linux/arch/xtensa/kernel/process.c
<<
>>
Prefs
   1/*
   2 * arch/xtensa/kernel/process.c
   3 *
   4 * Xtensa Processor version.
   5 *
   6 * This file is subject to the terms and conditions of the GNU General Public
   7 * License.  See the file "COPYING" in the main directory of this archive
   8 * for more details.
   9 *
  10 * Copyright (C) 2001 - 2005 Tensilica Inc.
  11 *
  12 * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
  13 * Chris Zankel <chris@zankel.net>
  14 * Marc Gauthier <marc@tensilica.com, marc@alumni.uwaterloo.ca>
  15 * Kevin Chea
  16 */
  17
  18#include <linux/errno.h>
  19#include <linux/sched.h>
  20#include <linux/sched/debug.h>
  21#include <linux/sched/task.h>
  22#include <linux/sched/task_stack.h>
  23#include <linux/kernel.h>
  24#include <linux/mm.h>
  25#include <linux/smp.h>
  26#include <linux/stddef.h>
  27#include <linux/unistd.h>
  28#include <linux/ptrace.h>
  29#include <linux/elf.h>
  30#include <linux/hw_breakpoint.h>
  31#include <linux/init.h>
  32#include <linux/prctl.h>
  33#include <linux/init_task.h>
  34#include <linux/module.h>
  35#include <linux/mqueue.h>
  36#include <linux/fs.h>
  37#include <linux/slab.h>
  38#include <linux/rcupdate.h>
  39
  40#include <asm/pgtable.h>
  41#include <linux/uaccess.h>
  42#include <asm/io.h>
  43#include <asm/processor.h>
  44#include <asm/platform.h>
  45#include <asm/mmu.h>
  46#include <asm/irq.h>
  47#include <linux/atomic.h>
  48#include <asm/asm-offsets.h>
  49#include <asm/regs.h>
  50#include <asm/hw_breakpoint.h>
  51
  52extern void ret_from_fork(void);
  53extern void ret_from_kernel_thread(void);
  54
  55struct task_struct *current_set[NR_CPUS] = {&init_task, };
  56
  57void (*pm_power_off)(void) = NULL;
  58EXPORT_SYMBOL(pm_power_off);
  59
  60
  61#ifdef CONFIG_STACKPROTECTOR
  62#include <linux/stackprotector.h>
  63unsigned long __stack_chk_guard __read_mostly;
  64EXPORT_SYMBOL(__stack_chk_guard);
  65#endif
  66
  67#if XTENSA_HAVE_COPROCESSORS
  68
  69void coprocessor_release_all(struct thread_info *ti)
  70{
  71        unsigned long cpenable;
  72        int i;
  73
  74        /* Make sure we don't switch tasks during this operation. */
  75
  76        preempt_disable();
  77
  78        /* Walk through all cp owners and release it for the requested one. */
  79
  80        cpenable = ti->cpenable;
  81
  82        for (i = 0; i < XCHAL_CP_MAX; i++) {
  83                if (coprocessor_owner[i] == ti) {
  84                        coprocessor_owner[i] = 0;
  85                        cpenable &= ~(1 << i);
  86                }
  87        }
  88
  89        ti->cpenable = cpenable;
  90        coprocessor_clear_cpenable();
  91
  92        preempt_enable();
  93}
  94
  95void coprocessor_flush_all(struct thread_info *ti)
  96{
  97        unsigned long cpenable;
  98        int i;
  99
 100        preempt_disable();
 101
 102        cpenable = ti->cpenable;
 103
 104        for (i = 0; i < XCHAL_CP_MAX; i++) {
 105                if ((cpenable & 1) != 0 && coprocessor_owner[i] == ti)
 106                        coprocessor_flush(ti, i);
 107                cpenable >>= 1;
 108        }
 109
 110        preempt_enable();
 111}
 112
 113#endif
 114
 115
 116/*
 117 * Powermanagement idle function, if any is provided by the platform.
 118 */
 119void arch_cpu_idle(void)
 120{
 121        platform_idle();
 122}
 123
 124/*
 125 * This is called when the thread calls exit().
 126 */
 127void exit_thread(struct task_struct *tsk)
 128{
 129#if XTENSA_HAVE_COPROCESSORS
 130        coprocessor_release_all(task_thread_info(tsk));
 131#endif
 132}
 133
 134/*
 135 * Flush thread state. This is called when a thread does an execve()
 136 * Note that we flush coprocessor registers for the case execve fails.
 137 */
 138void flush_thread(void)
 139{
 140#if XTENSA_HAVE_COPROCESSORS
 141        struct thread_info *ti = current_thread_info();
 142        coprocessor_flush_all(ti);
 143        coprocessor_release_all(ti);
 144#endif
 145        flush_ptrace_hw_breakpoint(current);
 146}
 147
 148/*
 149 * this gets called so that we can store coprocessor state into memory and
 150 * copy the current task into the new thread.
