linux/arch/x86/xen/enlighten_pv.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Core of Xen paravirt_ops implementation.
   4 *
   5 * This file contains the xen_paravirt_ops structure itself, and the
   6 * implementations for:
   7 * - privileged instructions
   8 * - interrupt flags
   9 * - segment operations
  10 * - booting and setup
  11 *
  12 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  13 */
  14
  15#include <linux/cpu.h>
  16#include <linux/kernel.h>
  17#include <linux/init.h>
  18#include <linux/smp.h>
  19#include <linux/preempt.h>
  20#include <linux/hardirq.h>
  21#include <linux/percpu.h>
  22#include <linux/delay.h>
  23#include <linux/start_kernel.h>
  24#include <linux/sched.h>
  25#include <linux/kprobes.h>
  26#include <linux/memblock.h>
  27#include <linux/export.h>
  28#include <linux/mm.h>
  29#include <linux/page-flags.h>
  30#include <linux/highmem.h>
  31#include <linux/console.h>
  32#include <linux/pci.h>
  33#include <linux/gfp.h>
  34#include <linux/edd.h>
  35#include <linux/frame.h>
  36
  37#include <xen/xen.h>
  38#include <xen/events.h>
  39#include <xen/interface/xen.h>
  40#include <xen/interface/version.h>
  41#include <xen/interface/physdev.h>
  42#include <xen/interface/vcpu.h>
  43#include <xen/interface/memory.h>
  44#include <xen/interface/nmi.h>
  45#include <xen/interface/xen-mca.h>
  46#include <xen/features.h>
  47#include <xen/page.h>
  48#include <xen/hvc-console.h>
  49#include <xen/acpi.h>
  50
  51#include <asm/paravirt.h>
  52#include <asm/apic.h>
  53#include <asm/page.h>
  54#include <asm/xen/pci.h>
  55#include <asm/xen/hypercall.h>
  56#include <asm/xen/hypervisor.h>
  57#include <asm/xen/cpuid.h>
  58#include <asm/fixmap.h>
  59#include <asm/processor.h>
  60#include <asm/proto.h>
  61#include <asm/msr-index.h>
  62#include <asm/traps.h>
  63#include <asm/setup.h>
  64#include <asm/desc.h>
  65#include <asm/pgalloc.h>
  66#include <asm/pgtable.h>
  67#include <asm/tlbflush.h>
  68#include <asm/reboot.h>
  69#include <asm/stackprotector.h>
  70#include <asm/hypervisor.h>
  71#include <asm/mach_traps.h>
  72#include <asm/mwait.h>
  73#include <asm/pci_x86.h>
  74#include <asm/cpu.h>
  75
  76#ifdef CONFIG_ACPI
  77#include <linux/acpi.h>
  78#include <asm/acpi.h>
  79#include <acpi/pdc_intel.h>
  80#include <acpi/processor.h>
  81#include <xen/interface/platform.h>
  82#endif
  83
  84#include "xen-ops.h"
  85#include "mmu.h"
  86#include "smp.h"
  87#include "multicalls.h"
  88#include "pmu.h"
  89
  90#include "../kernel/cpu/cpu.h" /* get_cpu_cap() */
  91
  92void *xen_initial_gdt;
  93
  94static int xen_cpu_up_prepare_pv(unsigned int cpu);
  95static int xen_cpu_dead_pv(unsigned int cpu);
  96
  97struct tls_descs {
  98        struct desc_struct desc[3];
  99};
 100
 101/*
 102 * Updating the 3 TLS descriptors in the GDT on every task switch is
 103 * surprisingly expensive so we avoid updating them if they haven't
 104 * changed.  Since Xen writes different descriptors than the one
 105 * passed in the update_descriptor hypercall we keep shadow copies to
 106 * compare against.
 107 */
 108static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
 109
 110static void __init xen_banner(void)
 111{
 112        unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
 113        struct xen_extraversion extra;
 114        HYPERVISOR_xen_version(XENVER_extraversion, &extra);
 115
 116        pr_info("Booting paravirtualized kernel on %s\n", pv_info.name);
 117        printk(KERN_INFO "Xen version: %d.%d%s%s\n",
 118               version >> 16, version & 0xffff, extra.extraversion,
 119               xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
 120}
 121/* Check if running on Xen version (major, minor) or later */
 122bool
 123xen_running_on_version_or_later(unsigned int major, unsigned int minor)
 124{
 125        unsigned int version;
 126
 127        if (!xen_domain())
 128                return false;
 129
 130        version = HYPERVISOR_xen_version(XENVER_version, NULL);
 131        if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
 132                ((version >> 16) > major))
 133                return true;
 134        return false;
 135}
 136
 137static __read_mostly unsigned int cpuid_leaf5_ecx_val;
 138static __read_mostly unsigned int cpuid_leaf5_edx_val;
 139
 140static void xen_cpuid(unsigned int *ax, unsigned int *bx,
 141                      unsigned int *cx, unsigned int *dx)
 142{
 143        unsigned maskebx = ~0;
 144
 145        /*
 146         * Mask out inconvenient features, to try and disable as many
 147         * unsupported kernel subsystems as possible.
