linux/drivers/iio/adc/xilinx-xadc-core.c
<<
>>
Prefs
   1/*
   2 * Xilinx XADC driver
   3 *
   4 * Copyright 2013-2014 Analog Devices Inc.
   5 *  Author: Lars-Peter Clauen <lars@metafoo.de>
   6 *
   7 * Licensed under the GPL-2.
   8 *
   9 * Documentation for the parts can be found at:
  10 *  - XADC hardmacro: Xilinx UG480
  11 *  - ZYNQ XADC interface: Xilinx UG585
  12 *  - AXI XADC interface: Xilinx PG019
  13 */
  14
  15#include <linux/clk.h>
  16#include <linux/device.h>
  17#include <linux/err.h>
  18#include <linux/interrupt.h>
  19#include <linux/io.h>
  20#include <linux/kernel.h>
  21#include <linux/module.h>
  22#include <linux/of.h>
  23#include <linux/platform_device.h>
  24#include <linux/slab.h>
  25#include <linux/sysfs.h>
  26
  27#include <linux/iio/buffer.h>
  28#include <linux/iio/events.h>
  29#include <linux/iio/iio.h>
  30#include <linux/iio/sysfs.h>
  31#include <linux/iio/trigger.h>
  32#include <linux/iio/trigger_consumer.h>
  33#include <linux/iio/triggered_buffer.h>
  34
  35#include "xilinx-xadc.h"
  36
  37static const unsigned int XADC_ZYNQ_UNMASK_TIMEOUT = 500;
  38
  39/* ZYNQ register definitions */
  40#define XADC_ZYNQ_REG_CFG       0x00
  41#define XADC_ZYNQ_REG_INTSTS    0x04
  42#define XADC_ZYNQ_REG_INTMSK    0x08
  43#define XADC_ZYNQ_REG_STATUS    0x0c
  44#define XADC_ZYNQ_REG_CFIFO     0x10
  45#define XADC_ZYNQ_REG_DFIFO     0x14
  46#define XADC_ZYNQ_REG_CTL               0x18
  47
  48#define XADC_ZYNQ_CFG_ENABLE            BIT(31)
  49#define XADC_ZYNQ_CFG_CFIFOTH_MASK      (0xf << 20)
  50#define XADC_ZYNQ_CFG_CFIFOTH_OFFSET    20
  51#define XADC_ZYNQ_CFG_DFIFOTH_MASK      (0xf << 16)
  52#define XADC_ZYNQ_CFG_DFIFOTH_OFFSET    16
  53#define XADC_ZYNQ_CFG_WEDGE             BIT(13)
  54#define XADC_ZYNQ_CFG_REDGE             BIT(12)
  55#define XADC_ZYNQ_CFG_TCKRATE_MASK      (0x3 << 8)
  56#define XADC_ZYNQ_CFG_TCKRATE_DIV2      (0x0 << 8)
  57#define XADC_ZYNQ_CFG_TCKRATE_DIV4      (0x1 << 8)
  58#define XADC_ZYNQ_CFG_TCKRATE_DIV8      (0x2 << 8)
  59#define XADC_ZYNQ_CFG_TCKRATE_DIV16     (0x3 << 8)
  60#define XADC_ZYNQ_CFG_IGAP_MASK         0x1f
  61#define XADC_ZYNQ_CFG_IGAP(x)           (x)
  62
  63#define XADC_ZYNQ_INT_CFIFO_LTH         BIT(9)
  64#define XADC_ZYNQ_INT_DFIFO_GTH         BIT(8)
  65#define XADC_ZYNQ_INT_ALARM_MASK        0xff
  66#define XADC_ZYNQ_INT_ALARM_OFFSET      0
  67
  68#define XADC_ZYNQ_STATUS_CFIFO_LVL_MASK (0xf << 16)
  69#define XADC_ZYNQ_STATUS_CFIFO_LVL_OFFSET       16
  70#define XADC_ZYNQ_STATUS_DFIFO_LVL_MASK (0xf << 12)
  71#define XADC_ZYNQ_STATUS_DFIFO_LVL_OFFSET       12
  72#define XADC_ZYNQ_STATUS_CFIFOF         BIT(11)
  73#define XADC_ZYNQ_STATUS_CFIFOE         BIT(10)
  74#define XADC_ZYNQ_STATUS_DFIFOF         BIT(9)
  75#define XADC_ZYNQ_STATUS_DFIFOE         BIT(8)
  76#define XADC_ZYNQ_STATUS_OT             BIT(7)
  77#define XADC_ZYNQ_STATUS_ALM(x)         BIT(x)
  78
  79#define XADC_ZYNQ_CTL_RESET             BIT(4)
  80
  81#define XADC_ZYNQ_CMD_NOP               0x00
  82#define XADC_ZYNQ_CMD_READ              0x01
  83#define XADC_ZYNQ_CMD_WRITE             0x02
  84
  85#define XADC_ZYNQ_CMD(cmd, addr, data) (((cmd) << 26) | ((addr) << 16) | (data))
  86
  87/* AXI register definitions */
  88#define XADC_AXI_REG_RESET              0x00
  89#define XADC_AXI_REG_STATUS             0x04
  90#define XADC_AXI_REG_ALARM_STATUS       0x08
  91#define XADC_AXI_REG_CONVST             0x0c
  92#define XADC_AXI_REG_XADC_RESET         0x10
  93#define XADC_AXI_REG_GIER               0x5c
  94#define XADC_AXI_REG_IPISR              0x60
  95#define XADC_AXI_REG_IPIER              0x68
  96#define XADC_AXI_ADC_REG_OFFSET         0x200
  97
  98#define XADC_AXI_RESET_MAGIC            0xa
  99#define XADC_AXI_GIER_ENABLE            BIT(31)
 100
 101#define XADC_AXI_INT_EOS                BIT(4)
 102#define XADC_AXI_INT_ALARM_MASK         0x3c0f
 103
 104#define XADC_FLAGS_BUFFERED BIT(0)
 105
 106static void xadc_write_reg(struct xadc *xadc, unsigned int reg,
 107        uint32_t val)
 108{
 109        writel(val, xadc->base + reg);
 110}
 111
 112static void xadc_read_reg(struct xadc *xadc, unsigned int reg,
 113        uint32_t *val)
 114{
 115        *val = readl(xadc->base + reg);
 116}
 117
 118/*
 119 * The ZYNQ interface uses two asynchronous FIFOs for communication with the
 120 * XADC. Reads and writes to the XADC register are performed by submitting a
 121 * request to the command FIFO (CFIFO), once the request has been completed the
 122 * result can be read from the data FIFO (DFIFO). The method currently used in
 123 * this driver is to submit the request for a read/write operation, then go to
 124 * sleep and wait for an interrupt that signals that a response is available in
 125 * the data FIFO.