 151 */
 152int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 153{
 154#if XTENSA_HAVE_COPROCESSORS
 155        coprocessor_flush_all(task_thread_info(src));
 156#endif
 157        *dst = *src;
 158        return 0;
 159}
 160
 161/*
 162 * Copy thread.
 163 *
 164 * There are two modes in which this function is called:
 165 * 1) Userspace thread creation,
 166 *    regs != NULL, usp_thread_fn is userspace stack pointer.
 167 *    It is expected to copy parent regs (in case CLONE_VM is not set
 168 *    in the clone_flags) and set up passed usp in the childregs.
 169 * 2) Kernel thread creation,
 170 *    regs == NULL, usp_thread_fn is the function to run in the new thread
 171 *    and thread_fn_arg is its parameter.
 172 *    childregs are not used for the kernel threads.
 173 *
 174 * The stack layout for the new thread looks like this:
 175 *
 176 *      +------------------------+
 177 *      |       childregs        |
 178 *      +------------------------+ <- thread.sp = sp in dummy-frame
 179 *      |      dummy-frame       |    (saved in dummy-frame spill-area)
 180 *      +------------------------+
 181 *
 182 * We create a dummy frame to return to either ret_from_fork or
 183 *   ret_from_kernel_thread:
 184 *   a0 points to ret_from_fork/ret_from_kernel_thread (simulating a call4)
 185 *   sp points to itself (thread.sp)
 186 *   a2, a3 are unused for userspace threads,
 187 *   a2 points to thread_fn, a3 holds thread_fn arg for kernel threads.
 188 *
 189 * Note: This is a pristine frame, so we don't need any spill region on top of
 190 *       childregs.
 191 *
 192 * The fun part:  if we're keeping the same VM (i.e. cloning a thread,
 193 * not an entire process), we're normally given a new usp, and we CANNOT share
 194 * any live address register windows.  If we just copy those live frames over,
 195 * the two threads (parent and child) will overflow the same frames onto the
 196 * parent stack at different times, likely corrupting the parent stack (esp.
 197 * if the parent returns from functions that called clone() and calls new
 198 * ones, before the child overflows its now old copies of its parent windows).
 199 * One solution is to spill windows to the parent stack, but that's fairly
 200 * involved.  Much simpler to just not copy those live frames across.
 201 */
 202
 203int copy_thread(unsigned long clone_flags, unsigned long usp_thread_fn,
 204                unsigned long thread_fn_arg, struct task_struct *p)
 205{
 206        struct pt_regs *childregs = task_pt_regs(p);
 207
 208#if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
 209        struct thread_info *ti;
 210#endif
 211
 212        /* Create a call4 dummy-frame: a0 = 0, a1 = childregs. */
 213        SPILL_SLOT(childregs, 1) = (unsigned long)childregs;
 214        SPILL_SLOT(childregs, 0) = 0;
 215
 216        p->thread.sp = (unsigned long)childregs;
 217
 218        if (!(p->flags & PF_KTHREAD)) {
 219                struct pt_regs *regs = current_pt_regs();
 220                unsigned long usp = usp_thread_fn ?
 221                        usp_thread_fn : regs->areg[1];
 222
 223                p->thread.ra = MAKE_RA_FOR_CALL(
 224                                (unsigned long)ret_from_fork, 0x1);
 225
 226                /* This does not copy all the regs.
 227                 * In a bout of brilliance or madness,
 228                 * ARs beyond a0-a15 exist past the end of the struct.
 229                 */
 230                *childregs = *regs;
 231                childregs->areg[1] = usp;
 232                childregs->areg[2] = 0;
 233
 234                /* When sharing memory with the parent thread, the child
 235                   usually starts on a pristine stack, so we have to reset
 236                   windowbase, windowstart and wmask.
 237                   (Note that such a new thread is required to always create
 238                   an initial call4 frame)
 239                   The exception is vfork, where the new thread continues to
 240                   run on the parent's stack until it calls execve. This could
 241                   be a call8 or call12, which requires a legal stack frame
 242                   of the previous caller for the overflow handlers to work.
 243                   (Note that it's always legal to overflow live registers).
