linux/drivers/net/ethernet/intel/i40e/i40e_xsk.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2018 Intel Corporation. */
   3
   4#include <linux/bpf_trace.h>
   5#include <net/xdp_sock.h>
   6#include <net/xdp.h>
   7
   8#include "i40e.h"
   9#include "i40e_txrx_common.h"
  10#include "i40e_xsk.h"
  11
  12/**
  13 * i40e_xsk_umem_dma_map - DMA maps all UMEM memory for the netdev
  14 * @vsi: Current VSI
  15 * @umem: UMEM to DMA map
  16 *
  17 * Returns 0 on success, <0 on failure
  18 **/
  19static int i40e_xsk_umem_dma_map(struct i40e_vsi *vsi, struct xdp_umem *umem)
  20{
  21        struct i40e_pf *pf = vsi->back;
  22        struct device *dev;
  23        unsigned int i, j;
  24        dma_addr_t dma;
  25
  26        dev = &pf->pdev->dev;
  27        for (i = 0; i < umem->npgs; i++) {
  28                dma = dma_map_page_attrs(dev, umem->pgs[i], 0, PAGE_SIZE,
  29                                         DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
  30                if (dma_mapping_error(dev, dma))
  31                        goto out_unmap;
  32
  33                umem->pages[i].dma = dma;
  34        }
  35
  36        return 0;
  37
  38out_unmap:
  39        for (j = 0; j < i; j++) {
  40                dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
  41                                     DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
  42                umem->pages[i].dma = 0;
  43        }
  44
  45        return -1;
  46}
  47
  48/**
  49 * i40e_xsk_umem_dma_unmap - DMA unmaps all UMEM memory for the netdev
  50 * @vsi: Current VSI
  51 * @umem: UMEM to DMA map
  52 **/
  53static void i40e_xsk_umem_dma_unmap(struct i40e_vsi *vsi, struct xdp_umem *umem)
  54{
  55        struct i40e_pf *pf = vsi->back;
  56        struct device *dev;
  57        unsigned int i;
  58
  59        dev = &pf->pdev->dev;
  60
  61        for (i = 0; i < umem->npgs; i++) {
  62                dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
  63                                     DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
  64
  65                umem->pages[i].dma = 0;
  66        }
  67}
  68
  69/**
  70 * i40e_xsk_umem_enable - Enable/associate a UMEM to a certain ring/qid
  71 * @vsi: Current VSI
  72 * @umem: UMEM
  73 * @qid: Rx ring to associate UMEM to
  74 *
  75 * Returns 0 on success, <0 on failure
  76 **/
  77static int i40e_xsk_umem_enable(struct i40e_vsi *vsi, struct xdp_umem *umem,
  78                                u16 qid)
  79{
  80        struct net_device *netdev = vsi->netdev;
  81        struct xdp_umem_fq_reuse *reuseq;
  82        bool if_running;
  83        int err;
  84
  85        if (vsi->type != I40E_VSI_MAIN)
  86                return -EINVAL;
  87
  88        if (qid >= vsi->num_queue_pairs)
  89                return -EINVAL;
  90
  91        if (qid >= netdev->real_num_rx_queues ||
  92            qid >= netdev->real_num_tx_queues)
  93                return -EINVAL;
  94
  95        reuseq = xsk_reuseq_prepare(vsi->rx_rings[0]->count);
  96        if (!reuseq)
  97                return -ENOMEM;
  98
  99        xsk_reuseq_free(xsk_reuseq_swap(umem, reuseq));
 100
 101        err = i40e_xsk_umem_dma_map(vsi, umem);
 102        if (err)
 103                return err;
 104
 105        set_bit(qid, vsi->af_xdp_zc_qps);
 106
 107        if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi);
 108
 109        if (if_running) {
 110                err = i40e_queue_pair_disable(vsi, qid);
 111                if (err)
 112                        return err;
 113
 114                err = i40e_queue_pair_enable(vsi, qid);
 115                if (err)
 116                        return err;
 117
 118                /* Kick start the NAPI context so that receiving will start */
 119                err = i40e_xsk_wakeup(vsi->netdev, qid, XDP_WAKEUP_RX);
 120                if (err)
 121                        return err;
 122        }
 123
 124        return 0;
