linux/drivers/net/ethernet/marvell/skge.c
<<
>>
Prefs
   1/*
   2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
   3 * Ethernet adapters. Based on earlier sk98lin, e100 and
   4 * FreeBSD if_sk drivers.
   5 *
   6 * This driver intentionally does not support all the features
   7 * of the original driver such as link fail-over and link management because
   8 * those should be done at higher levels.
   9 *
  10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License as published by
  14 * the Free Software Foundation; either version 2 of the License.
  15 *
  16 * This program is distributed in the hope that it will be useful,
  17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  19 * GNU General Public License for more details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, write to the Free Software
  23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24 */
  25
  26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  27
  28#include <linux/in.h>
  29#include <linux/kernel.h>
  30#include <linux/module.h>
  31#include <linux/moduleparam.h>
  32#include <linux/netdevice.h>
  33#include <linux/etherdevice.h>
  34#include <linux/ethtool.h>
  35#include <linux/pci.h>
  36#include <linux/if_vlan.h>
  37#include <linux/ip.h>
  38#include <linux/delay.h>
  39#include <linux/crc32.h>
  40#include <linux/dma-mapping.h>
  41#include <linux/debugfs.h>
  42#include <linux/sched.h>
  43#include <linux/seq_file.h>
  44#include <linux/mii.h>
  45#include <linux/slab.h>
  46#include <linux/dmi.h>
  47#include <linux/prefetch.h>
  48#include <asm/irq.h>
  49
  50#include "skge.h"
  51
  52#define DRV_NAME                "skge"
  53#define DRV_VERSION             "1.14"
  54
  55#define DEFAULT_TX_RING_SIZE    128
  56#define DEFAULT_RX_RING_SIZE    512
  57#define MAX_TX_RING_SIZE        1024
  58#define TX_LOW_WATER            (MAX_SKB_FRAGS + 1)
  59#define MAX_RX_RING_SIZE        4096
  60#define RX_COPY_THRESHOLD       128
  61#define RX_BUF_SIZE             1536
  62#define PHY_RETRIES             1000
  63#define ETH_JUMBO_MTU           9000
  64#define TX_WATCHDOG             (5 * HZ)
  65#define NAPI_WEIGHT             64
  66#define BLINK_MS                250
  67#define LINK_HZ                 HZ
  68
  69#define SKGE_EEPROM_MAGIC       0x9933aabb
  70
  71
  72MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  73MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
  74MODULE_LICENSE("GPL");
  75MODULE_VERSION(DRV_VERSION);
  76
  77static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
  78                                NETIF_MSG_LINK | NETIF_MSG_IFUP |
  79                                NETIF_MSG_IFDOWN);
  80
  81static int debug = -1;  /* defaults above */
  82module_param(debug, int, 0);
  83MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  84
  85static const struct pci_device_id skge_id_table[] = {
  86        { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) },       /* 3Com 3C940 */
  87        { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) },       /* 3Com 3C940B */
  88#ifdef CONFIG_SKGE_GENESIS
  89        { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */
  90#endif
  91        { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */
  92        { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) },      /* D-Link DGE-530T (rev.B) */
  93        { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) },      /* D-Link DGE-530T */
  94        { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) },      /* D-Link DGE-530T Rev C1 */
  95        { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },    /* Marvell Yukon 88E8001/8003/8010 */
  96        { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) },    /* Belkin */
  97        { PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) },       /* CNet PowerG-2000 */
  98        { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) },    /* Linksys EG1064 v2 */
  99        { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */
 100        { 0 }
 101};
 102MODULE_DEVICE_TABLE(pci, skge_id_table);
 103
 104static int skge_up(struct net_device *dev);
 105static int skge_down(struct net_device *dev);
 106static void skge_phy_reset(struct skge_port *skge);
 107static void skge_tx_clean(struct net_device *dev);
 108static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
 109static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
 110static void genesis_get_stats(struct skge_port *skge, u64 *data);
 111static void yukon_get_stats(struct skge_port *skge, u64 *data);
 112static void yukon_init(struct skge_hw *hw, int port);
 113static void genesis_mac_init(struct skge_hw *hw, int port);
 114static void genesis_link_up(struct skge_port *skge);
 115static void skge_set_multicast(struct net_device *dev);
 116static irqreturn_t skge_intr(int irq, void *dev_id);
 117
 118/* Avoid conditionals by using array */
 119static const int txqaddr[] = { Q_XA1, Q_XA2 };
 120static const int rxqaddr[] = { Q_R1, Q_R2 };
 121static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
 122static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
 123static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
 124static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
 125
 126static inline bool is_genesis(const struct skge_hw *hw)
 127{
 128#ifdef CONFIG_SKGE_GENESIS
 129        return hw->chip_id == CHIP_ID_GENESIS;
 130#else
 131        return false;
 132#endif
 133}
 134
 135static int skge_get_regs_len(struct net_device *dev)
 136{
 137        return 0x4000;
 138}
 139
 140/*
 141 * Returns copy of whole control register region
 142 * Note: skip RAM address register because accessing it will
 143 *       cause bus hangs!
 144 */
 145static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
 146                          void *p)
 147{
 148        const struct skge_port *skge = netdev_priv(dev);
 149        const void __iomem *io = skge->hw->regs;
 150
 151        regs->version = 1;
 152        memset(p, 0, regs->len);
 153        memcpy_fromio(p, io, B3_RAM_ADDR);
 154
 155        memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
 156                      regs->len - B3_RI_WTO_R1);
 157}
 158
 159/* Wake on Lan only supported on Yukon chips with rev 1 or above */
 160static u32 wol_supported(const struct skge_hw *hw)
 161{
 162        if (is_genesis(hw))
 163                return 0;
 164
 165        if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
 166                return 0;
 167
 168        return WAKE_MAGIC | WAKE_PHY;
 169}
 170
 171static void skge_wol_init(struct skge_port *skge)
 172{
 173        struct skge_hw *hw = skge->hw;
 174        int port = skge->port;
 175        u16 ctrl;
 176
 177        skge_write16(hw, B0_CTST, CS_RST_CLR);
 178        skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
 179
 180        /* Turn on Vaux */
 181        skge_write8(hw, B0_POWER_CTRL,
 182                    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
 183
 184        /* WA code for COMA mode -- clear PHY reset */
 185        if (hw->chip_id == CHIP_ID_YUKON_LITE &&
 186            hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
 187                u32 reg = skge_read32(hw, B2_GP_IO);
 188                reg |= GP_DIR_9;
 189                reg &= ~GP_IO_9;
 190                skge_write32(hw, B2_GP_IO, reg);
 191        }
 192
 193        skge_write32(hw, SK_REG(port, GPHY_CTRL),
 194                     GPC_DIS_SLEEP |
 195                     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
 196                     GPC_ANEG_1 | GPC_RST_SET);
 197
 198        skge_write32(hw, SK_REG(port, GPHY_CTRL),
 199                     GPC_DIS_SLEEP |
 200                     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
 201                     GPC_ANEG_1 | GPC_RST_CLR);
 202
 203        skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
 204
 205        /* Force to 10/100 skge_reset will re-enable on resume   */
 206        gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
 207                     (PHY_AN_100FULL | PHY_AN_100HALF |
 208                      PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
 209        /* no 1000 HD/FD */
 210        gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
 211        gm_phy_write(hw, port, PHY_MARV_CTRL,
 212                     PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
 213                     PHY_CT_RE_CFG | PHY_CT_DUP_MD);
 214
 215
 216        /* Set GMAC to no flow control and auto update for speed/duplex */
 217        gma_write16(hw, port, GM_GP_CTRL,
 218                    GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
 219                    GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
 220
 221        /* Set WOL address */
 222        memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
 223                    skge->netdev->dev_addr, ETH_ALEN);
 224
 225        /* Turn on appropriate WOL control bits */
 226        skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
 227        ctrl = 0;
 228        if (skge->wol & WAKE_PHY)
 229                ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
 230        else
 231                ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
 232
 233        if (skge->wol & WAKE_MAGIC)
 234                ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
 235        else
 236                ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
 237
 238        ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
 239        skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
 240
 241        /* block receiver */
 242        skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
 243}
 244
 245static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
 246{
 247        struct skge_port *skge = netdev_priv(dev);
 248
 249        wol->supported = wol_supported(skge->hw);
 250        wol->wolopts = skge->wol;
 251}
 252
 253static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
 254{
 255        struct skge_port *skge = netdev_priv(dev);
 256        struct skge_hw *hw = skge->hw;
 257
 258        if ((wol->wolopts & ~wol_supported(hw)) ||
 259            !device_can_wakeup(&hw->pdev->dev))
 260                return -EOPNOTSUPP;
 261
 262        skge->wol = wol->wolopts;
 263
 264        device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
 265
 266        return 0;
 267}
 268
 269/* Determine supported/advertised modes based on hardware.
 270 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
 271 */
 272static u32 skge_supported_modes(const struct skge_hw *hw)
 273{
 274        u32 supported;
 275
 276        if (hw->copper) {
 277                supported = (SUPPORTED_10baseT_Half |
 278                             SUPPORTED_10baseT_Full |
 279                             SUPPORTED_100baseT_Half |
 280                             SUPPORTED_100baseT_Full |
 281                             SUPPORTED_1000baseT_Half |
 282                             SUPPORTED_1000baseT_Full |
 283                             SUPPORTED_Autoneg |
 284                             SUPPORTED_TP);
 285
 286                if (is_genesis(hw))
 287                        supported &= ~(SUPPORTED_10baseT_Half |
 288                                       SUPPORTED_10baseT_Full |
 289                                       SUPPORTED_100baseT_Half |
 290                                       SUPPORTED_100baseT_Full);
 291
 292                else if (hw->chip_id == CHIP_ID_YUKON)
 293                        supported &= ~SUPPORTED_1000baseT_Half;
 294        } else
 295                supported = (SUPPORTED_1000baseT_Full |
 296                             SUPPORTED_1000baseT_Half |
 297                             SUPPORTED_FIBRE |
 298                             SUPPORTED_Autoneg);
 299
 300        return supported;
 301}
 302
 303static int skge_get_link_ksettings(struct net_device *dev,
 304                                   struct ethtool_link_ksettings *cmd)
 305{
 306        struct skge_port *skge = netdev_priv(dev);
 307        struct skge_hw *hw = skge->hw;
 308        u32 supported, advertising;
 309
 310        supported = skge_supported_modes(hw);
 311
 312        if (hw->copper) {
 313                cmd->base.port = PORT_TP;
 314                cmd->base.phy_address = hw->phy_addr;
 315        } else
 316                cmd->base.port = PORT_FIBRE;
 317
 318        advertising = skge->advertising;
 319        cmd->base.autoneg = skge->autoneg;
 320        cmd->base.speed = skge->speed;
 321        cmd->base.duplex = skge->duplex;
 322
 323        ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
 324                                                supported);
 325        ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
 326                                                advertising);
 327
 328        return 0;
 329}
 330
 331static int skge_set_link_ksettings(struct net_device *dev,
 332                                   const struct ethtool_link_ksettings *cmd)
 333{
 334        struct skge_port *skge = netdev_priv(dev);
 335        const struct skge_hw *hw = skge->hw;
 336        u32 supported = skge_supported_modes(hw);
 337        int err = 0;
 338        u32 advertising;
 339
 340        ethtool_convert_link_mode_to_legacy_u32(&advertising,
 341                                                cmd->link_modes.advertising);
 342
 343        if (cmd->base.autoneg == AUTONEG_ENABLE) {
 344                advertising = supported;
 345                skge->duplex = -1;
 346                skge->speed = -1;
 347        } else {
 348                u32 setting;
 349                u32 speed = cmd->base.speed;
 350
 351                switch (speed) {
 352                case SPEED_1000:
 353                        if (cmd->base.duplex == DUPLEX_FULL)
 354                                setting = SUPPORTED_1000baseT_Full;
 355                        else if (cmd->base.duplex == DUPLEX_HALF)
 356                                setting = SUPPORTED_1000baseT_Half;
 357                        else
 358                                return -EINVAL;
 359                        break;
 360                case SPEED_100:
 361                        if (cmd->base.duplex == DUPLEX_FULL)
 362                                setting = SUPPORTED_100baseT_Full;
 363                        else if (cmd->base.duplex == DUPLEX_HALF)
 364                                setting = SUPPORTED_100baseT_Half;
 365                        else
 366                                return -EINVAL;
 367                        break;
 368
 369                case SPEED_10:
 370                        if (cmd->base.duplex == DUPLEX_FULL)
 371                                setting = SUPPORTED_10baseT_Full;
 372                        else if (cmd->base.duplex == DUPLEX_HALF)
 373                                setting = SUPPORTED_10baseT_Half;
 374                        else
 375                                return -EINVAL;
 376                        break;
 377                default:
 378                        return -EINVAL;
 379                }
 380
 381                if ((setting & supported) == 0)
 382                        return -EINVAL;
 383
 384                skge->speed = speed;
 385                skge->duplex = cmd->base.duplex;
 386        }
 387
 388        skge->autoneg = cmd->base.autoneg;
 389        skge->advertising = advertising;
 390
 391        if (netif_running(dev)) {
 392                skge_down(dev);
 393                err = skge_up(dev);
 394                if (err) {
 395                        dev_close(dev);
 396                        return err;
 397                }
 398        }
 399
 400        return 0;
 401}
 402
 403static void skge_get_drvinfo(struct net_device *dev,
 404                             struct ethtool_drvinfo *info)
 405{
 406        struct skge_port *skge = netdev_priv(dev);
 407
 408        strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
 409        strlcpy(info->version, DRV_VERSION, sizeof(info->version));
 410        strlcpy(info->bus_info, pci_name(skge->hw->pdev),
 411                sizeof(info->bus_info));
 412}
 413
 414static const struct skge_stat {
 415        char       name[ETH_GSTRING_LEN];
 416        u16        xmac_offset;
 417        u16        gma_offset;
 418} skge_stats[] = {
 419        { "tx_bytes",           XM_TXO_OK_HI,  GM_TXO_OK_HI },
 420        { "rx_bytes",           XM_RXO_OK_HI,  GM_RXO_OK_HI },
 421
 422        { "tx_broadcast",       XM_TXF_BC_OK,  GM_TXF_BC_OK },
 423        { "rx_broadcast",       XM_RXF_BC_OK,  GM_RXF_BC_OK },
 424        { "tx_multicast",       XM_TXF_MC_OK,  GM_TXF_MC_OK },
 425        { "rx_multicast",       XM_RXF_MC_OK,  GM_RXF_MC_OK },
 426        { "tx_unicast",         XM_TXF_UC_OK,  GM_TXF_UC_OK },
 427        { "rx_unicast",         XM_RXF_UC_OK,  GM_RXF_UC_OK },
 428        { "tx_mac_pause",       XM_TXF_MPAUSE, GM_TXF_MPAUSE },
 429        { "rx_mac_pause",       XM_RXF_MPAUSE, GM_RXF_MPAUSE },
 430
 431        { "collisions",         XM_TXF_SNG_COL, GM_TXF_SNG_COL },
 432        { "multi_collisions",   XM_TXF_MUL_COL, GM_TXF_MUL_COL },
 433        { "aborted",            XM_TXF_ABO_COL, GM_TXF_ABO_COL },
 434        { "late_collision",     XM_TXF_LAT_COL, GM_TXF_LAT_COL },
 435        { "fifo_underrun",      XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
 436        { "fifo_overflow",      XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
 437
 438        { "rx_toolong",         XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
 439        { "rx_jabber",          XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
 440        { "rx_runt",            XM_RXE_RUNT,    GM_RXE_FRAG },
 441        { "rx_too_long",        XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
 442        { "rx_fcs_error",       XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
 443};
 444
 445static int skge_get_sset_count(struct net_device *dev, int sset)
 446{
 447        switch (sset) {
 448        case ETH_SS_STATS:
 449                return ARRAY_SIZE(skge_stats);
 450        default:
 451                return -EOPNOTSUPP;
 452        }
 453}
 454
 455static void skge_get_ethtool_stats(struct net_device *dev,
 456                                   struct ethtool_stats *stats, u64 *data)
 457{
 458        struct skge_port *skge = netdev_priv(dev);
 459
 460        if (is_genesis(skge->hw))
 461                genesis_get_stats(skge, data);
 462        else
 463                yukon_get_stats(skge, data);
 464}
 465
 466/* Use hardware MIB variables for critical path statistics and
 467 * transmit feedback not reported at interrupt.