 148         */
 149        switch (*ax) {
 150        case CPUID_MWAIT_LEAF:
 151                /* Synthesize the values.. */
 152                *ax = 0;
 153                *bx = 0;
 154                *cx = cpuid_leaf5_ecx_val;
 155                *dx = cpuid_leaf5_edx_val;
 156                return;
 157
 158        case 0xb:
 159                /* Suppress extended topology stuff */
 160                maskebx = 0;
 161                break;
 162        }
 163
 164        asm(XEN_EMULATE_PREFIX "cpuid"
 165                : "=a" (*ax),
 166                  "=b" (*bx),
 167                  "=c" (*cx),
 168                  "=d" (*dx)
 169                : "0" (*ax), "2" (*cx));
 170
 171        *bx &= maskebx;
 172}
 173STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
 174
 175static bool __init xen_check_mwait(void)
 176{
 177#ifdef CONFIG_ACPI
 178        struct xen_platform_op op = {
 179                .cmd                    = XENPF_set_processor_pminfo,
 180                .u.set_pminfo.id        = -1,
 181                .u.set_pminfo.type      = XEN_PM_PDC,
 182        };
 183        uint32_t buf[3];
 184        unsigned int ax, bx, cx, dx;
 185        unsigned int mwait_mask;
 186
 187        /* We need to determine whether it is OK to expose the MWAIT
 188         * capability to the kernel to harvest deeper than C3 states from ACPI
 189         * _CST using the processor_harvest_xen.c module. For this to work, we
 190         * need to gather the MWAIT_LEAF values (which the cstate.c code
 191         * checks against). The hypervisor won't expose the MWAIT flag because
 192         * it would break backwards compatibility; so we will find out directly
 193         * from the hardware and hypercall.
 194         */
 195        if (!xen_initial_domain())
 196                return false;
 197
 198        /*
 199         * When running under platform earlier than Xen4.2, do not expose
 200         * mwait, to avoid the risk of loading native acpi pad driver
 201         */
 202        if (!xen_running_on_version_or_later(4, 2))
 203                return false;
 204
 205        ax = 1;
 206        cx = 0;
 207
 208        native_cpuid(&ax, &bx, &cx, &dx);
 209
 210        mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
 211                     (1 << (X86_FEATURE_MWAIT % 32));
 212
 213        if ((cx & mwait_mask) != mwait_mask)
 214                return false;
 215
 216        /* We need to emulate the MWAIT_LEAF and for that we need both
 217         * ecx and edx. The hypercall provides only partial information.
 218         */
 219
 220        ax = CPUID_MWAIT_LEAF;
 221        bx = 0;
 222        cx = 0;
 223        dx = 0;
 224
 225        native_cpuid(&ax, &bx, &cx, &dx);
 226
 227        /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
 228         * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
 229         */
 230        buf[0] = ACPI_PDC_REVISION_ID;
 231        buf[1] = 1;
 232        buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
 233
 234        set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
 235
 236        if ((HYPERVISOR_platform_op(&op) == 0) &&
 237            (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
 238                cpuid_leaf5_ecx_val = cx;
 239                cpuid_leaf5_edx_val = dx;
 240        }
 241        return true;
 242#else
 243        return false;
 244#endif
 245}
 246
 247static bool __init xen_check_xsave(void)
 248{
 249        unsigned int cx, xsave_mask;
 250
 251        cx = cpuid_ecx(1);
 252
 253        xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
 254                     (1 << (X86_FEATURE_OSXSAVE % 32));
 255
 256        /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
 257        return (cx & xsave_mask) == xsave_mask;
 258}
 259
 260static void __init xen_init_capabilities(void)
 261{
 262        setup_force_cpu_cap(X86_FEATURE_XENPV);
 263        setup_clear_cpu_cap(X86_FEATURE_DCA);
 264        setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
 265        setup_clear_cpu_cap(X86_FEATURE_MTRR);
 266        setup_clear_cpu_cap(X86_FEATURE_ACC);
 267        setup_clear_cpu_cap(X86_FEATURE_X2APIC);
 268        setup_clear_cpu_cap(X86_FEATURE_SME);
 269
 270        /*
 271         * Xen PV would need some work to support PCID: CR3 handling as well
 272         * as xen_flush_tlb_others() would need updating.
 273         */
 274        setup_clear_cpu_cap(X86_FEATURE_PCID);
 275
 276        if (!xen_initial_domain())
 277                setup_clear_cpu_cap(X86_FEATURE_ACPI);
 278
 279        if (xen_check_mwait())
 280                setup_force_cpu_cap(X86_FEATURE_MWAIT);
 281        else
 282                setup_clear_cpu_cap(X86_FEATURE_MWAIT);
 283
 284        if (!xen_check_xsave()) {
 285                setup_clear_cpu_cap(X86_FEATURE_XSAVE);
 286                setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
 287        }
 288}
 289
 290static void xen_set_debugreg(int reg, unsigned long val)
 291{
 292        HYPERVISOR_set_debugreg(reg, val);
 293}
 294
 295static unsigned long xen_get_debugreg(int reg)
 296{
 297        return HYPERVISOR_get_debugreg(reg);
 298}
 299
 300static void xen_end_context_switch(struct task_struct *next)
 301{
 302        xen_mc_flush();
 303        paravirt_end_context_switch(next);
 304}
 305
 306static unsigned long xen_store_tr(void)
 307{
 308        return 0;
 309}
 310
 311/*
 312 * Set the page permissions for a particular virtual address.  If the
 313 * address is a vmalloc mapping (or other non-linear mapping), then
 314 * find the linear mapping of the page and also set its protections to
 315 * match.
 316 */
 317static void set_aliased_prot(void *v, pgprot_t prot)
 318{
 319        int level;
 320        pte_t *ptep;
 321        pte_t pte;
 322        unsigned long pfn;
 323        struct page *page;
 324        unsigned char dummy;
 325
 326        ptep = lookup_address((unsigned long)v, &level);
 327        BUG_ON(ptep == NULL);
 328
 329        pfn = pte_pfn(*ptep);
 330        page = pfn_to_page(pfn);
 331
 332        pte = pfn_pte(pfn, prot);
 333
 334        /*
 335         * Careful: update_va_mapping() will fail if the virtual address
 336         * we're poking isn't populated in the page tables.  We don't
 337         * need to worry about the direct map (that's always in the page
 338         * tables), but we need to be careful about vmap space.  In
 339         * particular, the top level page table can lazily propagate
 340         * entries between processes, so if we've switched mms since we
 341         * vmapped the target in the first place, we might not have the
 342         * top-level page table entry populated.
