 442                tasklet_hi_schedule(&s->period_tasklet);
 443        }
 444}
 445
 446static void pcm_period_tasklet(unsigned long data)
 447{
 448        struct amdtp_stream *s = (void *)data;
 449        struct snd_pcm_substream *pcm = READ_ONCE(s->pcm);
 450
 451        if (pcm)
 452                snd_pcm_period_elapsed(pcm);
 453}
 454
 455static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params,
 456                        bool sched_irq)
 457{
 458        int err;
 459
 460        params->interrupt = sched_irq;
 461        params->tag = s->tag;
 462        params->sy = 0;
 463
 464        err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer,
 465                                   s->buffer.packets[s->packet_index].offset);
 466        if (err < 0) {
 467                dev_err(&s->unit->device, "queueing error: %d\n", err);
 468                goto end;
 469        }
 470
 471        if (++s->packet_index >= s->queue_size)
 472                s->packet_index = 0;
 473end:
 474        return err;
 475}
 476
 477static inline int queue_out_packet(struct amdtp_stream *s,
 478                                   struct fw_iso_packet *params, bool sched_irq)
 479{
 480        params->skip =
 481                !!(params->header_length == 0 && params->payload_length == 0);
 482        return queue_packet(s, params, sched_irq);
 483}
 484
 485static inline int queue_in_packet(struct amdtp_stream *s,
 486                                  struct fw_iso_packet *params)
 487{
 488        // Queue one packet for IR context.
 489        params->header_length = s->ctx_data.tx.ctx_header_size;
 490        params->payload_length = s->ctx_data.tx.max_ctx_payload_length;
 491        params->skip = false;
 492        return queue_packet(s, params, false);
 493}
 494
 495static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2],
 496                        unsigned int data_block_counter, unsigned int syt)
 497{
 498        cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) |
 499                                (s->data_block_quadlets << CIP_DBS_SHIFT) |
 500                                ((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) |
 501                                data_block_counter);
 502        cip_header[1] = cpu_to_be32(CIP_EOH |
 503                        ((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) |
 504                        ((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) |
 505                        (syt & CIP_SYT_MASK));
 506}
 507
 508static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle,
 509                                struct fw_iso_packet *params,
 510                                unsigned int data_blocks,
 511                                unsigned int data_block_counter,
 512                                unsigned int syt, unsigned int index)
 513{
 514        unsigned int payload_length;
 515        __be32 *cip_header;
 516
 517        payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets;
 518        params->payload_length = payload_length;
 519
 520        if (!(s->flags & CIP_NO_HEADER)) {
 521                cip_header = (__be32 *)params->header;
 522                generate_cip_header(s, cip_header, data_block_counter, syt);
 523                params->header_length = 2 * sizeof(__be32);
 524                payload_length += params->header_length;
 525        } else {
 526                cip_header = NULL;
 527        }
 528
 529        trace_amdtp_packet(s, cycle, cip_header, payload_length, data_blocks,
 530                           data_block_counter, index);
 531}
 532
 533static int check_cip_header(struct amdtp_stream *s, const __be32 *buf,
 534                            unsigned int payload_length,
 535                            unsigned int *data_blocks,
 536                            unsigned int *data_block_counter, unsigned int *syt)
 537{
 538        u32 cip_header[2];
 539        unsigned int sph;
 540        unsigned int fmt;
 541        unsigned int fdf;
 542        unsigned int dbc;
 543        bool lost;
 544
 545        cip_header[0] = be32_to_cpu(buf[0]);
 546        cip_header[1] = be32_to_cpu(buf[1]);
 547
 548        /*
 549         * This module supports 'Two-quadlet CIP header with SYT field'.
 550         * For convenience, also check FMT field is AM824 or not.
