linux/arch/arm/mach-bcm/platsmp.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2014-2015 Broadcom Corporation
   3 * Copyright 2014 Linaro Limited
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation version 2.
   8 *
   9 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
  10 * kind, whether express or implied; without even the implied warranty
  11 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 */
  14
  15#include <linux/cpumask.h>
  16#include <linux/delay.h>
  17#include <linux/errno.h>
  18#include <linux/init.h>
  19#include <linux/io.h>
  20#include <linux/irqchip/irq-bcm2836.h>
  21#include <linux/jiffies.h>
  22#include <linux/of.h>
  23#include <linux/of_address.h>
  24#include <linux/sched.h>
  25#include <linux/sched/clock.h>
  26#include <linux/smp.h>
  27
  28#include <asm/cacheflush.h>
  29#include <asm/smp.h>
  30#include <asm/smp_plat.h>
  31#include <asm/smp_scu.h>
  32
  33/* Size of mapped Cortex A9 SCU address space */
  34#define CORTEX_A9_SCU_SIZE      0x58
  35
  36#define SECONDARY_TIMEOUT_NS    NSEC_PER_MSEC   /* 1 msec (in nanoseconds) */
  37#define BOOT_ADDR_CPUID_MASK    0x3
  38
  39/* Name of device node property defining secondary boot register location */
  40#define OF_SECONDARY_BOOT       "secondary-boot-reg"
  41#define MPIDR_CPUID_BITMASK     0x3
  42
  43/*
  44 * Enable the Cortex A9 Snoop Control Unit
  45 *
  46 * By the time this is called we already know there are multiple
  47 * cores present.  We assume we're running on a Cortex A9 processor,
  48 * so any trouble getting the base address register or getting the
  49 * SCU base is a problem.
  50 *
  51 * Return 0 if successful or an error code otherwise.
  52 */
  53static int __init scu_a9_enable(void)
  54{
  55        unsigned long config_base;
  56        void __iomem *scu_base;
  57
  58        if (!scu_a9_has_base()) {
  59                pr_err("no configuration base address register!\n");
  60                return -ENXIO;
  61        }
  62
  63        /* Config base address register value is zero for uniprocessor */
  64        config_base = scu_a9_get_base();
  65        if (!config_base) {
  66                pr_err("hardware reports only one core\n");
  67                return -ENOENT;
  68        }
  69
  70        scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE);
  71        if (!scu_base) {
  72                pr_err("failed to remap config base (%lu/%u) for SCU\n",
  73                        config_base, CORTEX_A9_SCU_SIZE);
  74                return -ENOMEM;
  75        }
  76
  77        scu_enable(scu_base);
  78
  79        iounmap(scu_base);      /* That's the last we'll need of this */
  80
  81        return 0;
  82}
  83
  84static u32 secondary_boot_addr_for(unsigned int cpu)
  85{
  86        u32 secondary_boot_addr = 0;
  87        struct device_node *cpu_node = of_get_cpu_node(cpu, NULL);
  88
  89        if (!cpu_node) {
  90                pr_err("Failed to find device tree node for CPU%u\n", cpu);
  91                return 0;
  92        }
  93
  94        if (of_property_read_u32(cpu_node,
  95                                 OF_SECONDARY_BOOT,
  96                                 &secondary_boot_addr))
  97                pr_err("required secondary boot register not specified for CPU%u\n",
  98                        cpu);
  99
 100        of_node_put(cpu_node);
 101
 102        return secondary_boot_addr;
 103}
 104
 105static int nsp_write_lut(unsigned int cpu)
 106{
 107        void __iomem *sku_rom_lut;
 108        phys_addr_t secondary_startup_phy;
 109        const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
 110
 111        if (!secondary_boot_addr)
 112                return -EINVAL;
 113
 114        sku_rom_lut = ioremap_nocache((phys_addr_t)secondary_boot_addr,
 115                                      sizeof(phys_addr_t));
 116        if (!sku_rom_lut) {
 117                pr_warn("unable to ioremap SKU-ROM LUT register for cpu %u\n", cpu);
 118                return -ENOMEM;
 119        }
 120
 121        secondary_startup_phy = __pa_symbol(secondary_startup);
 122        BUG_ON(secondary_startup_phy > (phys_addr_t)U32_MAX);
 123
 124        writel_relaxed(secondary_startup_phy, sku_rom_lut);
 125
 126        /* Ensure the write is visible to the secondary core */
 127        smp_wmb();
 128
 129        iounmap(sku_rom_lut);
 130
 131        return 0;
 132}
 133
 134static void __init bcm_smp_prepare_cpus(unsigned int max_cpus)
 135{
 136        const cpumask_t only_cpu_0 = { CPU_BITS_CPU0 };
 137
 138        /* Enable the SCU on Cortex A9 based SoCs */
 139        if (scu_a9_enable()) {
 140                /* Update the CPU present map to reflect uniprocessor mode */
 141                pr_warn("failed to enable A9 SCU - disabling SMP\n");
 142                init_cpu_present(&only_cpu_0);
 143        }
 144}
 145
 146/*
 147 * The ROM code has the secondary cores looping, waiting for an event.