 125}
 126
 127/**
 128 * i40e_xsk_umem_disable - Disassociate a UMEM from a certain ring/qid
 129 * @vsi: Current VSI
 130 * @qid: Rx ring to associate UMEM to
 131 *
 132 * Returns 0 on success, <0 on failure
 133 **/
 134static int i40e_xsk_umem_disable(struct i40e_vsi *vsi, u16 qid)
 135{
 136        struct net_device *netdev = vsi->netdev;
 137        struct xdp_umem *umem;
 138        bool if_running;
 139        int err;
 140
 141        umem = xdp_get_umem_from_qid(netdev, qid);
 142        if (!umem)
 143                return -EINVAL;
 144
 145        if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi);
 146
 147        if (if_running) {
 148                err = i40e_queue_pair_disable(vsi, qid);
 149                if (err)
 150                        return err;
 151        }
 152
 153        clear_bit(qid, vsi->af_xdp_zc_qps);
 154        i40e_xsk_umem_dma_unmap(vsi, umem);
 155
 156        if (if_running) {
 157                err = i40e_queue_pair_enable(vsi, qid);
 158                if (err)
 159                        return err;
 160        }
 161
 162        return 0;
 163}
 164
 165/**
 166 * i40e_xsk_umem_setup - Enable/disassociate a UMEM to/from a ring/qid
 167 * @vsi: Current VSI
 168 * @umem: UMEM to enable/associate to a ring, or NULL to disable
 169 * @qid: Rx ring to (dis)associate UMEM (from)to
 170 *
 171 * This function enables or disables a UMEM to a certain ring.
 172 *
 173 * Returns 0 on success, <0 on failure
 174 **/
 175int i40e_xsk_umem_setup(struct i40e_vsi *vsi, struct xdp_umem *umem,
 176                        u16 qid)
 177{
 178        return umem ? i40e_xsk_umem_enable(vsi, umem, qid) :
 179                i40e_xsk_umem_disable(vsi, qid);
 180}
 181
 182/**
 183 * i40e_run_xdp_zc - Executes an XDP program on an xdp_buff
 184 * @rx_ring: Rx ring
 185 * @xdp: xdp_buff used as input to the XDP program
 186 *
 187 * This function enables or disables a UMEM to a certain ring.
 188 *
 189 * Returns any of I40E_XDP_{PASS, CONSUMED, TX, REDIR}
 190 **/
 191static int i40e_run_xdp_zc(struct i40e_ring *rx_ring, struct xdp_buff *xdp)
 192{
 193        struct xdp_umem *umem = rx_ring->xsk_umem;
 194        int err, result = I40E_XDP_PASS;
 195        struct i40e_ring *xdp_ring;
 196        struct bpf_prog *xdp_prog;
 197        u64 offset;
 198        u32 act;
 199
 200        rcu_read_lock();
 201        /* NB! xdp_prog will always be !NULL, due to the fact that
 202         * this path is enabled by setting an XDP program.
 203         */
 204        xdp_prog = READ_ONCE(rx_ring->xdp_prog);
 205        act = bpf_prog_run_xdp(xdp_prog, xdp);
 206        offset = xdp->data - xdp->data_hard_start;
 207
 208        xdp->handle = xsk_umem_adjust_offset(umem, xdp->handle, offset);
 209
 210        switch (act) {
 211        case XDP_PASS:
 212                break;
 213        case XDP_TX:
 214                xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
 215                result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
 216                break;
 217        case XDP_REDIRECT:
 218                err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
 219                result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED;
 220                break;
 221        default:
 222                bpf_warn_invalid_xdp_action(act);
 223                /* fall through */
 224        case XDP_ABORTED:
 225                trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
 226                /* fallthrough -- handle aborts by dropping packet */
 227        case XDP_DROP:
 228                result = I40E_XDP_CONSUMED;
 229                break;
 230        }
 231        rcu_read_unlock();
 232        return result;
 233}
 234
 235/**
 236 * i40e_alloc_buffer_zc - Allocates an i40e_rx_buffer
 237 * @rx_ring: Rx ring
 238 * @bi: Rx buffer to populate
 239 *
 240 * This function allocates an Rx buffer. The buffer can come from fill
 241 * queue, or via the recycle queue (next_to_alloc).
