linux/arch/arm/nwfpe/softfloat-specialize
<<
>>
Prefs
   1
   2/*
   3===============================================================================
   4
   5This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
   6Arithmetic Package, Release 2.
   7
   8Written by John R. Hauser.  This work was made possible in part by the
   9International Computer Science Institute, located at Suite 600, 1947 Center
  10Street, Berkeley, California 94704.  Funding was partially provided by the
  11National Science Foundation under grant MIP-9311980.  The original version
  12of this code was written as part of a project to build a fixed-point vector
  13processor in collaboration with the University of California at Berkeley,
  14overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
  15is available through the Web page
  16http://www.jhauser.us/arithmetic/SoftFloat-2b/SoftFloat-source.txt
  17
  18THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
  19has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
  20TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
  21PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
  22AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
  23
  24Derivative works are acceptable, even for commercial purposes, so long as
  25(1) they include prominent notice that the work is derivative, and (2) they
  26include prominent notice akin to these three paragraphs for those parts of
  27this code that are retained.
  28
  29===============================================================================
  30*/
  31
  32/*
  33-------------------------------------------------------------------------------
  34Underflow tininess-detection mode, statically initialized to default value.
  35(The declaration in `softfloat.h' must match the `int8' type here.)
  36-------------------------------------------------------------------------------
  37*/
  38int8 float_detect_tininess = float_tininess_after_rounding;
  39
  40/*
  41-------------------------------------------------------------------------------
  42Raises the exceptions specified by `flags'.  Floating-point traps can be
  43defined here if desired.  It is currently not possible for such a trap to
  44substitute a result value.  If traps are not implemented, this routine
  45should be simply `float_exception_flags |= flags;'.
  46
  47ScottB:  November 4, 1998
  48Moved this function out of softfloat-specialize into fpmodule.c.
  49This effectively isolates all the changes required for integrating with the
  50Linux kernel into fpmodule.c.  Porting to NetBSD should only require modifying
  51fpmodule.c to integrate with the NetBSD kernel (I hope!).
  52-------------------------------------------------------------------------------
  53void float_raise( int8 flags )
  54{
  55    float_exception_flags |= flags;
  56}
  57*/
  58
  59/*
  60-------------------------------------------------------------------------------
  61Internal canonical NaN format.
  62-------------------------------------------------------------------------------
  63*/
  64typedef struct {
  65    flag sign;
  66    bits64 high, low;
  67} commonNaNT;
  68
  69/*
  70-------------------------------------------------------------------------------
  71The pattern for a default generated single-precision NaN.
  72-------------------------------------------------------------------------------
  73*/
  74#define float32_default_nan 0xFFFFFFFF
  75
  76/*
  77-------------------------------------------------------------------------------
  78Returns 1 if the single-precision floating-point value `a' is a NaN;
  79otherwise returns 0.
  80-------------------------------------------------------------------------------
  81*/
  82flag float32_is_nan( float32 a )
  83{
  84
  85    return ( 0xFF000000 < (bits32) ( a<<1 ) );
  86
  87}
  88
  89/*
  90-------------------------------------------------------------------------------
  91Returns 1 if the single-precision floating-point value `a' is a signaling
  92NaN; otherwise returns 0.
  93-------------------------------------------------------------------------------
  94*/
  95flag float32_is_signaling_nan( float32 a )
  96{
  97
  98    return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
  99
 100}
 101
 102/*
 103-------------------------------------------------------------------------------
 104Returns the result of converting the single-precision floating-point NaN
 105`a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
 106exception is raised.
 107-------------------------------------------------------------------------------
 108*/
 109static commonNaNT float32ToCommonNaN( float32 a )
 110{
 111    commonNaNT z;
 112
 113    if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
 114    z.sign = a>>31;
 115    z.low = 0;
 116    z.high = ( (bits64) a )<<41;
 117    return z;
 118
 119}
 120
 121/*
 122-------------------------------------------------------------------------------
 123Returns the result of converting the canonical NaN `a' to the single-
 124precision floating-point format.
 125-------------------------------------------------------------------------------
 126*/
 127static float32 commonNaNToFloat32( commonNaNT a )
 128{
 129
 130    return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
 131
 132}
 133
 134/*
 135-------------------------------------------------------------------------------
 136Takes two single-precision floating-point values `a' and `b', one of which
 137is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
 138signaling NaN, the invalid exception is raised.
 139-------------------------------------------------------------------------------
 140*/
 141static float32 propagateFloat32NaN( float32 a, float32 b )
 142{
 143    flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
 144
 145    aIsNaN = float32_is_nan( a );
 146    aIsSignalingNaN = float32_is_signaling_nan( a );
 147    bIsNaN = float32_is_nan( b );
 148    bIsSignalingNaN = float32_is_signaling_nan( b );
 149    a |= 0x00400000;
 150    b |= 0x00400000;
 151    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
 152    if ( aIsNaN ) {
 153        return ( aIsSignalingNaN & bIsNaN ) ? b : a;
 154    }
 155    else {
 156        return b;
 157    }
 158
 159}
 160
 161/*
 162-------------------------------------------------------------------------------
 163The pattern for a default generated double-precision NaN.
 164-------------------------------------------------------------------------------
 165*/
 166#define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF )
 167
 168/*
 169-------------------------------------------------------------------------------
 170Returns 1 if the double-precision floating-point value `a' is a NaN;
 171otherwise returns 0.
 172-------------------------------------------------------------------------------
 173*/
 174flag float64_is_nan( float64 a )
 175{
 176
 177    return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) );
 178
 179}
 180
 181/*
 182-------------------------------------------------------------------------------
 183Returns 1 if the double-precision floating-point value `a' is a signaling
 184NaN; otherwise returns 0.