 126 */
 127
 128static void xadc_zynq_write_fifo(struct xadc *xadc, uint32_t *cmd,
 129        unsigned int n)
 130{
 131        unsigned int i;
 132
 133        for (i = 0; i < n; i++)
 134                xadc_write_reg(xadc, XADC_ZYNQ_REG_CFIFO, cmd[i]);
 135}
 136
 137static void xadc_zynq_drain_fifo(struct xadc *xadc)
 138{
 139        uint32_t status, tmp;
 140
 141        xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
 142
 143        while (!(status & XADC_ZYNQ_STATUS_DFIFOE)) {
 144                xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
 145                xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
 146        }
 147}
 148
 149static void xadc_zynq_update_intmsk(struct xadc *xadc, unsigned int mask,
 150        unsigned int val)
 151{
 152        xadc->zynq_intmask &= ~mask;
 153        xadc->zynq_intmask |= val;
 154
 155        xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK,
 156                xadc->zynq_intmask | xadc->zynq_masked_alarm);
 157}
 158
 159static int xadc_zynq_write_adc_reg(struct xadc *xadc, unsigned int reg,
 160        uint16_t val)
 161{
 162        uint32_t cmd[1];
 163        uint32_t tmp;
 164        int ret;
 165
 166        spin_lock_irq(&xadc->lock);
 167        xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
 168                        XADC_ZYNQ_INT_DFIFO_GTH);
 169
 170        reinit_completion(&xadc->completion);
 171
 172        cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_WRITE, reg, val);
 173        xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
 174        xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
 175        tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
 176        tmp |= 0 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
 177        xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
 178
 179        xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
 180        spin_unlock_irq(&xadc->lock);
 181
 182        ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
 183        if (ret == 0)
 184                ret = -EIO;
 185        else
 186                ret = 0;
 187
 188        xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
 189
 190        return ret;
 191}
 192
 193static int xadc_zynq_read_adc_reg(struct xadc *xadc, unsigned int reg,
 194        uint16_t *val)
 195{
 196        uint32_t cmd[2];
 197        uint32_t resp, tmp;
 198        int ret;
 199
 200        cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_READ, reg, 0);
 201        cmd[1] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_NOP, 0, 0);
 202
 203        spin_lock_irq(&xadc->lock);
 204        xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
 205                        XADC_ZYNQ_INT_DFIFO_GTH);
 206        xadc_zynq_drain_fifo(xadc);
 207        reinit_completion(&xadc->completion);
 208
 209        xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
 210        xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
 211        tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
 212        tmp |= 1 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
 213        xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
 214
 215        xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
 216        spin_unlock_irq(&xadc->lock);
 217        ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
 218        if (ret == 0)
 219                ret = -EIO;
 220        if (ret < 0)
 221                return ret;
 222
 223        xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
 224        xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
 225
 226        *val = resp & 0xffff;
 227
 228        return 0;
 229}
 230
 231static unsigned int xadc_zynq_transform_alarm(unsigned int alarm)
 232{
 233        return ((alarm & 0x80) >> 4) |
 234                ((alarm & 0x78) << 1) |
 235                (alarm & 0x07);
 236}
 237
 238/*
 239 * The ZYNQ threshold interrupts are level sensitive. Since we can't make the
 240 * threshold condition go way from within the interrupt handler, this means as
 241 * soon as a threshold condition is present we would enter the interrupt handler
 242 * again and again. To work around this we mask all active thresholds interrupts
 243 * in the interrupt handler and start a timer. In this timer we poll the
 244 * interrupt status and only if the interrupt is inactive we unmask it again.
 245 */
 246static void xadc_zynq_unmask_worker(struct work_struct *work)
 247{
 248        struct xadc *xadc = container_of(work, struct xadc, zynq_unmask_work.work);
 249        unsigned int misc_sts, unmask;
 250
 251        xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &misc_sts);
 252
 253        misc_sts &= XADC_ZYNQ_INT_ALARM_MASK;
 254
 255        spin_lock_irq(&xadc->lock);
 256
 257        /* Clear those bits which are not active anymore */
 258        unmask = (xadc->zynq_masked_alarm ^ misc_sts) & xadc->zynq_masked_alarm;
 259        xadc->zynq_masked_alarm &= misc_sts;
 260
 261        /* Also clear those which are masked out anyway */
 262        xadc->zynq_masked_alarm &= ~xadc->zynq_intmask;
 263
 264        /* Clear the interrupts before we unmask them */
 265        xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, unmask);
 266
 267        xadc_zynq_update_intmsk(xadc, 0, 0);
 268
 269        spin_unlock_irq(&xadc->lock);
 270
 271        /* if still pending some alarm re-trigger the timer */
 272        if (xadc->zynq_masked_alarm) {
 273                schedule_delayed_work(&xadc->zynq_unmask_work,
 274                                msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
 275        }
 276
 277}
 278
 279static irqreturn_t xadc_zynq_interrupt_handler(int irq, void *devid)
 280{
 281        struct iio_dev *indio_dev = devid;
 282        struct xadc *xadc = iio_priv(indio_dev);
 283        uint32_t status;
 284
 285        xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
 286
 287        status &= ~(xadc->zynq_intmask | xadc->zynq_masked_alarm);
 288
 289        if (!status)
 290                return IRQ_NONE;
 291
 292        spin_lock(&xadc->lock);
 293
 294        xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status);
 295
 296        if (status & XADC_ZYNQ_INT_DFIFO_GTH) {
 297                xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
 298                        XADC_ZYNQ_INT_DFIFO_GTH);
 299                complete(&xadc->completion);
 300        }
 301
 302        status &= XADC_ZYNQ_INT_ALARM_MASK;
 303        if (status) {
 304                xadc->zynq_masked_alarm |= status;
 305                /*
 306                 * mask the current event interrupt,
 307                 * unmask it when the interrupt is no more active.