 242 *
 243 * Returns true for a successful allocation, false otherwise
 244 **/
 245static bool i40e_alloc_buffer_zc(struct i40e_ring *rx_ring,
 246                                 struct i40e_rx_buffer *bi)
 247{
 248        struct xdp_umem *umem = rx_ring->xsk_umem;
 249        void *addr = bi->addr;
 250        u64 handle, hr;
 251
 252        if (addr) {
 253                rx_ring->rx_stats.page_reuse_count++;
 254                return true;
 255        }
 256
 257        if (!xsk_umem_peek_addr(umem, &handle)) {
 258                rx_ring->rx_stats.alloc_page_failed++;
 259                return false;
 260        }
 261
 262        hr = umem->headroom + XDP_PACKET_HEADROOM;
 263
 264        bi->dma = xdp_umem_get_dma(umem, handle);
 265        bi->dma += hr;
 266
 267        bi->addr = xdp_umem_get_data(umem, handle);
 268        bi->addr += hr;
 269
 270        bi->handle = xsk_umem_adjust_offset(umem, handle, umem->headroom);
 271
 272        xsk_umem_release_addr(umem);
 273        return true;
 274}
 275
 276/**
 277 * i40e_alloc_buffer_slow_zc - Allocates an i40e_rx_buffer
 278 * @rx_ring: Rx ring
 279 * @bi: Rx buffer to populate
 280 *
 281 * This function allocates an Rx buffer. The buffer can come from fill
 282 * queue, or via the reuse queue.
 283 *
 284 * Returns true for a successful allocation, false otherwise
 285 **/
 286static bool i40e_alloc_buffer_slow_zc(struct i40e_ring *rx_ring,
 287                                      struct i40e_rx_buffer *bi)
 288{
 289        struct xdp_umem *umem = rx_ring->xsk_umem;
 290        u64 handle, hr;
 291
 292        if (!xsk_umem_peek_addr_rq(umem, &handle)) {
 293                rx_ring->rx_stats.alloc_page_failed++;
 294                return false;
 295        }
 296
 297        handle &= rx_ring->xsk_umem->chunk_mask;
 298
 299        hr = umem->headroom + XDP_PACKET_HEADROOM;
 300
 301        bi->dma = xdp_umem_get_dma(umem, handle);
 302        bi->dma += hr;
 303
 304        bi->addr = xdp_umem_get_data(umem, handle);
 305        bi->addr += hr;
 306
 307        bi->handle = xsk_umem_adjust_offset(umem, handle, umem->headroom);
 308
 309        xsk_umem_release_addr_rq(umem);
 310        return true;
 311}
 312
 313static __always_inline bool
 314__i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count,
 315                           bool alloc(struct i40e_ring *rx_ring,
 316                                      struct i40e_rx_buffer *bi))
 317{
 318        u16 ntu = rx_ring->next_to_use;
 319        union i40e_rx_desc *rx_desc;
 320        struct i40e_rx_buffer *bi;
 321        bool ok = true;
 322
 323        rx_desc = I40E_RX_DESC(rx_ring, ntu);
 324        bi = &rx_ring->rx_bi[ntu];
 325        do {
 326                if (!alloc(rx_ring, bi)) {
 327                        ok = false;
 328                        goto no_buffers;
 329                }
 330
 331                dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 0,
 332                                                 rx_ring->rx_buf_len,
 333                                                 DMA_BIDIRECTIONAL);
 334
 335                rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
 336
 337                rx_desc++;
 338                bi++;
 339                ntu++;
 340
 341                if (unlikely(ntu == rx_ring->count)) {
 342                        rx_desc = I40E_RX_DESC(rx_ring, 0);
 343                        bi = rx_ring->rx_bi;
 344                        ntu = 0;
 345                }
 346
 347                rx_desc->wb.qword1.status_error_len = 0;
 348                count--;
 349        } while (count);
 350
 351no_buffers:
 352        if (rx_ring->next_to_use != ntu)
 353                i40e_release_rx_desc(rx_ring, ntu);
 354
 355        return ok;
 356}
 357
 358/**
 359 * i40e_alloc_rx_buffers_zc - Allocates a number of Rx buffers
 360 * @rx_ring: Rx ring
 361 * @count: The number of buffers to allocate
 362 *
 363 * This function allocates a number of Rx buffers from the reuse queue
 364 * or fill ring and places them on the Rx ring.