 148 * When an event occurs each core examines the bottom two bits of the
 149 * secondary boot register.  When a core finds those bits contain its
 150 * own core id, it performs initialization, including computing its boot
 151 * address by clearing the boot register value's bottom two bits.  The
 152 * core signals that it is beginning its execution by writing its boot
 153 * address back to the secondary boot register, and finally jumps to
 154 * that address.
 155 *
 156 * So to start a core executing we need to:
 157 * - Encode the (hardware) CPU id with the bottom bits of the secondary
 158 *   start address.
 159 * - Write that value into the secondary boot register.
 160 * - Generate an event to wake up the secondary CPU(s).
 161 * - Wait for the secondary boot register to be re-written, which
 162 *   indicates the secondary core has started.
 163 */
 164static int kona_boot_secondary(unsigned int cpu, struct task_struct *idle)
 165{
 166        void __iomem *boot_reg;
 167        phys_addr_t boot_func;
 168        u64 start_clock;
 169        u32 cpu_id;
 170        u32 boot_val;
 171        bool timeout = false;
 172        const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
 173
 174        cpu_id = cpu_logical_map(cpu);
 175        if (cpu_id & ~BOOT_ADDR_CPUID_MASK) {
 176                pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK);
 177                return -EINVAL;
 178        }
 179
 180        if (!secondary_boot_addr)
 181                return -EINVAL;
 182
 183        boot_reg = ioremap_nocache((phys_addr_t)secondary_boot_addr,
 184                                   sizeof(phys_addr_t));
 185        if (!boot_reg) {
 186                pr_err("unable to map boot register for cpu %u\n", cpu_id);
 187                return -ENOMEM;
 188        }
 189
 190        /*
 191         * Secondary cores will start in secondary_startup(),
 192         * defined in "arch/arm/kernel/head.S"
 193         */
 194        boot_func = __pa_symbol(secondary_startup);
 195        BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK);
 196        BUG_ON(boot_func > (phys_addr_t)U32_MAX);
 197
 198        /* The core to start is encoded in the low bits */
 199        boot_val = (u32)boot_func | cpu_id;
 200        writel_relaxed(boot_val, boot_reg);
 201
 202        sev();
 203
 204        /* The low bits will be cleared once the core has started */
 205        start_clock = local_clock();
 206        while (!timeout && readl_relaxed(boot_reg) == boot_val)
 207                timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS;
 208
 209        iounmap(boot_reg);
 210
 211        if (!timeout)
 212                return 0;
 213
 214        pr_err("timeout waiting for cpu %u to start\n", cpu_id);
 215
 216        return -ENXIO;
 217}
 218
 219/* Cluster Dormant Control command to bring CPU into a running state */
 220#define CDC_CMD                 6
 221#define CDC_CMD_OFFSET          0
 222#define CDC_CMD_REG(cpu)        (CDC_CMD_OFFSET + 4*(cpu))
 223
 224/*
 225 * BCM23550 has a Cluster Dormant Control block that keeps the core in
 226 * idle state. A command needs to be sent to the block to bring the CPU
 227 * into running state.
