linux/drivers/acpi/pptt.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * pptt.c - parsing of Processor Properties Topology Table (PPTT)
   4 *
   5 * Copyright (C) 2018, ARM
   6 *
   7 * This file implements parsing of the Processor Properties Topology Table
   8 * which is optionally used to describe the processor and cache topology.
   9 * Due to the relative pointers used throughout the table, this doesn't
  10 * leverage the existing subtable parsing in the kernel.
  11 *
  12 * The PPTT structure is an inverted tree, with each node potentially
  13 * holding one or two inverted tree data structures describing
  14 * the caches available at that level. Each cache structure optionally
  15 * contains properties describing the cache at a given level which can be
  16 * used to override hardware probed values.
  17 */
  18#define pr_fmt(fmt) "ACPI PPTT: " fmt
  19
  20#include <linux/acpi.h>
  21#include <linux/cacheinfo.h>
  22#include <acpi/processor.h>
  23
  24static struct acpi_subtable_header *fetch_pptt_subtable(struct acpi_table_header *table_hdr,
  25                                                        u32 pptt_ref)
  26{
  27        struct acpi_subtable_header *entry;
  28
  29        /* there isn't a subtable at reference 0 */
  30        if (pptt_ref < sizeof(struct acpi_subtable_header))
  31                return NULL;
  32
  33        if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length)
  34                return NULL;
  35
  36        entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, pptt_ref);
  37
  38        if (entry->length == 0)
  39                return NULL;
  40
  41        if (pptt_ref + entry->length > table_hdr->length)
  42                return NULL;
  43
  44        return entry;
  45}
  46
  47static struct acpi_pptt_processor *fetch_pptt_node(struct acpi_table_header *table_hdr,
  48                                                   u32 pptt_ref)
  49{
  50        return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref);
  51}
  52
  53static struct acpi_pptt_cache *fetch_pptt_cache(struct acpi_table_header *table_hdr,
  54                                                u32 pptt_ref)
  55{
  56        return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref);
  57}
  58
  59static struct acpi_subtable_header *acpi_get_pptt_resource(struct acpi_table_header *table_hdr,
  60                                                           struct acpi_pptt_processor *node,
  61                                                           int resource)
  62{
  63        u32 *ref;
  64
  65        if (resource >= node->number_of_priv_resources)
  66                return NULL;
  67
  68        ref = ACPI_ADD_PTR(u32, node, sizeof(struct acpi_pptt_processor));
  69        ref += resource;
  70
  71        return fetch_pptt_subtable(table_hdr, *ref);
  72}
  73
  74static inline bool acpi_pptt_match_type(int table_type, int type)
  75{
  76        return ((table_type & ACPI_PPTT_MASK_CACHE_TYPE) == type ||
  77                table_type & ACPI_PPTT_CACHE_TYPE_UNIFIED & type);
  78}
  79
  80/**
  81 * acpi_pptt_walk_cache() - Attempt to find the requested acpi_pptt_cache
  82 * @table_hdr: Pointer to the head of the PPTT table
  83 * @local_level: passed res reflects this cache level
  84 * @res: cache resource in the PPTT we want to walk
  85 * @found: returns a pointer to the requested level if found
  86 * @level: the requested cache level
  87 * @type: the requested cache type
  88 *
  89 * Attempt to find a given cache level, while counting the max number
  90 * of cache levels for the cache node.
  91 *
  92 * Given a pptt resource, verify that it is a cache node, then walk
  93 * down each level of caches, counting how many levels are found
  94 * as well as checking the cache type (icache, dcache, unified). If a
  95 * level & type match, then we set found, and continue the search.
  96 * Once the entire cache branch has been walked return its max
  97 * depth.
  98 *
  99 * Return: The cache structure and the level we terminated with.