 365 *
 366 * Returns true for a successful allocation, false otherwise
 367 **/
 368bool i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count)
 369{
 370        return __i40e_alloc_rx_buffers_zc(rx_ring, count,
 371                                          i40e_alloc_buffer_slow_zc);
 372}
 373
 374/**
 375 * i40e_alloc_rx_buffers_fast_zc - Allocates a number of Rx buffers
 376 * @rx_ring: Rx ring
 377 * @count: The number of buffers to allocate
 378 *
 379 * This function allocates a number of Rx buffers from the fill ring
 380 * or the internal recycle mechanism and places them on the Rx ring.
 381 *
 382 * Returns true for a successful allocation, false otherwise
 383 **/
 384static bool i40e_alloc_rx_buffers_fast_zc(struct i40e_ring *rx_ring, u16 count)
 385{
 386        return __i40e_alloc_rx_buffers_zc(rx_ring, count,
 387                                          i40e_alloc_buffer_zc);
 388}
 389
 390/**
 391 * i40e_get_rx_buffer_zc - Return the current Rx buffer
 392 * @rx_ring: Rx ring
 393 * @size: The size of the rx buffer (read from descriptor)
 394 *
 395 * This function returns the current, received Rx buffer, and also
 396 * does DMA synchronization.  the Rx ring.
 397 *
 398 * Returns the received Rx buffer
 399 **/
 400static struct i40e_rx_buffer *i40e_get_rx_buffer_zc(struct i40e_ring *rx_ring,
 401                                                    const unsigned int size)
 402{
 403        struct i40e_rx_buffer *bi;
 404
 405        bi = &rx_ring->rx_bi[rx_ring->next_to_clean];
 406
 407        /* we are reusing so sync this buffer for CPU use */
 408        dma_sync_single_range_for_cpu(rx_ring->dev,
 409                                      bi->dma, 0,
 410                                      size,
 411                                      DMA_BIDIRECTIONAL);
 412
 413        return bi;
 414}
 415
 416/**
 417 * i40e_reuse_rx_buffer_zc - Recycle an Rx buffer
 418 * @rx_ring: Rx ring
 419 * @old_bi: The Rx buffer to recycle
 420 *
 421 * This function recycles a finished Rx buffer, and places it on the
 422 * recycle queue (next_to_alloc).
 423 **/
 424static void i40e_reuse_rx_buffer_zc(struct i40e_ring *rx_ring,
 425                                    struct i40e_rx_buffer *old_bi)
 426{
 427        struct i40e_rx_buffer *new_bi = &rx_ring->rx_bi[rx_ring->next_to_alloc];
 428        u16 nta = rx_ring->next_to_alloc;
 429
 430        /* update, and store next to alloc */
 431        nta++;
 432        rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 433
 434        /* transfer page from old buffer to new buffer */
 435        new_bi->dma = old_bi->dma;
 436        new_bi->addr = old_bi->addr;
 437        new_bi->handle = old_bi->handle;
 438
 439        old_bi->addr = NULL;
 440}
 441
 442/**
 443 * i40e_zca_free - Free callback for MEM_TYPE_ZERO_COPY allocations
 444 * @alloc: Zero-copy allocator
 445 * @handle: Buffer handle
 446 **/
 447void i40e_zca_free(struct zero_copy_allocator *alloc, unsigned long handle)
 448{
 449        struct i40e_rx_buffer *bi;
 450        struct i40e_ring *rx_ring;
 451        u64 hr, mask;
 452        u16 nta;
 453
 454        rx_ring = container_of(alloc, struct i40e_ring, zca);
 455        hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM;
 456        mask = rx_ring->xsk_umem->chunk_mask;
 457
 458        nta = rx_ring->next_to_alloc;
 459        bi = &rx_ring->rx_bi[nta];
 460
 461        nta++;
 462        rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 463
 464        handle &= mask;
 465
 466        bi->dma = xdp_umem_get_dma(rx_ring->xsk_umem, handle);
 467        bi->dma += hr;
 468
 469        bi->addr = xdp_umem_get_data(rx_ring->xsk_umem, handle);
 470        bi->addr += hr;
 471
 472        bi->handle = xsk_umem_adjust_offset(rx_ring->xsk_umem, (u64)handle,
 473                                            rx_ring->xsk_umem->headroom);
 474}
 475
 476/**
 477 * i40e_construct_skb_zc - Create skbufff from zero-copy Rx buffer
 478 * @rx_ring: Rx ring
 479 * @bi: Rx buffer
 480 * @xdp: xdp_buff
 481 *
 482 * This functions allocates a new skb from a zero-copy Rx buffer.