 468 * Other errors are accounted for in interrupt handler.
 469 */
 470static struct net_device_stats *skge_get_stats(struct net_device *dev)
 471{
 472        struct skge_port *skge = netdev_priv(dev);
 473        u64 data[ARRAY_SIZE(skge_stats)];
 474
 475        if (is_genesis(skge->hw))
 476                genesis_get_stats(skge, data);
 477        else
 478                yukon_get_stats(skge, data);
 479
 480        dev->stats.tx_bytes = data[0];
 481        dev->stats.rx_bytes = data[1];
 482        dev->stats.tx_packets = data[2] + data[4] + data[6];
 483        dev->stats.rx_packets = data[3] + data[5] + data[7];
 484        dev->stats.multicast = data[3] + data[5];
 485        dev->stats.collisions = data[10];
 486        dev->stats.tx_aborted_errors = data[12];
 487
 488        return &dev->stats;
 489}
 490
 491static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
 492{
 493        int i;
 494
 495        switch (stringset) {
 496        case ETH_SS_STATS:
 497                for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
 498                        memcpy(data + i * ETH_GSTRING_LEN,
 499                               skge_stats[i].name, ETH_GSTRING_LEN);
 500                break;
 501        }
 502}
 503
 504static void skge_get_ring_param(struct net_device *dev,
 505                                struct ethtool_ringparam *p)
 506{
 507        struct skge_port *skge = netdev_priv(dev);
 508
 509        p->rx_max_pending = MAX_RX_RING_SIZE;
 510        p->tx_max_pending = MAX_TX_RING_SIZE;
 511
 512        p->rx_pending = skge->rx_ring.count;
 513        p->tx_pending = skge->tx_ring.count;
 514}
 515
 516static int skge_set_ring_param(struct net_device *dev,
 517                               struct ethtool_ringparam *p)
 518{
 519        struct skge_port *skge = netdev_priv(dev);
 520        int err = 0;
 521
 522        if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
 523            p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
 524                return -EINVAL;
 525
 526        skge->rx_ring.count = p->rx_pending;
 527        skge->tx_ring.count = p->tx_pending;
 528
 529        if (netif_running(dev)) {
 530                skge_down(dev);
 531                err = skge_up(dev);
 532                if (err)
 533                        dev_close(dev);
 534        }
 535
 536        return err;
 537}
 538
 539static u32 skge_get_msglevel(struct net_device *netdev)
 540{
 541        struct skge_port *skge = netdev_priv(netdev);
 542        return skge->msg_enable;
 543}
 544
 545static void skge_set_msglevel(struct net_device *netdev, u32 value)
 546{
 547        struct skge_port *skge = netdev_priv(netdev);
 548        skge->msg_enable = value;
 549}
 550
 551static int skge_nway_reset(struct net_device *dev)
 552{
 553        struct skge_port *skge = netdev_priv(dev);
 554
 555        if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
 556                return -EINVAL;
 557
 558        skge_phy_reset(skge);
 559        return 0;
 560}
 561
 562static void skge_get_pauseparam(struct net_device *dev,
 563                                struct ethtool_pauseparam *ecmd)
 564{
 565        struct skge_port *skge = netdev_priv(dev);
 566
 567        ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
 568                          (skge->flow_control == FLOW_MODE_SYM_OR_REM));
 569        ecmd->tx_pause = (ecmd->rx_pause ||
 570                          (skge->flow_control == FLOW_MODE_LOC_SEND));
 571
 572        ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
 573}
 574
 575static int skge_set_pauseparam(struct net_device *dev,
 576                               struct ethtool_pauseparam *ecmd)
 577{
 578        struct skge_port *skge = netdev_priv(dev);
 579        struct ethtool_pauseparam old;
 580        int err = 0;
 581
 582        skge_get_pauseparam(dev, &old);
 583
 584        if (ecmd->autoneg != old.autoneg)
 585                skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
 586        else {
 587                if (ecmd->rx_pause && ecmd->tx_pause)
 588                        skge->flow_control = FLOW_MODE_SYMMETRIC;
 589                else if (ecmd->rx_pause && !ecmd->tx_pause)
 590                        skge->flow_control = FLOW_MODE_SYM_OR_REM;
 591                else if (!ecmd->rx_pause && ecmd->tx_pause)
 592                        skge->flow_control = FLOW_MODE_LOC_SEND;
 593                else
 594                        skge->flow_control = FLOW_MODE_NONE;
 595        }
 596
 597        if (netif_running(dev)) {
 598                skge_down(dev);
 599                err = skge_up(dev);
 600                if (err) {
 601                        dev_close(dev);
 602                        return err;
 603                }
 604        }
 605
 606        return 0;
 607}
 608
 609/* Chip internal frequency for clock calculations */
 610static inline u32 hwkhz(const struct skge_hw *hw)
 611{
 612        return is_genesis(hw) ? 53125 : 78125;
 613}
 614
 615/* Chip HZ to microseconds */
 616static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
 617{
 618        return (ticks * 1000) / hwkhz(hw);
 619}
 620
 621/* Microseconds to chip HZ */
 622static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
 623{
 624        return hwkhz(hw) * usec / 1000;
 625}
 626
 627static int skge_get_coalesce(struct net_device *dev,
 628                             struct ethtool_coalesce *ecmd)
 629{
 630        struct skge_port *skge = netdev_priv(dev);
 631        struct skge_hw *hw = skge->hw;
 632        int port = skge->port;
 633
 634        ecmd->rx_coalesce_usecs = 0;
 635        ecmd->tx_coalesce_usecs = 0;
 636
 637        if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
 638                u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
 639                u32 msk = skge_read32(hw, B2_IRQM_MSK);
 640
 641                if (msk & rxirqmask[port])
 642                        ecmd->rx_coalesce_usecs = delay;
 643                if (msk & txirqmask[port])
 644                        ecmd->tx_coalesce_usecs = delay;
 645        }
 646
 647        return 0;
 648}
 649
 650/* Note: interrupt timer is per board, but can turn on/off per port */
 651static int skge_set_coalesce(struct net_device *dev,
 652                             struct ethtool_coalesce *ecmd)
 653{
 654        struct skge_port *skge = netdev_priv(dev);
 655        struct skge_hw *hw = skge->hw;
 656        int port = skge->port;
 657        u32 msk = skge_read32(hw, B2_IRQM_MSK);
 658        u32 delay = 25;
 659
 660        if (ecmd->rx_coalesce_usecs == 0)
 661                msk &= ~rxirqmask[port];
 662        else if (ecmd->rx_coalesce_usecs < 25 ||
 663                 ecmd->rx_coalesce_usecs > 33333)
 664                return -EINVAL;
 665        else {
 666                msk |= rxirqmask[port];
 667                delay = ecmd->rx_coalesce_usecs;
 668        }
 669
 670        if (ecmd->tx_coalesce_usecs == 0)
 671                msk &= ~txirqmask[port];
 672        else if (ecmd->tx_coalesce_usecs < 25 ||
 673                 ecmd->tx_coalesce_usecs > 33333)
 674                return -EINVAL;
 675        else {
 676                msk |= txirqmask[port];
 677                delay = min(delay, ecmd->rx_coalesce_usecs);
 678        }
 679
 680        skge_write32(hw, B2_IRQM_MSK, msk);
 681        if (msk == 0)
 682                skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
 683        else {
 684                skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
 685                skge_write32(hw, B2_IRQM_CTRL, TIM_START);
 686        }
 687        return 0;
 688}
 689
 690enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
 691static void skge_led(struct skge_port *skge, enum led_mode mode)
 692{
 693        struct skge_hw *hw = skge->hw;
 694        int port = skge->port;
 695
 696        spin_lock_bh(&hw->phy_lock);
 697        if (is_genesis(hw)) {
 698                switch (mode) {
 699                case LED_MODE_OFF:
 700                        if (hw->phy_type == SK_PHY_BCOM)
 701                                xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
 702                        else {
 703                                skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
 704                                skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
 705                        }
 706                        skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
 707                        skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
 708                        skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
 709                        break;
 710
 711                case LED_MODE_ON:
 712                        skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
 713                        skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
 714
 715                        skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
 716                        skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
 717
 718                        break;
 719
 720                case LED_MODE_TST:
 721                        skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
 722                        skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
 723                        skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
 724
 725                        if (hw->phy_type == SK_PHY_BCOM)
 726                                xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
 727                        else {
 728                                skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
 729                                skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
 730                                skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
 731                        }
 732
 733                }
 734        } else {
 735                switch (mode) {
 736                case LED_MODE_OFF:
 737                        gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
 738                        gm_phy_write(hw, port, PHY_MARV_LED_OVER,
 739                                     PHY_M_LED_MO_DUP(MO_LED_OFF)  |
 740                                     PHY_M_LED_MO_10(MO_LED_OFF)   |
 741                                     PHY_M_LED_MO_100(MO_LED_OFF)  |
 742                                     PHY_M_LED_MO_1000(MO_LED_OFF) |
 743                                     PHY_M_LED_MO_RX(MO_LED_OFF));
 744                        break;
 745                case LED_MODE_ON:
 746                        gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
 747                                     PHY_M_LED_PULS_DUR(PULS_170MS) |
 748                                     PHY_M_LED_BLINK_RT(BLINK_84MS) |
 749                                     PHY_M_LEDC_TX_CTRL |
 750                                     PHY_M_LEDC_DP_CTRL);
 751
 752                        gm_phy_write(hw, port, PHY_MARV_LED_OVER,
 753                                     PHY_M_LED_MO_RX(MO_LED_OFF) |
 754                                     (skge->speed == SPEED_100 ?
 755                                      PHY_M_LED_MO_100(MO_LED_ON) : 0));
 756                        break;
 757                case LED_MODE_TST:
 758                        gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
 759                        gm_phy_write(hw, port, PHY_MARV_LED_OVER,
 760                                     PHY_M_LED_MO_DUP(MO_LED_ON)  |
 761                                     PHY_M_LED_MO_10(MO_LED_ON)   |
 762                                     PHY_M_LED_MO_100(MO_LED_ON)  |
 763                                     PHY_M_LED_MO_1000(MO_LED_ON) |
 764                                     PHY_M_LED_MO_RX(MO_LED_ON));
 765                }
 766        }
 767        spin_unlock_bh(&hw->phy_lock);
 768}
 769
 770/* blink LED's for finding board */
 771static int skge_set_phys_id(struct net_device *dev,
 772                            enum ethtool_phys_id_state state)
 773{
 774        struct skge_port *skge = netdev_priv(dev);
 775
 776        switch (state) {
 777        case ETHTOOL_ID_ACTIVE:
 778                return 2;       /* cycle on/off twice per second */
 779
 780        case ETHTOOL_ID_ON:
 781                skge_led(skge, LED_MODE_TST);
 782                break;
 783
 784        case ETHTOOL_ID_OFF:
 785                skge_led(skge, LED_MODE_OFF);
 786                break;
 787
 788        case ETHTOOL_ID_INACTIVE:
 789                /* back to regular LED state */
 790                skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
 791        }
 792
 793        return 0;
 794}
 795
 796static int skge_get_eeprom_len(struct net_device *dev)
 797{
 798        struct skge_port *skge = netdev_priv(dev);
 799        u32 reg2;
 800
 801        pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
 802        return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
 803}
 804
 805static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
 806{
 807        u32 val;
 808
 809        pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
 810
 811        do {
 812                pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
 813        } while (!(offset & PCI_VPD_ADDR_F));
 814
 815        pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
 816        return val;
 817}
 818
 819static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
 820{
 821        pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
 822        pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
 823                              offset | PCI_VPD_ADDR_F);
 824
 825        do {
 826                pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
 827        } while (offset & PCI_VPD_ADDR_F);
 828}
 829
 830static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
 831                           u8 *data)
 832{
 833        struct skge_port *skge = netdev_priv(dev);
 834        struct pci_dev *pdev = skge->hw->pdev;
 835        int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
 836        int length = eeprom->len;
 837        u16 offset = eeprom->offset;
 838
 839        if (!cap)
 840                return -EINVAL;
 841
 842        eeprom->magic = SKGE_EEPROM_MAGIC;
 843
 844        while (length > 0) {
 845                u32 val = skge_vpd_read(pdev, cap, offset);
 846                int n = min_t(int, length, sizeof(val));
 847
 848                memcpy(data, &val, n);
 849                length -= n;
 850                data += n;
 851                offset += n;
 852        }
 853        return 0;
 854}
 855
 856static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
 857                           u8 *data)
 858{
 859        struct skge_port *skge = netdev_priv(dev);
 860        struct pci_dev *pdev = skge->hw->pdev;
 861        int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
 862        int length = eeprom->len;
 863        u16 offset = eeprom->offset;
 864
 865        if (!cap)
 866                return -EINVAL;
 867
 868        if (eeprom->magic != SKGE_EEPROM_MAGIC)
 869                return -EINVAL;
 870
 871        while (length > 0) {
 872                u32 val;
 873                int n = min_t(int, length, sizeof(val));
 874
 875                if (n < sizeof(val))
 876                        val = skge_vpd_read(pdev, cap, offset);
 877                memcpy(&val, data, n);
 878
 879                skge_vpd_write(pdev, cap, offset, val);
 880
 881                length -= n;
 882                data += n;
 883                offset += n;
 884        }
 885        return 0;
 886}
 887
 888static const struct ethtool_ops skge_ethtool_ops = {
 889        .get_drvinfo    = skge_get_drvinfo,
 890        .get_regs_len   = skge_get_regs_len,
 891        .get_regs       = skge_get_regs,
 892        .get_wol        = skge_get_wol,
 893        .set_wol        = skge_set_wol,
 894        .get_msglevel   = skge_get_msglevel,
 895        .set_msglevel   = skge_set_msglevel,
 896        .nway_reset     = skge_nway_reset,
 897        .get_link       = ethtool_op_get_link,
 898        .get_eeprom_len = skge_get_eeprom_len,
 899        .get_eeprom     = skge_get_eeprom,
 900        .set_eeprom     = skge_set_eeprom,
 901        .get_ringparam  = skge_get_ring_param,
 902        .set_ringparam  = skge_set_ring_param,
 903        .get_pauseparam = skge_get_pauseparam,
 904        .set_pauseparam = skge_set_pauseparam,
 905        .get_coalesce   = skge_get_coalesce,
 906        .set_coalesce   = skge_set_coalesce,
 907        .get_strings    = skge_get_strings,
 908        .set_phys_id    = skge_set_phys_id,
 909        .get_sset_count = skge_get_sset_count,
 910        .get_ethtool_stats = skge_get_ethtool_stats,
 911        .get_link_ksettings = skge_get_link_ksettings,
 912        .set_link_ksettings = skge_set_link_ksettings,
 913};
 914
 915/*
 916 * Allocate ring elements and chain them together
 917 * One-to-one association of board descriptors with ring elements
 918 */
 919static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
 920{
 921        struct skge_tx_desc *d;
 922        struct skge_element *e;
 923        int i;
 924
 925        ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
 926        if (!ring->start)
 927                return -ENOMEM;
 928
 929        for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
 930                e->desc = d;
 931                if (i == ring->count - 1) {
 932                        e->next = ring->start;
 933                        d->next_offset = base;
 934                } else {
 935                        e->next = e + 1;
 936                        d->next_offset = base + (i+1) * sizeof(*d);
 937                }
 938        }
 939        ring->to_use = ring->to_clean = ring->start;
 940
 941        return 0;
 942}
 943
 944/* Allocate and setup a new buffer for receiving */
 945static int skge_rx_setup(struct skge_port *skge, struct skge_element *e,
 946                         struct sk_buff *skb, unsigned int bufsize)
 947{
 948        struct skge_rx_desc *rd = e->desc;
 949        dma_addr_t map;
 950
 951        map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
 952                             PCI_DMA_FROMDEVICE);
 953
 954        if (pci_dma_mapping_error(skge->hw->pdev, map))
 955                return -1;
 956
 957        rd->dma_lo = lower_32_bits(map);
 958        rd->dma_hi = upper_32_bits(map);
 959        e->skb = skb;
 960        rd->csum1_start = ETH_HLEN;
 961        rd->csum2_start = ETH_HLEN;
 962        rd->csum1 = 0;
 963        rd->csum2 = 0;
 964
 965        wmb();
 966
 967        rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
 968        dma_unmap_addr_set(e, mapaddr, map);
 969        dma_unmap_len_set(e, maplen, bufsize);
 970        return 0;
 971}
 972
 973/* Resume receiving using existing skb,
 974 * Note: DMA address is not changed by chip.