 308                 */
 309                xadc_zynq_update_intmsk(xadc, 0, 0);
 310
 311                xadc_handle_events(indio_dev,
 312                                xadc_zynq_transform_alarm(status));
 313
 314                /* unmask the required interrupts in timer. */
 315                schedule_delayed_work(&xadc->zynq_unmask_work,
 316                                msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
 317        }
 318        spin_unlock(&xadc->lock);
 319
 320        return IRQ_HANDLED;
 321}
 322
 323#define XADC_ZYNQ_TCK_RATE_MAX 50000000
 324#define XADC_ZYNQ_IGAP_DEFAULT 20
 325
 326static int xadc_zynq_setup(struct platform_device *pdev,
 327        struct iio_dev *indio_dev, int irq)
 328{
 329        struct xadc *xadc = iio_priv(indio_dev);
 330        unsigned long pcap_rate;
 331        unsigned int tck_div;
 332        unsigned int div;
 333        unsigned int igap;
 334        unsigned int tck_rate;
 335
 336        /* TODO: Figure out how to make igap and tck_rate configurable */
 337        igap = XADC_ZYNQ_IGAP_DEFAULT;
 338        tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
 339
 340        xadc->zynq_intmask = ~0;
 341
 342        pcap_rate = clk_get_rate(xadc->clk);
 343
 344        if (tck_rate > XADC_ZYNQ_TCK_RATE_MAX)
 345                tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
 346        if (tck_rate > pcap_rate / 2) {
 347                div = 2;
 348        } else {
 349                div = pcap_rate / tck_rate;
 350                if (pcap_rate / div > XADC_ZYNQ_TCK_RATE_MAX)
 351                        div++;
 352        }
 353
 354        if (div <= 3)
 355                tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV2;
 356        else if (div <= 7)
 357                tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV4;
 358        else if (div <= 15)
 359                tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV8;
 360        else
 361                tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV16;
 362
 363        xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, XADC_ZYNQ_CTL_RESET);
 364        xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, 0);
 365        xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, ~0);
 366        xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, xadc->zynq_intmask);
 367        xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, XADC_ZYNQ_CFG_ENABLE |
 368                        XADC_ZYNQ_CFG_REDGE | XADC_ZYNQ_CFG_WEDGE |
 369                        tck_div | XADC_ZYNQ_CFG_IGAP(igap));
 370
 371        return 0;
 372}
 373
 374static unsigned long xadc_zynq_get_dclk_rate(struct xadc *xadc)
 375{
 376        unsigned int div;
 377        uint32_t val;
 378
 379        xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &val);
 380
 381        switch (val & XADC_ZYNQ_CFG_TCKRATE_MASK) {
 382        case XADC_ZYNQ_CFG_TCKRATE_DIV4:
 383                div = 4;
 384                break;
 385        case XADC_ZYNQ_CFG_TCKRATE_DIV8:
 386                div = 8;
 387                break;
 388        case XADC_ZYNQ_CFG_TCKRATE_DIV16:
 389                div = 16;
 390                break;
 391        default:
 392                div = 2;
 393                break;
 394        }
 395
 396        return clk_get_rate(xadc->clk) / div;
 397}
 398
 399static void xadc_zynq_update_alarm(struct xadc *xadc, unsigned int alarm)
 400{
 401        unsigned long flags;
 402        uint32_t status;
 403
 404        /* Move OT to bit 7 */
 405        alarm = ((alarm & 0x08) << 4) | ((alarm & 0xf0) >> 1) | (alarm & 0x07);
 406
 407        spin_lock_irqsave(&xadc->lock, flags);
 408
 409        /* Clear previous interrupts if any. */
 410        xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
 411        xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status & alarm);
 412
 413        xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_ALARM_MASK,
 414                ~alarm & XADC_ZYNQ_INT_ALARM_MASK);
 415
 416        spin_unlock_irqrestore(&xadc->lock, flags);
 417}
 418
 419static const struct xadc_ops xadc_zynq_ops = {
 420        .read = xadc_zynq_read_adc_reg,
 421        .write = xadc_zynq_write_adc_reg,
 422        .setup = xadc_zynq_setup,
 423        .get_dclk_rate = xadc_zynq_get_dclk_rate,
 424        .interrupt_handler = xadc_zynq_interrupt_handler,
 425        .update_alarm = xadc_zynq_update_alarm,
 426};
 427
 428static int xadc_axi_read_adc_reg(struct xadc *xadc, unsigned int reg,
 429        uint16_t *val)
 430{
 431        uint32_t val32;
 432
 433        xadc_read_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, &val32);
 434        *val = val32 & 0xffff;
 435
 436        return 0;
 437}
 438
 439static int xadc_axi_write_adc_reg(struct xadc *xadc, unsigned int reg,
 440        uint16_t val)
 441{
 442        xadc_write_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, val);
 443
 444        return 0;
 445}
 446
 447static int xadc_axi_setup(struct platform_device *pdev,
 448        struct iio_dev *indio_dev, int irq)
 449{
 450        struct xadc *xadc = iio_priv(indio_dev);
 451
 452        xadc_write_reg(xadc, XADC_AXI_REG_RESET, XADC_AXI_RESET_MAGIC);
 453        xadc_write_reg(xadc, XADC_AXI_REG_GIER, XADC_AXI_GIER_ENABLE);
 454
 455        return 0;
 456}
 457
 458static irqreturn_t xadc_axi_interrupt_handler(int irq, void *devid)
 459{
 460        struct iio_dev *indio_dev = devid;
 461        struct xadc *xadc = iio_priv(indio_dev);
 462        uint32_t status, mask;
 463        unsigned int events;
 464
 465        xadc_read_reg(xadc, XADC_AXI_REG_IPISR, &status);
 466        xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &mask);
 467        status &= mask;
 468
 469        if (!status)
 470                return IRQ_NONE;
 471
 472        if ((status & XADC_AXI_INT_EOS) && xadc->trigger)
 473                iio_trigger_poll(xadc->trigger);
 474
 475        if (status & XADC_AXI_INT_ALARM_MASK) {
 476                /*
 477                 * The order of the bits in the AXI-XADC status register does
 478                 * not match the order of the bits in the XADC alarm enable
 479                 * register. xadc_handle_events() expects the events to be in
 480                 * the same order as the XADC alarm enable register.