 483 *
 484 * Returns the skb, or NULL on failure.
 485 **/
 486static struct sk_buff *i40e_construct_skb_zc(struct i40e_ring *rx_ring,
 487                                             struct i40e_rx_buffer *bi,
 488                                             struct xdp_buff *xdp)
 489{
 490        unsigned int metasize = xdp->data - xdp->data_meta;
 491        unsigned int datasize = xdp->data_end - xdp->data;
 492        struct sk_buff *skb;
 493
 494        /* allocate a skb to store the frags */
 495        skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
 496                               xdp->data_end - xdp->data_hard_start,
 497                               GFP_ATOMIC | __GFP_NOWARN);
 498        if (unlikely(!skb))
 499                return NULL;
 500
 501        skb_reserve(skb, xdp->data - xdp->data_hard_start);
 502        memcpy(__skb_put(skb, datasize), xdp->data, datasize);
 503        if (metasize)
 504                skb_metadata_set(skb, metasize);
 505
 506        i40e_reuse_rx_buffer_zc(rx_ring, bi);
 507        return skb;
 508}
 509
 510/**
 511 * i40e_inc_ntc: Advance the next_to_clean index
 512 * @rx_ring: Rx ring
 513 **/
 514static void i40e_inc_ntc(struct i40e_ring *rx_ring)
 515{
 516        u32 ntc = rx_ring->next_to_clean + 1;
 517
 518        ntc = (ntc < rx_ring->count) ? ntc : 0;
 519        rx_ring->next_to_clean = ntc;
 520        prefetch(I40E_RX_DESC(rx_ring, ntc));
 521}
 522
 523/**
 524 * i40e_clean_rx_irq_zc - Consumes Rx packets from the hardware ring
 525 * @rx_ring: Rx ring
 526 * @budget: NAPI budget
 527 *
 528 * Returns amount of work completed
 529 **/
 530int i40e_clean_rx_irq_zc(struct i40e_ring *rx_ring, int budget)
 531{
 532        unsigned int total_rx_bytes = 0, total_rx_packets = 0;
 533        u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
 534        unsigned int xdp_res, xdp_xmit = 0;
 535        bool failure = false;
 536        struct sk_buff *skb;
 537        struct xdp_buff xdp;
 538
 539        xdp.rxq = &rx_ring->xdp_rxq;
 540
 541        while (likely(total_rx_packets < (unsigned int)budget)) {
 542                struct i40e_rx_buffer *bi;
 543                union i40e_rx_desc *rx_desc;
 544                unsigned int size;
 545                u64 qword;
 546
 547                if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
 548                        failure = failure ||
 549                                  !i40e_alloc_rx_buffers_fast_zc(rx_ring,
 550                                                                 cleaned_count);
 551                        cleaned_count = 0;
 552                }
 553
 554                rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
 555                qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 556
 557                /* This memory barrier is needed to keep us from reading
 558                 * any other fields out of the rx_desc until we have
 559                 * verified the descriptor has been written back.