 975 *       MTU not changed while receiver active.
 976 */
 977static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
 978{
 979        struct skge_rx_desc *rd = e->desc;
 980
 981        rd->csum2 = 0;
 982        rd->csum2_start = ETH_HLEN;
 983
 984        wmb();
 985
 986        rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
 987}
 988
 989
 990/* Free all  buffers in receive ring, assumes receiver stopped */
 991static void skge_rx_clean(struct skge_port *skge)
 992{
 993        struct skge_hw *hw = skge->hw;
 994        struct skge_ring *ring = &skge->rx_ring;
 995        struct skge_element *e;
 996
 997        e = ring->start;
 998        do {
 999                struct skge_rx_desc *rd = e->desc;
1000                rd->control = 0;
1001                if (e->skb) {
1002                        pci_unmap_single(hw->pdev,
1003                                         dma_unmap_addr(e, mapaddr),
1004                                         dma_unmap_len(e, maplen),
1005                                         PCI_DMA_FROMDEVICE);
1006                        dev_kfree_skb(e->skb);
1007                        e->skb = NULL;
1008                }
1009        } while ((e = e->next) != ring->start);
1010}
1011
1012
1013/* Allocate buffers for receive ring
1014 * For receive:  to_clean is next received frame.
1015 */
1016static int skge_rx_fill(struct net_device *dev)
1017{
1018        struct skge_port *skge = netdev_priv(dev);
1019        struct skge_ring *ring = &skge->rx_ring;
1020        struct skge_element *e;
1021
1022        e = ring->start;
1023        do {
1024                struct sk_buff *skb;
1025
1026                skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1027                                         GFP_KERNEL);
1028                if (!skb)
1029                        return -ENOMEM;
1030
1031                skb_reserve(skb, NET_IP_ALIGN);
1032                if (skge_rx_setup(skge, e, skb, skge->rx_buf_size) < 0) {
1033                        dev_kfree_skb(skb);
1034                        return -EIO;
1035                }
1036        } while ((e = e->next) != ring->start);
1037
1038        ring->to_clean = ring->start;
1039        return 0;
1040}
1041
1042static const char *skge_pause(enum pause_status status)
1043{
1044        switch (status) {
1045        case FLOW_STAT_NONE:
1046                return "none";
1047        case FLOW_STAT_REM_SEND:
1048                return "rx only";
1049        case FLOW_STAT_LOC_SEND:
1050                return "tx_only";
1051        case FLOW_STAT_SYMMETRIC:               /* Both station may send PAUSE */
1052                return "both";
1053        default:
1054                return "indeterminated";
1055        }
1056}
1057
1058
1059static void skge_link_up(struct skge_port *skge)
1060{
1061        skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1062                    LED_BLK_OFF|LED_SYNC_OFF|LED_REG_ON);
1063
1064        netif_carrier_on(skge->netdev);
1065        netif_wake_queue(skge->netdev);
1066
1067        netif_info(skge, link, skge->netdev,
1068                   "Link is up at %d Mbps, %s duplex, flow control %s\n",
1069                   skge->speed,
1070                   skge->duplex == DUPLEX_FULL ? "full" : "half",
1071                   skge_pause(skge->flow_status));
1072}
1073
1074static void skge_link_down(struct skge_port *skge)
1075{
1076        skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
1077        netif_carrier_off(skge->netdev);
1078        netif_stop_queue(skge->netdev);
1079
1080        netif_info(skge, link, skge->netdev, "Link is down\n");
1081}
1082
1083static void xm_link_down(struct skge_hw *hw, int port)
1084{
1085        struct net_device *dev = hw->dev[port];
1086        struct skge_port *skge = netdev_priv(dev);
1087
1088        xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1089
1090        if (netif_carrier_ok(dev))
1091                skge_link_down(skge);
1092}
1093
1094static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1095{
1096        int i;
1097
1098        xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1099        *val = xm_read16(hw, port, XM_PHY_DATA);
1100
1101        if (hw->phy_type == SK_PHY_XMAC)
1102                goto ready;
1103
1104        for (i = 0; i < PHY_RETRIES; i++) {
1105                if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1106                        goto ready;
1107                udelay(1);
1108        }
1109
1110        return -ETIMEDOUT;
1111 ready:
1112        *val = xm_read16(hw, port, XM_PHY_DATA);
1113
1114        return 0;
1115}
1116
1117static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1118{
1119        u16 v = 0;
1120        if (__xm_phy_read(hw, port, reg, &v))
1121                pr_warn("%s: phy read timed out\n", hw->dev[port]->name);
1122        return v;
1123}
1124
1125static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1126{
1127        int i;
1128
1129        xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1130        for (i = 0; i < PHY_RETRIES; i++) {
1131                if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1132                        goto ready;
1133                udelay(1);
1134        }
1135        return -EIO;
1136
1137 ready:
1138        xm_write16(hw, port, XM_PHY_DATA, val);
1139        for (i = 0; i < PHY_RETRIES; i++) {
1140                if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1141                        return 0;
1142                udelay(1);
1143        }
1144        return -ETIMEDOUT;
1145}
1146
1147static void genesis_init(struct skge_hw *hw)
1148{
1149        /* set blink source counter */
1150        skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1151        skge_write8(hw, B2_BSC_CTRL, BSC_START);
1152
1153        /* configure mac arbiter */
1154        skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1155
1156        /* configure mac arbiter timeout values */
1157        skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1158        skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1159        skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1160        skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1161
1162        skge_write8(hw, B3_MA_RCINI_RX1, 0);
1163        skge_write8(hw, B3_MA_RCINI_RX2, 0);
1164        skge_write8(hw, B3_MA_RCINI_TX1, 0);
1165        skge_write8(hw, B3_MA_RCINI_TX2, 0);
1166
1167        /* configure packet arbiter timeout */
1168        skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1169        skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1170        skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1171        skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1172        skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1173}
1174
1175static void genesis_reset(struct skge_hw *hw, int port)
1176{
1177        static const u8 zero[8]  = { 0 };
1178        u32 reg;
1179
1180        skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1181
1182        /* reset the statistics module */
1183        xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1184        xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1185        xm_write32(hw, port, XM_MODE, 0);               /* clear Mode Reg */
1186        xm_write16(hw, port, XM_TX_CMD, 0);     /* reset TX CMD Reg */
1187        xm_write16(hw, port, XM_RX_CMD, 0);     /* reset RX CMD Reg */
1188
1189        /* disable Broadcom PHY IRQ */
1190        if (hw->phy_type == SK_PHY_BCOM)
1191                xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1192
1193        xm_outhash(hw, port, XM_HSM, zero);
1194
1195        /* Flush TX and RX fifo */
1196        reg = xm_read32(hw, port, XM_MODE);
1197        xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
1198        xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
1199}
1200
1201/* Convert mode to MII values  */
1202static const u16 phy_pause_map[] = {
1203        [FLOW_MODE_NONE] =      0,
1204        [FLOW_MODE_LOC_SEND] =  PHY_AN_PAUSE_ASYM,
1205        [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1206        [FLOW_MODE_SYM_OR_REM]  = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1207};
1208
1209/* special defines for FIBER (88E1011S only) */
1210static const u16 fiber_pause_map[] = {
1211        [FLOW_MODE_NONE]        = PHY_X_P_NO_PAUSE,
1212        [FLOW_MODE_LOC_SEND]    = PHY_X_P_ASYM_MD,
1213        [FLOW_MODE_SYMMETRIC]   = PHY_X_P_SYM_MD,
1214        [FLOW_MODE_SYM_OR_REM]  = PHY_X_P_BOTH_MD,
1215};
1216
1217
1218/* Check status of Broadcom phy link */
1219static void bcom_check_link(struct skge_hw *hw, int port)
1220{
1221        struct net_device *dev = hw->dev[port];
1222        struct skge_port *skge = netdev_priv(dev);
1223        u16 status;
1224
1225        /* read twice because of latch */
1226        xm_phy_read(hw, port, PHY_BCOM_STAT);
1227        status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1228
1229        if ((status & PHY_ST_LSYNC) == 0) {
1230                xm_link_down(hw, port);
1231                return;
1232        }
1233
1234        if (skge->autoneg == AUTONEG_ENABLE) {
1235                u16 lpa, aux;
1236
1237                if (!(status & PHY_ST_AN_OVER))
1238                        return;
1239
1240                lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1241                if (lpa & PHY_B_AN_RF) {
1242                        netdev_notice(dev, "remote fault\n");
1243                        return;
1244                }
1245
1246                aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1247
1248                /* Check Duplex mismatch */
1249                switch (aux & PHY_B_AS_AN_RES_MSK) {
1250                case PHY_B_RES_1000FD:
1251                        skge->duplex = DUPLEX_FULL;
1252                        break;
1253                case PHY_B_RES_1000HD:
1254                        skge->duplex = DUPLEX_HALF;
1255                        break;
1256                default:
1257                        netdev_notice(dev, "duplex mismatch\n");
1258                        return;
1259                }
1260
1261                /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1262                switch (aux & PHY_B_AS_PAUSE_MSK) {
1263                case PHY_B_AS_PAUSE_MSK:
1264                        skge->flow_status = FLOW_STAT_SYMMETRIC;
1265                        break;
1266                case PHY_B_AS_PRR:
1267                        skge->flow_status = FLOW_STAT_REM_SEND;
1268                        break;
1269                case PHY_B_AS_PRT:
1270                        skge->flow_status = FLOW_STAT_LOC_SEND;
1271                        break;
1272                default:
1273                        skge->flow_status = FLOW_STAT_NONE;
1274                }
1275                skge->speed = SPEED_1000;
1276        }
1277
1278        if (!netif_carrier_ok(dev))
1279                genesis_link_up(skge);
1280}
1281
1282/* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1283 * Phy on for 100 or 10Mbit operation
1284 */
1285static void bcom_phy_init(struct skge_port *skge)
1286{
1287        struct skge_hw *hw = skge->hw;
1288        int port = skge->port;
1289        int i;
1290        u16 id1, r, ext, ctl;
1291
1292        /* magic workaround patterns for Broadcom */
1293        static const struct {
1294                u16 reg;
1295                u16 val;
1296        } A1hack[] = {
1297                { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1298                { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1299                { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1300                { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1301        }, C0hack[] = {
1302                { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1303                { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1304        };
1305
1306        /* read Id from external PHY (all have the same address) */
1307        id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1308
1309        /* Optimize MDIO transfer by suppressing preamble. */
1310        r = xm_read16(hw, port, XM_MMU_CMD);
1311        r |=  XM_MMU_NO_PRE;
1312        xm_write16(hw, port, XM_MMU_CMD, r);
1313
1314        switch (id1) {
1315        case PHY_BCOM_ID1_C0:
1316                /*
1317                 * Workaround BCOM Errata for the C0 type.
1318                 * Write magic patterns to reserved registers.
1319                 */
1320                for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1321                        xm_phy_write(hw, port,
1322                                     C0hack[i].reg, C0hack[i].val);
1323
1324                break;
1325        case PHY_BCOM_ID1_A1:
1326                /*
1327                 * Workaround BCOM Errata for the A1 type.
1328                 * Write magic patterns to reserved registers.
1329                 */
1330                for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1331                        xm_phy_write(hw, port,
1332                                     A1hack[i].reg, A1hack[i].val);
1333                break;
1334        }
1335
1336        /*
1337         * Workaround BCOM Errata (#10523) for all BCom PHYs.
1338         * Disable Power Management after reset.
1339         */
1340        r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1341        r |= PHY_B_AC_DIS_PM;
1342        xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1343
1344        /* Dummy read */
1345        xm_read16(hw, port, XM_ISRC);
1346
1347        ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1348        ctl = PHY_CT_SP1000;    /* always 1000mbit */
1349
1350        if (skge->autoneg == AUTONEG_ENABLE) {
1351                /*
1352                 * Workaround BCOM Errata #1 for the C5 type.
1353                 * 1000Base-T Link Acquisition Failure in Slave Mode
1354                 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1355                 */
1356                u16 adv = PHY_B_1000C_RD;
1357                if (skge->advertising & ADVERTISED_1000baseT_Half)
1358                        adv |= PHY_B_1000C_AHD;
1359                if (skge->advertising & ADVERTISED_1000baseT_Full)
1360                        adv |= PHY_B_1000C_AFD;
1361                xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1362
1363                ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1364        } else {
1365                if (skge->duplex == DUPLEX_FULL)
1366                        ctl |= PHY_CT_DUP_MD;
1367                /* Force to slave */
1368                xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1369        }
1370
1371        /* Set autonegotiation pause parameters */
1372        xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1373                     phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1374
1375        /* Handle Jumbo frames */
1376        if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1377                xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1378                             PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1379
1380                ext |= PHY_B_PEC_HIGH_LA;
1381
1382        }
1383
1384        xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1385        xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1386
1387        /* Use link status change interrupt */
1388        xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1389}
1390
1391static void xm_phy_init(struct skge_port *skge)
1392{
1393        struct skge_hw *hw = skge->hw;
1394        int port = skge->port;
1395        u16 ctrl = 0;
1396
1397        if (skge->autoneg == AUTONEG_ENABLE) {
1398                if (skge->advertising & ADVERTISED_1000baseT_Half)
1399                        ctrl |= PHY_X_AN_HD;
1400                if (skge->advertising & ADVERTISED_1000baseT_Full)
1401                        ctrl |= PHY_X_AN_FD;
1402
1403                ctrl |= fiber_pause_map[skge->flow_control];
1404
1405                xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1406
1407                /* Restart Auto-negotiation */
1408                ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1409        } else {
1410                /* Set DuplexMode in Config register */
1411                if (skge->duplex == DUPLEX_FULL)
1412                        ctrl |= PHY_CT_DUP_MD;
1413                /*
1414                 * Do NOT enable Auto-negotiation here. This would hold
1415                 * the link down because no IDLEs are transmitted
1416                 */
1417        }
1418
1419        xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1420
1421        /* Poll PHY for status changes */
1422        mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1423}
1424
1425static int xm_check_link(struct net_device *dev)
1426{
1427        struct skge_port *skge = netdev_priv(dev);
1428        struct skge_hw *hw = skge->hw;
1429        int port = skge->port;
1430        u16 status;
1431
1432        /* read twice because of latch */
1433        xm_phy_read(hw, port, PHY_XMAC_STAT);
1434        status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1435
1436        if ((status & PHY_ST_LSYNC) == 0) {
1437                xm_link_down(hw, port);
1438                return 0;
1439        }
1440
1441        if (skge->autoneg == AUTONEG_ENABLE) {
1442                u16 lpa, res;
1443
1444                if (!(status & PHY_ST_AN_OVER))
1445                        return 0;
1446
1447                lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1448                if (lpa & PHY_B_AN_RF) {
1449                        netdev_notice(dev, "remote fault\n");
1450                        return 0;
1451                }
1452
1453                res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1454
1455                /* Check Duplex mismatch */
1456                switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1457                case PHY_X_RS_FD:
1458                        skge->duplex = DUPLEX_FULL;
1459                        break;
1460                case PHY_X_RS_HD:
1461                        skge->duplex = DUPLEX_HALF;
1462                        break;
1463                default:
1464                        netdev_notice(dev, "duplex mismatch\n");
1465                        return 0;
1466                }
1467
1468                /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1469                if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1470                     skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1471                    (lpa & PHY_X_P_SYM_MD))
1472                        skge->flow_status = FLOW_STAT_SYMMETRIC;
1473                else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1474                         (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1475                        /* Enable PAUSE receive, disable PAUSE transmit */
1476                        skge->flow_status  = FLOW_STAT_REM_SEND;
1477                else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1478                         (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1479                        /* Disable PAUSE receive, enable PAUSE transmit */
1480                        skge->flow_status = FLOW_STAT_LOC_SEND;
1481                else
1482                        skge->flow_status = FLOW_STAT_NONE;
1483
1484                skge->speed = SPEED_1000;
1485        }
1486
1487        if (!netif_carrier_ok(dev))
1488                genesis_link_up(skge);
1489        return 1;
1490}
1491
1492/* Poll to check for link coming up.