 343         *
 344         * We disable preemption because we want the same mm active when
 345         * we probe the target and when we issue the hypercall.  We'll
 346         * have the same nominal mm, but if we're a kernel thread, lazy
 347         * mm dropping could change our pgd.
 348         *
 349         * Out of an abundance of caution, this uses __get_user() to fault
 350         * in the target address just in case there's some obscure case
 351         * in which the target address isn't readable.
 352         */
 353
 354        preempt_disable();
 355
 356        probe_kernel_read(&dummy, v, 1);
 357
 358        if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
 359                BUG();
 360
 361        if (!PageHighMem(page)) {
 362                void *av = __va(PFN_PHYS(pfn));
 363
 364                if (av != v)
 365                        if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
 366                                BUG();
 367        } else
 368                kmap_flush_unused();
 369
 370        preempt_enable();
 371}
 372
 373static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
 374{
 375        const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
 376        int i;
 377
 378        /*
 379         * We need to mark the all aliases of the LDT pages RO.  We
 380         * don't need to call vm_flush_aliases(), though, since that's
 381         * only responsible for flushing aliases out the TLBs, not the
 382         * page tables, and Xen will flush the TLB for us if needed.
 383         *
 384         * To avoid confusing future readers: none of this is necessary
 385         * to load the LDT.  The hypervisor only checks this when the
 386         * LDT is faulted in due to subsequent descriptor access.
 387         */
 388
 389        for (i = 0; i < entries; i += entries_per_page)
 390                set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
 391}
 392
 393static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
 394{
 395        const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
 396        int i;
 397
 398        for (i = 0; i < entries; i += entries_per_page)
 399                set_aliased_prot(ldt + i, PAGE_KERNEL);
 400}
 401
 402static void xen_set_ldt(const void *addr, unsigned entries)
 403{
 404        struct mmuext_op *op;
 405        struct multicall_space mcs = xen_mc_entry(sizeof(*op));
 406
 407        trace_xen_cpu_set_ldt(addr, entries);
 408
 409        op = mcs.args;
 410        op->cmd = MMUEXT_SET_LDT;
 411        op->arg1.linear_addr = (unsigned long)addr;
 412        op->arg2.nr_ents = entries;
 413
 414        MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
 415
 416        xen_mc_issue(PARAVIRT_LAZY_CPU);
 417}
 418
 419static void xen_load_gdt(const struct desc_ptr *dtr)
 420{
 421        unsigned long va = dtr->address;
 422        unsigned int size = dtr->size + 1;
 423        unsigned long pfn, mfn;
 424        int level;
 425        pte_t *ptep;
 426        void *virt;
 427
 428        /* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
 429        BUG_ON(size > PAGE_SIZE);
 430        BUG_ON(va & ~PAGE_MASK);
 431
 432        /*
 433         * The GDT is per-cpu and is in the percpu data area.
 434         * That can be virtually mapped, so we need to do a
 435         * page-walk to get the underlying MFN for the
 436         * hypercall.  The page can also be in the kernel's
 437         * linear range, so we need to RO that mapping too.
 438         */
 439        ptep = lookup_address(va, &level);
 440        BUG_ON(ptep == NULL);
 441
 442        pfn = pte_pfn(*ptep);
 443        mfn = pfn_to_mfn(pfn);
 444        virt = __va(PFN_PHYS(pfn));
 445
 446        make_lowmem_page_readonly((void *)va);
 447        make_lowmem_page_readonly(virt);
 448
 449        if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
 450                BUG();
 451}
 452
 453/*
 454 * load_gdt for early boot, when the gdt is only mapped once
 455 */
 456static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
 457{
 458        unsigned long va = dtr->address;
 459        unsigned int size = dtr->size + 1;
 460        unsigned long pfn, mfn;
 461        pte_t pte;
 462
 463        /* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
 464        BUG_ON(size > PAGE_SIZE);
 465        BUG_ON(va & ~PAGE_MASK);
 466
 467        pfn = virt_to_pfn(va);
 468        mfn = pfn_to_mfn(pfn);
 469
 470        pte = pfn_pte(pfn, PAGE_KERNEL_RO);
 471
 472        if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
 473                BUG();
 474
 475        if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
 476                BUG();
 477}
 478
 479static inline bool desc_equal(const struct desc_struct *d1,
 480                              const struct desc_struct *d2)
 481{
 482        return !memcmp(d1, d2, sizeof(*d1));
 483}
 484
 485static void load_TLS_descriptor(struct thread_struct *t,
 486                                unsigned int cpu, unsigned int i)
 487{
 488        struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
 489        struct desc_struct *gdt;
 490        xmaddr_t maddr;
 491        struct multicall_space mc;
 492
 493        if (desc_equal(shadow, &t->tls_array[i]))
 494                return;
 495
 496        *shadow = t->tls_array[i];
 497
 498        gdt = get_cpu_gdt_rw(cpu);
 499        maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
 500        mc = __xen_mc_entry(0);
 501
 502        MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
 503}
 504
 505static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
 506{
 507        /*
 508         * XXX sleazy hack: If we're being called in a lazy-cpu zone
 509         * and lazy gs handling is enabled, it means we're in a
 510         * context switch, and %gs has just been saved.  This means we
 511         * can zero it out to prevent faults on exit from the
 512         * hypervisor if the next process has no %gs.  Either way, it
 513         * has been saved, and the new value will get loaded properly.
 514         * This will go away as soon as Xen has been modified to not
 515         * save/restore %gs for normal hypercalls.
 516         *
 517         * On x86_64, this hack is not used for %gs, because gs points
 518         * to KERNEL_GS_BASE (and uses it for PDA references), so we
 519         * must not zero %gs on x86_64
 520         *
 521         * For x86_64, we need to zero %fs, otherwise we may get an
 522         * exception between the new %fs descriptor being loaded and
 523         * %fs being effectively cleared at __switch_to().