 560                 */
 561                dma_rmb();
 562
 563                bi = i40e_clean_programming_status(rx_ring, rx_desc,
 564                                                   qword);
 565                if (unlikely(bi)) {
 566                        i40e_reuse_rx_buffer_zc(rx_ring, bi);
 567                        cleaned_count++;
 568                        continue;
 569                }
 570
 571                size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
 572                       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
 573                if (!size)
 574                        break;
 575
 576                bi = i40e_get_rx_buffer_zc(rx_ring, size);
 577                xdp.data = bi->addr;
 578                xdp.data_meta = xdp.data;
 579                xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM;
 580                xdp.data_end = xdp.data + size;
 581                xdp.handle = bi->handle;
 582
 583                xdp_res = i40e_run_xdp_zc(rx_ring, &xdp);
 584                if (xdp_res) {
 585                        if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
 586                                xdp_xmit |= xdp_res;
 587                                bi->addr = NULL;
 588                        } else {
 589                                i40e_reuse_rx_buffer_zc(rx_ring, bi);
 590                        }
 591
 592                        total_rx_bytes += size;
 593                        total_rx_packets++;
 594
 595                        cleaned_count++;
 596                        i40e_inc_ntc(rx_ring);
 597                        continue;
 598                }
 599
 600                /* XDP_PASS path */
 601
 602                /* NB! We are not checking for errors using
 603                 * i40e_test_staterr with
 604                 * BIT(I40E_RXD_QW1_ERROR_SHIFT). This is due to that
 605                 * SBP is *not* set in PRT_SBPVSI (default not set).
 606                 */
 607                skb = i40e_construct_skb_zc(rx_ring, bi, &xdp);
 608                if (!skb) {
 609                        rx_ring->rx_stats.alloc_buff_failed++;
 610                        break;
 611                }
 612
 613                cleaned_count++;
 614                i40e_inc_ntc(rx_ring);
 615
 616                if (eth_skb_pad(skb))
 617                        continue;
 618
 619                total_rx_bytes += skb->len;
 620                total_rx_packets++;
 621
 622                i40e_process_skb_fields(rx_ring, rx_desc, skb);
 623                napi_gro_receive(&rx_ring->q_vector->napi, skb);
 624        }
 625
 626        i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
 627        i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
 628
 629        if (xsk_umem_uses_need_wakeup(rx_ring->xsk_umem)) {
 630                if (failure || rx_ring->next_to_clean == rx_ring->next_to_use)
 631                        xsk_set_rx_need_wakeup(rx_ring->xsk_umem);
 632                else
 633                        xsk_clear_rx_need_wakeup(rx_ring->xsk_umem);
 634
 635                return (int)total_rx_packets;
 636        }
 637        return failure ? budget : (int)total_rx_packets;
 638}
 639
 640/**
 641 * i40e_xmit_zc - Performs zero-copy Tx AF_XDP
 642 * @xdp_ring: XDP Tx ring
 643 * @budget: NAPI budget
 644 *
 645 * Returns true if the work is finished.
 646 **/
 647static bool i40e_xmit_zc(struct i40e_ring *xdp_ring, unsigned int budget)
 648{
 649        struct i40e_tx_desc *tx_desc = NULL;
 650        struct i40e_tx_buffer *tx_bi;
 651        bool work_done = true;
 652        struct xdp_desc desc;
 653        dma_addr_t dma;
 654
 655        while (budget-- > 0) {
 656                if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
 657                        xdp_ring->tx_stats.tx_busy++;
 658                        work_done = false;
 659                        break;
 660                }
 661
 662                if (!xsk_umem_consume_tx(xdp_ring->xsk_umem, &desc))
 663                        break;
 664
 665                dma = xdp_umem_get_dma(xdp_ring->xsk_umem, desc.addr);
 666
 667                dma_sync_single_for_device(xdp_ring->dev, dma, desc.len,
 668                                           DMA_BIDIRECTIONAL);