1493 *
1494 * Since internal PHY is wired to a level triggered pin, can't
1495 * get an interrupt when carrier is detected, need to poll for
1496 * link coming up.
1497 */
1498static void xm_link_timer(struct timer_list *t)
1499{
1500        struct skge_port *skge = from_timer(skge, t, link_timer);
1501        struct net_device *dev = skge->netdev;
1502        struct skge_hw *hw = skge->hw;
1503        int port = skge->port;
1504        int i;
1505        unsigned long flags;
1506
1507        if (!netif_running(dev))
1508                return;
1509
1510        spin_lock_irqsave(&hw->phy_lock, flags);
1511
1512        /*
1513         * Verify that the link by checking GPIO register three times.
1514         * This pin has the signal from the link_sync pin connected to it.
1515         */
1516        for (i = 0; i < 3; i++) {
1517                if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1518                        goto link_down;
1519        }
1520
1521        /* Re-enable interrupt to detect link down */
1522        if (xm_check_link(dev)) {
1523                u16 msk = xm_read16(hw, port, XM_IMSK);
1524                msk &= ~XM_IS_INP_ASS;
1525                xm_write16(hw, port, XM_IMSK, msk);
1526                xm_read16(hw, port, XM_ISRC);
1527        } else {
1528link_down:
1529                mod_timer(&skge->link_timer,
1530                          round_jiffies(jiffies + LINK_HZ));
1531        }
1532        spin_unlock_irqrestore(&hw->phy_lock, flags);
1533}
1534
1535static void genesis_mac_init(struct skge_hw *hw, int port)
1536{
1537        struct net_device *dev = hw->dev[port];
1538        struct skge_port *skge = netdev_priv(dev);
1539        int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1540        int i;
1541        u32 r;
1542        static const u8 zero[6]  = { 0 };
1543
1544        for (i = 0; i < 10; i++) {
1545                skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1546                             MFF_SET_MAC_RST);
1547                if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1548                        goto reset_ok;
1549                udelay(1);
1550        }
1551
1552        netdev_warn(dev, "genesis reset failed\n");
1553
1554 reset_ok:
1555        /* Unreset the XMAC. */
1556        skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1557
1558        /*
1559         * Perform additional initialization for external PHYs,
1560         * namely for the 1000baseTX cards that use the XMAC's
1561         * GMII mode.
1562         */
1563        if (hw->phy_type != SK_PHY_XMAC) {
1564                /* Take external Phy out of reset */
1565                r = skge_read32(hw, B2_GP_IO);
1566                if (port == 0)
1567                        r |= GP_DIR_0|GP_IO_0;
1568                else
1569                        r |= GP_DIR_2|GP_IO_2;
1570
1571                skge_write32(hw, B2_GP_IO, r);
1572
1573                /* Enable GMII interface */
1574                xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1575        }
1576
1577
1578        switch (hw->phy_type) {
1579        case SK_PHY_XMAC:
1580                xm_phy_init(skge);
1581                break;
1582        case SK_PHY_BCOM:
1583                bcom_phy_init(skge);
1584                bcom_check_link(hw, port);
1585        }
1586
1587        /* Set Station Address */
1588        xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1589
1590        /* We don't use match addresses so clear */
1591        for (i = 1; i < 16; i++)
1592                xm_outaddr(hw, port, XM_EXM(i), zero);
1593
1594        /* Clear MIB counters */
1595        xm_write16(hw, port, XM_STAT_CMD,
1596                        XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1597        /* Clear two times according to Errata #3 */
1598        xm_write16(hw, port, XM_STAT_CMD,
1599                        XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1600
1601        /* configure Rx High Water Mark (XM_RX_HI_WM) */
1602        xm_write16(hw, port, XM_RX_HI_WM, 1450);
1603
1604        /* We don't need the FCS appended to the packet. */
1605        r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1606        if (jumbo)
1607                r |= XM_RX_BIG_PK_OK;
1608
1609        if (skge->duplex == DUPLEX_HALF) {
1610                /*
1611                 * If in manual half duplex mode the other side might be in
1612                 * full duplex mode, so ignore if a carrier extension is not seen
1613                 * on frames received
1614                 */
1615                r |= XM_RX_DIS_CEXT;
1616        }
1617        xm_write16(hw, port, XM_RX_CMD, r);
1618
1619        /* We want short frames padded to 60 bytes. */
1620        xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1621
1622        /* Increase threshold for jumbo frames on dual port */
1623        if (hw->ports > 1 && jumbo)
1624                xm_write16(hw, port, XM_TX_THR, 1020);
1625        else
1626                xm_write16(hw, port, XM_TX_THR, 512);
1627
1628        /*
1629         * Enable the reception of all error frames. This is is
1630         * a necessary evil due to the design of the XMAC. The
1631         * XMAC's receive FIFO is only 8K in size, however jumbo
1632         * frames can be up to 9000 bytes in length. When bad
1633         * frame filtering is enabled, the XMAC's RX FIFO operates
1634         * in 'store and forward' mode. For this to work, the
1635         * entire frame has to fit into the FIFO, but that means
1636         * that jumbo frames larger than 8192 bytes will be
1637         * truncated. Disabling all bad frame filtering causes
1638         * the RX FIFO to operate in streaming mode, in which
1639         * case the XMAC will start transferring frames out of the
1640         * RX FIFO as soon as the FIFO threshold is reached.
1641         */
1642        xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1643
1644
1645        /*
1646         * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1647         *      - Enable all bits excepting 'Octets Rx OK Low CntOv'
1648         *        and 'Octets Rx OK Hi Cnt Ov'.
1649         */
1650        xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1651
1652        /*
1653         * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1654         *      - Enable all bits excepting 'Octets Tx OK Low CntOv'
1655         *        and 'Octets Tx OK Hi Cnt Ov'.
1656         */
1657        xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1658
1659        /* Configure MAC arbiter */
1660        skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1661
1662        /* configure timeout values */
1663        skge_write8(hw, B3_MA_TOINI_RX1, 72);
1664        skge_write8(hw, B3_MA_TOINI_RX2, 72);
1665        skge_write8(hw, B3_MA_TOINI_TX1, 72);
1666        skge_write8(hw, B3_MA_TOINI_TX2, 72);
1667
1668        skge_write8(hw, B3_MA_RCINI_RX1, 0);
1669        skge_write8(hw, B3_MA_RCINI_RX2, 0);
1670        skge_write8(hw, B3_MA_RCINI_TX1, 0);
1671        skge_write8(hw, B3_MA_RCINI_TX2, 0);
1672
1673        /* Configure Rx MAC FIFO */
1674        skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1675        skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1676        skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1677
1678        /* Configure Tx MAC FIFO */
1679        skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1680        skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1681        skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1682
1683        if (jumbo) {
1684                /* Enable frame flushing if jumbo frames used */
1685                skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
1686        } else {
1687                /* enable timeout timers if normal frames */
1688                skge_write16(hw, B3_PA_CTRL,
1689                             (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1690        }
1691}
1692
1693static void genesis_stop(struct skge_port *skge)
1694{
1695        struct skge_hw *hw = skge->hw;
1696        int port = skge->port;
1697        unsigned retries = 1000;
1698        u16 cmd;
1699
1700        /* Disable Tx and Rx */
1701        cmd = xm_read16(hw, port, XM_MMU_CMD);
1702        cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1703        xm_write16(hw, port, XM_MMU_CMD, cmd);
1704
1705        genesis_reset(hw, port);
1706
1707        /* Clear Tx packet arbiter timeout IRQ */
1708        skge_write16(hw, B3_PA_CTRL,
1709                     port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1710
1711        /* Reset the MAC */
1712        skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1713        do {
1714                skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1715                if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1716                        break;
1717        } while (--retries > 0);
1718
1719        /* For external PHYs there must be special handling */
1720        if (hw->phy_type != SK_PHY_XMAC) {
1721                u32 reg = skge_read32(hw, B2_GP_IO);
1722                if (port == 0) {
1723                        reg |= GP_DIR_0;
1724                        reg &= ~GP_IO_0;
1725                } else {
1726                        reg |= GP_DIR_2;
1727                        reg &= ~GP_IO_2;
1728                }
1729                skge_write32(hw, B2_GP_IO, reg);
1730                skge_read32(hw, B2_GP_IO);
1731        }
1732
1733        xm_write16(hw, port, XM_MMU_CMD,
1734                        xm_read16(hw, port, XM_MMU_CMD)
1735                        & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1736
1737        xm_read16(hw, port, XM_MMU_CMD);
1738}
1739
1740
1741static void genesis_get_stats(struct skge_port *skge, u64 *data)
1742{
1743        struct skge_hw *hw = skge->hw;
1744        int port = skge->port;
1745        int i;
1746        unsigned long timeout = jiffies + HZ;
1747
1748        xm_write16(hw, port,
1749                        XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1750
1751        /* wait for update to complete */
1752        while (xm_read16(hw, port, XM_STAT_CMD)
1753               & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1754                if (time_after(jiffies, timeout))
1755                        break;
1756                udelay(10);
1757        }
1758
1759        /* special case for 64 bit octet counter */
1760        data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1761                | xm_read32(hw, port, XM_TXO_OK_LO);
1762        data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1763                | xm_read32(hw, port, XM_RXO_OK_LO);
1764
1765        for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1766                data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1767}
1768
1769static void genesis_mac_intr(struct skge_hw *hw, int port)
1770{
1771        struct net_device *dev = hw->dev[port];
1772        struct skge_port *skge = netdev_priv(dev);
1773        u16 status = xm_read16(hw, port, XM_ISRC);
1774
1775        netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1776                     "mac interrupt status 0x%x\n", status);
1777
1778        if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1779                xm_link_down(hw, port);
1780                mod_timer(&skge->link_timer, jiffies + 1);
1781        }
1782
1783        if (status & XM_IS_TXF_UR) {
1784                xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1785                ++dev->stats.tx_fifo_errors;
1786        }
1787}
1788
1789static void genesis_link_up(struct skge_port *skge)
1790{
1791        struct skge_hw *hw = skge->hw;
1792        int port = skge->port;
1793        u16 cmd, msk;
1794        u32 mode;
1795
1796        cmd = xm_read16(hw, port, XM_MMU_CMD);
1797
1798        /*
1799         * enabling pause frame reception is required for 1000BT
1800         * because the XMAC is not reset if the link is going down
1801         */
1802        if (skge->flow_status == FLOW_STAT_NONE ||
1803            skge->flow_status == FLOW_STAT_LOC_SEND)
1804                /* Disable Pause Frame Reception */
1805                cmd |= XM_MMU_IGN_PF;
1806        else
1807                /* Enable Pause Frame Reception */
1808                cmd &= ~XM_MMU_IGN_PF;
1809
1810        xm_write16(hw, port, XM_MMU_CMD, cmd);
1811
1812        mode = xm_read32(hw, port, XM_MODE);
1813        if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
1814            skge->flow_status == FLOW_STAT_LOC_SEND) {
1815                /*
1816                 * Configure Pause Frame Generation
1817                 * Use internal and external Pause Frame Generation.
1818                 * Sending pause frames is edge triggered.
1819                 * Send a Pause frame with the maximum pause time if
1820                 * internal oder external FIFO full condition occurs.
1821                 * Send a zero pause time frame to re-start transmission.
1822                 */
1823                /* XM_PAUSE_DA = '010000C28001' (default) */
1824                /* XM_MAC_PTIME = 0xffff (maximum) */
1825                /* remember this value is defined in big endian (!) */
1826                xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1827
1828                mode |= XM_PAUSE_MODE;
1829                skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1830        } else {
1831                /*
1832                 * disable pause frame generation is required for 1000BT
1833                 * because the XMAC is not reset if the link is going down
1834                 */
1835                /* Disable Pause Mode in Mode Register */
1836                mode &= ~XM_PAUSE_MODE;
1837
1838                skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1839        }
1840
1841        xm_write32(hw, port, XM_MODE, mode);
1842
1843        /* Turn on detection of Tx underrun */
1844        msk = xm_read16(hw, port, XM_IMSK);
1845        msk &= ~XM_IS_TXF_UR;
1846        xm_write16(hw, port, XM_IMSK, msk);
1847
1848        xm_read16(hw, port, XM_ISRC);
1849
1850        /* get MMU Command Reg. */
1851        cmd = xm_read16(hw, port, XM_MMU_CMD);
1852        if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1853                cmd |= XM_MMU_GMII_FD;
1854
1855        /*
1856         * Workaround BCOM Errata (#10523) for all BCom Phys
1857         * Enable Power Management after link up
1858         */
1859        if (hw->phy_type == SK_PHY_BCOM) {
1860                xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1861                             xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1862                             & ~PHY_B_AC_DIS_PM);
1863                xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1864        }
1865
1866        /* enable Rx/Tx */
1867        xm_write16(hw, port, XM_MMU_CMD,
1868                        cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1869        skge_link_up(skge);
1870}
1871
1872
1873static inline void bcom_phy_intr(struct skge_port *skge)
1874{
1875        struct skge_hw *hw = skge->hw;
1876        int port = skge->port;
1877        u16 isrc;
1878
1879        isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1880        netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1881                     "phy interrupt status 0x%x\n", isrc);
1882
1883        if (isrc & PHY_B_IS_PSE)
1884                pr_err("%s: uncorrectable pair swap error\n",
1885                       hw->dev[port]->name);
1886
1887        /* Workaround BCom Errata:
1888         *      enable and disable loopback mode if "NO HCD" occurs.