 100 */
 101static unsigned int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr,
 102                                         unsigned int local_level,
 103                                         struct acpi_subtable_header *res,
 104                                         struct acpi_pptt_cache **found,
 105                                         unsigned int level, int type)
 106{
 107        struct acpi_pptt_cache *cache;
 108
 109        if (res->type != ACPI_PPTT_TYPE_CACHE)
 110                return 0;
 111
 112        cache = (struct acpi_pptt_cache *) res;
 113        while (cache) {
 114                local_level++;
 115
 116                if (local_level == level &&
 117                    cache->flags & ACPI_PPTT_CACHE_TYPE_VALID &&
 118                    acpi_pptt_match_type(cache->attributes, type)) {
 119                        if (*found != NULL && cache != *found)
 120                                pr_warn("Found duplicate cache level/type unable to determine uniqueness\n");
 121
 122                        pr_debug("Found cache @ level %u\n", level);
 123                        *found = cache;
 124                        /*
 125                         * continue looking at this node's resource list
 126                         * to verify that we don't find a duplicate
 127                         * cache node.
 128                         */
 129                }
 130                cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache);
 131        }
 132        return local_level;
 133}
 134
 135static struct acpi_pptt_cache *
 136acpi_find_cache_level(struct acpi_table_header *table_hdr,
 137                      struct acpi_pptt_processor *cpu_node,
 138                      unsigned int *starting_level, unsigned int level,
 139                      int type)
 140{
 141        struct acpi_subtable_header *res;
 142        unsigned int number_of_levels = *starting_level;
 143        int resource = 0;
 144        struct acpi_pptt_cache *ret = NULL;
 145        unsigned int local_level;
 146
 147        /* walk down from processor node */
 148        while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) {
 149                resource++;
 150
 151                local_level = acpi_pptt_walk_cache(table_hdr, *starting_level,
 152                                                   res, &ret, level, type);
 153                /*
 154                 * we are looking for the max depth. Since its potentially
 155                 * possible for a given node to have resources with differing
 156                 * depths verify that the depth we have found is the largest.
 157                 */
 158                if (number_of_levels < local_level)
 159                        number_of_levels = local_level;
 160        }
 161        if (number_of_levels > *starting_level)
 162                *starting_level = number_of_levels;
 163
 164        return ret;
 165}
 166
 167/**
 168 * acpi_count_levels() - Given a PPTT table, and a CPU node, count the caches
 169 * @table_hdr: Pointer to the head of the PPTT table
 170 * @cpu_node: processor node we wish to count caches for
 171 *
 172 * Given a processor node containing a processing unit, walk into it and count
 173 * how many levels exist solely for it, and then walk up each level until we hit
 174 * the root node (ignore the package level because it may be possible to have
 175 * caches that exist across packages). Count the number of cache levels that
 176 * exist at each level on the way up.
 177 *
 178 * Return: Total number of levels found.
 179 */
 180static int acpi_count_levels(struct acpi_table_header *table_hdr,
 181                             struct acpi_pptt_processor *cpu_node)
 182{
 183        int total_levels = 0;
 184
 185        do {
 186                acpi_find_cache_level(table_hdr, cpu_node, &total_levels, 0, 0);
 187                cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
 188        } while (cpu_node);
 189
 190        return total_levels;
 191}
 192
 193/**
 194 * acpi_pptt_leaf_node() - Given a processor node, determine if its a leaf
 195 * @table_hdr: Pointer to the head of the PPTT table
 196 * @node: passed node is checked to see if its a leaf
 197 *
 198 * Determine if the *node parameter is a leaf node by iterating the
 199 * PPTT table, looking for nodes which reference it.
 200 *
 201 * Return: 0 if we find a node referencing the passed node (or table error),
 202 * or 1 if we don't.
 203 */
 204static int acpi_pptt_leaf_node(struct acpi_table_header *table_hdr,
 205                               struct acpi_pptt_processor *node)
 206{
 207        struct acpi_subtable_header *entry;
 208        unsigned long table_end;
 209        u32 node_entry;
 210        struct acpi_pptt_processor *cpu_node;
 211        u32 proc_sz;
 212
 213        if (table_hdr->revision > 1)
 214                return (node->flags & ACPI_PPTT_ACPI_LEAF_NODE);
 215
 216        table_end = (unsigned long)table_hdr + table_hdr->length;
 217        node_entry = ACPI_PTR_DIFF(node, table_hdr);
 218        entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
 219                             sizeof(struct acpi_table_pptt));
 220        proc_sz = sizeof(struct acpi_pptt_processor *);
 221
 222        while ((unsigned long)entry + proc_sz < table_end) {
 223                cpu_node = (struct acpi_pptt_processor *)entry;
 224                if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
 225                    cpu_node->parent == node_entry)
 226                        return 0;
 227                if (entry->length == 0)
 228                        return 0;
 229                entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
 230                                     entry->length);
 231
 232        }
 233        return 1;
 234}
 235
 236/**
 237 * acpi_find_processor_node() - Given a PPTT table find the requested processor
 238 * @table_hdr:  Pointer to the head of the PPTT table
 239 * @acpi_cpu_id: CPU we are searching for
 240 *
 241 * Find the subtable entry describing the provided processor.