 481                 */
 482                events = (status & 0x000e) >> 1;
 483                events |= (status & 0x0001) << 3;
 484                events |= (status & 0x3c00) >> 6;
 485                xadc_handle_events(indio_dev, events);
 486        }
 487
 488        xadc_write_reg(xadc, XADC_AXI_REG_IPISR, status);
 489
 490        return IRQ_HANDLED;
 491}
 492
 493static void xadc_axi_update_alarm(struct xadc *xadc, unsigned int alarm)
 494{
 495        uint32_t val;
 496        unsigned long flags;
 497
 498        /*
 499         * The order of the bits in the AXI-XADC status register does not match
 500         * the order of the bits in the XADC alarm enable register. We get
 501         * passed the alarm mask in the same order as in the XADC alarm enable
 502         * register.
 503         */
 504        alarm = ((alarm & 0x07) << 1) | ((alarm & 0x08) >> 3) |
 505                        ((alarm & 0xf0) << 6);
 506
 507        spin_lock_irqsave(&xadc->lock, flags);
 508        xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
 509        val &= ~XADC_AXI_INT_ALARM_MASK;
 510        val |= alarm;
 511        xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
 512        spin_unlock_irqrestore(&xadc->lock, flags);
 513}
 514
 515static unsigned long xadc_axi_get_dclk(struct xadc *xadc)
 516{
 517        return clk_get_rate(xadc->clk);
 518}
 519
 520static const struct xadc_ops xadc_axi_ops = {
 521        .read = xadc_axi_read_adc_reg,
 522        .write = xadc_axi_write_adc_reg,
 523        .setup = xadc_axi_setup,
 524        .get_dclk_rate = xadc_axi_get_dclk,
 525        .update_alarm = xadc_axi_update_alarm,
 526        .interrupt_handler = xadc_axi_interrupt_handler,
 527        .flags = XADC_FLAGS_BUFFERED,
 528};
 529
 530static int _xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
 531        uint16_t mask, uint16_t val)
 532{
 533        uint16_t tmp;
 534        int ret;
 535
 536        ret = _xadc_read_adc_reg(xadc, reg, &tmp);
 537        if (ret)
 538                return ret;
 539
 540        return _xadc_write_adc_reg(xadc, reg, (tmp & ~mask) | val);
 541}
 542
 543static int xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
 544        uint16_t mask, uint16_t val)
 545{
 546        int ret;
 547
 548        mutex_lock(&xadc->mutex);
 549        ret = _xadc_update_adc_reg(xadc, reg, mask, val);
 550        mutex_unlock(&xadc->mutex);
 551
 552        return ret;
 553}
 554
 555static unsigned long xadc_get_dclk_rate(struct xadc *xadc)
 556{
 557        return xadc->ops->get_dclk_rate(xadc);
 558}
 559
 560static int xadc_update_scan_mode(struct iio_dev *indio_dev,
 561        const unsigned long *mask)
 562{
 563        struct xadc *xadc = iio_priv(indio_dev);
 564        unsigned int n;
 565
 566        n = bitmap_weight(mask, indio_dev->masklength);
 567
 568        kfree(xadc->data);
 569        xadc->data = kcalloc(n, sizeof(*xadc->data), GFP_KERNEL);
 570        if (!xadc->data)
 571                return -ENOMEM;
 572
 573        return 0;
 574}
 575
 576static unsigned int xadc_scan_index_to_channel(unsigned int scan_index)
 577{
 578        switch (scan_index) {
 579        case 5:
 580                return XADC_REG_VCCPINT;
 581        case 6:
 582                return XADC_REG_VCCPAUX;
 583        case 7:
 584                return XADC_REG_VCCO_DDR;
 585        case 8:
 586                return XADC_REG_TEMP;
 587        case 9:
 588                return XADC_REG_VCCINT;
 589        case 10:
 590                return XADC_REG_VCCAUX;
 591        case 11:
 592                return XADC_REG_VPVN;
 593        case 12:
 594                return XADC_REG_VREFP;
 595        case 13:
 596                return XADC_REG_VREFN;
 597        case 14:
 598                return XADC_REG_VCCBRAM;
 599        default:
 600                return XADC_REG_VAUX(scan_index - 16);
 601        }
 602}
 603
 604static irqreturn_t xadc_trigger_handler(int irq, void *p)
 605{
 606        struct iio_poll_func *pf = p;
 607        struct iio_dev *indio_dev = pf->indio_dev;
 608        struct xadc *xadc = iio_priv(indio_dev);
 609        unsigned int chan;
 610        int i, j;
 611
 612        if (!xadc->data)
 613                goto out;
 614
 615        j = 0;
 616        for_each_set_bit(i, indio_dev->active_scan_mask,
 617                indio_dev->masklength) {
 618                chan = xadc_scan_index_to_channel(i);
 619                xadc_read_adc_reg(xadc, chan, &xadc->data[j]);
 620                j++;
 621        }
 622
 623        iio_push_to_buffers(indio_dev, xadc->data);
 624
 625out:
 626        iio_trigger_notify_done(indio_dev->trig);
 627
 628        return IRQ_HANDLED;
 629}
 630
 631static int xadc_trigger_set_state(struct iio_trigger *trigger, bool state)
 632{
 633        struct xadc *xadc = iio_trigger_get_drvdata(trigger);
 634        unsigned long flags;
 635        unsigned int convst;
 636        unsigned int val;
 637        int ret = 0;
 638
 639        mutex_lock(&xadc->mutex);
 640
 641        if (state) {
 642                /* Only one of the two triggers can be active at the a time. */
 643                if (xadc->trigger != NULL) {
 644                        ret = -EBUSY;
 645                        goto err_out;
 646                } else {
 647                        xadc->trigger = trigger;
 648                        if (trigger == xadc->convst_trigger)
 649                                convst = XADC_CONF0_EC;
 650                        else
 651                                convst = 0;
 652                }
 653                ret = _xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF0_EC,
 654                                        convst);
 655                if (ret)
 656                        goto err_out;
 657        } else {
 658                xadc->trigger = NULL;
 659        }
 660
 661        spin_lock_irqsave(&xadc->lock, flags);
 662        xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
 663        xadc_write_reg(xadc, XADC_AXI_REG_IPISR, val & XADC_AXI_INT_EOS);
 664        if (state)
 665                val |= XADC_AXI_INT_EOS;
 666        else
 667                val &= ~XADC_AXI_INT_EOS;
 668        xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