1889         */
1890        if (isrc & PHY_B_IS_NO_HDCL) {
1891                u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1892                xm_phy_write(hw, port, PHY_BCOM_CTRL,
1893                                  ctrl | PHY_CT_LOOP);
1894                xm_phy_write(hw, port, PHY_BCOM_CTRL,
1895                                  ctrl & ~PHY_CT_LOOP);
1896        }
1897
1898        if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1899                bcom_check_link(hw, port);
1900
1901}
1902
1903static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1904{
1905        int i;
1906
1907        gma_write16(hw, port, GM_SMI_DATA, val);
1908        gma_write16(hw, port, GM_SMI_CTRL,
1909                         GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1910        for (i = 0; i < PHY_RETRIES; i++) {
1911                udelay(1);
1912
1913                if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1914                        return 0;
1915        }
1916
1917        pr_warn("%s: phy write timeout\n", hw->dev[port]->name);
1918        return -EIO;
1919}
1920
1921static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1922{
1923        int i;
1924
1925        gma_write16(hw, port, GM_SMI_CTRL,
1926                         GM_SMI_CT_PHY_AD(hw->phy_addr)
1927                         | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1928
1929        for (i = 0; i < PHY_RETRIES; i++) {
1930                udelay(1);
1931                if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1932                        goto ready;
1933        }
1934
1935        return -ETIMEDOUT;
1936 ready:
1937        *val = gma_read16(hw, port, GM_SMI_DATA);
1938        return 0;
1939}
1940
1941static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1942{
1943        u16 v = 0;
1944        if (__gm_phy_read(hw, port, reg, &v))
1945                pr_warn("%s: phy read timeout\n", hw->dev[port]->name);
1946        return v;
1947}
1948
1949/* Marvell Phy Initialization */
1950static void yukon_init(struct skge_hw *hw, int port)
1951{
1952        struct skge_port *skge = netdev_priv(hw->dev[port]);
1953        u16 ctrl, ct1000, adv;
1954
1955        if (skge->autoneg == AUTONEG_ENABLE) {
1956                u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1957
1958                ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1959                          PHY_M_EC_MAC_S_MSK);
1960                ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1961
1962                ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1963
1964                gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1965        }
1966
1967        ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1968        if (skge->autoneg == AUTONEG_DISABLE)
1969                ctrl &= ~PHY_CT_ANE;
1970
1971        ctrl |= PHY_CT_RESET;
1972        gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1973
1974        ctrl = 0;
1975        ct1000 = 0;
1976        adv = PHY_AN_CSMA;
1977
1978        if (skge->autoneg == AUTONEG_ENABLE) {
1979                if (hw->copper) {
1980                        if (skge->advertising & ADVERTISED_1000baseT_Full)
1981                                ct1000 |= PHY_M_1000C_AFD;
1982                        if (skge->advertising & ADVERTISED_1000baseT_Half)
1983                                ct1000 |= PHY_M_1000C_AHD;
1984                        if (skge->advertising & ADVERTISED_100baseT_Full)
1985                                adv |= PHY_M_AN_100_FD;
1986                        if (skge->advertising & ADVERTISED_100baseT_Half)
1987                                adv |= PHY_M_AN_100_HD;
1988                        if (skge->advertising & ADVERTISED_10baseT_Full)
1989                                adv |= PHY_M_AN_10_FD;
1990                        if (skge->advertising & ADVERTISED_10baseT_Half)
1991                                adv |= PHY_M_AN_10_HD;
1992
1993                        /* Set Flow-control capabilities */
1994                        adv |= phy_pause_map[skge->flow_control];
1995                } else {
1996                        if (skge->advertising & ADVERTISED_1000baseT_Full)
1997                                adv |= PHY_M_AN_1000X_AFD;
1998                        if (skge->advertising & ADVERTISED_1000baseT_Half)
1999                                adv |= PHY_M_AN_1000X_AHD;
2000
2001                        adv |= fiber_pause_map[skge->flow_control];
2002                }
2003
2004                /* Restart Auto-negotiation */
2005                ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
2006        } else {
2007                /* forced speed/duplex settings */
2008                ct1000 = PHY_M_1000C_MSE;
2009
2010                if (skge->duplex == DUPLEX_FULL)
2011                        ctrl |= PHY_CT_DUP_MD;
2012
2013                switch (skge->speed) {
2014                case SPEED_1000:
2015                        ctrl |= PHY_CT_SP1000;
2016                        break;
2017                case SPEED_100:
2018                        ctrl |= PHY_CT_SP100;
2019                        break;
2020                }
2021
2022                ctrl |= PHY_CT_RESET;
2023        }
2024
2025        gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2026
2027        gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2028        gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2029
2030        /* Enable phy interrupt on autonegotiation complete (or link up) */
2031        if (skge->autoneg == AUTONEG_ENABLE)
2032                gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2033        else
2034                gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2035}
2036
2037static void yukon_reset(struct skge_hw *hw, int port)
2038{
2039        gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2040        gma_write16(hw, port, GM_MC_ADDR_H1, 0);        /* clear MC hash */
2041        gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2042        gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2043        gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2044
2045        gma_write16(hw, port, GM_RX_CTRL,
2046                         gma_read16(hw, port, GM_RX_CTRL)
2047                         | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2048}
2049
2050/* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2051static int is_yukon_lite_a0(struct skge_hw *hw)
2052{
2053        u32 reg;
2054        int ret;
2055
2056        if (hw->chip_id != CHIP_ID_YUKON)
2057                return 0;
2058
2059        reg = skge_read32(hw, B2_FAR);
2060        skge_write8(hw, B2_FAR + 3, 0xff);
2061        ret = (skge_read8(hw, B2_FAR + 3) != 0);
2062        skge_write32(hw, B2_FAR, reg);
2063        return ret;
2064}
2065
2066static void yukon_mac_init(struct skge_hw *hw, int port)
2067{
2068        struct skge_port *skge = netdev_priv(hw->dev[port]);
2069        int i;
2070        u32 reg;
2071        const u8 *addr = hw->dev[port]->dev_addr;
2072
2073        /* WA code for COMA mode -- set PHY reset */
2074        if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2075            hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2076                reg = skge_read32(hw, B2_GP_IO);
2077                reg |= GP_DIR_9 | GP_IO_9;
2078                skge_write32(hw, B2_GP_IO, reg);
2079        }
2080
2081        /* hard reset */
2082        skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2083        skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2084
2085        /* WA code for COMA mode -- clear PHY reset */
2086        if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2087            hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2088                reg = skge_read32(hw, B2_GP_IO);
2089                reg |= GP_DIR_9;
2090                reg &= ~GP_IO_9;
2091                skge_write32(hw, B2_GP_IO, reg);
2092        }
2093
2094        /* Set hardware config mode */
2095        reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2096                GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2097        reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2098
2099        /* Clear GMC reset */
2100        skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2101        skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2102        skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2103
2104        if (skge->autoneg == AUTONEG_DISABLE) {
2105                reg = GM_GPCR_AU_ALL_DIS;
2106                gma_write16(hw, port, GM_GP_CTRL,
2107                                 gma_read16(hw, port, GM_GP_CTRL) | reg);
2108
2109                switch (skge->speed) {
2110                case SPEED_1000:
2111                        reg &= ~GM_GPCR_SPEED_100;
2112                        reg |= GM_GPCR_SPEED_1000;
2113                        break;
2114                case SPEED_100:
2115                        reg &= ~GM_GPCR_SPEED_1000;
2116                        reg |= GM_GPCR_SPEED_100;
2117                        break;
2118                case SPEED_10:
2119                        reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2120                        break;
2121                }
2122
2123                if (skge->duplex == DUPLEX_FULL)
2124                        reg |= GM_GPCR_DUP_FULL;
2125        } else
2126                reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2127
2128        switch (skge->flow_control) {
2129        case FLOW_MODE_NONE:
2130                skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2131                reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2132                break;
2133        case FLOW_MODE_LOC_SEND:
2134                /* disable Rx flow-control */
2135                reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2136                break;
2137        case FLOW_MODE_SYMMETRIC:
2138        case FLOW_MODE_SYM_OR_REM:
2139                /* enable Tx & Rx flow-control */
2140                break;
2141        }
2142
2143        gma_write16(hw, port, GM_GP_CTRL, reg);
2144        skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2145
2146        yukon_init(hw, port);
2147
2148        /* MIB clear */
2149        reg = gma_read16(hw, port, GM_PHY_ADDR);
2150        gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2151
2152        for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2153                gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2154        gma_write16(hw, port, GM_PHY_ADDR, reg);
2155
2156        /* transmit control */
2157        gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2158
2159        /* receive control reg: unicast + multicast + no FCS  */
2160        gma_write16(hw, port, GM_RX_CTRL,
2161                         GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2162
2163        /* transmit flow control */
2164        gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2165
2166        /* transmit parameter */
2167        gma_write16(hw, port, GM_TX_PARAM,
2168                         TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2169                         TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2170                         TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2171
2172        /* configure the Serial Mode Register */
2173        reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
2174                | GM_SMOD_VLAN_ENA
2175                | IPG_DATA_VAL(IPG_DATA_DEF);
2176
2177        if (hw->dev[port]->mtu > ETH_DATA_LEN)
2178                reg |= GM_SMOD_JUMBO_ENA;
2179
2180        gma_write16(hw, port, GM_SERIAL_MODE, reg);
2181
2182        /* physical address: used for pause frames */
2183        gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2184        /* virtual address for data */
2185        gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2186
2187        /* enable interrupt mask for counter overflows */
2188        gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2189        gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2190        gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2191
2192        /* Initialize Mac Fifo */
2193
2194        /* Configure Rx MAC FIFO */
2195        skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2196        reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2197
2198        /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2199        if (is_yukon_lite_a0(hw))
2200                reg &= ~GMF_RX_F_FL_ON;
2201
2202        skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2203        skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2204        /*
2205         * because Pause Packet Truncation in GMAC is not working
2206         * we have to increase the Flush Threshold to 64 bytes
2207         * in order to flush pause packets in Rx FIFO on Yukon-1
2208         */
2209        skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2210
2211        /* Configure Tx MAC FIFO */
2212        skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2213        skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2214}
2215
2216/* Go into power down mode */
2217static void yukon_suspend(struct skge_hw *hw, int port)
2218{
2219        u16 ctrl;
2220
2221        ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2222        ctrl |= PHY_M_PC_POL_R_DIS;
2223        gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2224
2225        ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2226        ctrl |= PHY_CT_RESET;
2227        gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2228
2229        /* switch IEEE compatible power down mode on */
2230        ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2231        ctrl |= PHY_CT_PDOWN;
2232        gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2233}
2234
2235static void yukon_stop(struct skge_port *skge)
2236{
2237        struct skge_hw *hw = skge->hw;
2238        int port = skge->port;
2239
2240        skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2241        yukon_reset(hw, port);
2242
2243        gma_write16(hw, port, GM_GP_CTRL,
2244                         gma_read16(hw, port, GM_GP_CTRL)
2245                         & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2246        gma_read16(hw, port, GM_GP_CTRL);
2247
2248        yukon_suspend(hw, port);
2249
2250        /* set GPHY Control reset */
2251        skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2252        skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2253}
2254
2255static void yukon_get_stats(struct skge_port *skge, u64 *data)
2256{
2257        struct skge_hw *hw = skge->hw;
2258        int port = skge->port;
2259        int i;
2260
2261        data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2262                | gma_read32(hw, port, GM_TXO_OK_LO);
2263        data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2264                | gma_read32(hw, port, GM_RXO_OK_LO);
2265
2266        for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2267                data[i] = gma_read32(hw, port,
2268                                          skge_stats[i].gma_offset);
2269}
2270
2271static void yukon_mac_intr(struct skge_hw *hw, int port)
2272{
2273        struct net_device *dev = hw->dev[port];
2274        struct skge_port *skge = netdev_priv(dev);
2275        u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2276
2277        netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2278                     "mac interrupt status 0x%x\n", status);
2279
2280        if (status & GM_IS_RX_FF_OR) {
2281                ++dev->stats.rx_fifo_errors;
2282                skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2283        }
2284
2285        if (status & GM_IS_TX_FF_UR) {
2286                ++dev->stats.tx_fifo_errors;
2287                skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2288        }
2289
2290}
2291
2292static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2293{
2294        switch (aux & PHY_M_PS_SPEED_MSK) {
2295        case PHY_M_PS_SPEED_1000:
2296                return SPEED_1000;
2297        case PHY_M_PS_SPEED_100:
2298                return SPEED_100;
2299        default:
2300                return SPEED_10;
2301        }
2302}
2303
2304static void yukon_link_up(struct skge_port *skge)
2305{
2306        struct skge_hw *hw = skge->hw;
2307        int port = skge->port;
2308        u16 reg;
2309
2310        /* Enable Transmit FIFO Underrun */
2311        skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2312
2313        reg = gma_read16(hw, port, GM_GP_CTRL);
2314        if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2315                reg |= GM_GPCR_DUP_FULL;
2316
2317        /* enable Rx/Tx */
2318        reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2319        gma_write16(hw, port, GM_GP_CTRL, reg);
2320
2321        gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2322        skge_link_up(skge);
2323}
2324
2325static void yukon_link_down(struct skge_port *skge)
2326{
2327        struct skge_hw *hw = skge->hw;
2328        int port = skge->port;
2329        u16 ctrl;
2330
2331        ctrl = gma_read16(hw, port, GM_GP_CTRL);
2332        ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2333        gma_write16(hw, port, GM_GP_CTRL, ctrl);
2334
2335        if (skge->flow_status == FLOW_STAT_REM_SEND) {
2336                ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2337                ctrl |= PHY_M_AN_ASP;
2338                /* restore Asymmetric Pause bit */
2339                gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2340        }
2341
2342        skge_link_down(skge);
2343
2344        yukon_init(hw, port);
2345}
2346
2347static void yukon_phy_intr(struct skge_port *skge)
2348{
2349        struct skge_hw *hw = skge->hw;
2350        int port = skge->port;
2351        const char *reason = NULL;
2352        u16 istatus, phystat;
2353
2354        istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2355        phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2356
2357        netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2358                     "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
2359
2360        if (istatus & PHY_M_IS_AN_COMPL) {
2361                if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2362                    & PHY_M_AN_RF) {
2363                        reason = "remote fault";
2364                        goto failed;
2365                }
2366
2367                if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2368                        reason = "master/slave fault";
2369                        goto failed;
2370                }
2371
2372                if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2373                        reason = "speed/duplex";
2374                        goto failed;
2375                }
2376
2377                skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2378                        ? DUPLEX_FULL : DUPLEX_HALF;
2379                skge->speed = yukon_speed(hw, phystat);
2380
2381                /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2382                switch (phystat & PHY_M_PS_PAUSE_MSK) {
2383                case PHY_M_PS_PAUSE_MSK:
2384                        skge->flow_status = FLOW_STAT_SYMMETRIC;
2385                        break;
2386                case PHY_M_PS_RX_P_EN:
2387                        skge->flow_status = FLOW_STAT_REM_SEND;
2388                        break;
2389                case PHY_M_PS_TX_P_EN:
2390                        skge->flow_status = FLOW_STAT_LOC_SEND;
2391                        break;
2392                default:
2393                        skge->flow_status = FLOW_STAT_NONE;
2394                }
2395
2396                if (skge->flow_status == FLOW_STAT_NONE ||
2397                    (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2398                        skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2399                else
2400                        skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2401                yukon_link_up(skge);
2402                return;
2403        }
2404
2405        if (istatus & PHY_M_IS_LSP_CHANGE)
2406                skge->speed = yukon_speed(hw, phystat);
2407
2408        if (istatus & PHY_M_IS_DUP_CHANGE)
2409                skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2410        if (istatus & PHY_M_IS_LST_CHANGE) {
2411                if (phystat & PHY_M_PS_LINK_UP)
2412                        yukon_link_up(skge);
2413                else
2414                        yukon_link_down(skge);
2415        }
2416        return;
2417 failed:
2418        pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
2419
2420        /* XXX restart autonegotiation? */
2421}
2422
2423static void skge_phy_reset(struct skge_port *skge)
2424{
2425        struct skge_hw *hw = skge->hw;
2426        int port = skge->port;
2427        struct net_device *dev = hw->dev[port];
2428
2429        netif_stop_queue(skge->netdev);
2430        netif_carrier_off(skge->netdev);
2431
2432        spin_lock_bh(&hw->phy_lock);
2433        if (is_genesis(hw)) {
2434                genesis_reset(hw, port);
2435                genesis_mac_init(hw, port);
2436        } else {
2437                yukon_reset(hw, port);
2438                yukon_init(hw, port);
2439        }
2440        spin_unlock_bh(&hw->phy_lock);
2441
2442        skge_set_multicast(dev);
2443}
2444
2445/* Basic MII support */
2446static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2447{
2448        struct mii_ioctl_data *data = if_mii(ifr);