 524         */
 525        if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
 526#ifdef CONFIG_X86_32
 527                lazy_load_gs(0);
 528#else
 529                loadsegment(fs, 0);
 530#endif
 531        }
 532
 533        xen_mc_batch();
 534
 535        load_TLS_descriptor(t, cpu, 0);
 536        load_TLS_descriptor(t, cpu, 1);
 537        load_TLS_descriptor(t, cpu, 2);
 538
 539        xen_mc_issue(PARAVIRT_LAZY_CPU);
 540}
 541
 542#ifdef CONFIG_X86_64
 543static void xen_load_gs_index(unsigned int idx)
 544{
 545        if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
 546                BUG();
 547}
 548#endif
 549
 550static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
 551                                const void *ptr)
 552{
 553        xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
 554        u64 entry = *(u64 *)ptr;
 555
 556        trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
 557
 558        preempt_disable();
 559
 560        xen_mc_flush();
 561        if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
 562                BUG();
 563
 564        preempt_enable();
 565}
 566
 567#ifdef CONFIG_X86_64
 568struct trap_array_entry {
 569        void (*orig)(void);
 570        void (*xen)(void);
 571        bool ist_okay;
 572};
 573
 574static struct trap_array_entry trap_array[] = {
 575        { debug,                       xen_xendebug,                    true },
 576        { int3,                        xen_xenint3,                     true },
 577        { double_fault,                xen_double_fault,                true },
 578#ifdef CONFIG_X86_MCE
 579        { machine_check,               xen_machine_check,               true },
 580#endif
 581        { nmi,                         xen_xennmi,                      true },
 582        { overflow,                    xen_overflow,                    false },
 583#ifdef CONFIG_IA32_EMULATION
 584        { entry_INT80_compat,          xen_entry_INT80_compat,          false },
 585#endif
 586        { page_fault,                  xen_page_fault,                  false },
 587        { divide_error,                xen_divide_error,                false },
 588        { bounds,                      xen_bounds,                      false },
 589        { invalid_op,                  xen_invalid_op,                  false },
 590        { device_not_available,        xen_device_not_available,        false },
 591        { coprocessor_segment_overrun, xen_coprocessor_segment_overrun, false },
 592        { invalid_TSS,                 xen_invalid_TSS,                 false },
 593        { segment_not_present,         xen_segment_not_present,         false },
 594        { stack_segment,               xen_stack_segment,               false },
 595        { general_protection,          xen_general_protection,          false },
 596        { spurious_interrupt_bug,      xen_spurious_interrupt_bug,      false },
 597        { coprocessor_error,           xen_coprocessor_error,           false },
 598        { alignment_check,             xen_alignment_check,             false },
 599        { simd_coprocessor_error,      xen_simd_coprocessor_error,      false },
 600};
 601
 602static bool __ref get_trap_addr(void **addr, unsigned int ist)
 603{
 604        unsigned int nr;
 605        bool ist_okay = false;
 606
 607        /*
 608         * Replace trap handler addresses by Xen specific ones.
 609         * Check for known traps using IST and whitelist them.
 610         * The debugger ones are the only ones we care about.
 611         * Xen will handle faults like double_fault, * so we should never see
 612         * them.  Warn if there's an unexpected IST-using fault handler.
 613         */
 614        for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
 615                struct trap_array_entry *entry = trap_array + nr;
 616
 617                if (*addr == entry->orig) {
 618                        *addr = entry->xen;
 619                        ist_okay = entry->ist_okay;
 620                        break;
 621                }
 622        }
 623
 624        if (nr == ARRAY_SIZE(trap_array) &&
 625            *addr >= (void *)early_idt_handler_array[0] &&
 626            *addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) {
 627                nr = (*addr - (void *)early_idt_handler_array[0]) /
 628                     EARLY_IDT_HANDLER_SIZE;
 629                *addr = (void *)xen_early_idt_handler_array[nr];
 630        }
 631
 632        if (WARN_ON(ist != 0 && !ist_okay))
 633                return false;
 634
 635        return true;
 636}
 637#endif
 638
 639static int cvt_gate_to_trap(int vector, const gate_desc *val,
 640                            struct trap_info *info)
 641{
 642        unsigned long addr;
 643
 644        if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
 645                return 0;
 646
 647        info->vector = vector;
 648
 649        addr = gate_offset(val);
 650#ifdef CONFIG_X86_64
 651        if (!get_trap_addr((void **)&addr, val->bits.ist))
 652                return 0;
 653#endif  /* CONFIG_X86_64 */
 654        info->address = addr;
 655
 656        info->cs = gate_segment(val);
 657        info->flags = val->bits.dpl;
 658        /* interrupt gates clear IF */
 659        if (val->bits.type == GATE_INTERRUPT)
 660                info->flags |= 1 << 2;
 661
 662        return 1;
 663}
 664
 665/* Locations of each CPU's IDT */
 666static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
 667
 668/* Set an IDT entry.  If the entry is part of the current IDT, then
 669   also update Xen. */
 670static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
 671{
 672        unsigned long p = (unsigned long)&dt[entrynum];
 673        unsigned long start, end;
 674
 675        trace_xen_cpu_write_idt_entry(dt, entrynum, g);
 676
 677        preempt_disable();
 678
 679        start = __this_cpu_read(idt_desc.address);
 680        end = start + __this_cpu_read(idt_desc.size) + 1;
 681
 682        xen_mc_flush();
 683
 684        native_write_idt_entry(dt, entrynum, g);
 685
 686        if (p >= start && (p + 8) <= end) {
 687                struct trap_info info[2];
 688
 689                info[1].address = 0;
 690
 691                if (cvt_gate_to_trap(entrynum, g, &info[0]))
 692                        if (HYPERVISOR_set_trap_table(info))
 693                                BUG();
 694        }
 695
 696        preempt_enable();
 697}
 698
 699static void xen_convert_trap_info(const struct desc_ptr *desc,
 700                                  struct trap_info *traps)
 701{
 702        unsigned in, out, count;
 703
 704        count = (desc->size+1) / sizeof(gate_desc);