 669        spin_unlock_irqrestore(&xadc->lock, flags);
 670
 671err_out:
 672        mutex_unlock(&xadc->mutex);
 673
 674        return ret;
 675}
 676
 677static const struct iio_trigger_ops xadc_trigger_ops = {
 678        .set_trigger_state = &xadc_trigger_set_state,
 679};
 680
 681static struct iio_trigger *xadc_alloc_trigger(struct iio_dev *indio_dev,
 682        const char *name)
 683{
 684        struct iio_trigger *trig;
 685        int ret;
 686
 687        trig = iio_trigger_alloc("%s%d-%s", indio_dev->name,
 688                                indio_dev->id, name);
 689        if (trig == NULL)
 690                return ERR_PTR(-ENOMEM);
 691
 692        trig->dev.parent = indio_dev->dev.parent;
 693        trig->ops = &xadc_trigger_ops;
 694        iio_trigger_set_drvdata(trig, iio_priv(indio_dev));
 695
 696        ret = iio_trigger_register(trig);
 697        if (ret)
 698                goto error_free_trig;
 699
 700        return trig;
 701
 702error_free_trig:
 703        iio_trigger_free(trig);
 704        return ERR_PTR(ret);
 705}
 706
 707static int xadc_power_adc_b(struct xadc *xadc, unsigned int seq_mode)
 708{
 709        uint16_t val;
 710
 711        switch (seq_mode) {
 712        case XADC_CONF1_SEQ_SIMULTANEOUS:
 713        case XADC_CONF1_SEQ_INDEPENDENT:
 714                val = XADC_CONF2_PD_ADC_B;
 715                break;
 716        default:
 717                val = 0;
 718                break;
 719        }
 720
 721        return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_PD_MASK,
 722                val);
 723}
 724
 725static int xadc_get_seq_mode(struct xadc *xadc, unsigned long scan_mode)
 726{
 727        unsigned int aux_scan_mode = scan_mode >> 16;
 728
 729        if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_DUAL)
 730                return XADC_CONF1_SEQ_SIMULTANEOUS;
 731
 732        if ((aux_scan_mode & 0xff00) == 0 ||
 733                (aux_scan_mode & 0x00ff) == 0)
 734                return XADC_CONF1_SEQ_CONTINUOUS;
 735
 736        return XADC_CONF1_SEQ_SIMULTANEOUS;
 737}
 738
 739static int xadc_postdisable(struct iio_dev *indio_dev)
 740{
 741        struct xadc *xadc = iio_priv(indio_dev);
 742        unsigned long scan_mask;
 743        int ret;
 744        int i;
 745
 746        scan_mask = 1; /* Run calibration as part of the sequence */
 747        for (i = 0; i < indio_dev->num_channels; i++)
 748                scan_mask |= BIT(indio_dev->channels[i].scan_index);
 749
 750        /* Enable all channels and calibration */
 751        ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
 752        if (ret)
 753                return ret;
 754
 755        ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
 756        if (ret)
 757                return ret;
 758
 759        ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
 760                XADC_CONF1_SEQ_CONTINUOUS);
 761        if (ret)
 762                return ret;
 763
 764        return xadc_power_adc_b(xadc, XADC_CONF1_SEQ_CONTINUOUS);
 765}
 766
 767static int xadc_preenable(struct iio_dev *indio_dev)
 768{
 769        struct xadc *xadc = iio_priv(indio_dev);
 770        unsigned long scan_mask;
 771        int seq_mode;
 772        int ret;
 773
 774        ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
 775                XADC_CONF1_SEQ_DEFAULT);
 776        if (ret)
 777                goto err;
 778
 779        scan_mask = *indio_dev->active_scan_mask;
 780        seq_mode = xadc_get_seq_mode(xadc, scan_mask);
 781
 782        ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
 783        if (ret)
 784                goto err;
 785
 786        ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
 787        if (ret)
 788                goto err;
 789
 790        ret = xadc_power_adc_b(xadc, seq_mode);
 791        if (ret)
 792                goto err;
 793
 794        ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
 795                seq_mode);
 796        if (ret)
 797                goto err;
 798
 799        return 0;
 800err:
 801        xadc_postdisable(indio_dev);
 802        return ret;
 803}
 804
 805static const struct iio_buffer_setup_ops xadc_buffer_ops = {
 806        .preenable = &xadc_preenable,
 807        .postenable = &iio_triggered_buffer_postenable,
 808        .predisable = &iio_triggered_buffer_predisable,
 809        .postdisable = &xadc_postdisable,
 810};
 811
 812static int xadc_read_raw(struct iio_dev *indio_dev,
 813        struct iio_chan_spec const *chan, int *val, int *val2, long info)
 814{
 815        struct xadc *xadc = iio_priv(indio_dev);
 816        unsigned int div;
 817        uint16_t val16;
 818        int ret;
 819
 820        switch (info) {
 821        case IIO_CHAN_INFO_RAW:
 822                if (iio_buffer_enabled(indio_dev))
 823                        return -EBUSY;
 824                ret = xadc_read_adc_reg(xadc, chan->address, &val16);
 825                if (ret < 0)
 826                        return ret;
 827
 828                val16 >>= 4;
 829                if (chan->scan_type.sign == 'u')
 830                        *val = val16;
 831                else
 832                        *val = sign_extend32(val16, 11);
 833
 834                return IIO_VAL_INT;
 835        case IIO_CHAN_INFO_SCALE:
 836                switch (chan->type) {
 837                case IIO_VOLTAGE:
 838                        /* V = (val * 3.0) / 4096 */
 839                        switch (chan->address) {
 840                        case XADC_REG_VCCINT:
 841                        case XADC_REG_VCCAUX:
 842                        case XADC_REG_VREFP:
 843                        case XADC_REG_VREFN:
 844                        case XADC_REG_VCCBRAM:
 845                        case XADC_REG_VCCPINT:
 846                        case XADC_REG_VCCPAUX:
 847                        case XADC_REG_VCCO_DDR:
 848                                *val = 3000;
 849                                break;
 850                        default:
 851                                *val = 1000;
 852                                break;
 853                        }
 854                        *val2 = 12;
 855                        return IIO_VAL_FRACTIONAL_LOG2;
 856                case IIO_TEMP:
 857                        /* Temp in C = (val * 503.975) / 4096 - 273.15 */
 858                        *val = 503975;
 859                        *val2 = 12;
 860                        return IIO_VAL_FRACTIONAL_LOG2;
 861                default:
 862                        return -EINVAL;
 863                }
 864        case IIO_CHAN_INFO_OFFSET:
 865                /* Only the temperature channel has an offset */
 866                *val = -((273150 << 12) / 503975);
 867                return IIO_VAL_INT;
 868        case IIO_CHAN_INFO_SAMP_FREQ:
 869                ret = xadc_read_adc_reg(xadc, XADC_REG_CONF2, &val16);
 870                if (ret)
 871                        return ret;
 872
 873                div = (val16 & XADC_CONF2_DIV_MASK) >> XADC_CONF2_DIV_OFFSET;
 874                if (div < 2)
 875                        div = 2;
 876
 877                *val = xadc_get_dclk_rate(xadc) / div / 26;
 878
 879                return IIO_VAL_INT;
 880        default:
 881                return -EINVAL;
 882        }
 883}
 884
 885static int xadc_write_raw(struct iio_dev *indio_dev,
 886        struct iio_chan_spec const *chan, int val, int val2, long info)
 887{
 888        struct xadc *xadc = iio_priv(indio_dev);
 889        unsigned long clk_rate = xadc_get_dclk_rate(xadc);
 890        unsigned int div;
 891
 892        if (info != IIO_CHAN_INFO_SAMP_FREQ)
 893                return -EINVAL;
 894
 895        if (val <= 0)
 896                return -EINVAL;
 897
 898        /* Max. 150 kSPS */
 899        if (val > 150000)
 900                val = 150000;
 901
 902        val *= 26;
 903
 904        /* Min 1MHz */
 905        if (val < 1000000)
 906                val = 1000000;
 907
 908        /*
 909         * We want to round down, but only if we do not exceed the 150 kSPS
 910         * limit.
 911         */
 912        div = clk_rate / val;
 913        if (clk_rate / div / 26 > 150000)
 914                div++;
 915        if (div < 2)
 916                div = 2;
 917        else if (div > 0xff)
 918                div = 0xff;
 919
 920        return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_DIV_MASK,
 921                div << XADC_CONF2_DIV_OFFSET);
 922}
 923
 924static const struct iio_event_spec xadc_temp_events[] = {
 925        {
 926                .type = IIO_EV_TYPE_THRESH,
 927                .dir = IIO_EV_DIR_RISING,
 928                .mask_separate = BIT(IIO_EV_INFO_ENABLE) |
 929                                BIT(IIO_EV_INFO_VALUE) |
 930                                BIT(IIO_EV_INFO_HYSTERESIS),
 931        },
 932};
 933
 934/* Separate values for upper and lower thresholds, but only a shared enabled */
 935static const struct iio_event_spec xadc_voltage_events[] = {
 936        {
 937                .type = IIO_EV_TYPE_THRESH,
 938                .dir = IIO_EV_DIR_RISING,
 939                .mask_separate = BIT(IIO_EV_INFO_VALUE),
 940        }, {
 941                .type = IIO_EV_TYPE_THRESH,
 942                .dir = IIO_EV_DIR_FALLING,
 943                .mask_separate = BIT(IIO_EV_INFO_VALUE),
 944        }, {
 945                .type = IIO_EV_TYPE_THRESH,
 946                .dir = IIO_EV_DIR_EITHER,
 947                .mask_separate = BIT(IIO_EV_INFO_ENABLE),
 948        },
 949};
 950
 951#define XADC_CHAN_TEMP(_chan, _scan_index, _addr) { \
 952        .type = IIO_TEMP, \
 953        .indexed = 1, \
 954        .channel = (_chan), \
 955        .address = (_addr), \
 956        .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
 957                BIT(IIO_CHAN_INFO_SCALE) | \
 958                BIT(IIO_CHAN_INFO_OFFSET), \
 959        .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
 960        .event_spec = xadc_temp_events, \
 961        .num_event_specs = ARRAY_SIZE(xadc_temp_events), \
 962        .scan_index = (_scan_index), \
 963        .scan_type = { \
 964                .sign = 'u', \
 965                .realbits = 12, \
 966                .storagebits = 16, \
 967                .shift = 4, \
 968                .endianness = IIO_CPU, \
 969        }, \
 970}
 971
 972#define XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) { \
 973        .type = IIO_VOLTAGE, \
 974        .indexed = 1, \
 975        .channel = (_chan), \
 976        .address = (_addr), \
 977        .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
 978                BIT(IIO_CHAN_INFO_SCALE), \
 979        .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
 980        .event_spec = (_alarm) ? xadc_voltage_events : NULL, \
 981        .num_event_specs = (_alarm) ? ARRAY_SIZE(xadc_voltage_events) : 0, \
 982        .scan_index = (_scan_index), \
 983        .scan_type = { \
 984                .sign = ((_addr) == XADC_REG_VREFN) ? 's' : 'u', \
 985                .realbits = 12, \
 986                .storagebits = 16, \
 987                .shift = 4, \
 988                .endianness = IIO_CPU, \
 989        }, \
 990        .extend_name = _ext, \
 991}
 992
 993static const struct iio_chan_spec xadc_channels[] = {
 994        XADC_CHAN_TEMP(0, 8, XADC_REG_TEMP),
 995        XADC_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
 996        XADC_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
 997        XADC_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
 998        XADC_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpint", true),
 999        XADC_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpaux", true),
1000        XADC_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccoddr", true),
1001        XADC_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
1002        XADC_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
1003        XADC_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
1004        XADC_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
1005        XADC_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
1006        XADC_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
1007        XADC_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
1008        XADC_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
1009        XADC_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
1010        XADC_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