 242 * This is done by iterating the PPTT table looking for processor nodes
 243 * which have an acpi_processor_id that matches the acpi_cpu_id parameter
 244 * passed into the function. If we find a node that matches this criteria
 245 * we verify that its a leaf node in the topology rather than depending
 246 * on the valid flag, which doesn't need to be set for leaf nodes.
 247 *
 248 * Return: NULL, or the processors acpi_pptt_processor*
 249 */
 250static struct acpi_pptt_processor *acpi_find_processor_node(struct acpi_table_header *table_hdr,
 251                                                            u32 acpi_cpu_id)
 252{
 253        struct acpi_subtable_header *entry;
 254        unsigned long table_end;
 255        struct acpi_pptt_processor *cpu_node;
 256        u32 proc_sz;
 257
 258        table_end = (unsigned long)table_hdr + table_hdr->length;
 259        entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
 260                             sizeof(struct acpi_table_pptt));
 261        proc_sz = sizeof(struct acpi_pptt_processor *);
 262
 263        /* find the processor structure associated with this cpuid */
 264        while ((unsigned long)entry + proc_sz < table_end) {
 265                cpu_node = (struct acpi_pptt_processor *)entry;
 266
 267                if (entry->length == 0) {
 268                        pr_warn("Invalid zero length subtable\n");
 269                        break;
 270                }
 271                if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
 272                    acpi_cpu_id == cpu_node->acpi_processor_id &&
 273                     acpi_pptt_leaf_node(table_hdr, cpu_node)) {
 274                        return (struct acpi_pptt_processor *)entry;
 275                }
 276
 277                entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
 278                                     entry->length);
 279        }
 280
 281        return NULL;
 282}
 283
 284static int acpi_find_cache_levels(struct acpi_table_header *table_hdr,
 285                                  u32 acpi_cpu_id)
 286{
 287        int number_of_levels = 0;
 288        struct acpi_pptt_processor *cpu;
 289
 290        cpu = acpi_find_processor_node(table_hdr, acpi_cpu_id);
 291        if (cpu)
 292                number_of_levels = acpi_count_levels(table_hdr, cpu);
 293
 294        return number_of_levels;
 295}
 296
 297static u8 acpi_cache_type(enum cache_type type)
 298{
 299        switch (type) {
 300        case CACHE_TYPE_DATA:
 301                pr_debug("Looking for data cache\n");
 302                return ACPI_PPTT_CACHE_TYPE_DATA;
 303        case CACHE_TYPE_INST:
 304                pr_debug("Looking for instruction cache\n");
 305                return ACPI_PPTT_CACHE_TYPE_INSTR;
 306        default:
 307        case CACHE_TYPE_UNIFIED:
 308                pr_debug("Looking for unified cache\n");
 309                /*
 310                 * It is important that ACPI_PPTT_CACHE_TYPE_UNIFIED
 311                 * contains the bit pattern that will match both
 312                 * ACPI unified bit patterns because we use it later
 313                 * to match both cases.