2449        struct skge_port *skge = netdev_priv(dev);
2450        struct skge_hw *hw = skge->hw;
2451        int err = -EOPNOTSUPP;
2452
2453        if (!netif_running(dev))
2454                return -ENODEV; /* Phy still in reset */
2455
2456        switch (cmd) {
2457        case SIOCGMIIPHY:
2458                data->phy_id = hw->phy_addr;
2459
2460                /* fallthru */
2461        case SIOCGMIIREG: {
2462                u16 val = 0;
2463                spin_lock_bh(&hw->phy_lock);
2464
2465                if (is_genesis(hw))
2466                        err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2467                else
2468                        err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2469                spin_unlock_bh(&hw->phy_lock);
2470                data->val_out = val;
2471                break;
2472        }
2473
2474        case SIOCSMIIREG:
2475                spin_lock_bh(&hw->phy_lock);
2476                if (is_genesis(hw))
2477                        err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2478                                   data->val_in);
2479                else
2480                        err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2481                                   data->val_in);
2482                spin_unlock_bh(&hw->phy_lock);
2483                break;
2484        }
2485        return err;
2486}
2487
2488static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2489{
2490        u32 end;
2491
2492        start /= 8;
2493        len /= 8;
2494        end = start + len - 1;
2495
2496        skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2497        skge_write32(hw, RB_ADDR(q, RB_START), start);
2498        skge_write32(hw, RB_ADDR(q, RB_WP), start);
2499        skge_write32(hw, RB_ADDR(q, RB_RP), start);
2500        skge_write32(hw, RB_ADDR(q, RB_END), end);
2501
2502        if (q == Q_R1 || q == Q_R2) {
2503                /* Set thresholds on receive queue's */
2504                skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2505                             start + (2*len)/3);
2506                skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2507                             start + (len/3));
2508        } else {
2509                /* Enable store & forward on Tx queue's because
2510                 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2511                 */
2512                skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2513        }
2514
2515        skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2516}
2517
2518/* Setup Bus Memory Interface */
2519static void skge_qset(struct skge_port *skge, u16 q,
2520                      const struct skge_element *e)
2521{
2522        struct skge_hw *hw = skge->hw;
2523        u32 watermark = 0x600;
2524        u64 base = skge->dma + (e->desc - skge->mem);
2525
2526        /* optimization to reduce window on 32bit/33mhz */
2527        if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2528                watermark /= 2;
2529
2530        skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2531        skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2532        skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2533        skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2534}
2535
2536static int skge_up(struct net_device *dev)
2537{
2538        struct skge_port *skge = netdev_priv(dev);
2539        struct skge_hw *hw = skge->hw;
2540        int port = skge->port;
2541        u32 chunk, ram_addr;
2542        size_t rx_size, tx_size;
2543        int err;
2544
2545        if (!is_valid_ether_addr(dev->dev_addr))
2546                return -EINVAL;
2547
2548        netif_info(skge, ifup, skge->netdev, "enabling interface\n");
2549
2550        if (dev->mtu > RX_BUF_SIZE)
2551                skge->rx_buf_size = dev->mtu + ETH_HLEN;
2552        else
2553                skge->rx_buf_size = RX_BUF_SIZE;
2554
2555
2556        rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2557        tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2558        skge->mem_size = tx_size + rx_size;
2559        skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2560        if (!skge->mem)
2561                return -ENOMEM;
2562
2563        BUG_ON(skge->dma & 7);
2564
2565        if (upper_32_bits(skge->dma) != upper_32_bits(skge->dma + skge->mem_size)) {
2566                dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
2567                err = -EINVAL;
2568                goto free_pci_mem;
2569        }
2570
2571        memset(skge->mem, 0, skge->mem_size);
2572
2573        err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2574        if (err)
2575                goto free_pci_mem;
2576
2577        err = skge_rx_fill(dev);
2578        if (err)
2579                goto free_rx_ring;
2580
2581        err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2582                              skge->dma + rx_size);
2583        if (err)
2584                goto free_rx_ring;
2585
2586        if (hw->ports == 1) {
2587                err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED,
2588                                  dev->name, hw);
2589                if (err) {
2590                        netdev_err(dev, "Unable to allocate interrupt %d error: %d\n",
2591                                   hw->pdev->irq, err);
2592                        goto free_tx_ring;
2593                }
2594        }
2595
2596        /* Initialize MAC */
2597        netif_carrier_off(dev);
2598        spin_lock_bh(&hw->phy_lock);
2599        if (is_genesis(hw))
2600                genesis_mac_init(hw, port);
2601        else
2602                yukon_mac_init(hw, port);
2603        spin_unlock_bh(&hw->phy_lock);
2604
2605        /* Configure RAMbuffers - equally between ports and tx/rx */
2606        chunk = (hw->ram_size  - hw->ram_offset) / (hw->ports * 2);
2607        ram_addr = hw->ram_offset + 2 * chunk * port;
2608
2609        skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2610        skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2611
2612        BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2613        skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2614        skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2615
2616        /* Start receiver BMU */
2617        wmb();
2618        skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2619        skge_led(skge, LED_MODE_ON);
2620
2621        spin_lock_irq(&hw->hw_lock);
2622        hw->intr_mask |= portmask[port];
2623        skge_write32(hw, B0_IMSK, hw->intr_mask);
2624        skge_read32(hw, B0_IMSK);
2625        spin_unlock_irq(&hw->hw_lock);
2626
2627        napi_enable(&skge->napi);
2628
2629        skge_set_multicast(dev);
2630
2631        return 0;
2632
2633 free_tx_ring:
2634        kfree(skge->tx_ring.start);
2635 free_rx_ring:
2636        skge_rx_clean(skge);
2637        kfree(skge->rx_ring.start);
2638 free_pci_mem:
2639        pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2640        skge->mem = NULL;
2641
2642        return err;
2643}
2644
2645/* stop receiver */
2646static void skge_rx_stop(struct skge_hw *hw, int port)
2647{
2648        skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2649        skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2650                     RB_RST_SET|RB_DIS_OP_MD);
2651        skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2652}
2653
2654static int skge_down(struct net_device *dev)
2655{
2656        struct skge_port *skge = netdev_priv(dev);
2657        struct skge_hw *hw = skge->hw;
2658        int port = skge->port;
2659
2660        if (!skge->mem)
2661                return 0;
2662
2663        netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
2664
2665        netif_tx_disable(dev);
2666
2667        if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)
2668                del_timer_sync(&skge->link_timer);
2669
2670        napi_disable(&skge->napi);
2671        netif_carrier_off(dev);
2672
2673        spin_lock_irq(&hw->hw_lock);
2674        hw->intr_mask &= ~portmask[port];
2675        skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask);
2676        skge_read32(hw, B0_IMSK);
2677        spin_unlock_irq(&hw->hw_lock);
2678
2679        if (hw->ports == 1)
2680                free_irq(hw->pdev->irq, hw);
2681
2682        skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
2683        if (is_genesis(hw))
2684                genesis_stop(skge);
2685        else
2686                yukon_stop(skge);
2687
2688        /* Stop transmitter */
2689        skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2690        skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2691                     RB_RST_SET|RB_DIS_OP_MD);
2692
2693
2694        /* Disable Force Sync bit and Enable Alloc bit */
2695        skge_write8(hw, SK_REG(port, TXA_CTRL),
2696                    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2697
2698        /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2699        skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2700        skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2701
2702        /* Reset PCI FIFO */
2703        skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2704        skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2705
2706        /* Reset the RAM Buffer async Tx queue */
2707        skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2708
2709        skge_rx_stop(hw, port);
2710
2711        if (is_genesis(hw)) {
2712                skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2713                skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2714        } else {
2715                skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2716                skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2717        }
2718
2719        skge_led(skge, LED_MODE_OFF);
2720
2721        netif_tx_lock_bh(dev);
2722        skge_tx_clean(dev);
2723        netif_tx_unlock_bh(dev);
2724
2725        skge_rx_clean(skge);
2726
2727        kfree(skge->rx_ring.start);
2728        kfree(skge->tx_ring.start);
2729        pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2730        skge->mem = NULL;
2731        return 0;
2732}
2733
2734static inline int skge_avail(const struct skge_ring *ring)
2735{
2736        smp_mb();
2737        return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2738                + (ring->to_clean - ring->to_use) - 1;
2739}
2740
2741static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
2742                                   struct net_device *dev)
2743{
2744        struct skge_port *skge = netdev_priv(dev);
2745        struct skge_hw *hw = skge->hw;
2746        struct skge_element *e;
2747        struct skge_tx_desc *td;
2748        int i;
2749        u32 control, len;
2750        dma_addr_t map;
2751
2752        if (skb_padto(skb, ETH_ZLEN))
2753                return NETDEV_TX_OK;
2754
2755        if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2756                return NETDEV_TX_BUSY;
2757
2758        e = skge->tx_ring.to_use;
2759        td = e->desc;
2760        BUG_ON(td->control & BMU_OWN);
2761        e->skb = skb;
2762        len = skb_headlen(skb);
2763        map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2764        if (pci_dma_mapping_error(hw->pdev, map))
2765                goto mapping_error;
2766
2767        dma_unmap_addr_set(e, mapaddr, map);
2768        dma_unmap_len_set(e, maplen, len);
2769
2770        td->dma_lo = lower_32_bits(map);
2771        td->dma_hi = upper_32_bits(map);
2772
2773        if (skb->ip_summed == CHECKSUM_PARTIAL) {
2774                const int offset = skb_checksum_start_offset(skb);
2775
2776                /* This seems backwards, but it is what the sk98lin
2777                 * does.  Looks like hardware is wrong?
2778                 */
2779                if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
2780                    hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2781                        control = BMU_TCP_CHECK;
2782                else
2783                        control = BMU_UDP_CHECK;
2784
2785                td->csum_offs = 0;
2786                td->csum_start = offset;
2787                td->csum_write = offset + skb->csum_offset;
2788        } else
2789                control = BMU_CHECK;
2790
2791        if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2792                control |= BMU_EOF | BMU_IRQ_EOF;
2793        else {
2794                struct skge_tx_desc *tf = td;
2795
2796                control |= BMU_STFWD;
2797                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2798                        const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2799
2800                        map = skb_frag_dma_map(&hw->pdev->dev, frag, 0,
2801                                               skb_frag_size(frag), DMA_TO_DEVICE);
2802                        if (dma_mapping_error(&hw->pdev->dev, map))
2803                                goto mapping_unwind;
2804
2805                        e = e->next;
2806                        e->skb = skb;
2807                        tf = e->desc;
2808                        BUG_ON(tf->control & BMU_OWN);
2809
2810                        tf->dma_lo = lower_32_bits(map);
2811                        tf->dma_hi = upper_32_bits(map);
2812                        dma_unmap_addr_set(e, mapaddr, map);
2813                        dma_unmap_len_set(e, maplen, skb_frag_size(frag));
2814
2815                        tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag);
2816                }
2817                tf->control |= BMU_EOF | BMU_IRQ_EOF;
2818        }
2819        /* Make sure all the descriptors written */
2820        wmb();
2821        td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2822        wmb();
2823
2824        netdev_sent_queue(dev, skb->len);
2825
2826        skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2827
2828        netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
2829                     "tx queued, slot %td, len %d\n",
2830                     e - skge->tx_ring.start, skb->len);
2831
2832        skge->tx_ring.to_use = e->next;
2833        smp_wmb();
2834
2835        if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2836                netdev_dbg(dev, "transmit queue full\n");
2837                netif_stop_queue(dev);
2838        }
2839
2840        return NETDEV_TX_OK;
2841
2842mapping_unwind:
2843        e = skge->tx_ring.to_use;
2844        pci_unmap_single(hw->pdev,
2845                         dma_unmap_addr(e, mapaddr),
2846                         dma_unmap_len(e, maplen),
2847                         PCI_DMA_TODEVICE);
2848        while (i-- > 0) {
2849                e = e->next;
2850                pci_unmap_page(hw->pdev,
2851                               dma_unmap_addr(e, mapaddr),
2852                               dma_unmap_len(e, maplen),
2853                               PCI_DMA_TODEVICE);
2854        }
2855
2856mapping_error:
2857        if (net_ratelimit())
2858                dev_warn(&hw->pdev->dev, "%s: tx mapping error\n", dev->name);
2859        dev_kfree_skb_any(skb);
2860        return NETDEV_TX_OK;
2861}
2862
2863
2864/* Free resources associated with this reing element */
2865static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e,
2866                                 u32 control)
2867{
2868        /* skb header vs. fragment */
2869        if (control & BMU_STF)
2870                pci_unmap_single(pdev, dma_unmap_addr(e, mapaddr),
2871                                 dma_unmap_len(e, maplen),
2872                                 PCI_DMA_TODEVICE);
2873        else
2874                pci_unmap_page(pdev, dma_unmap_addr(e, mapaddr),
2875                               dma_unmap_len(e, maplen),
2876                               PCI_DMA_TODEVICE);
2877}
2878
2879/* Free all buffers in transmit ring */
2880static void skge_tx_clean(struct net_device *dev)
2881{
2882        struct skge_port *skge = netdev_priv(dev);
2883        struct skge_element *e;
2884
2885        for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2886                struct skge_tx_desc *td = e->desc;
2887
2888                skge_tx_unmap(skge->hw->pdev, e, td->control);
2889
2890                if (td->control & BMU_EOF)
2891                        dev_kfree_skb(e->skb);
2892                td->control = 0;
2893        }
2894
2895        netdev_reset_queue(dev);
2896        skge->tx_ring.to_clean = e;
2897}
2898
2899static void skge_tx_timeout(struct net_device *dev, unsigned int txqueue)
2900{
2901        struct skge_port *skge = netdev_priv(dev);
2902
2903        netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
2904
2905        skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2906        skge_tx_clean(dev);
2907        netif_wake_queue(dev);
2908}
2909
2910static int skge_change_mtu(struct net_device *dev, int new_mtu)
2911{
2912        int err;
2913
2914        if (!netif_running(dev)) {
2915                dev->mtu = new_mtu;
2916                return 0;
2917        }
2918
2919        skge_down(dev);
2920
2921        dev->mtu = new_mtu;
2922
2923        err = skge_up(dev);
2924        if (err)
2925                dev_close(dev);
2926
2927        return err;
2928}
2929
2930static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2931
2932static void genesis_add_filter(u8 filter[8], const u8 *addr)
2933{
2934        u32 crc, bit;
2935
2936        crc = ether_crc_le(ETH_ALEN, addr);
2937        bit = ~crc & 0x3f;
2938        filter[bit/8] |= 1 << (bit%8);
2939}
2940
2941static void genesis_set_multicast(struct net_device *dev)
2942{
2943        struct skge_port *skge = netdev_priv(dev);
2944        struct skge_hw *hw = skge->hw;
2945        int port = skge->port;
2946        struct netdev_hw_addr *ha;
2947        u32 mode;
2948        u8 filter[8];
2949
2950        mode = xm_read32(hw, port, XM_MODE);
2951        mode |= XM_MD_ENA_HASH;
2952        if (dev->flags & IFF_PROMISC)
2953                mode |= XM_MD_ENA_PROM;
2954        else
2955                mode &= ~XM_MD_ENA_PROM;
2956
2957        if (dev->flags & IFF_ALLMULTI)
2958                memset(filter, 0xff, sizeof(filter));
2959        else {
2960                memset(filter, 0, sizeof(filter));
2961
2962                if (skge->flow_status == FLOW_STAT_REM_SEND ||
2963                    skge->flow_status == FLOW_STAT_SYMMETRIC)
2964                        genesis_add_filter(filter, pause_mc_addr);
2965
2966                netdev_for_each_mc_addr(ha, dev)
2967                        genesis_add_filter(filter, ha->addr);
2968        }
2969
2970        xm_write32(hw, port, XM_MODE, mode);
2971        xm_outhash(hw, port, XM_HSM, filter);
2972}
2973
2974static void yukon_add_filter(u8 filter[8], const u8 *addr)
2975{
2976         u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2977         filter[bit/8] |= 1 << (bit%8);
2978}
2979
2980static void yukon_set_multicast(struct net_device *dev)
2981{
2982        struct skge_port *skge = netdev_priv(dev);
2983        struct skge_hw *hw = skge->hw;
2984        int port = skge->port;
2985        struct netdev_hw_addr *ha;
2986        int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
2987                        skge->flow_status == FLOW_STAT_SYMMETRIC);
2988        u16 reg;
2989        u8 filter[8];
2990
2991        memset(filter, 0, sizeof(filter));
2992
2993        reg = gma_read16(hw, port, GM_RX_CTRL);
2994        reg |= GM_RXCR_UCF_ENA;
2995
2996        if (dev->flags & IFF_PROMISC)           /* promiscuous */
2997                reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2998        else if (dev->flags & IFF_ALLMULTI)     /* all multicast */
2999                memset(filter, 0xff, sizeof(filter));
3000        else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
3001                reg &= ~GM_RXCR_MCF_ENA;
3002        else {
3003                reg |= GM_RXCR_MCF_ENA;
3004
3005                if (rx_pause)
3006                        yukon_add_filter(filter, pause_mc_addr);
3007
3008                netdev_for_each_mc_addr(ha, dev)
3009                        yukon_add_filter(filter, ha->addr);
3010        }
3011
3012
3013        gma_write16(hw, port, GM_MC_ADDR_H1,
3014                         (u16)filter[0] | ((u16)filter[1] << 8));
3015        gma_write16(hw, port, GM_MC_ADDR_H2,
3016                         (u16)filter[2] | ((u16)filter[3] << 8));
3017        gma_write16(hw, port, GM_MC_ADDR_H3,
3018                         (u16)filter[4] | ((u16)filter[5] << 8));
3019        gma_write16(hw, port, GM_MC_ADDR_H4,
3020                         (u16)filter[6] | ((u16)filter[7] << 8));
3021
3022        gma_write16(hw, port, GM_RX_CTRL, reg);
3023}
3024
3025static inline u16 phy_length(const struct skge_hw *hw, u32 status)
3026{
3027        if (is_genesis(hw))
3028                return status >> XMR_FS_LEN_SHIFT;
3029        else
3030                return status >> GMR_FS_LEN_SHIFT;
3031}
3032
3033static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
3034{
3035        if (is_genesis(hw))
3036                return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
3037        else
3038                return (status & GMR_FS_ANY_ERR) ||
3039                        (status & GMR_FS_RX_OK) == 0;
3040}
3041
3042static void skge_set_multicast(struct net_device *dev)
3043{
3044        struct skge_port *skge = netdev_priv(dev);
3045
3046        if (is_genesis(skge->hw))
3047                genesis_set_multicast(dev);
3048        else
3049                yukon_set_multicast(dev);
3050
3051}
3052
3053
3054/* Get receive buffer from descriptor.