1011        XADC_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
1012        XADC_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
1013        XADC_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
1014        XADC_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
1015        XADC_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
1016        XADC_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
1017        XADC_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
1018        XADC_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
1019        XADC_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
1020};
1021
1022static const struct iio_info xadc_info = {
1023        .read_raw = &xadc_read_raw,
1024        .write_raw = &xadc_write_raw,
1025        .read_event_config = &xadc_read_event_config,
1026        .write_event_config = &xadc_write_event_config,
1027        .read_event_value = &xadc_read_event_value,
1028        .write_event_value = &xadc_write_event_value,
1029        .update_scan_mode = &xadc_update_scan_mode,
1030};
1031
1032static const struct of_device_id xadc_of_match_table[] = {
1033        { .compatible = "xlnx,zynq-xadc-1.00.a", (void *)&xadc_zynq_ops },
1034        { .compatible = "xlnx,axi-xadc-1.00.a", (void *)&xadc_axi_ops },
1035        { },
1036};
1037MODULE_DEVICE_TABLE(of, xadc_of_match_table);
1038
1039static int xadc_parse_dt(struct iio_dev *indio_dev, struct device_node *np,
1040        unsigned int *conf)
1041{
1042        struct xadc *xadc = iio_priv(indio_dev);
1043        struct iio_chan_spec *channels, *chan;
1044        struct device_node *chan_node, *child;
1045        unsigned int num_channels;
1046        const char *external_mux;
1047        u32 ext_mux_chan;
1048        int reg;
1049        int ret;
1050
1051        *conf = 0;
1052
1053        ret = of_property_read_string(np, "xlnx,external-mux", &external_mux);
1054        if (ret < 0 || strcasecmp(external_mux, "none") == 0)
1055                xadc->external_mux_mode = XADC_EXTERNAL_MUX_NONE;
1056        else if (strcasecmp(external_mux, "single") == 0)
1057                xadc->external_mux_mode = XADC_EXTERNAL_MUX_SINGLE;
1058        else if (strcasecmp(external_mux, "dual") == 0)
1059                xadc->external_mux_mode = XADC_EXTERNAL_MUX_DUAL;
1060        else
1061                return -EINVAL;
1062
1063        if (xadc->external_mux_mode != XADC_EXTERNAL_MUX_NONE) {
1064                ret = of_property_read_u32(np, "xlnx,external-mux-channel",
1065                                        &ext_mux_chan);
1066                if (ret < 0)
1067                        return ret;
1068
1069                if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_SINGLE) {
1070                        if (ext_mux_chan == 0)
1071                                ext_mux_chan = XADC_REG_VPVN;
1072                        else if (ext_mux_chan <= 16)
1073                                ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1074                        else
1075                                return -EINVAL;
1076                } else {
1077                        if (ext_mux_chan > 0 && ext_mux_chan <= 8)
1078                                ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1079                        else
1080                                return -EINVAL;
1081                }
1082
1083                *conf |= XADC_CONF0_MUX | XADC_CONF0_CHAN(ext_mux_chan);
1084        }
1085
1086        channels = kmemdup(xadc_channels, sizeof(xadc_channels), GFP_KERNEL);
1087        if (!channels)
1088                return -ENOMEM;
1089
1090        num_channels = 9;
1091        chan = &channels[9];
1092
1093        chan_node = of_get_child_by_name(np, "xlnx,channels");
1094        if (chan_node) {
1095                for_each_child_of_node(chan_node, child) {
1096                        if (num_channels >= ARRAY_SIZE(xadc_channels)) {
1097                                of_node_put(child);
1098                                break;
1099                        }
1100
1101                        ret = of_property_read_u32(child, "reg", &reg);
1102                        if (ret || reg > 16)
1103                                continue;
1104
1105                        if (of_property_read_bool(child, "xlnx,bipolar"))
1106                                chan->scan_type.sign = 's';
1107
1108                        if (reg == 0) {
1109                                chan->scan_index = 11;
1110                                chan->address = XADC_REG_VPVN;
1111                        } else {
1112                                chan->scan_index = 15 + reg;
1113                                chan->address = XADC_REG_VAUX(reg - 1);
1114                        }
1115                        num_channels++;
1116                        chan++;
1117                }
1118        }
1119        of_node_put(chan_node);
1120
1121        indio_dev->num_channels = num_channels;
1122        indio_dev->channels = krealloc(channels, sizeof(*channels) *
1123                                        num_channels, GFP_KERNEL);
1124        /* If we can't resize the channels array, just use the original */
1125        if (!indio_dev->channels)
1126                indio_dev->channels = channels;
1127
1128        return 0;
1129}
1130
1131static int xadc_probe(struct platform_device *pdev)
1132{
1133        const struct of_device_id *id;
1134        struct iio_dev *indio_dev;
1135        unsigned int bipolar_mask;
1136        struct resource *mem;
1137        unsigned int conf0;
1138        struct xadc *xadc;
1139        int ret;
1140        int irq;
1141        int i;
1142
1143        if (!pdev->dev.of_node)
1144                return -ENODEV;
1145
1146        id = of_match_node(xadc_of_match_table, pdev->dev.of_node);
1147        if (!id)
1148                return -EINVAL;
1149
1150        irq = platform_get_irq(pdev, 0);
1151        if (irq <= 0)
1152                return -ENXIO;
1153
1154        indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*xadc));
1155        if (!indio_dev)
1156                return -ENOMEM;
1157
1158        xadc = iio_priv(indio_dev);
1159        xadc->ops = id->data;
1160        init_completion(&xadc->completion);
1161        mutex_init(&xadc->mutex);