 705        BUG_ON(count > 256);
 706
 707        for (in = out = 0; in < count; in++) {
 708                gate_desc *entry = (gate_desc *)(desc->address) + in;
 709
 710                if (cvt_gate_to_trap(in, entry, &traps[out]))
 711                        out++;
 712        }
 713        traps[out].address = 0;
 714}
 715
 716void xen_copy_trap_info(struct trap_info *traps)
 717{
 718        const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
 719
 720        xen_convert_trap_info(desc, traps);
 721}
 722
 723/* Load a new IDT into Xen.  In principle this can be per-CPU, so we
 724   hold a spinlock to protect the static traps[] array (static because
 725   it avoids allocation, and saves stack space). */
 726static void xen_load_idt(const struct desc_ptr *desc)
 727{
 728        static DEFINE_SPINLOCK(lock);
 729        static struct trap_info traps[257];
 730
 731        trace_xen_cpu_load_idt(desc);
 732
 733        spin_lock(&lock);
 734
 735        memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
 736
 737        xen_convert_trap_info(desc, traps);
 738
 739        xen_mc_flush();
 740        if (HYPERVISOR_set_trap_table(traps))
 741                BUG();
 742
 743        spin_unlock(&lock);
 744}
 745
 746/* Write a GDT descriptor entry.  Ignore LDT descriptors, since
 747   they're handled differently. */
 748static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
 749                                const void *desc, int type)
 750{
 751        trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
 752
 753        preempt_disable();
 754
 755        switch (type) {
 756        case DESC_LDT:
 757        case DESC_TSS:
 758                /* ignore */
 759                break;
 760
 761        default: {
 762                xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
 763
 764                xen_mc_flush();
 765                if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
 766                        BUG();
 767        }
 768
 769        }
 770
 771        preempt_enable();
 772}
 773
 774/*
 775 * Version of write_gdt_entry for use at early boot-time needed to
 776 * update an entry as simply as possible.
 777 */
 778static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
 779                                            const void *desc, int type)
 780{
 781        trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
 782
 783        switch (type) {
 784        case DESC_LDT:
 785        case DESC_TSS:
 786                /* ignore */
 787                break;
 788
 789        default: {
 790                xmaddr_t maddr = virt_to_machine(&dt[entry]);
 791
 792                if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
 793                        dt[entry] = *(struct desc_struct *)desc;
 794        }
 795
 796        }
 797}
 798
 799static void xen_load_sp0(unsigned long sp0)
 800{
 801        struct multicall_space mcs;
 802
 803        mcs = xen_mc_entry(0);
 804        MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0);
 805        xen_mc_issue(PARAVIRT_LAZY_CPU);
 806        this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
 807}
 808
 809void xen_set_iopl_mask(unsigned mask)
 810{
 811        struct physdev_set_iopl set_iopl;
 812
 813        /* Force the change at ring 0. */
 814        set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
 815        HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
 816}
 817
 818static void xen_io_delay(void)
 819{
 820}
 821
 822static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
 823
 824static unsigned long xen_read_cr0(void)
 825{
 826        unsigned long cr0 = this_cpu_read(xen_cr0_value);
 827
 828        if (unlikely(cr0 == 0)) {
 829                cr0 = native_read_cr0();
 830                this_cpu_write(xen_cr0_value, cr0);
 831        }
 832
 833        return cr0;
 834}
 835
 836static void xen_write_cr0(unsigned long cr0)
 837{
 838        struct multicall_space mcs;
 839
 840        this_cpu_write(xen_cr0_value, cr0);
 841
 842        /* Only pay attention to cr0.TS; everything else is
 843           ignored. */
 844        mcs = xen_mc_entry(0);
 845
 846        MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
 847
 848        xen_mc_issue(PARAVIRT_LAZY_CPU);
 849}
 850
 851static void xen_write_cr4(unsigned long cr4)
 852{
 853        cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
 854
 855        native_write_cr4(cr4);
 856}
 857#ifdef CONFIG_X86_64
 858static inline unsigned long xen_read_cr8(void)
 859{
 860        return 0;
 861}
 862static inline void xen_write_cr8(unsigned long val)
 863{
 864        BUG_ON(val);
 865}
 866#endif
 867
 868static u64 xen_read_msr_safe(unsigned int msr, int *err)
 869{
 870        u64 val;
 871
 872        if (pmu_msr_read(msr, &val, err))
 873                return val;
 874
 875        val = native_read_msr_safe(msr, err);
 876        switch (msr) {
 877        case MSR_IA32_APICBASE:
 878#ifdef CONFIG_X86_X2APIC
 879                if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
 880#endif
 881                        val &= ~X2APIC_ENABLE;
 882                break;
 883        }
 884        return val;
 885}
 886
 887static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
 888{
 889        int ret;
 890
 891        ret = 0;
 892
 893        switch (msr) {
 894#ifdef CONFIG_X86_64
 895                unsigned which;
 896                u64 base;
 897
 898        case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
 899        case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
 900        case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
 901
 902        set:
 903                base = ((u64)high << 32) | low;
 904                if (HYPERVISOR_set_segment_base(which, base) != 0)
 905                        ret = -EIO;
 906                break;
 907#endif
 908
 909        case MSR_STAR:
 910        case MSR_CSTAR:
 911        case MSR_LSTAR:
 912        case MSR_SYSCALL_MASK:
 913        case MSR_IA32_SYSENTER_CS:
 914        case MSR_IA32_SYSENTER_ESP:
 915        case MSR_IA32_SYSENTER_EIP:
 916                /* Fast syscall setup is all done in hypercalls, so
 917                   these are all ignored.  Stub them out here to stop
 918                   Xen console noise. */
 919                break;
 920
 921        default:
 922                if (!pmu_msr_write(msr, low, high, &ret))
 923                        ret = native_write_msr_safe(msr, low, high);
 924        }
 925
 926        return ret;
 927}
 928
 929static u64 xen_read_msr(unsigned int msr)
 930{
 931        /*
 932         * This will silently swallow a #GP from RDMSR.  It may be worth
 933         * changing that.