 228 */
 229static int bcm23550_boot_secondary(unsigned int cpu, struct task_struct *idle)
 230{
 231        void __iomem *cdc_base;
 232        struct device_node *dn;
 233        char *name;
 234        int ret;
 235
 236        /* Make sure a CDC node exists before booting the
 237         * secondary core.
 238         */
 239        name = "brcm,bcm23550-cdc";
 240        dn = of_find_compatible_node(NULL, NULL, name);
 241        if (!dn) {
 242                pr_err("unable to find cdc node\n");
 243                return -ENODEV;
 244        }
 245
 246        cdc_base = of_iomap(dn, 0);
 247        of_node_put(dn);
 248
 249        if (!cdc_base) {
 250                pr_err("unable to remap cdc base register\n");
 251                return -ENOMEM;
 252        }
 253
 254        /* Boot the secondary core */
 255        ret = kona_boot_secondary(cpu, idle);
 256        if (ret)
 257                goto out;
 258
 259        /* Bring this CPU to RUN state so that nIRQ nFIQ
 260         * signals are unblocked.
 261         */
 262        writel_relaxed(CDC_CMD, cdc_base + CDC_CMD_REG(cpu));
 263
 264out:
 265        iounmap(cdc_base);
 266
 267        return ret;
 268}
 269
 270static int nsp_boot_secondary(unsigned int cpu, struct task_struct *idle)
 271{
 272        int ret;
 273
 274        /*
 275         * After wake up, secondary core branches to the startup
 276         * address programmed at SKU ROM LUT location.
 277         */
 278        ret = nsp_write_lut(cpu);
 279        if (ret) {
 280                pr_err("unable to write startup addr to SKU ROM LUT\n");
 281                goto out;
 282        }
 283
 284        /* Send a CPU wakeup interrupt to the secondary core */
 285        arch_send_wakeup_ipi_mask(cpumask_of(cpu));
 286
 287out:
 288        return ret;
 289}
 290
 291static int bcm2836_boot_secondary(unsigned int cpu, struct task_struct *idle)
 292{
 293        void __iomem *intc_base;
 294        struct device_node *dn;
 295        char *name;
 296
 297        name = "brcm,bcm2836-l1-intc";
 298        dn = of_find_compatible_node(NULL, NULL, name);
 299        if (!dn) {
 300                pr_err("unable to find intc node\n");
 301                return -ENODEV;
 302        }
 303
 304        intc_base = of_iomap(dn, 0);
 305        of_node_put(dn);
 306
 307        if (!intc_base) {
 308                pr_err("unable to remap intc base register\n");
 309                return -ENOMEM;
 310        }
 311
 312        writel(virt_to_phys(secondary_startup),
 313               intc_base + LOCAL_MAILBOX3_SET0 + 16 * cpu);
 314
 315        dsb(sy);
 316        sev();
 317
 318        iounmap(intc_base);
 319
 320        return 0;
 321}
 322
 323static const struct smp_operations kona_smp_ops __initconst = {
 324        .smp_prepare_cpus       = bcm_smp_prepare_cpus,
 325        .smp_boot_secondary     = kona_boot_secondary,
 326};
 327CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method",
 328                        &kona_smp_ops);
 329
 330static const struct smp_operations bcm23550_smp_ops __initconst = {
 331        .smp_boot_secondary     = bcm23550_boot_secondary,
 332};
 333CPU_METHOD_OF_DECLARE(bcm_smp_bcm23550, "brcm,bcm23550",
 334                        &bcm23550_smp_ops);
 335
 336static const struct smp_operations nsp_smp_ops __initconst = {
 337        .smp_prepare_cpus       = bcm_smp_prepare_cpus,
 338        .smp_boot_secondary     = nsp_boot_secondary,
 339};
 340CPU_METHOD_OF_DECLARE(bcm_smp_nsp, "brcm,bcm-nsp-smp", &nsp_smp_ops);
 341
 342const struct smp_operations bcm2836_smp_ops __initconst = {
 343        .smp_boot_secondary     = bcm2836_boot_secondary,
 344};
 345CPU_METHOD_OF_DECLARE(bcm_smp_bcm2836, "brcm,bcm2836-smp", &bcm2836_smp_ops);
 346