 551         */
 552        if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
 553             ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) &&
 554            (!(s->flags & CIP_HEADER_WITHOUT_EOH))) {
 555                dev_info_ratelimited(&s->unit->device,
 556                                "Invalid CIP header for AMDTP: %08X:%08X\n",
 557                                cip_header[0], cip_header[1]);
 558                return -EAGAIN;
 559        }
 560
 561        /* Check valid protocol or not. */
 562        sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT;
 563        fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT;
 564        if (sph != s->sph || fmt != s->fmt) {
 565                dev_info_ratelimited(&s->unit->device,
 566                                     "Detect unexpected protocol: %08x %08x\n",
 567                                     cip_header[0], cip_header[1]);
 568                return -EAGAIN;
 569        }
 570
 571        /* Calculate data blocks */
 572        fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT;
 573        if (payload_length < sizeof(__be32) * 2 ||
 574            (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) {
 575                *data_blocks = 0;
 576        } else {
 577                unsigned int data_block_quadlets =
 578                                (cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT;
 579                /* avoid division by zero */
 580                if (data_block_quadlets == 0) {
 581                        dev_err(&s->unit->device,
 582                                "Detect invalid value in dbs field: %08X\n",
 583                                cip_header[0]);
 584                        return -EPROTO;
 585                }
 586                if (s->flags & CIP_WRONG_DBS)
 587                        data_block_quadlets = s->data_block_quadlets;
 588
 589                *data_blocks = (payload_length / sizeof(__be32) - 2) /
 590                                                        data_block_quadlets;
 591        }
 592
 593        /* Check data block counter continuity */
 594        dbc = cip_header[0] & CIP_DBC_MASK;
 595        if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
 596            *data_block_counter != UINT_MAX)
 597                dbc = *data_block_counter;
 598
 599        if ((dbc == 0x00 && (s->flags & CIP_SKIP_DBC_ZERO_CHECK)) ||
 600            *data_block_counter == UINT_MAX) {
 601                lost = false;
 602        } else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
 603                lost = dbc != *data_block_counter;
 604        } else {
 605                unsigned int dbc_interval;
 606
 607                if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0)
 608                        dbc_interval = s->ctx_data.tx.dbc_interval;
 609                else
 610                        dbc_interval = *data_blocks;
 611
 612                lost = dbc != ((*data_block_counter + dbc_interval) & 0xff);
 613        }
 614
 615        if (lost) {
 616                dev_err(&s->unit->device,
 617                        "Detect discontinuity of CIP: %02X %02X\n",
 618                        *data_block_counter, dbc);
 619                return -EIO;
 620        }
 621
 622        *data_block_counter = dbc;
 623
 624        *syt = cip_header[1] & CIP_SYT_MASK;
 625
 626        return 0;
 627}
 628
 629static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle,
 630                               const __be32 *ctx_header,
 631                               unsigned int *payload_length,
 632                               unsigned int *data_blocks,
 633                               unsigned int *data_block_counter,
 634                               unsigned int *syt, unsigned int index)
 635{
 636        const __be32 *cip_header;
 637        int err;
 638
 639        *payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT;
 640        if (*payload_length > s->ctx_data.tx.ctx_header_size +
 641                                        s->ctx_data.tx.max_ctx_payload_length) {
 642                dev_err(&s->unit->device,
 643                        "Detect jumbo payload: %04x %04x\n",
 644                        *payload_length, s->ctx_data.tx.max_ctx_payload_length);
 645                return -EIO;
 646        }
 647
 648        if (!(s->flags & CIP_NO_HEADER)) {
 649                cip_header = ctx_header + 2;
 650                err = check_cip_header(s, cip_header, *payload_length,
 651                                       data_blocks, data_block_counter, syt);
 652                if (err < 0)
 653                        return err;
 654        } else {
 655                cip_header = NULL;
 656                err = 0;
 657                *data_blocks = *payload_length / sizeof(__be32) /
 658                               s->data_block_quadlets;
 659                *syt = 0;
 660
 661                if (*data_block_counter == UINT_MAX)
 662                        *data_block_counter = 0;
 663        }
 664
 665        trace_amdtp_packet(s, cycle, cip_header, *payload_length, *data_blocks,
 666                           *data_block_counter, index);
 667
 668        return err;
 669}
 670
 671// In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On
 672// the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent
 673// it. Thus, via Linux firewire subsystem, we can get the 3 bits for second.
 674static inline u32 compute_cycle_count(__be32 ctx_header_tstamp)
 675{
 676        u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK;
 677        return (((tstamp >> 13) & 0x07) * 8000) + (tstamp & 0x1fff);
 678}
 679
 680static inline u32 increment_cycle_count(u32 cycle, unsigned int addend)
 681{
 682        cycle += addend;
 683        if (cycle >= 8 * CYCLES_PER_SECOND)
 684                cycle -= 8 * CYCLES_PER_SECOND;
 685        return cycle;
 686}
 687
 688// Align to actual cycle count for the packet which is going to be scheduled.
 689// This module queued the same number of isochronous cycle as the size of queue
 690// to kip isochronous cycle, therefore it's OK to just increment the cycle by
 691// the size of queue for scheduled cycle.