 934         */
 935        int err;
 936
 937        return xen_read_msr_safe(msr, &err);
 938}
 939
 940static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
 941{
 942        /*
 943         * This will silently swallow a #GP from WRMSR.  It may be worth
 944         * changing that.
 945         */
 946        xen_write_msr_safe(msr, low, high);
 947}
 948
 949void xen_setup_shared_info(void)
 950{
 951        set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
 952
 953        HYPERVISOR_shared_info =
 954                (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
 955
 956        xen_setup_mfn_list_list();
 957
 958        if (system_state == SYSTEM_BOOTING) {
 959#ifndef CONFIG_SMP
 960                /*
 961                 * In UP this is as good a place as any to set up shared info.
 962                 * Limit this to boot only, at restore vcpu setup is done via
 963                 * xen_vcpu_restore().
 964                 */
 965                xen_setup_vcpu_info_placement();
 966#endif
 967                /*
 968                 * Now that shared info is set up we can start using routines
 969                 * that point to pvclock area.
 970                 */
 971                xen_init_time_ops();
 972        }
 973}
 974
 975/* This is called once we have the cpu_possible_mask */
 976void __ref xen_setup_vcpu_info_placement(void)
 977{
 978        int cpu;
 979
 980        for_each_possible_cpu(cpu) {
 981                /* Set up direct vCPU id mapping for PV guests. */
 982                per_cpu(xen_vcpu_id, cpu) = cpu;
 983
 984                /*
 985                 * xen_vcpu_setup(cpu) can fail  -- in which case it
 986                 * falls back to the shared_info version for cpus
 987                 * where xen_vcpu_nr(cpu) < MAX_VIRT_CPUS.
 988                 *
 989                 * xen_cpu_up_prepare_pv() handles the rest by failing
 990                 * them in hotplug.
 991                 */
 992                (void) xen_vcpu_setup(cpu);
 993        }
 994
 995        /*
 996         * xen_vcpu_setup managed to place the vcpu_info within the
 997         * percpu area for all cpus, so make use of it.
 998         */
 999        if (xen_have_vcpu_info_placement) {
1000                pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1001                pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1002                pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1003                pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1004                pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1005        }
1006}
1007
1008static const struct pv_info xen_info __initconst = {
1009        .shared_kernel_pmd = 0,
1010
1011#ifdef CONFIG_X86_64
1012        .extra_user_64bit_cs = FLAT_USER_CS64,
1013#endif
1014        .name = "Xen",
1015};
1016
1017static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1018        .cpuid = xen_cpuid,
1019
1020        .set_debugreg = xen_set_debugreg,
1021        .get_debugreg = xen_get_debugreg,
1022
1023        .read_cr0 = xen_read_cr0,
1024        .write_cr0 = xen_write_cr0,
1025
1026        .write_cr4 = xen_write_cr4,
1027
1028#ifdef CONFIG_X86_64
1029        .read_cr8 = xen_read_cr8,
1030        .write_cr8 = xen_write_cr8,
1031#endif
1032
1033        .wbinvd = native_wbinvd,
1034
1035        .read_msr = xen_read_msr,
1036        .write_msr = xen_write_msr,
1037
1038        .read_msr_safe = xen_read_msr_safe,
1039        .write_msr_safe = xen_write_msr_safe,
1040
1041        .read_pmc = xen_read_pmc,
1042
1043        .iret = xen_iret,
1044#ifdef CONFIG_X86_64
1045        .usergs_sysret64 = xen_sysret64,
1046#endif
1047
1048        .load_tr_desc = paravirt_nop,
1049        .set_ldt = xen_set_ldt,
1050        .load_gdt = xen_load_gdt,
1051        .load_idt = xen_load_idt,
1052        .load_tls = xen_load_tls,
1053#ifdef CONFIG_X86_64
1054        .load_gs_index = xen_load_gs_index,
1055#endif
1056
1057        .alloc_ldt = xen_alloc_ldt,
1058        .free_ldt = xen_free_ldt,
1059
1060        .store_tr = xen_store_tr,
1061
1062        .write_ldt_entry = xen_write_ldt_entry,
1063        .write_gdt_entry = xen_write_gdt_entry,
1064        .write_idt_entry = xen_write_idt_entry,
1065        .load_sp0 = xen_load_sp0,
1066
1067        .set_iopl_mask = xen_set_iopl_mask,
1068        .io_delay = xen_io_delay,
1069
1070        /* Xen takes care of %gs when switching to usermode for us */
1071        .swapgs = paravirt_nop,
1072
1073        .start_context_switch = paravirt_start_context_switch,
1074        .end_context_switch = xen_end_context_switch,
1075};
1076
1077static void xen_restart(char *msg)
1078{
1079        xen_reboot(SHUTDOWN_reboot);
1080}
1081
1082static void xen_machine_halt(void)
1083{
1084        xen_reboot(SHUTDOWN_poweroff);
1085}
1086
1087static void xen_machine_power_off(void)
1088{
1089        if (pm_power_off)
1090                pm_power_off();
1091        xen_reboot(SHUTDOWN_poweroff);
1092}
1093
1094static void xen_crash_shutdown(struct pt_regs *regs)
1095{
1096        xen_reboot(SHUTDOWN_crash);
1097}
1098
1099static const struct machine_ops xen_machine_ops __initconst = {
1100        .restart = xen_restart,
1101        .halt = xen_machine_halt,
1102        .power_off = xen_machine_power_off,
1103        .shutdown = xen_machine_halt,
1104        .crash_shutdown = xen_crash_shutdown,
1105        .emergency_restart = xen_emergency_restart,
1106};
1107
1108static unsigned char xen_get_nmi_reason(void)
1109{
1110        unsigned char reason = 0;
1111
1112        /* Construct a value which looks like it came from port 0x61. */
1113        if (test_bit(_XEN_NMIREASON_io_error,
1114                     &HYPERVISOR_shared_info->arch.nmi_reason))
1115                reason |= NMI_REASON_IOCHK;
1116        if (test_bit(_XEN_NMIREASON_pci_serr,