 314                 */
 315                return ACPI_PPTT_CACHE_TYPE_UNIFIED;
 316        }
 317}
 318
 319static struct acpi_pptt_cache *acpi_find_cache_node(struct acpi_table_header *table_hdr,
 320                                                    u32 acpi_cpu_id,
 321                                                    enum cache_type type,
 322                                                    unsigned int level,
 323                                                    struct acpi_pptt_processor **node)
 324{
 325        unsigned int total_levels = 0;
 326        struct acpi_pptt_cache *found = NULL;
 327        struct acpi_pptt_processor *cpu_node;
 328        u8 acpi_type = acpi_cache_type(type);
 329
 330        pr_debug("Looking for CPU %d's level %u cache type %d\n",
 331                 acpi_cpu_id, level, acpi_type);
 332
 333        cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id);
 334
 335        while (cpu_node && !found) {
 336                found = acpi_find_cache_level(table_hdr, cpu_node,
 337                                              &total_levels, level, acpi_type);
 338                *node = cpu_node;
 339                cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
 340        }
 341
 342        return found;
 343}
 344
 345/**
 346 * update_cache_properties() - Update cacheinfo for the given processor
 347 * @this_leaf: Kernel cache info structure being updated
 348 * @found_cache: The PPTT node describing this cache instance
 349 * @cpu_node: A unique reference to describe this cache instance
 350 *
 351 * The ACPI spec implies that the fields in the cache structures are used to
 352 * extend and correct the information probed from the hardware. Lets only
 353 * set fields that we determine are VALID.
 354 *
 355 * Return: nothing. Side effect of updating the global cacheinfo
 356 */
 357static void update_cache_properties(struct cacheinfo *this_leaf,
 358                                    struct acpi_pptt_cache *found_cache,
 359                                    struct acpi_pptt_processor *cpu_node)
 360{
 361        this_leaf->fw_token = cpu_node;
 362        if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID)
 363                this_leaf->size = found_cache->size;
 364        if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID)
 365                this_leaf->coherency_line_size = found_cache->line_size;
 366        if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID)
 367                this_leaf->number_of_sets = found_cache->number_of_sets;
 368        if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID)
 369                this_leaf->ways_of_associativity = found_cache->associativity;
 370        if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID) {
 371                switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) {
 372                case ACPI_PPTT_CACHE_POLICY_WT:
 373                        this_leaf->attributes = CACHE_WRITE_THROUGH;
 374                        break;
 375                case ACPI_PPTT_CACHE_POLICY_WB:
 376                        this_leaf->attributes = CACHE_WRITE_BACK;
 377                        break;
 378                }
 379        }
 380        if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID) {
 381                switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) {
 382                case ACPI_PPTT_CACHE_READ_ALLOCATE:
 383                        this_leaf->attributes |= CACHE_READ_ALLOCATE;
 384                        break;
 385                case ACPI_PPTT_CACHE_WRITE_ALLOCATE:
 386                        this_leaf->attributes |= CACHE_WRITE_ALLOCATE;
 387                        break;
 388                case ACPI_PPTT_CACHE_RW_ALLOCATE:
 389                case ACPI_PPTT_CACHE_RW_ALLOCATE_ALT:
 390                        this_leaf->attributes |=
 391                                CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE;
 392                        break;
 393                }
 394        }
 395        /*
 396         * If cache type is NOCACHE, then the cache hasn't been specified
 397         * via other mechanisms.  Update the type if a cache type has been
 398         * provided.
 399         *
 400         * Note, we assume such caches are unified based on conventional system
 401         * design and known examples.  Significant work is required elsewhere to
 402         * fully support data/instruction only type caches which are only
 403         * specified in PPTT.