 692static inline u32 compute_it_cycle(const __be32 ctx_header_tstamp,
 693                                   unsigned int queue_size)
 694{
 695        u32 cycle = compute_cycle_count(ctx_header_tstamp);
 696        return increment_cycle_count(cycle, queue_size);
 697}
 698
 699static int generate_device_pkt_descs(struct amdtp_stream *s,
 700                                     struct pkt_desc *descs,
 701                                     const __be32 *ctx_header,
 702                                     unsigned int packets)
 703{
 704        unsigned int dbc = s->data_block_counter;
 705        int i;
 706        int err;
 707
 708        for (i = 0; i < packets; ++i) {
 709                struct pkt_desc *desc = descs + i;
 710                unsigned int index = (s->packet_index + i) % s->queue_size;
 711                unsigned int cycle;
 712                unsigned int payload_length;
 713                unsigned int data_blocks;
 714                unsigned int syt;
 715
 716                cycle = compute_cycle_count(ctx_header[1]);
 717
 718                err = parse_ir_ctx_header(s, cycle, ctx_header, &payload_length,
 719                                          &data_blocks, &dbc, &syt, i);
 720                if (err < 0)
 721                        return err;
 722
 723                desc->cycle = cycle;
 724                desc->syt = syt;
 725                desc->data_blocks = data_blocks;
 726                desc->data_block_counter = dbc;
 727                desc->ctx_payload = s->buffer.packets[index].buffer;
 728
 729                if (!(s->flags & CIP_DBC_IS_END_EVENT))
 730                        dbc = (dbc + desc->data_blocks) & 0xff;
 731
 732                ctx_header +=
 733                        s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
 734        }
 735
 736        s->data_block_counter = dbc;
 737
 738        return 0;
 739}
 740
 741static void generate_ideal_pkt_descs(struct amdtp_stream *s,
 742                                     struct pkt_desc *descs,
 743                                     const __be32 *ctx_header,
 744                                     unsigned int packets)
 745{
 746        unsigned int dbc = s->data_block_counter;
 747        int i;
 748
 749        for (i = 0; i < packets; ++i) {
 750                struct pkt_desc *desc = descs + i;
 751                unsigned int index = (s->packet_index + i) % s->queue_size;
 752
 753                desc->cycle = compute_it_cycle(*ctx_header, s->queue_size);
 754                desc->syt = calculate_syt(s, desc->cycle);
 755                desc->data_blocks = calculate_data_blocks(s, desc->syt);
 756
 757                if (s->flags & CIP_DBC_IS_END_EVENT)
 758                        dbc = (dbc + desc->data_blocks) & 0xff;
 759
 760                desc->data_block_counter = dbc;
 761
 762                if (!(s->flags & CIP_DBC_IS_END_EVENT))
 763                        dbc = (dbc + desc->data_blocks) & 0xff;
 764
 765                desc->ctx_payload = s->buffer.packets[index].buffer;
 766
 767                ++ctx_header;
 768        }
 769
 770        s->data_block_counter = dbc;
 771}
 772
 773static inline void cancel_stream(struct amdtp_stream *s)
 774{
 775        s->packet_index = -1;
 776        if (in_interrupt())
 777                amdtp_stream_pcm_abort(s);
 778        WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
 779}
 780
 781static void process_ctx_payloads(struct amdtp_stream *s,
 782                                 const struct pkt_desc *descs,
 783                                 unsigned int packets)
 784{
 785        struct snd_pcm_substream *pcm;
 786        unsigned int pcm_frames;
 787
 788        pcm = READ_ONCE(s->pcm);
 789        pcm_frames = s->process_ctx_payloads(s, descs, packets, pcm);
 790        if (pcm)
 791                update_pcm_pointers(s, pcm, pcm_frames);
 792}
 793
 794static void amdtp_stream_master_callback(struct fw_iso_context *context,
 795                                         u32 tstamp, size_t header_length,
 796                                         void *header, void *private_data);
 797
 798static void amdtp_stream_master_first_callback(struct fw_iso_context *context,
 799                                        u32 tstamp, size_t header_length,
 800                                        void *header, void *private_data);
 801
 802static void out_stream_callback(struct fw_iso_context *context, u32 tstamp,
 803                                size_t header_length, void *header,
 804                                void *private_data)
 805{
 806        struct amdtp_stream *s = private_data;
 807        const __be32 *ctx_header = header;
 808        unsigned int events_per_period = s->ctx_data.rx.events_per_period;
 809        unsigned int event_count = s->ctx_data.rx.event_count;
 810        unsigned int packets;
 811        bool is_irq_target;
 812        int i;
 813
 814        if (s->packet_index < 0)
 815                return;
 816
 817        // Calculate the number of packets in buffer and check XRUN.