3055 * Handles copy of small buffers and reallocation failures
3056 */
3057static struct sk_buff *skge_rx_get(struct net_device *dev,
3058                                   struct skge_element *e,
3059                                   u32 control, u32 status, u16 csum)
3060{
3061        struct skge_port *skge = netdev_priv(dev);
3062        struct sk_buff *skb;
3063        u16 len = control & BMU_BBC;
3064
3065        netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
3066                     "rx slot %td status 0x%x len %d\n",
3067                     e - skge->rx_ring.start, status, len);
3068
3069        if (len > skge->rx_buf_size)
3070                goto error;
3071
3072        if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3073                goto error;
3074
3075        if (bad_phy_status(skge->hw, status))
3076                goto error;
3077
3078        if (phy_length(skge->hw, status) != len)
3079                goto error;
3080
3081        if (len < RX_COPY_THRESHOLD) {
3082                skb = netdev_alloc_skb_ip_align(dev, len);
3083                if (!skb)
3084                        goto resubmit;
3085
3086                pci_dma_sync_single_for_cpu(skge->hw->pdev,
3087                                            dma_unmap_addr(e, mapaddr),
3088                                            dma_unmap_len(e, maplen),
3089                                            PCI_DMA_FROMDEVICE);
3090                skb_copy_from_linear_data(e->skb, skb->data, len);
3091                pci_dma_sync_single_for_device(skge->hw->pdev,
3092                                               dma_unmap_addr(e, mapaddr),
3093                                               dma_unmap_len(e, maplen),
3094                                               PCI_DMA_FROMDEVICE);
3095                skge_rx_reuse(e, skge->rx_buf_size);
3096        } else {
3097                struct skge_element ee;
3098                struct sk_buff *nskb;
3099
3100                nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
3101                if (!nskb)
3102                        goto resubmit;
3103
3104                ee = *e;
3105
3106                skb = ee.skb;
3107                prefetch(skb->data);
3108
3109                if (skge_rx_setup(skge, e, nskb, skge->rx_buf_size) < 0) {
3110                        dev_kfree_skb(nskb);
3111                        goto resubmit;
3112                }
3113
3114                pci_unmap_single(skge->hw->pdev,
3115                                 dma_unmap_addr(&ee, mapaddr),
3116                                 dma_unmap_len(&ee, maplen),
3117                                 PCI_DMA_FROMDEVICE);
3118        }
3119
3120        skb_put(skb, len);
3121
3122        if (dev->features & NETIF_F_RXCSUM) {
3123                skb->csum = csum;
3124                skb->ip_summed = CHECKSUM_COMPLETE;
3125        }
3126
3127        skb->protocol = eth_type_trans(skb, dev);
3128
3129        return skb;
3130error:
3131
3132        netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
3133                     "rx err, slot %td control 0x%x status 0x%x\n",
3134                     e - skge->rx_ring.start, control, status);
3135
3136        if (is_genesis(skge->hw)) {
3137                if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3138                        dev->stats.rx_length_errors++;
3139                if (status & XMR_FS_FRA_ERR)
3140                        dev->stats.rx_frame_errors++;
3141                if (status & XMR_FS_FCS_ERR)
3142                        dev->stats.rx_crc_errors++;
3143        } else {
3144                if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3145                        dev->stats.rx_length_errors++;
3146                if (status & GMR_FS_FRAGMENT)
3147                        dev->stats.rx_frame_errors++;
3148                if (status & GMR_FS_CRC_ERR)
3149                        dev->stats.rx_crc_errors++;
3150        }
3151
3152resubmit:
3153        skge_rx_reuse(e, skge->rx_buf_size);
3154        return NULL;
3155}
3156
3157/* Free all buffers in Tx ring which are no longer owned by device */
3158static void skge_tx_done(struct net_device *dev)
3159{
3160        struct skge_port *skge = netdev_priv(dev);
3161        struct skge_ring *ring = &skge->tx_ring;
3162        struct skge_element *e;
3163        unsigned int bytes_compl = 0, pkts_compl = 0;
3164
3165        skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3166
3167        for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3168                u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3169
3170                if (control & BMU_OWN)
3171                        break;
3172
3173                skge_tx_unmap(skge->hw->pdev, e, control);
3174
3175                if (control & BMU_EOF) {
3176                        netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
3177                                     "tx done slot %td\n",
3178                                     e - skge->tx_ring.start);
3179
3180                        pkts_compl++;
3181                        bytes_compl += e->skb->len;
3182
3183                        dev_consume_skb_any(e->skb);
3184                }
3185        }
3186        netdev_completed_queue(dev, pkts_compl, bytes_compl);
3187        skge->tx_ring.to_clean = e;
3188
3189        /* Can run lockless until we need to synchronize to restart queue. */
3190        smp_mb();
3191
3192        if (unlikely(netif_queue_stopped(dev) &&
3193                     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3194                netif_tx_lock(dev);
3195                if (unlikely(netif_queue_stopped(dev) &&
3196                             skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3197                        netif_wake_queue(dev);
3198
3199                }
3200                netif_tx_unlock(dev);
3201        }
3202}
3203
3204static int skge_poll(struct napi_struct *napi, int budget)
3205{
3206        struct skge_port *skge = container_of(napi, struct skge_port, napi);
3207        struct net_device *dev = skge->netdev;
3208        struct skge_hw *hw = skge->hw;
3209        struct skge_ring *ring = &skge->rx_ring;
3210        struct skge_element *e;
3211        int work_done = 0;
3212
3213        skge_tx_done(dev);
3214
3215        skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3216
3217        for (e = ring->to_clean; prefetch(e->next), work_done < budget; e = e->next) {
3218                struct skge_rx_desc *rd = e->desc;
3219                struct sk_buff *skb;
3220                u32 control;
3221
3222                rmb();
3223                control = rd->control;
3224                if (control & BMU_OWN)
3225                        break;
3226
3227                skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3228                if (likely(skb)) {
3229                        napi_gro_receive(napi, skb);
3230                        ++work_done;
3231                }
3232        }
3233        ring->to_clean = e;
3234
3235        /* restart receiver */
3236        wmb();
3237        skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3238
3239        if (work_done < budget && napi_complete_done(napi, work_done)) {
3240                unsigned long flags;
3241
3242                spin_lock_irqsave(&hw->hw_lock, flags);
3243                hw->intr_mask |= napimask[skge->port];
3244                skge_write32(hw, B0_IMSK, hw->intr_mask);
3245                skge_read32(hw, B0_IMSK);
3246                spin_unlock_irqrestore(&hw->hw_lock, flags);
3247        }
3248
3249        return work_done;
3250}
3251
3252/* Parity errors seem to happen when Genesis is connected to a switch
3253 * with no other ports present. Heartbeat error??
3254 */
3255static void skge_mac_parity(struct skge_hw *hw, int port)
3256{
3257        struct net_device *dev = hw->dev[port];
3258
3259        ++dev->stats.tx_heartbeat_errors;
3260
3261        if (is_genesis(hw))
3262                skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3263                             MFF_CLR_PERR);
3264        else
3265                /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3266                skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3267                            (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3268                            ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3269}
3270
3271static void skge_mac_intr(struct skge_hw *hw, int port)
3272{
3273        if (is_genesis(hw))
3274                genesis_mac_intr(hw, port);
3275        else
3276                yukon_mac_intr(hw, port);
3277}
3278
3279/* Handle device specific framing and timeout interrupts */
3280static void skge_error_irq(struct skge_hw *hw)
3281{
3282        struct pci_dev *pdev = hw->pdev;
3283        u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3284
3285        if (is_genesis(hw)) {
3286                /* clear xmac errors */
3287                if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3288                        skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3289                if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3290                        skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3291        } else {
3292                /* Timestamp (unused) overflow */
3293                if (hwstatus & IS_IRQ_TIST_OV)
3294                        skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3295        }
3296
3297        if (hwstatus & IS_RAM_RD_PAR) {
3298                dev_err(&pdev->dev, "Ram read data parity error\n");
3299                skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3300        }
3301
3302        if (hwstatus & IS_RAM_WR_PAR) {
3303                dev_err(&pdev->dev, "Ram write data parity error\n");
3304                skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3305        }
3306
3307        if (hwstatus & IS_M1_PAR_ERR)
3308                skge_mac_parity(hw, 0);
3309
3310        if (hwstatus & IS_M2_PAR_ERR)
3311                skge_mac_parity(hw, 1);
3312
3313        if (hwstatus & IS_R1_PAR_ERR) {
3314                dev_err(&pdev->dev, "%s: receive queue parity error\n",
3315                        hw->dev[0]->name);
3316                skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3317        }
3318
3319        if (hwstatus & IS_R2_PAR_ERR) {
3320                dev_err(&pdev->dev, "%s: receive queue parity error\n",
3321                        hw->dev[1]->name);
3322                skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3323        }
3324
3325        if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3326                u16 pci_status, pci_cmd;
3327
3328                pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3329                pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3330
3331                dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3332                        pci_cmd, pci_status);
3333
3334                /* Write the error bits back to clear them. */
3335                pci_status &= PCI_STATUS_ERROR_BITS;
3336                skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3337                pci_write_config_word(pdev, PCI_COMMAND,
3338                                      pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3339                pci_write_config_word(pdev, PCI_STATUS, pci_status);
3340                skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3341
3342                /* if error still set then just ignore it */
3343                hwstatus = skge_read32(hw, B0_HWE_ISRC);
3344                if (hwstatus & IS_IRQ_STAT) {
3345                        dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3346                        hw->intr_mask &= ~IS_HW_ERR;
3347                }
3348        }
3349}
3350
3351/*
3352 * Interrupt from PHY are handled in tasklet (softirq)
3353 * because accessing phy registers requires spin wait which might
3354 * cause excess interrupt latency.