1117                     &HYPERVISOR_shared_info->arch.nmi_reason))
1118                reason |= NMI_REASON_SERR;
1119
1120        return reason;
1121}
1122
1123static void __init xen_boot_params_init_edd(void)
1124{
1125#if IS_ENABLED(CONFIG_EDD)
1126        struct xen_platform_op op;
1127        struct edd_info *edd_info;
1128        u32 *mbr_signature;
1129        unsigned nr;
1130        int ret;
1131
1132        edd_info = boot_params.eddbuf;
1133        mbr_signature = boot_params.edd_mbr_sig_buffer;
1134
1135        op.cmd = XENPF_firmware_info;
1136
1137        op.u.firmware_info.type = XEN_FW_DISK_INFO;
1138        for (nr = 0; nr < EDDMAXNR; nr++) {
1139                struct edd_info *info = edd_info + nr;
1140
1141                op.u.firmware_info.index = nr;
1142                info->params.length = sizeof(info->params);
1143                set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1144                                     &info->params);
1145                ret = HYPERVISOR_platform_op(&op);
1146                if (ret)
1147                        break;
1148
1149#define C(x) info->x = op.u.firmware_info.u.disk_info.x
1150                C(device);
1151                C(version);
1152                C(interface_support);
1153                C(legacy_max_cylinder);
1154                C(legacy_max_head);
1155                C(legacy_sectors_per_track);
1156#undef C
1157        }
1158        boot_params.eddbuf_entries = nr;
1159
1160        op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1161        for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1162                op.u.firmware_info.index = nr;
1163                ret = HYPERVISOR_platform_op(&op);
1164                if (ret)
1165                        break;
1166                mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1167        }
1168        boot_params.edd_mbr_sig_buf_entries = nr;
1169#endif
1170}
1171
1172/*
1173 * Set up the GDT and segment registers for -fstack-protector.  Until
1174 * we do this, we have to be careful not to call any stack-protected
1175 * function, which is most of the kernel.
1176 */
1177static void xen_setup_gdt(int cpu)
1178{
1179        pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1180        pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1181
1182        setup_stack_canary_segment(0);
1183        switch_to_new_gdt(0);
1184
1185        pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1186        pv_cpu_ops.load_gdt = xen_load_gdt;
1187}
1188
1189static void __init xen_dom0_set_legacy_features(void)
1190{
1191        x86_platform.legacy.rtc = 1;
1192}
1193
1194/* First C function to be called on Xen boot */
1195asmlinkage __visible void __init xen_start_kernel(void)
1196{
1197        struct physdev_set_iopl set_iopl;
1198        unsigned long initrd_start = 0;
1199        int rc;
1200
1201        if (!xen_start_info)
1202                return;
1203
1204        xen_domain_type = XEN_PV_DOMAIN;
1205        xen_start_flags = xen_start_info->flags;
1206
1207        xen_setup_features();
1208
1209        /* Install Xen paravirt ops */
1210        pv_info = xen_info;
1211        pv_init_ops.patch = paravirt_patch_default;
1212        pv_cpu_ops = xen_cpu_ops;
1213        xen_init_irq_ops();
1214
1215        /*
1216         * Setup xen_vcpu early because it is needed for
1217         * local_irq_disable(), irqs_disabled(), e.g. in printk().
1218         *
1219         * Don't do the full vcpu_info placement stuff until we have
1220         * the cpu_possible_mask and a non-dummy shared_info.
1221         */
1222        xen_vcpu_info_reset(0);
1223
1224        x86_platform.get_nmi_reason = xen_get_nmi_reason;
1225
1226        x86_init.resources.memory_setup = xen_memory_setup;
1227        x86_init.irqs.intr_mode_select  = x86_init_noop;
1228        x86_init.irqs.intr_mode_init    = x86_init_noop;
1229        x86_init.oem.arch_setup = xen_arch_setup;
1230        x86_init.oem.banner = xen_banner;
1231
1232        /*
1233         * Set up some pagetable state before starting to set any ptes.
1234         */
1235
1236        xen_setup_machphys_mapping();
1237        xen_init_mmu_ops();
1238
1239        /* Prevent unwanted bits from being set in PTEs. */
1240        __supported_pte_mask &= ~_PAGE_GLOBAL;
1241        __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
1242
1243        /*
1244         * Prevent page tables from being allocated in highmem, even
1245         * if CONFIG_HIGHPTE is enabled.
1246         */
1247        __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1248
1249        /* Get mfn list */
1250        xen_build_dynamic_phys_to_machine();
1251
1252        /*
1253         * Set up kernel GDT and segment registers, mainly so that
1254         * -fstack-protector code can be executed.
1255         */
1256        xen_setup_gdt(0);
1257
1258        /* Work out if we support NX */
1259        get_cpu_cap(&boot_cpu_data);
1260        x86_configure_nx();
1261
1262        /* Let's presume PV guests always boot on vCPU with id 0. */
1263        per_cpu(xen_vcpu_id, 0) = 0;
1264
1265        idt_setup_early_handler();
1266
1267        xen_init_capabilities();
1268
1269#ifdef CONFIG_X86_LOCAL_APIC
1270        /*
1271         * set up the basic apic ops.
1272         */
1273        xen_init_apic();
1274#endif
1275
1276        if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1277                pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1278                pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1279        }
1280
1281        machine_ops = xen_machine_ops;
1282
1283        /*
1284         * The only reliable way to retain the initial address of the
1285         * percpu gdt_page is to remember it here, so we can go and
1286         * mark it RW later, when the initial percpu area is freed.