 818        packets = header_length / sizeof(*ctx_header);
 819
 820        generate_ideal_pkt_descs(s, s->pkt_descs, ctx_header, packets);
 821
 822        process_ctx_payloads(s, s->pkt_descs, packets);
 823
 824        is_irq_target =
 825                !!(context->callback.sc == amdtp_stream_master_callback ||
 826                   context->callback.sc == amdtp_stream_master_first_callback);
 827
 828        for (i = 0; i < packets; ++i) {
 829                const struct pkt_desc *desc = s->pkt_descs + i;
 830                unsigned int syt;
 831                struct {
 832                        struct fw_iso_packet params;
 833                        __be32 header[IT_PKT_HEADER_SIZE_CIP / sizeof(__be32)];
 834                } template = { {0}, {0} };
 835                bool sched_irq = false;
 836
 837                if (s->ctx_data.rx.syt_override < 0)
 838                        syt = desc->syt;
 839                else
 840                        syt = s->ctx_data.rx.syt_override;
 841
 842                build_it_pkt_header(s, desc->cycle, &template.params,
 843                                    desc->data_blocks, desc->data_block_counter,
 844                                    syt, i);
 845
 846                if (is_irq_target) {
 847                        event_count += desc->data_blocks;
 848                        if (event_count >= events_per_period) {
 849                                event_count -= events_per_period;
 850                                sched_irq = true;
 851                        }
 852                }
 853
 854                if (queue_out_packet(s, &template.params, sched_irq) < 0) {
 855                        cancel_stream(s);
 856                        return;
 857                }
 858        }
 859
 860        s->ctx_data.rx.event_count = event_count;
 861}
 862
 863static void in_stream_callback(struct fw_iso_context *context, u32 tstamp,
 864                               size_t header_length, void *header,
 865                               void *private_data)
 866{
 867        struct amdtp_stream *s = private_data;
 868        __be32 *ctx_header = header;
 869        unsigned int packets;
 870        int i;
 871        int err;
 872
 873        if (s->packet_index < 0)
 874                return;
 875
 876        // Calculate the number of packets in buffer and check XRUN.
 877        packets = header_length / s->ctx_data.tx.ctx_header_size;
 878
 879        err = generate_device_pkt_descs(s, s->pkt_descs, ctx_header, packets);
 880        if (err < 0) {
 881                if (err != -EAGAIN) {
 882                        cancel_stream(s);
 883                        return;
 884                }
 885        } else {
 886                process_ctx_payloads(s, s->pkt_descs, packets);
 887        }
 888
 889        for (i = 0; i < packets; ++i) {
 890                struct fw_iso_packet params = {0};
 891
 892                if (queue_in_packet(s, &params) < 0) {
 893                        cancel_stream(s);
 894                        return;
 895                }
 896        }
 897}
 898
 899static void amdtp_stream_master_callback(struct fw_iso_context *context,
 900                                         u32 tstamp, size_t header_length,
 901                                         void *header, void *private_data)
 902{
 903        struct amdtp_domain *d = private_data;
 904        struct amdtp_stream *irq_target = d->irq_target;
 905        struct amdtp_stream *s;
 906
 907        out_stream_callback(context, tstamp, header_length, header, irq_target);
 908        if (amdtp_streaming_error(irq_target))
 909                goto error;
 910
 911        list_for_each_entry(s, &d->streams, list) {
 912                if (s != irq_target && amdtp_stream_running(s)) {
 913                        fw_iso_context_flush_completions(s->context);
 914                        if (amdtp_streaming_error(s))
 915                                goto error;
 916                }
 917        }
 918
 919        return;
 920error:
 921        if (amdtp_stream_running(irq_target))
 922                cancel_stream(irq_target);
 923
 924        list_for_each_entry(s, &d->streams, list) {
 925                if (amdtp_stream_running(s))
 926                        cancel_stream(s);
 927        }
 928}
 929
 930// this is executed one time.
 931static void amdtp_stream_first_callback(struct fw_iso_context *context,
 932                                        u32 tstamp, size_t header_length,
 933                                        void *header, void *private_data)
 934{
 935        struct amdtp_stream *s = private_data;
 936        const __be32 *ctx_header = header;
 937        u32 cycle;
 938
 939        /*
 940         * For in-stream, first packet has come.