1162        spin_lock_init(&xadc->lock);
1163        INIT_DELAYED_WORK(&xadc->zynq_unmask_work, xadc_zynq_unmask_worker);
1164
1165        mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1166        xadc->base = devm_ioremap_resource(&pdev->dev, mem);
1167        if (IS_ERR(xadc->base))
1168                return PTR_ERR(xadc->base);
1169
1170        indio_dev->dev.parent = &pdev->dev;
1171        indio_dev->dev.of_node = pdev->dev.of_node;
1172        indio_dev->name = "xadc";
1173        indio_dev->modes = INDIO_DIRECT_MODE;
1174        indio_dev->info = &xadc_info;
1175
1176        ret = xadc_parse_dt(indio_dev, pdev->dev.of_node, &conf0);
1177        if (ret)
1178                goto err_device_free;
1179
1180        if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1181                ret = iio_triggered_buffer_setup(indio_dev,
1182                        &iio_pollfunc_store_time, &xadc_trigger_handler,
1183                        &xadc_buffer_ops);
1184                if (ret)
1185                        goto err_device_free;
1186
1187                xadc->convst_trigger = xadc_alloc_trigger(indio_dev, "convst");
1188                if (IS_ERR(xadc->convst_trigger)) {
1189                        ret = PTR_ERR(xadc->convst_trigger);
1190                        goto err_triggered_buffer_cleanup;
1191                }
1192                xadc->samplerate_trigger = xadc_alloc_trigger(indio_dev,
1193                        "samplerate");
1194                if (IS_ERR(xadc->samplerate_trigger)) {
1195                        ret = PTR_ERR(xadc->samplerate_trigger);
1196                        goto err_free_convst_trigger;
1197                }
1198        }
1199
1200        xadc->clk = devm_clk_get(&pdev->dev, NULL);
1201        if (IS_ERR(xadc->clk)) {
1202                ret = PTR_ERR(xadc->clk);
1203                goto err_free_samplerate_trigger;
1204        }
1205
1206        ret = clk_prepare_enable(xadc->clk);
1207        if (ret)
1208                goto err_free_samplerate_trigger;
1209
1210        ret = xadc->ops->setup(pdev, indio_dev, irq);
1211        if (ret)
1212                goto err_clk_disable_unprepare;
1213
1214        ret = request_irq(irq, xadc->ops->interrupt_handler, 0,
1215                        dev_name(&pdev->dev), indio_dev);
1216        if (ret)
1217                goto err_clk_disable_unprepare;
1218
1219        for (i = 0; i < 16; i++)
1220                xadc_read_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1221                        &xadc->threshold[i]);
1222
1223        ret = xadc_write_adc_reg(xadc, XADC_REG_CONF0, conf0);
1224        if (ret)
1225                goto err_free_irq;
1226
1227        bipolar_mask = 0;
1228        for (i = 0; i < indio_dev->num_channels; i++) {
1229                if (indio_dev->channels[i].scan_type.sign == 's')
1230                        bipolar_mask |= BIT(indio_dev->channels[i].scan_index);
1231        }
1232
1233        ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(0), bipolar_mask);
1234        if (ret)
1235                goto err_free_irq;
1236        ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(1),
1237                bipolar_mask >> 16);
1238        if (ret)
1239                goto err_free_irq;
1240
1241        /* Disable all alarms */
1242        xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_ALARM_MASK,
1243                XADC_CONF1_ALARM_MASK);
1244
1245        /* Set thresholds to min/max */
1246        for (i = 0; i < 16; i++) {
1247                /*
1248                 * Set max voltage threshold and both temperature thresholds to
1249                 * 0xffff, min voltage threshold to 0.
1250                 */
1251                if (i % 8 < 4 || i == 7)
1252                        xadc->threshold[i] = 0xffff;
1253                else
1254                        xadc->threshold[i] = 0;
1255                xadc_write_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1256                        xadc->threshold[i]);
1257        }
1258
1259        /* Go to non-buffered mode */
1260        xadc_postdisable(indio_dev);
1261
1262        ret = iio_device_register(indio_dev);
1263        if (ret)
1264                goto err_free_irq;
1265
1266        platform_set_drvdata(pdev, indio_dev);
1267
1268        return 0;
1269
1270err_free_irq:
1271        free_irq(irq, indio_dev);
1272err_clk_disable_unprepare:
1273        clk_disable_unprepare(xadc->clk);
1274err_free_samplerate_trigger:
1275        if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1276                iio_trigger_free(xadc->samplerate_trigger);
1277err_free_convst_trigger:
1278        if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1279                iio_trigger_free(xadc->convst_trigger);
1280err_triggered_buffer_cleanup:
1281        if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1282                iio_triggered_buffer_cleanup(indio_dev);
1283err_device_free:
1284        kfree(indio_dev->channels);
1285
1286        return ret;
1287}
1288
1289static int xadc_remove(struct platform_device *pdev)
1290{
1291        struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1292        struct xadc *xadc = iio_priv(indio_dev);
1293        int irq = platform_get_irq(pdev, 0);
1294
1295        iio_device_unregister(indio_dev);
1296        if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1297                iio_trigger_free(xadc->samplerate_trigger);
1298                iio_trigger_free(xadc->convst_trigger);
1299                iio_triggered_buffer_cleanup(indio_dev);
1300        }
1301        free_irq(irq, indio_dev);
1302        clk_disable_unprepare(xadc->clk);
1303        cancel_delayed_work(&xadc->zynq_unmask_work);
1304        kfree(xadc->data);
1305        kfree(indio_dev->channels);
1306
1307        return 0;
1308}
1309
1310static struct platform_driver xadc_driver = {
1311        .probe = xadc_probe,
1312        .remove = xadc_remove,
1313        .driver = {
1314                .name = "xadc",
1315                .of_match_table = xadc_of_match_table,
1316        },
1317};
1318module_platform_driver(xadc_driver);
1319
1320MODULE_LICENSE("GPL v2");
1321MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
1322MODULE_DESCRIPTION("Xilinx XADC IIO driver");
1323