 404         */
 405        if (this_leaf->type == CACHE_TYPE_NOCACHE &&
 406            found_cache->flags & ACPI_PPTT_CACHE_TYPE_VALID)
 407                this_leaf->type = CACHE_TYPE_UNIFIED;
 408}
 409
 410static void cache_setup_acpi_cpu(struct acpi_table_header *table,
 411                                 unsigned int cpu)
 412{
 413        struct acpi_pptt_cache *found_cache;
 414        struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
 415        u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
 416        struct cacheinfo *this_leaf;
 417        unsigned int index = 0;
 418        struct acpi_pptt_processor *cpu_node = NULL;
 419
 420        while (index < get_cpu_cacheinfo(cpu)->num_leaves) {
 421                this_leaf = this_cpu_ci->info_list + index;
 422                found_cache = acpi_find_cache_node(table, acpi_cpu_id,
 423                                                   this_leaf->type,
 424                                                   this_leaf->level,
 425                                                   &cpu_node);
 426                pr_debug("found = %p %p\n", found_cache, cpu_node);
 427                if (found_cache)
 428                        update_cache_properties(this_leaf,
 429                                                found_cache,
 430                                                cpu_node);
 431
 432                index++;
 433        }
 434}
 435
 436static bool flag_identical(struct acpi_table_header *table_hdr,
 437                           struct acpi_pptt_processor *cpu)
 438{
 439        struct acpi_pptt_processor *next;
 440
 441        /* heterogeneous machines must use PPTT revision > 1 */
 442        if (table_hdr->revision < 2)
 443                return false;
 444
 445        /* Locate the last node in the tree with IDENTICAL set */
 446        if (cpu->flags & ACPI_PPTT_ACPI_IDENTICAL) {
 447                next = fetch_pptt_node(table_hdr, cpu->parent);
 448                if (!(next && next->flags & ACPI_PPTT_ACPI_IDENTICAL))
 449                        return true;
 450        }
 451
 452        return false;
 453}
 454
 455/* Passing level values greater than this will result in search termination */
 456#define PPTT_ABORT_PACKAGE 0xFF
 457
 458static struct acpi_pptt_processor *acpi_find_processor_tag(struct acpi_table_header *table_hdr,
 459                                                           struct acpi_pptt_processor *cpu,
 460                                                           int level, int flag)
 461{
 462        struct acpi_pptt_processor *prev_node;
 463
 464        while (cpu && level) {
 465                /* special case the identical flag to find last identical */
 466                if (flag == ACPI_PPTT_ACPI_IDENTICAL) {
 467                        if (flag_identical(table_hdr, cpu))
 468                                break;
 469                } else if (cpu->flags & flag)
 470                        break;
 471                pr_debug("level %d\n", level);
 472                prev_node = fetch_pptt_node(table_hdr, cpu->parent);
 473                if (prev_node == NULL)
 474                        break;
 475                cpu = prev_node;
 476                level--;
 477        }
 478        return cpu;
 479}
 480
 481static void acpi_pptt_warn_missing(void)
 482{
 483        pr_warn_once("No PPTT table found, CPU and cache topology may be inaccurate\n");
 484}
 485
 486/**
 487 * topology_get_acpi_cpu_tag() - Find a unique topology value for a feature
 488 * @table: Pointer to the head of the PPTT table
 489 * @cpu: Kernel logical CPU number
 490 * @level: A level that terminates the search
 491 * @flag: A flag which terminates the search
 492 *
 493 * Get a unique value given a CPU, and a topology level, that can be
 494 * matched to determine which cpus share common topological features
 495 * at that level.
 496 *
 497 * Return: Unique value, or -ENOENT if unable to locate CPU
 498 */
 499static int topology_get_acpi_cpu_tag(struct acpi_table_header *table,
 500                                     unsigned int cpu, int level, int flag)
 501{
 502        struct acpi_pptt_processor *cpu_node;
 503        u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
 504
 505        cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
 506        if (cpu_node) {
 507                cpu_node = acpi_find_processor_tag(table, cpu_node,
 508                                                   level, flag);
 509                /*
 510                 * As per specification if the processor structure represents
 511                 * an actual processor, then ACPI processor ID must be valid.
 512                 * For processor containers ACPI_PPTT_ACPI_PROCESSOR_ID_VALID
 513                 * should be set if the UID is valid
 514                 */
 515                if (level == 0 ||
 516                    cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
 517                        return cpu_node->acpi_processor_id;
 518                return ACPI_PTR_DIFF(cpu_node, table);
 519        }
 520        pr_warn_once("PPTT table found, but unable to locate core %d (%d)\n",
 521                    cpu, acpi_cpu_id);
 522        return -ENOENT;
 523}
 524
 525static int find_acpi_cpu_topology_tag(unsigned int cpu, int level, int flag)
 526{
 527        struct acpi_table_header *table;
 528        acpi_status status;
 529        int retval;
 530
 531        status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
 532        if (ACPI_FAILURE(status)) {
 533                acpi_pptt_warn_missing();
 534                return -ENOENT;
 535        }
 536        retval = topology_get_acpi_cpu_tag(table, cpu, level, flag);
 537        pr_debug("Topology Setup ACPI CPU %d, level %d ret = %d\n",
 538                 cpu, level, retval);
 539        acpi_put_table(table);
 540
 541        return retval;
 542}
 543
 544/**
 545 * check_acpi_cpu_flag() - Determine if CPU node has a flag set
 546 * @cpu: Kernel logical CPU number
 547 * @rev: The minimum PPTT revision defining the flag
 548 * @flag: The flag itself
 549 *
 550 * Check the node representing a CPU for a given flag.