 941         * For out-stream, prepared to transmit first packet
 942         */
 943        s->callbacked = true;
 944        wake_up(&s->callback_wait);
 945
 946        if (s->direction == AMDTP_IN_STREAM) {
 947                cycle = compute_cycle_count(ctx_header[1]);
 948
 949                context->callback.sc = in_stream_callback;
 950        } else {
 951                cycle = compute_it_cycle(*ctx_header, s->queue_size);
 952
 953                context->callback.sc = out_stream_callback;
 954        }
 955
 956        s->start_cycle = cycle;
 957
 958        context->callback.sc(context, tstamp, header_length, header, s);
 959}
 960
 961static void amdtp_stream_master_first_callback(struct fw_iso_context *context,
 962                                               u32 tstamp, size_t header_length,
 963                                               void *header, void *private_data)
 964{
 965        struct amdtp_domain *d = private_data;
 966        struct amdtp_stream *s = d->irq_target;
 967        const __be32 *ctx_header = header;
 968
 969        s->callbacked = true;
 970        wake_up(&s->callback_wait);
 971
 972        s->start_cycle = compute_it_cycle(*ctx_header, s->queue_size);
 973
 974        context->callback.sc = amdtp_stream_master_callback;
 975
 976        context->callback.sc(context, tstamp, header_length, header, d);
 977}
 978
 979/**
 980 * amdtp_stream_start - start transferring packets
 981 * @s: the AMDTP stream to start
 982 * @channel: the isochronous channel on the bus
 983 * @speed: firewire speed code
 984 * @d: the AMDTP domain to which the AMDTP stream belongs
 985 * @is_irq_target: whether isoc context for the AMDTP stream is used to generate
 986 *                 hardware IRQ.
 987 * @start_cycle: the isochronous cycle to start the context. Start immediately
 988 *               if negative value is given.
 989 *
 990 * The stream cannot be started until it has been configured with
 991 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
 992 * device can be started.
 993 */
 994static int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed,
 995                              struct amdtp_domain *d, bool is_irq_target,
 996                              int start_cycle)
 997{
 998        static const struct {
 999                unsigned int data_block;
1000                unsigned int syt_offset;
1001        } *entry, initial_state[] = {
1002                [CIP_SFC_32000]  = {  4, 3072 },
1003                [CIP_SFC_48000]  = {  6, 1024 },
1004                [CIP_SFC_96000]  = { 12, 1024 },
1005                [CIP_SFC_192000] = { 24, 1024 },
1006                [CIP_SFC_44100]  = {  0,   67 },
1007                [CIP_SFC_88200]  = {  0,   67 },
1008                [CIP_SFC_176400] = {  0,   67 },
1009        };
1010        unsigned int events_per_buffer = d->events_per_buffer;
1011        unsigned int events_per_period = d->events_per_period;
1012        unsigned int idle_irq_interval;
1013        unsigned int ctx_header_size;
1014        unsigned int max_ctx_payload_size;
1015        enum dma_data_direction dir;
1016        int type, tag, err;
1017        fw_iso_callback_t ctx_cb;
1018        void *ctx_data;
1019
1020        mutex_lock(&s->mutex);
1021
1022        if (WARN_ON(amdtp_stream_running(s) ||
1023                    (s->data_block_quadlets < 1))) {
1024                err = -EBADFD;
1025                goto err_unlock;
1026        }
1027
1028        if (s->direction == AMDTP_IN_STREAM) {
1029                // NOTE: IT context should be used for constant IRQ.
1030                if (is_irq_target) {
1031                        err = -EINVAL;
1032                        goto err_unlock;
1033                }
1034
1035                s->data_block_counter = UINT_MAX;
1036        } else {
1037                entry = &initial_state[s->sfc];
1038
1039                s->data_block_counter = 0;
1040                s->ctx_data.rx.data_block_state = entry->data_block;
1041                s->ctx_data.rx.syt_offset_state = entry->syt_offset;
1042                s->ctx_data.rx.last_syt_offset = TICKS_PER_CYCLE;
1043        }
1044
1045        /* initialize packet buffer */
1046        if (s->direction == AMDTP_IN_STREAM) {
1047                dir = DMA_FROM_DEVICE;
1048                type = FW_ISO_CONTEXT_RECEIVE;
1049                if (!(s->flags & CIP_NO_HEADER))
1050                        ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
1051                else
1052                        ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
1053
1054                max_ctx_payload_size = amdtp_stream_get_max_payload(s) -
1055                                       ctx_header_size;
1056        } else {
1057                dir = DMA_TO_DEVICE;
1058                type = FW_ISO_CONTEXT_TRANSMIT;
1059                ctx_header_size = 0;    // No effect for IT context.
1060
1061                max_ctx_payload_size = amdtp_stream_get_max_payload(s);
1062                if (!(s->flags & CIP_NO_HEADER))
1063                        max_ctx_payload_size -= IT_PKT_HEADER_SIZE_CIP;
1064        }
1065
1066        // This is a case that AMDTP streams in domain run just for MIDI
1067        // substream. Use the number of events equivalent to 10 msec as
1068        // interval of hardware IRQ.