 244                   In this case, ensure to spill at least the stack pointer
 245                   of that frame. */
 246
 247                if (clone_flags & CLONE_VM) {
 248                        /* check that caller window is live and same stack */
 249                        int len = childregs->wmask & ~0xf;
 250                        if (regs->areg[1] == usp && len != 0) {
 251                                int callinc = (regs->areg[0] >> 30) & 3;
 252                                int caller_ars = XCHAL_NUM_AREGS - callinc * 4;
 253                                put_user(regs->areg[caller_ars+1],
 254                                         (unsigned __user*)(usp - 12));
 255                        }
 256                        childregs->wmask = 1;
 257                        childregs->windowstart = 1;
 258                        childregs->windowbase = 0;
 259                } else {
 260                        int len = childregs->wmask & ~0xf;
 261                        memcpy(&childregs->areg[XCHAL_NUM_AREGS - len/4],
 262                               &regs->areg[XCHAL_NUM_AREGS - len/4], len);
 263                }
 264
 265                /* The thread pointer is passed in the '4th argument' (= a5) */
 266                if (clone_flags & CLONE_SETTLS)
 267                        childregs->threadptr = childregs->areg[5];
 268        } else {
 269                p->thread.ra = MAKE_RA_FOR_CALL(
 270                                (unsigned long)ret_from_kernel_thread, 1);
 271
 272                /* pass parameters to ret_from_kernel_thread:
 273                 * a2 = thread_fn, a3 = thread_fn arg
 274                 */
 275                SPILL_SLOT(childregs, 3) = thread_fn_arg;
 276                SPILL_SLOT(childregs, 2) = usp_thread_fn;
 277
 278                /* Childregs are only used when we're going to userspace
 279                 * in which case start_thread will set them up.
 280                 */
 281        }
 282
 283#if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
 284        ti = task_thread_info(p);
 285        ti->cpenable = 0;
 286#endif
 287
 288        clear_ptrace_hw_breakpoint(p);
 289
 290        return 0;
 291}
 292
 293
 294/*
 295 * These bracket the sleeping functions..
 296 */
 297
 298unsigned long get_wchan(struct task_struct *p)
 299{
 300        unsigned long sp, pc;
 301        unsigned long stack_page = (unsigned long) task_stack_page(p);
 302        int count = 0;
 303
 304        if (!p || p == current || p->state == TASK_RUNNING)
 305                return 0;
 306
 307        sp = p->thread.sp;
 308        pc = MAKE_PC_FROM_RA(p->thread.ra, p->thread.sp);
 309
 310        do {
 311                if (sp < stack_page + sizeof(struct task_struct) ||
 312                    sp >= (stack_page + THREAD_SIZE) ||
 313                    pc == 0)
 314                        return 0;
 315                if (!in_sched_functions(pc))
 316                        return pc;
 317
 318                /* Stack layout: sp-4: ra, sp-3: sp' */
 319
 320                pc = MAKE_PC_FROM_RA(*(unsigned long*)sp - 4, sp);
 321                sp = *(unsigned long *)sp - 3;
 322        } while (count++ < 16);
 323        return 0;
 324}
 325
 326/*
 327 * xtensa_gregset_t and 'struct pt_regs' are vastly different formats
 328 * of processor registers.  Besides different ordering,
 329 * xtensa_gregset_t contains non-live register information that
 330 * 'struct pt_regs' does not.  Exception handling (primarily) uses
 331 * 'struct pt_regs'.  Core files and ptrace use xtensa_gregset_t.
 332 *
 333 */
 334
 335void xtensa_elf_core_copy_regs (xtensa_gregset_t *elfregs, struct pt_regs *regs)
 336{
 337        unsigned long wb, ws, wm;
 338        int live, last;
 339
 340        wb = regs->windowbase;
 341        ws = regs->windowstart;
 342        wm = regs->wmask;
 343        ws = ((ws >> wb) | (ws << (WSBITS - wb))) & ((1 << WSBITS) - 1);
 344
 345        /* Don't leak any random bits. */
 346
 347        memset(elfregs, 0, sizeof(*elfregs));
 348
 349        /* Note:  PS.EXCM is not set while user task is running; its
 350         * being set in regs->ps is for exception handling convenience.
 351         */
 352
 353        elfregs->pc             = regs->pc;
 354        elfregs->ps             = (regs->ps & ~(1 << PS_EXCM_BIT));
 355        elfregs->lbeg           = regs->lbeg;
 356        elfregs->lend           = regs->lend;
 357        elfregs->lcount         = regs->lcount;
 358        elfregs->sar            = regs->sar;
 359        elfregs->windowstart    = ws;
 360
 361        live = (wm & 2) ? 4 : (wm & 4) ? 8 : (wm & 8) ? 12 : 16;
 362        last = XCHAL_NUM_AREGS - (wm >> 4) * 4;
 363        memcpy(elfregs->a, regs->areg, live * 4);
 364        memcpy(elfregs->a + last, regs->areg + last, (wm >> 4) * 16);
 365}
 366
 367int dump_fpu(void)
 368{
 369        return 0;
 370}
 371