 551 *
 552 * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found or
 553 *         the table revision isn't new enough.
 554 *         1, any passed flag set
 555 *         0, flag unset
 556 */
 557static int check_acpi_cpu_flag(unsigned int cpu, int rev, u32 flag)
 558{
 559        struct acpi_table_header *table;
 560        acpi_status status;
 561        u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
 562        struct acpi_pptt_processor *cpu_node = NULL;
 563        int ret = -ENOENT;
 564
 565        status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
 566        if (ACPI_FAILURE(status)) {
 567                acpi_pptt_warn_missing();
 568                return ret;
 569        }
 570
 571        if (table->revision >= rev)
 572                cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
 573
 574        if (cpu_node)
 575                ret = (cpu_node->flags & flag) != 0;
 576
 577        acpi_put_table(table);
 578
 579        return ret;
 580}
 581
 582/**
 583 * acpi_find_last_cache_level() - Determines the number of cache levels for a PE
 584 * @cpu: Kernel logical CPU number
 585 *
 586 * Given a logical CPU number, returns the number of levels of cache represented
 587 * in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0
 588 * indicating we didn't find any cache levels.
 589 *
 590 * Return: Cache levels visible to this core.
 591 */
 592int acpi_find_last_cache_level(unsigned int cpu)
 593{
 594        u32 acpi_cpu_id;
 595        struct acpi_table_header *table;
 596        int number_of_levels = 0;
 597        acpi_status status;
 598
 599        pr_debug("Cache Setup find last level CPU=%d\n", cpu);
 600
 601        acpi_cpu_id = get_acpi_id_for_cpu(cpu);
 602        status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
 603        if (ACPI_FAILURE(status)) {
 604                acpi_pptt_warn_missing();
 605        } else {
 606                number_of_levels = acpi_find_cache_levels(table, acpi_cpu_id);
 607                acpi_put_table(table);
 608        }
 609        pr_debug("Cache Setup find last level level=%d\n", number_of_levels);
 610
 611        return number_of_levels;
 612}
 613
 614/**
 615 * cache_setup_acpi() - Override CPU cache topology with data from the PPTT
 616 * @cpu: Kernel logical CPU number
 617 *
 618 * Updates the global cache info provided by cpu_get_cacheinfo()
 619 * when there are valid properties in the acpi_pptt_cache nodes. A
 620 * successful parse may not result in any updates if none of the
 621 * cache levels have any valid flags set.  Further, a unique value is
 622 * associated with each known CPU cache entry. This unique value
 623 * can be used to determine whether caches are shared between CPUs.
 624 *
 625 * Return: -ENOENT on failure to find table, or 0 on success
 626 */
 627int cache_setup_acpi(unsigned int cpu)
 628{
 629        struct acpi_table_header *table;
 630        acpi_status status;
 631
 632        pr_debug("Cache Setup ACPI CPU %d\n", cpu);
 633
 634        status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
 635        if (ACPI_FAILURE(status)) {
 636                acpi_pptt_warn_missing();
 637                return -ENOENT;
 638        }
 639
 640        cache_setup_acpi_cpu(table, cpu);
 641        acpi_put_table(table);
 642
 643        return status;
 644}
 645
 646/**
 647 * acpi_pptt_cpu_is_thread() - Determine if CPU is a thread
 648 * @cpu: Kernel logical CPU number
 649 *
 650 * Return: 1, a thread
 651 *         0, not a thread
 652 *         -ENOENT ,if the PPTT doesn't exist, the CPU cannot be found or
 653 *         the table revision isn't new enough.