1069        if (events_per_period == 0)
1070                events_per_period = amdtp_rate_table[s->sfc] / 100;
1071        if (events_per_buffer == 0)
1072                events_per_buffer = events_per_period * 3;
1073
1074        idle_irq_interval = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_period,
1075                                         amdtp_rate_table[s->sfc]);
1076        s->queue_size = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_buffer,
1077                                     amdtp_rate_table[s->sfc]);
1078
1079        err = iso_packets_buffer_init(&s->buffer, s->unit, s->queue_size,
1080                                      max_ctx_payload_size, dir);
1081        if (err < 0)
1082                goto err_unlock;
1083
1084        if (is_irq_target) {
1085                s->ctx_data.rx.events_per_period = events_per_period;
1086                s->ctx_data.rx.event_count = 0;
1087                ctx_cb = amdtp_stream_master_first_callback;
1088                ctx_data = d;
1089        } else {
1090                ctx_cb = amdtp_stream_first_callback;
1091                ctx_data = s;
1092        }
1093
1094        s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
1095                                          type, channel, speed, ctx_header_size,
1096                                          ctx_cb, ctx_data);
1097        if (IS_ERR(s->context)) {
1098                err = PTR_ERR(s->context);
1099                if (err == -EBUSY)
1100                        dev_err(&s->unit->device,
1101                                "no free stream on this controller\n");
1102                goto err_buffer;
1103        }
1104
1105        amdtp_stream_update(s);
1106
1107        if (s->direction == AMDTP_IN_STREAM) {
1108                s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size;
1109                s->ctx_data.tx.ctx_header_size = ctx_header_size;
1110        }
1111
1112        if (s->flags & CIP_NO_HEADER)
1113                s->tag = TAG_NO_CIP_HEADER;
1114        else
1115                s->tag = TAG_CIP;
1116
1117        s->pkt_descs = kcalloc(s->queue_size, sizeof(*s->pkt_descs),
1118                               GFP_KERNEL);
1119        if (!s->pkt_descs) {
1120                err = -ENOMEM;
1121                goto err_context;
1122        }
1123
1124        s->packet_index = 0;
1125        do {
1126                struct fw_iso_packet params;
1127
1128                if (s->direction == AMDTP_IN_STREAM) {
1129                        err = queue_in_packet(s, &params);
1130                } else {
1131                        bool sched_irq = false;
1132
1133                        params.header_length = 0;
1134                        params.payload_length = 0;
1135
1136                        if (is_irq_target) {
1137                                sched_irq = !((s->packet_index + 1) %
1138                                              idle_irq_interval);
1139                        }
1140
1141                        err = queue_out_packet(s, &params, sched_irq);
1142                }
1143                if (err < 0)
1144                        goto err_pkt_descs;
1145        } while (s->packet_index > 0);
1146
1147        /* NOTE: TAG1 matches CIP. This just affects in stream. */
1148        tag = FW_ISO_CONTEXT_MATCH_TAG1;
1149        if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER))
1150                tag |= FW_ISO_CONTEXT_MATCH_TAG0;
1151
1152        s->callbacked = false;
1153        err = fw_iso_context_start(s->context, start_cycle, 0, tag);
1154        if (err < 0)
1155                goto err_pkt_descs;
1156
1157        mutex_unlock(&s->mutex);
1158
1159        return 0;
1160err_pkt_descs:
1161        kfree(s->pkt_descs);
1162err_context:
1163        fw_iso_context_destroy(s->context);
1164        s->context = ERR_PTR(-1);
1165err_buffer:
1166        iso_packets_buffer_destroy(&s->buffer, s->unit);
1167err_unlock:
1168        mutex_unlock(&s->mutex);
1169
1170        return err;
1171}
1172
1173/**
1174 * amdtp_domain_stream_pcm_pointer - get the PCM buffer position
1175 * @d: the AMDTP domain.
1176 * @s: the AMDTP stream that transports the PCM data
1177 *
1178 * Returns the current buffer position, in frames.
1179 */
1180unsigned long amdtp_domain_stream_pcm_pointer(struct amdtp_domain *d,
1181                                              struct amdtp_stream *s)
1182{
1183        struct amdtp_stream *irq_target = d->irq_target;
1184
1185        if (irq_target && amdtp_stream_running(irq_target)) {
1186                // This function is called in software IRQ context of
1187                // period_tasklet or process context.
1188                //
1189                // When the software IRQ context was scheduled by software IRQ
1190                // context of IT contexts, queued packets were already handled.
1191                // Therefore, no need to flush the queue in buffer furthermore.
1192                //
1193                // When the process context reach here, some packets will be
1194                // already queued in the buffer. These packets should be handled
1195                // immediately to keep better granularity of PCM pointer.
1196                //
1197                // Later, the process context will sometimes schedules software
1198                // IRQ context of the period_tasklet. Then, no need to flush the
1199                // queue by the same reason as described in the above
1200                if (!in_interrupt()) {
1201                        // Queued packet should be processed without any kernel
1202                        // preemption to keep latency against bus cycle.