1287         */
1288        xen_initial_gdt = &per_cpu(gdt_page, 0);
1289
1290        xen_smp_init();
1291
1292#ifdef CONFIG_ACPI_NUMA
1293        /*
1294         * The pages we from Xen are not related to machine pages, so
1295         * any NUMA information the kernel tries to get from ACPI will
1296         * be meaningless.  Prevent it from trying.
1297         */
1298        acpi_numa = -1;
1299#endif
1300        WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1301
1302        local_irq_disable();
1303        early_boot_irqs_disabled = true;
1304
1305        xen_raw_console_write("mapping kernel into physical memory\n");
1306        xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1307                                   xen_start_info->nr_pages);
1308        xen_reserve_special_pages();
1309
1310        /* keep using Xen gdt for now; no urgent need to change it */
1311
1312#ifdef CONFIG_X86_32
1313        pv_info.kernel_rpl = 1;
1314        if (xen_feature(XENFEAT_supervisor_mode_kernel))
1315                pv_info.kernel_rpl = 0;
1316#else
1317        pv_info.kernel_rpl = 0;
1318#endif
1319        /* set the limit of our address space */
1320        xen_reserve_top();
1321
1322        /*
1323         * We used to do this in xen_arch_setup, but that is too late
1324         * on AMD were early_cpu_init (run before ->arch_setup()) calls
1325         * early_amd_init which pokes 0xcf8 port.
1326         */
1327        set_iopl.iopl = 1;
1328        rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1329        if (rc != 0)
1330                xen_raw_printk("physdev_op failed %d\n", rc);
1331
1332#ifdef CONFIG_X86_32
1333        /* set up basic CPUID stuff */
1334        cpu_detect(&new_cpu_data);
1335        set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1336        new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1);
1337#endif
1338
1339        if (xen_start_info->mod_start) {
1340            if (xen_start_info->flags & SIF_MOD_START_PFN)
1341                initrd_start = PFN_PHYS(xen_start_info->mod_start);
1342            else
1343                initrd_start = __pa(xen_start_info->mod_start);
1344        }
1345
1346        /* Poke various useful things into boot_params */
1347        boot_params.hdr.type_of_loader = (9 << 4) | 0;
1348        boot_params.hdr.ramdisk_image = initrd_start;
1349        boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1350        boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1351        boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1352
1353        if (!xen_initial_domain()) {
1354                add_preferred_console("xenboot", 0, NULL);
1355                if (pci_xen)
1356                        x86_init.pci.arch_init = pci_xen_init;
1357        } else {
1358                const struct dom0_vga_console_info *info =
1359                        (void *)((char *)xen_start_info +
1360                                 xen_start_info->console.dom0.info_off);
1361                struct xen_platform_op op = {
1362                        .cmd = XENPF_firmware_info,
1363                        .interface_version = XENPF_INTERFACE_VERSION,
1364                        .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1365                };
1366
1367                x86_platform.set_legacy_features =
1368                                xen_dom0_set_legacy_features;
1369                xen_init_vga(info, xen_start_info->console.dom0.info_size);
1370                xen_start_info->console.domU.mfn = 0;
1371                xen_start_info->console.domU.evtchn = 0;
1372
1373                if (HYPERVISOR_platform_op(&op) == 0)
1374                        boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1375
1376                /* Make sure ACS will be enabled */
1377                pci_request_acs();
1378
1379                xen_acpi_sleep_register();
1380
1381                /* Avoid searching for BIOS MP tables */
1382                x86_init.mpparse.find_smp_config = x86_init_noop;
1383                x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1384
1385                xen_boot_params_init_edd();
1386        }
1387
1388        add_preferred_console("tty", 0, NULL);
1389        add_preferred_console("hvc", 0, NULL);
1390
1391#ifdef CONFIG_PCI
1392        /* PCI BIOS service won't work from a PV guest. */
1393        pci_probe &= ~PCI_PROBE_BIOS;
1394#endif
1395        xen_raw_console_write("about to get started...\n");
1396
1397        /* We need this for printk timestamps */
1398        xen_setup_runstate_info(0);
1399
1400        xen_efi_init();
1401
1402        /* Start the world */
1403#ifdef CONFIG_X86_32
1404        i386_start_kernel();
1405#else
1406        cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1407        x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1408#endif
1409}
1410
1411static int xen_cpu_up_prepare_pv(unsigned int cpu)
1412{
1413        int rc;
1414
1415        if (per_cpu(xen_vcpu, cpu) == NULL)
1416                return -ENODEV;
1417
1418        xen_setup_timer(cpu);
1419
1420        rc = xen_smp_intr_init(cpu);
1421        if (rc) {
1422                WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1423                     cpu, rc);
1424                return rc;
1425        }
1426
1427        rc = xen_smp_intr_init_pv(cpu);
1428        if (rc) {
1429                WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1430                     cpu, rc);
1431                return rc;
1432        }
1433
1434        return 0;
1435}
1436
1437static int xen_cpu_dead_pv(unsigned int cpu)
1438{
1439        xen_smp_intr_free(cpu);
1440        xen_smp_intr_free_pv(cpu);
1441
1442        xen_teardown_timer(cpu);
1443
1444        return 0;
1445}
1446
1447static uint32_t __init xen_platform_pv(void)
1448{
1449        if (xen_pv_domain())
1450                return xen_cpuid_base();
1451
1452        return 0;
1453}
1454
1455const __initconst struct hypervisor_x86 x86_hyper_xen_pv = {
1456        .name                   = "Xen PV",
1457        .detect                 = xen_platform_pv,
1458        .type                   = X86_HYPER_XEN_PV,
1459        .runtime.pin_vcpu       = xen_pin_vcpu,
1460        .ignore_nopv            = true,
1461};
1462