 654 */
 655int acpi_pptt_cpu_is_thread(unsigned int cpu)
 656{
 657        return check_acpi_cpu_flag(cpu, 2, ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD);
 658}
 659
 660/**
 661 * find_acpi_cpu_topology() - Determine a unique topology value for a given CPU
 662 * @cpu: Kernel logical CPU number
 663 * @level: The topological level for which we would like a unique ID
 664 *
 665 * Determine a topology unique ID for each thread/core/cluster/mc_grouping
 666 * /socket/etc. This ID can then be used to group peers, which will have
 667 * matching ids.
 668 *
 669 * The search terminates when either the requested level is found or
 670 * we reach a root node. Levels beyond the termination point will return the
 671 * same unique ID. The unique id for level 0 is the acpi processor id. All
 672 * other levels beyond this use a generated value to uniquely identify
 673 * a topological feature.
 674 *
 675 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
 676 * Otherwise returns a value which represents a unique topological feature.
 677 */
 678int find_acpi_cpu_topology(unsigned int cpu, int level)
 679{
 680        return find_acpi_cpu_topology_tag(cpu, level, 0);
 681}
 682
 683/**
 684 * find_acpi_cpu_cache_topology() - Determine a unique cache topology value
 685 * @cpu: Kernel logical CPU number
 686 * @level: The cache level for which we would like a unique ID
 687 *
 688 * Determine a unique ID for each unified cache in the system
 689 *
 690 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
 691 * Otherwise returns a value which represents a unique topological feature.
 692 */
 693int find_acpi_cpu_cache_topology(unsigned int cpu, int level)
 694{
 695        struct acpi_table_header *table;
 696        struct acpi_pptt_cache *found_cache;
 697        acpi_status status;
 698        u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
 699        struct acpi_pptt_processor *cpu_node = NULL;
 700        int ret = -1;
 701
 702        status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
 703        if (ACPI_FAILURE(status)) {
 704                acpi_pptt_warn_missing();
 705                return -ENOENT;
 706        }
 707
 708        found_cache = acpi_find_cache_node(table, acpi_cpu_id,
 709                                           CACHE_TYPE_UNIFIED,
 710                                           level,
 711                                           &cpu_node);
 712        if (found_cache)
 713                ret = ACPI_PTR_DIFF(cpu_node, table);
 714
 715        acpi_put_table(table);
 716
 717        return ret;
 718}
 719
 720/**
 721 * find_acpi_cpu_topology_package() - Determine a unique CPU package value
 722 * @cpu: Kernel logical CPU number
 723 *
 724 * Determine a topology unique package ID for the given CPU.
 725 * This ID can then be used to group peers, which will have matching ids.
 726 *
 727 * The search terminates when either a level is found with the PHYSICAL_PACKAGE
 728 * flag set or we reach a root node.
 729 *
 730 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
 731 * Otherwise returns a value which represents the package for this CPU.
 732 */
 733int find_acpi_cpu_topology_package(unsigned int cpu)
 734{
 735        return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
 736                                          ACPI_PPTT_PHYSICAL_PACKAGE);
 737}
 738
 739/**
 740 * find_acpi_cpu_topology_hetero_id() - Get a core architecture tag
 741 * @cpu: Kernel logical CPU number
 742 *
 743 * Determine a unique heterogeneous tag for the given CPU. CPUs with the same
 744 * implementation should have matching tags.
 745 *
 746 * The returned tag can be used to group peers with identical implementation.
 747 *
 748 * The search terminates when a level is found with the identical implementation
 749 * flag set or we reach a root node.
 750 *
 751 * Due to limitations in the PPTT data structure, there may be rare situations
 752 * where two cores in a heterogeneous machine may be identical, but won't have
 753 * the same tag.
 754 *
 755 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
 756 * Otherwise returns a value which represents a group of identical cores
 757 * similar to this CPU.
 758 */
 759int find_acpi_cpu_topology_hetero_id(unsigned int cpu)
 760{
 761        return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
 762                                          ACPI_PPTT_ACPI_IDENTICAL);
 763}
 764