1203                        preempt_disable();
1204                        fw_iso_context_flush_completions(irq_target->context);
1205                        preempt_enable();
1206                }
1207        }
1208
1209        return READ_ONCE(s->pcm_buffer_pointer);
1210}
1211EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_pointer);
1212
1213/**
1214 * amdtp_domain_stream_pcm_ack - acknowledge queued PCM frames
1215 * @d: the AMDTP domain.
1216 * @s: the AMDTP stream that transfers the PCM frames
1217 *
1218 * Returns zero always.
1219 */
1220int amdtp_domain_stream_pcm_ack(struct amdtp_domain *d, struct amdtp_stream *s)
1221{
1222        struct amdtp_stream *irq_target = d->irq_target;
1223
1224        // Process isochronous packets for recent isochronous cycle to handle
1225        // queued PCM frames.
1226        if (irq_target && amdtp_stream_running(irq_target)) {
1227                // Queued packet should be processed without any kernel
1228                // preemption to keep latency against bus cycle.
1229                preempt_disable();
1230                fw_iso_context_flush_completions(irq_target->context);
1231                preempt_enable();
1232        }
1233
1234        return 0;
1235}
1236EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_ack);
1237
1238/**
1239 * amdtp_stream_update - update the stream after a bus reset
1240 * @s: the AMDTP stream
1241 */
1242void amdtp_stream_update(struct amdtp_stream *s)
1243{
1244        /* Precomputing. */
1245        WRITE_ONCE(s->source_node_id_field,
1246                   (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK);
1247}
1248EXPORT_SYMBOL(amdtp_stream_update);
1249
1250/**
1251 * amdtp_stream_stop - stop sending packets
1252 * @s: the AMDTP stream to stop
1253 *
1254 * All PCM and MIDI devices of the stream must be stopped before the stream
1255 * itself can be stopped.
1256 */
1257static void amdtp_stream_stop(struct amdtp_stream *s)
1258{
1259        mutex_lock(&s->mutex);
1260
1261        if (!amdtp_stream_running(s)) {
1262                mutex_unlock(&s->mutex);
1263                return;
1264        }
1265
1266        tasklet_kill(&s->period_tasklet);
1267        fw_iso_context_stop(s->context);
1268        fw_iso_context_destroy(s->context);
1269        s->context = ERR_PTR(-1);
1270        iso_packets_buffer_destroy(&s->buffer, s->unit);
1271        kfree(s->pkt_descs);
1272
1273        s->callbacked = false;
1274
1275        mutex_unlock(&s->mutex);
1276}
1277
1278/**
1279 * amdtp_stream_pcm_abort - abort the running PCM device
1280 * @s: the AMDTP stream about to be stopped
1281 *
1282 * If the isochronous stream needs to be stopped asynchronously, call this
1283 * function first to stop the PCM device.
1284 */
1285void amdtp_stream_pcm_abort(struct amdtp_stream *s)
1286{
1287        struct snd_pcm_substream *pcm;
1288
1289        pcm = READ_ONCE(s->pcm);
1290        if (pcm)
1291                snd_pcm_stop_xrun(pcm);
1292}
1293EXPORT_SYMBOL(amdtp_stream_pcm_abort);
1294
1295/**
1296 * amdtp_domain_init - initialize an AMDTP domain structure
1297 * @d: the AMDTP domain to initialize.
1298 */
1299int amdtp_domain_init(struct amdtp_domain *d)
1300{
1301        INIT_LIST_HEAD(&d->streams);
1302
1303        d->events_per_period = 0;
1304
1305        return 0;
1306}
1307EXPORT_SYMBOL_GPL(amdtp_domain_init);
1308
1309/**
1310 * amdtp_domain_destroy - destroy an AMDTP domain structure
1311 * @d: the AMDTP domain to destroy.
1312 */
1313void amdtp_domain_destroy(struct amdtp_domain *d)
1314{
1315        // At present nothing to do.
1316        return;
1317}
1318EXPORT_SYMBOL_GPL(amdtp_domain_destroy);
1319
1320/**
1321 * amdtp_domain_add_stream - register isoc context into the domain.
1322 * @d: the AMDTP domain.
1323 * @s: the AMDTP stream.
1324 * @channel: the isochronous channel on the bus.
1325 * @speed: firewire speed code.