 669
 670                tx_bi = &xdp_ring->tx_bi[xdp_ring->next_to_use];
 671                tx_bi->bytecount = desc.len;
 672
 673                tx_desc = I40E_TX_DESC(xdp_ring, xdp_ring->next_to_use);
 674                tx_desc->buffer_addr = cpu_to_le64(dma);
 675                tx_desc->cmd_type_offset_bsz =
 676                        build_ctob(I40E_TX_DESC_CMD_ICRC
 677                                   | I40E_TX_DESC_CMD_EOP,
 678                                   0, desc.len, 0);
 679
 680                xdp_ring->next_to_use++;
 681                if (xdp_ring->next_to_use == xdp_ring->count)
 682                        xdp_ring->next_to_use = 0;
 683        }
 684
 685        if (tx_desc) {
 686                /* Request an interrupt for the last frame and bump tail ptr. */
 687                tx_desc->cmd_type_offset_bsz |= (I40E_TX_DESC_CMD_RS <<
 688                                                 I40E_TXD_QW1_CMD_SHIFT);
 689                i40e_xdp_ring_update_tail(xdp_ring);
 690
 691                xsk_umem_consume_tx_done(xdp_ring->xsk_umem);
 692        }
 693
 694        return !!budget && work_done;
 695}
 696
 697/**
 698 * i40e_clean_xdp_tx_buffer - Frees and unmaps an XDP Tx entry
 699 * @tx_ring: XDP Tx ring
 700 * @tx_bi: Tx buffer info to clean
 701 **/
 702static void i40e_clean_xdp_tx_buffer(struct i40e_ring *tx_ring,
 703                                     struct i40e_tx_buffer *tx_bi)
 704{
 705        xdp_return_frame(tx_bi->xdpf);
 706        dma_unmap_single(tx_ring->dev,
 707                         dma_unmap_addr(tx_bi, dma),
 708                         dma_unmap_len(tx_bi, len), DMA_TO_DEVICE);
 709        dma_unmap_len_set(tx_bi, len, 0);
 710}
 711
 712/**
 713 * i40e_clean_xdp_tx_irq - Completes AF_XDP entries, and cleans XDP entries
 714 * @tx_ring: XDP Tx ring
 715 * @tx_bi: Tx buffer info to clean
 716 *
 717 * Returns true if cleanup/tranmission is done.
 718 **/
 719bool i40e_clean_xdp_tx_irq(struct i40e_vsi *vsi,
 720                           struct i40e_ring *tx_ring, int napi_budget)
 721{
 722        unsigned int ntc, total_bytes = 0, budget = vsi->work_limit;
 723        u32 i, completed_frames, frames_ready, xsk_frames = 0;
 724        struct xdp_umem *umem = tx_ring->xsk_umem;
 725        u32 head_idx = i40e_get_head(tx_ring);
 726        bool work_done = true, xmit_done;
 727        struct i40e_tx_buffer *tx_bi;
 728
 729        if (head_idx < tx_ring->next_to_clean)
 730                head_idx += tx_ring->count;
 731        frames_ready = head_idx - tx_ring->next_to_clean;
 732
 733        if (frames_ready == 0) {
 734                goto out_xmit;
 735        } else if (frames_ready > budget) {
 736                completed_frames = budget;
 737                work_done = false;
 738        } else {
 739                completed_frames = frames_ready;
 740        }
 741
 742        ntc = tx_ring->next_to_clean;
 743
 744        for (i = 0; i < completed_frames; i++) {
 745                tx_bi = &tx_ring->tx_bi[ntc];
 746
 747                if (tx_bi->xdpf)
 748                        i40e_clean_xdp_tx_buffer(tx_ring, tx_bi);
 749                else
 750                        xsk_frames++;
 751
 752                tx_bi->xdpf = NULL;
 753                total_bytes += tx_bi->bytecount;
 754
 755                if (++ntc >= tx_ring->count)
 756                        ntc = 0;
 757        }
 758
 759        tx_ring->next_to_clean += completed_frames;
 760        if (unlikely(tx_ring->next_to_clean >= tx_ring->count))
 761                tx_ring->next_to_clean -= tx_ring->count;
 762
 763        if (xsk_frames)
 764                xsk_umem_complete_tx(umem, xsk_frames);
 765
 766        i40e_arm_wb(tx_ring, vsi, budget);
 767        i40e_update_tx_stats(tx_ring, completed_frames, total_bytes);
 768
 769out_xmit:
 770        if (xsk_umem_uses_need_wakeup(tx_ring->xsk_umem))
 771                xsk_set_tx_need_wakeup(tx_ring->xsk_umem);
 772
 773        xmit_done = i40e_xmit_zc(tx_ring, budget);
 774
 775        return work_done && xmit_done;
 776}
 777
 778/**
 779 * i40e_xsk_wakeup - Implements the ndo_xsk_wakeup
 780 * @dev: the netdevice
 781 * @queue_id: queue id to wake up
 782 * @flags: ignored in our case since we have Rx and Tx in the same NAPI.