 185-------------------------------------------------------------------------------
 186*/
 187flag float64_is_signaling_nan( float64 a )
 188{
 189
 190    return
 191           ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
 192        && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
 193
 194}
 195
 196/*
 197-------------------------------------------------------------------------------
 198Returns the result of converting the double-precision floating-point NaN
 199`a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
 200exception is raised.
 201-------------------------------------------------------------------------------
 202*/
 203static commonNaNT float64ToCommonNaN( float64 a )
 204{
 205    commonNaNT z;
 206
 207    if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
 208    z.sign = a>>63;
 209    z.low = 0;
 210    z.high = a<<12;
 211    return z;
 212
 213}
 214
 215/*
 216-------------------------------------------------------------------------------
 217Returns the result of converting the canonical NaN `a' to the double-
 218precision floating-point format.
 219-------------------------------------------------------------------------------
 220*/
 221static float64 commonNaNToFloat64( commonNaNT a )
 222{
 223
 224    return
 225          ( ( (bits64) a.sign )<<63 )
 226        | LIT64( 0x7FF8000000000000 )
 227        | ( a.high>>12 );
 228
 229}
 230
 231/*
 232-------------------------------------------------------------------------------
 233Takes two double-precision floating-point values `a' and `b', one of which
 234is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
 235signaling NaN, the invalid exception is raised.
 236-------------------------------------------------------------------------------
 237*/
 238static float64 propagateFloat64NaN( float64 a, float64 b )
 239{
 240    flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
 241
 242    aIsNaN = float64_is_nan( a );
 243    aIsSignalingNaN = float64_is_signaling_nan( a );
 244    bIsNaN = float64_is_nan( b );
 245    bIsSignalingNaN = float64_is_signaling_nan( b );
 246    a |= LIT64( 0x0008000000000000 );
 247    b |= LIT64( 0x0008000000000000 );
 248    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
 249    if ( aIsNaN ) {
 250        return ( aIsSignalingNaN & bIsNaN ) ? b : a;
 251    }
 252    else {
 253        return b;
 254    }
 255
 256}
 257
 258#ifdef FLOATX80
 259
 260/*
 261-------------------------------------------------------------------------------
 262The pattern for a default generated extended double-precision NaN.  The
 263`high' and `low' values hold the most- and least-significant bits,
 264respectively.
 265-------------------------------------------------------------------------------
 266*/
 267#define floatx80_default_nan_high 0xFFFF
 268#define floatx80_default_nan_low  LIT64( 0xFFFFFFFFFFFFFFFF )
 269
 270/*
 271-------------------------------------------------------------------------------
 272Returns 1 if the extended double-precision floating-point value `a' is a
 273NaN; otherwise returns 0.
 274-------------------------------------------------------------------------------
 275*/
 276flag floatx80_is_nan( floatx80 a )
 277{
 278
 279    return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
 280
 281}
 282
 283/*
 284-------------------------------------------------------------------------------
 285Returns 1 if the extended double-precision floating-point value `a' is a
 286signaling NaN; otherwise returns 0.
 287-------------------------------------------------------------------------------
 288*/
 289flag floatx80_is_signaling_nan( floatx80 a )
 290{
 291    //register int lr;
 292    bits64 aLow;
 293
 294    //__asm__("mov %0, lr" : : "g" (lr));
 295    //fp_printk("floatx80_is_signalling_nan() called from 0x%08x\n",lr);
 296    aLow = a.low & ~ LIT64( 0x4000000000000000 );
 297    return
 298           ( ( a.high & 0x7FFF ) == 0x7FFF )
 299        && (bits64) ( aLow<<1 )
 300        && ( a.low == aLow );
 301
 302}
 303
 304/*
 305-------------------------------------------------------------------------------
 306Returns the result of converting the extended double-precision floating-
 307point NaN `a' to the canonical NaN format.  If `a' is a signaling NaN, the
 308invalid exception is raised.
 309-------------------------------------------------------------------------------
 310*/
 311static commonNaNT floatx80ToCommonNaN( floatx80 a )
 312{
 313    commonNaNT z;
 314
 315    if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
 316    z.sign = a.high>>15;
 317    z.low = 0;
 318    z.high = a.low<<1;
 319    return z;
 320
 321}
 322
 323/*
 324-------------------------------------------------------------------------------
 325Returns the result of converting the canonical NaN `a' to the extended
 326double-precision floating-point format.
 327-------------------------------------------------------------------------------
 328*/
 329static floatx80 commonNaNToFloatx80( commonNaNT a )
 330{
 331    floatx80 z;
 332
 333    z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
 334    z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
 335    z.__padding = 0;
 336    return z;
 337
 338}
 339
 340/*
 341-------------------------------------------------------------------------------
 342Takes two extended double-precision floating-point values `a' and `b', one
 343of which is a NaN, and returns the appropriate NaN result.  If either `a' or
 344`b' is a signaling NaN, the invalid exception is raised.
 345-------------------------------------------------------------------------------
 346*/
 347static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
 348{
 349    flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
 350
 351    aIsNaN = floatx80_is_nan( a );
 352    aIsSignalingNaN = floatx80_is_signaling_nan( a );
 353    bIsNaN = floatx80_is_nan( b );
 354    bIsSignalingNaN = floatx80_is_signaling_nan( b );
 355    a.low |= LIT64( 0xC000000000000000 );
 356    b.low |= LIT64( 0xC000000000000000 );
 357    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
 358    if ( aIsNaN ) {
 359        return ( aIsSignalingNaN & bIsNaN ) ? b : a;
 360    }
 361    else {
 362        return b;
 363    }
 364
 365}
 366
 367#endif
 368