1326 */
1327int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s,
1328                            int channel, int speed)
1329{
1330        struct amdtp_stream *tmp;
1331
1332        list_for_each_entry(tmp, &d->streams, list) {
1333                if (s == tmp)
1334                        return -EBUSY;
1335        }
1336
1337        list_add(&s->list, &d->streams);
1338
1339        s->channel = channel;
1340        s->speed = speed;
1341
1342        return 0;
1343}
1344EXPORT_SYMBOL_GPL(amdtp_domain_add_stream);
1345
1346static int get_current_cycle_time(struct fw_card *fw_card, int *cur_cycle)
1347{
1348        int generation;
1349        int rcode;
1350        __be32 reg;
1351        u32 data;
1352
1353        // This is a request to local 1394 OHCI controller and expected to
1354        // complete without any event waiting.
1355        generation = fw_card->generation;
1356        smp_rmb();      // node_id vs. generation.
1357        rcode = fw_run_transaction(fw_card, TCODE_READ_QUADLET_REQUEST,
1358                                   fw_card->node_id, generation, SCODE_100,
1359                                   CSR_REGISTER_BASE + CSR_CYCLE_TIME,
1360                                   &reg, sizeof(reg));
1361        if (rcode != RCODE_COMPLETE)
1362                return -EIO;
1363
1364        data = be32_to_cpu(reg);
1365        *cur_cycle = data >> 12;
1366
1367        return 0;
1368}
1369
1370/**
1371 * amdtp_domain_start - start sending packets for isoc context in the domain.
1372 * @d: the AMDTP domain.
1373 * @ir_delay_cycle: the cycle delay to start all IR contexts.
1374 */
1375int amdtp_domain_start(struct amdtp_domain *d, unsigned int ir_delay_cycle)
1376{
1377        struct amdtp_stream *s;
1378        int cycle;
1379        int err;
1380
1381        // Select an IT context as IRQ target.
1382        list_for_each_entry(s, &d->streams, list) {
1383                if (s->direction == AMDTP_OUT_STREAM)
1384                        break;
1385        }
1386        if (!s)
1387                return -ENXIO;
1388        d->irq_target = s;
1389
1390        if (ir_delay_cycle > 0) {
1391                struct fw_card *fw_card = fw_parent_device(s->unit)->card;
1392
1393                err = get_current_cycle_time(fw_card, &cycle);
1394                if (err < 0)
1395                        return err;
1396
1397                // No need to care overflow in cycle field because of enough
1398                // width.
1399                cycle += ir_delay_cycle;
1400
1401                // Round up to sec field.
1402                if ((cycle & 0x00001fff) >= CYCLES_PER_SECOND) {
1403                        unsigned int sec;
1404
1405                        // The sec field can overflow.
1406                        sec = (cycle & 0xffffe000) >> 13;
1407                        cycle = (++sec << 13) |
1408                                ((cycle & 0x00001fff) / CYCLES_PER_SECOND);
1409                }
1410
1411                // In OHCI 1394 specification, lower 2 bits are available for
1412                // sec field.
1413                cycle &= 0x00007fff;
1414        } else {
1415                cycle = -1;
1416        }
1417
1418        list_for_each_entry(s, &d->streams, list) {
1419                int cycle_match;
1420
1421                if (s->direction == AMDTP_IN_STREAM) {
1422                        cycle_match = cycle;
1423                } else {
1424                        // IT context starts immediately.
1425                        cycle_match = -1;
1426                }
1427
1428                if (s != d->irq_target) {
1429                        err = amdtp_stream_start(s, s->channel, s->speed, d,
1430                                                 false, cycle_match);
1431                        if (err < 0)
1432                                goto error;
1433                }
1434        }
1435
1436        s = d->irq_target;
1437        err = amdtp_stream_start(s, s->channel, s->speed, d, true, -1);
1438        if (err < 0)
1439                goto error;
1440
1441        return 0;
1442error:
1443        list_for_each_entry(s, &d->streams, list)
1444                amdtp_stream_stop(s);
1445        return err;
1446}
1447EXPORT_SYMBOL_GPL(amdtp_domain_start);
1448
1449/**
1450 * amdtp_domain_stop - stop sending packets for isoc context in the same domain.
1451 * @d: the AMDTP domain to which the isoc contexts belong.
1452 */
1453void amdtp_domain_stop(struct amdtp_domain *d)
1454{
1455        struct amdtp_stream *s, *next;
1456
1457        if (d->irq_target)
1458                amdtp_stream_stop(d->irq_target);
1459
1460        list_for_each_entry_safe(s, next, &d->streams, list) {
1461                list_del(&s->list);
1462
1463                if (s != d->irq_target)
1464                        amdtp_stream_stop(s);
1465        }
1466
1467        d->events_per_period = 0;
1468        d->irq_target = NULL;
1469}
1470EXPORT_SYMBOL_GPL(amdtp_domain_stop);
1471