 783 *
 784 * Returns <0 for errors, 0 otherwise.
 785 **/
 786int i40e_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
 787{
 788        struct i40e_netdev_priv *np = netdev_priv(dev);
 789        struct i40e_vsi *vsi = np->vsi;
 790        struct i40e_pf *pf = vsi->back;
 791        struct i40e_ring *ring;
 792
 793        if (test_bit(__I40E_CONFIG_BUSY, pf->state))
 794                return -EAGAIN;
 795
 796        if (test_bit(__I40E_VSI_DOWN, vsi->state))
 797                return -ENETDOWN;
 798
 799        if (!i40e_enabled_xdp_vsi(vsi))
 800                return -ENXIO;
 801
 802        if (queue_id >= vsi->num_queue_pairs)
 803                return -ENXIO;
 804
 805        if (!vsi->xdp_rings[queue_id]->xsk_umem)
 806                return -ENXIO;
 807
 808        ring = vsi->xdp_rings[queue_id];
 809
 810        /* The idea here is that if NAPI is running, mark a miss, so
 811         * it will run again. If not, trigger an interrupt and
 812         * schedule the NAPI from interrupt context. If NAPI would be
 813         * scheduled here, the interrupt affinity would not be
 814         * honored.
 815         */
 816        if (!napi_if_scheduled_mark_missed(&ring->q_vector->napi))
 817                i40e_force_wb(vsi, ring->q_vector);
 818
 819        return 0;
 820}
 821
 822void i40e_xsk_clean_rx_ring(struct i40e_ring *rx_ring)
 823{
 824        u16 i;
 825
 826        for (i = 0; i < rx_ring->count; i++) {
 827                struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
 828
 829                if (!rx_bi->addr)
 830                        continue;
 831
 832                xsk_umem_fq_reuse(rx_ring->xsk_umem, rx_bi->handle);
 833                rx_bi->addr = NULL;
 834        }
 835}
 836
 837/**
 838 * i40e_xsk_clean_xdp_ring - Clean the XDP Tx ring on shutdown
 839 * @xdp_ring: XDP Tx ring
 840 **/
 841void i40e_xsk_clean_tx_ring(struct i40e_ring *tx_ring)
 842{
 843        u16 ntc = tx_ring->next_to_clean, ntu = tx_ring->next_to_use;
 844        struct xdp_umem *umem = tx_ring->xsk_umem;
 845        struct i40e_tx_buffer *tx_bi;
 846        u32 xsk_frames = 0;
 847
 848        while (ntc != ntu) {
 849                tx_bi = &tx_ring->tx_bi[ntc];
 850
 851                if (tx_bi->xdpf)
 852                        i40e_clean_xdp_tx_buffer(tx_ring, tx_bi);
 853                else
 854                        xsk_frames++;
 855
 856                tx_bi->xdpf = NULL;
 857
 858                ntc++;
 859                if (ntc >= tx_ring->count)
 860                        ntc = 0;
 861        }
 862
 863        if (xsk_frames)
 864                xsk_umem_complete_tx(umem, xsk_frames);
 865}
 866
 867/**
 868 * i40e_xsk_any_rx_ring_enabled - Checks if Rx rings have AF_XDP UMEM attached
 869 * @vsi: vsi
 870 *
 871 * Returns true if any of the Rx rings has an AF_XDP UMEM attached
 872 **/
 873bool i40e_xsk_any_rx_ring_enabled(struct i40e_vsi *vsi)
 874{
 875        struct net_device *netdev = vsi->netdev;
 876        int i;
 877
 878        for (i = 0; i < vsi->num_queue_pairs; i++) {
 879                if (xdp_get_umem_from_qid(netdev, i))
 880                        return true;
 881        }
 882
 883        return false;
 884}
 885