3355 */
3356static void skge_extirq(unsigned long arg)
3357{
3358        struct skge_hw *hw = (struct skge_hw *) arg;
3359        int port;
3360
3361        for (port = 0; port < hw->ports; port++) {
3362                struct net_device *dev = hw->dev[port];
3363
3364                if (netif_running(dev)) {
3365                        struct skge_port *skge = netdev_priv(dev);
3366
3367                        spin_lock(&hw->phy_lock);
3368                        if (!is_genesis(hw))
3369                                yukon_phy_intr(skge);
3370                        else if (hw->phy_type == SK_PHY_BCOM)
3371                                bcom_phy_intr(skge);
3372                        spin_unlock(&hw->phy_lock);
3373                }
3374        }
3375
3376        spin_lock_irq(&hw->hw_lock);
3377        hw->intr_mask |= IS_EXT_REG;
3378        skge_write32(hw, B0_IMSK, hw->intr_mask);
3379        skge_read32(hw, B0_IMSK);
3380        spin_unlock_irq(&hw->hw_lock);
3381}
3382
3383static irqreturn_t skge_intr(int irq, void *dev_id)
3384{
3385        struct skge_hw *hw = dev_id;
3386        u32 status;
3387        int handled = 0;
3388
3389        spin_lock(&hw->hw_lock);
3390        /* Reading this register masks IRQ */
3391        status = skge_read32(hw, B0_SP_ISRC);
3392        if (status == 0 || status == ~0)
3393                goto out;
3394
3395        handled = 1;
3396        status &= hw->intr_mask;
3397        if (status & IS_EXT_REG) {
3398                hw->intr_mask &= ~IS_EXT_REG;
3399                tasklet_schedule(&hw->phy_task);
3400        }
3401
3402        if (status & (IS_XA1_F|IS_R1_F)) {
3403                struct skge_port *skge = netdev_priv(hw->dev[0]);
3404                hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3405                napi_schedule(&skge->napi);
3406        }
3407
3408        if (status & IS_PA_TO_TX1)
3409                skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3410
3411        if (status & IS_PA_TO_RX1) {
3412                ++hw->dev[0]->stats.rx_over_errors;
3413                skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3414        }
3415
3416
3417        if (status & IS_MAC1)
3418                skge_mac_intr(hw, 0);
3419
3420        if (hw->dev[1]) {
3421                struct skge_port *skge = netdev_priv(hw->dev[1]);
3422
3423                if (status & (IS_XA2_F|IS_R2_F)) {
3424                        hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3425                        napi_schedule(&skge->napi);
3426                }
3427
3428                if (status & IS_PA_TO_RX2) {
3429                        ++hw->dev[1]->stats.rx_over_errors;
3430                        skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3431                }
3432
3433                if (status & IS_PA_TO_TX2)
3434                        skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3435
3436                if (status & IS_MAC2)
3437                        skge_mac_intr(hw, 1);
3438        }
3439
3440        if (status & IS_HW_ERR)
3441                skge_error_irq(hw);
3442out:
3443        skge_write32(hw, B0_IMSK, hw->intr_mask);
3444        skge_read32(hw, B0_IMSK);
3445        spin_unlock(&hw->hw_lock);
3446
3447        return IRQ_RETVAL(handled);
3448}
3449
3450#ifdef CONFIG_NET_POLL_CONTROLLER
3451static void skge_netpoll(struct net_device *dev)
3452{
3453        struct skge_port *skge = netdev_priv(dev);
3454
3455        disable_irq(dev->irq);
3456        skge_intr(dev->irq, skge->hw);
3457        enable_irq(dev->irq);
3458}
3459#endif
3460
3461static int skge_set_mac_address(struct net_device *dev, void *p)
3462{
3463        struct skge_port *skge = netdev_priv(dev);
3464        struct skge_hw *hw = skge->hw;
3465        unsigned port = skge->port;
3466        const struct sockaddr *addr = p;
3467        u16 ctrl;
3468
3469        if (!is_valid_ether_addr(addr->sa_data))
3470                return -EADDRNOTAVAIL;
3471
3472        memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3473
3474        if (!netif_running(dev)) {
3475                memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3476                memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3477        } else {
3478                /* disable Rx */
3479                spin_lock_bh(&hw->phy_lock);
3480                ctrl = gma_read16(hw, port, GM_GP_CTRL);
3481                gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3482
3483                memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3484                memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3485
3486                if (is_genesis(hw))
3487                        xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3488                else {
3489                        gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3490                        gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3491                }
3492
3493                gma_write16(hw, port, GM_GP_CTRL, ctrl);
3494                spin_unlock_bh(&hw->phy_lock);
3495        }
3496
3497        return 0;
3498}
3499
3500static const struct {
3501        u8 id;
3502        const char *name;
3503} skge_chips[] = {
3504        { CHIP_ID_GENESIS,      "Genesis" },
3505        { CHIP_ID_YUKON,         "Yukon" },
3506        { CHIP_ID_YUKON_LITE,    "Yukon-Lite"},
3507        { CHIP_ID_YUKON_LP,      "Yukon-LP"},
3508};
3509
3510static const char *skge_board_name(const struct skge_hw *hw)
3511{
3512        int i;
3513        static char buf[16];
3514
3515        for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3516                if (skge_chips[i].id == hw->chip_id)
3517                        return skge_chips[i].name;
3518
3519        snprintf(buf, sizeof(buf), "chipid 0x%x", hw->chip_id);
3520        return buf;
3521}
3522
3523
3524/*
3525 * Setup the board data structure, but don't bring up
3526 * the port(s)
3527 */
3528static int skge_reset(struct skge_hw *hw)
3529{
3530        u32 reg;
3531        u16 ctst, pci_status;
3532        u8 t8, mac_cfg, pmd_type;
3533        int i;
3534
3535        ctst = skge_read16(hw, B0_CTST);
3536
3537        /* do a SW reset */
3538        skge_write8(hw, B0_CTST, CS_RST_SET);
3539        skge_write8(hw, B0_CTST, CS_RST_CLR);
3540
3541        /* clear PCI errors, if any */
3542        skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3543        skge_write8(hw, B2_TST_CTRL2, 0);
3544
3545        pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3546        pci_write_config_word(hw->pdev, PCI_STATUS,
3547                              pci_status | PCI_STATUS_ERROR_BITS);
3548        skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3549        skge_write8(hw, B0_CTST, CS_MRST_CLR);
3550
3551        /* restore CLK_RUN bits (for Yukon-Lite) */
3552        skge_write16(hw, B0_CTST,
3553                     ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3554
3555        hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3556        hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3557        pmd_type = skge_read8(hw, B2_PMD_TYP);
3558        hw->copper = (pmd_type == 'T' || pmd_type == '1');
3559
3560        switch (hw->chip_id) {
3561        case CHIP_ID_GENESIS:
3562#ifdef CONFIG_SKGE_GENESIS
3563                switch (hw->phy_type) {
3564                case SK_PHY_XMAC:
3565                        hw->phy_addr = PHY_ADDR_XMAC;
3566                        break;
3567                case SK_PHY_BCOM:
3568                        hw->phy_addr = PHY_ADDR_BCOM;
3569                        break;
3570                default:
3571                        dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3572                               hw->phy_type);
3573                        return -EOPNOTSUPP;
3574                }
3575                break;
3576#else
3577                dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n");
3578                return -EOPNOTSUPP;
3579#endif
3580
3581        case CHIP_ID_YUKON:
3582        case CHIP_ID_YUKON_LITE:
3583        case CHIP_ID_YUKON_LP:
3584                if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3585                        hw->copper = 1;
3586
3587                hw->phy_addr = PHY_ADDR_MARV;
3588                break;
3589
3590        default:
3591                dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3592                       hw->chip_id);
3593                return -EOPNOTSUPP;
3594        }
3595
3596        mac_cfg = skge_read8(hw, B2_MAC_CFG);
3597        hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3598        hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3599
3600        /* read the adapters RAM size */
3601        t8 = skge_read8(hw, B2_E_0);
3602        if (is_genesis(hw)) {
3603                if (t8 == 3) {
3604                        /* special case: 4 x 64k x 36, offset = 0x80000 */
3605                        hw->ram_size = 0x100000;
3606                        hw->ram_offset = 0x80000;
3607                } else
3608                        hw->ram_size = t8 * 512;
3609        } else if (t8 == 0)
3610                hw->ram_size = 0x20000;
3611        else
3612                hw->ram_size = t8 * 4096;
3613
3614        hw->intr_mask = IS_HW_ERR;
3615
3616        /* Use PHY IRQ for all but fiber based Genesis board */
3617        if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC))
3618                hw->intr_mask |= IS_EXT_REG;
3619
3620        if (is_genesis(hw))
3621                genesis_init(hw);
3622        else {
3623                /* switch power to VCC (WA for VAUX problem) */
3624                skge_write8(hw, B0_POWER_CTRL,
3625                            PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3626
3627                /* avoid boards with stuck Hardware error bits */
3628                if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3629                    (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3630                        dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3631                        hw->intr_mask &= ~IS_HW_ERR;
3632                }
3633
3634                /* Clear PHY COMA */
3635                skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3636                pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3637                reg &= ~PCI_PHY_COMA;
3638                pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3639                skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3640
3641
3642                for (i = 0; i < hw->ports; i++) {
3643                        skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3644                        skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3645                }
3646        }
3647
3648        /* turn off hardware timer (unused) */
3649        skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3650        skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3651        skge_write8(hw, B0_LED, LED_STAT_ON);
3652
3653        /* enable the Tx Arbiters */
3654        for (i = 0; i < hw->ports; i++)
3655                skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3656
3657        /* Initialize ram interface */
3658        skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3659
3660        skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3661        skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3662        skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3663        skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3664        skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3665        skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3666        skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3667        skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3668        skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3669        skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3670        skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3671        skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3672
3673        skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3674
3675        /* Set interrupt moderation for Transmit only
3676         * Receive interrupts avoided by NAPI
3677         */
3678        skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3679        skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3680        skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3681
3682        /* Leave irq disabled until first port is brought up. */
3683        skge_write32(hw, B0_IMSK, 0);
3684
3685        for (i = 0; i < hw->ports; i++) {
3686                if (is_genesis(hw))
3687                        genesis_reset(hw, i);
3688                else
3689                        yukon_reset(hw, i);
3690        }
3691
3692        return 0;
3693}
3694
3695
3696#ifdef CONFIG_SKGE_DEBUG
3697
3698static struct dentry *skge_debug;
3699
3700static int skge_debug_show(struct seq_file *seq, void *v)
3701{
3702        struct net_device *dev = seq->private;
3703        const struct skge_port *skge = netdev_priv(dev);
3704        const struct skge_hw *hw = skge->hw;
3705        const struct skge_element *e;
3706
3707        if (!netif_running(dev))
3708                return -ENETDOWN;
3709
3710        seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3711                   skge_read32(hw, B0_IMSK));
3712
3713        seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3714        for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3715                const struct skge_tx_desc *t = e->desc;
3716                seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3717                           t->control, t->dma_hi, t->dma_lo, t->status,
3718                           t->csum_offs, t->csum_write, t->csum_start);
3719        }
3720
3721        seq_puts(seq, "\nRx Ring:\n");
3722        for (e = skge->rx_ring.to_clean; ; e = e->next) {
3723                const struct skge_rx_desc *r = e->desc;
3724
3725                if (r->control & BMU_OWN)
3726                        break;
3727
3728                seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3729                           r->control, r->dma_hi, r->dma_lo, r->status,
3730                           r->timestamp, r->csum1, r->csum1_start);
3731        }
3732
3733        return 0;
3734}
3735
3736static int skge_debug_open(struct inode *inode, struct file *file)
3737{
3738        return single_open(file, skge_debug_show, inode->i_private);
3739}
3740
3741static const struct file_operations skge_debug_fops = {
3742        .owner          = THIS_MODULE,
3743        .open           = skge_debug_open,
3744        .read           = seq_read,
3745        .llseek         = seq_lseek,
3746        .release        = single_release,
3747};
3748
3749/*
3750 * Use network device events to create/remove/rename
3751 * debugfs file entries
3752 */
3753static int skge_device_event(struct notifier_block *unused,
3754                             unsigned long event, void *ptr)
3755{
3756        struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3757        struct skge_port *skge;
3758        struct dentry *d;
3759
3760        if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
3761                goto done;
3762
3763        skge = netdev_priv(dev);
3764        switch (event) {
3765        case NETDEV_CHANGENAME:
3766                if (skge->debugfs) {
3767                        d = debugfs_rename(skge_debug, skge->debugfs,
3768                                           skge_debug, dev->name);
3769                        if (d)
3770                                skge->debugfs = d;
3771                        else {
3772                                netdev_info(dev, "rename failed\n");
3773                                debugfs_remove(skge->debugfs);
3774                        }
3775                }
3776                break;
3777
3778        case NETDEV_GOING_DOWN:
3779                if (skge->debugfs) {
3780                        debugfs_remove(skge->debugfs);
3781                        skge->debugfs = NULL;
3782                }
3783                break;
3784
3785        case NETDEV_UP:
3786                d = debugfs_create_file(dev->name, 0444,
3787                                        skge_debug, dev,
3788                                        &skge_debug_fops);
3789                if (!d || IS_ERR(d))
3790                        netdev_info(dev, "debugfs create failed\n");
3791                else
3792                        skge->debugfs = d;
3793                break;
3794        }
3795
3796done:
3797        return NOTIFY_DONE;
3798}
3799
3800static struct notifier_block skge_notifier = {
3801        .notifier_call = skge_device_event,
3802};
3803
3804
3805static __init void skge_debug_init(void)
3806{
3807        struct dentry *ent;
3808
3809        ent = debugfs_create_dir("skge", NULL);
3810        if (!ent || IS_ERR(ent)) {
3811                pr_info("debugfs create directory failed\n");
3812                return;
3813        }
3814
3815        skge_debug = ent;
3816        register_netdevice_notifier(&skge_notifier);
3817}
3818
3819static __exit void skge_debug_cleanup(void)
3820{
3821        if (skge_debug) {
3822                unregister_netdevice_notifier(&skge_notifier);
3823                debugfs_remove(skge_debug);
3824                skge_debug = NULL;
3825        }
3826}
3827
3828#else
3829#define skge_debug_init()
3830#define skge_debug_cleanup()
3831#endif
3832
3833static const struct net_device_ops skge_netdev_ops = {
3834        .ndo_open               = skge_up,
3835        .ndo_stop               = skge_down,
3836        .ndo_start_xmit         = skge_xmit_frame,
3837        .ndo_do_ioctl           = skge_ioctl,
3838        .ndo_get_stats          = skge_get_stats,
3839        .ndo_tx_timeout         = skge_tx_timeout,
3840        .ndo_change_mtu         = skge_change_mtu,
3841        .ndo_validate_addr      = eth_validate_addr,
3842        .ndo_set_rx_mode        = skge_set_multicast,
3843        .ndo_set_mac_address    = skge_set_mac_address,
3844#ifdef CONFIG_NET_POLL_CONTROLLER
3845        .ndo_poll_controller    = skge_netpoll,
3846#endif
3847};
3848
3849
3850/* Initialize network device */
3851static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3852                                       int highmem)
3853{
3854        struct skge_port *skge;
3855        struct net_device *dev = alloc_etherdev(sizeof(*skge));
3856
3857        if (!dev)
3858                return NULL;
3859
3860        SET_NETDEV_DEV(dev, &hw->pdev->dev);
3861        dev->netdev_ops = &skge_netdev_ops;
3862        dev->ethtool_ops = &skge_ethtool_ops;
3863        dev->watchdog_timeo = TX_WATCHDOG;
3864        dev->irq = hw->pdev->irq;
3865
3866        /* MTU range: 60 - 9000 */
3867        dev->min_mtu = ETH_ZLEN;
3868        dev->max_mtu = ETH_JUMBO_MTU;
3869
3870        if (highmem)
3871                dev->features |= NETIF_F_HIGHDMA;
3872
3873        skge = netdev_priv(dev);
3874        netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
3875        skge->netdev = dev;
3876        skge->hw = hw;
3877        skge->msg_enable = netif_msg_init(debug, default_msg);
3878
3879        skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3880        skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3881
3882        /* Auto speed and flow control */
3883        skge->autoneg = AUTONEG_ENABLE;
3884        skge->flow_control = FLOW_MODE_SYM_OR_REM;
3885        skge->duplex = -1;
3886        skge->speed = -1;
3887        skge->advertising = skge_supported_modes(hw);
3888
3889        if (device_can_wakeup(&hw->pdev->dev)) {
3890                skge->wol = wol_supported(hw) & WAKE_MAGIC;
3891                device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
3892        }
3893
3894        hw->dev[port] = dev;
3895
3896        skge->port = port;
3897
3898        /* Only used for Genesis XMAC */
3899        if (is_genesis(hw))
3900            timer_setup(&skge->link_timer, xm_link_timer, 0);
3901        else {
3902                dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3903                                   NETIF_F_RXCSUM;
3904                dev->features |= dev->hw_features;
3905        }
3906
3907        /* read the mac address */
3908        memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3909
3910        return dev;
3911}
3912
3913static void skge_show_addr(struct net_device *dev)
3914{
3915        const struct skge_port *skge = netdev_priv(dev);
3916
3917        netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
3918}
3919
3920static int only_32bit_dma;
3921
3922static int skge_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3923{
3924        struct net_device *dev, *dev1;
3925        struct skge_hw *hw;
3926        int err, using_dac = 0;
3927
3928        err = pci_enable_device(pdev);
3929        if (err) {
3930                dev_err(&pdev->dev, "cannot enable PCI device\n");
3931                goto err_out;
3932        }
3933
3934        err = pci_request_regions(pdev, DRV_NAME);
3935        if (err) {
3936                dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3937                goto err_out_disable_pdev;
3938        }
3939
3940        pci_set_master(pdev);
3941
3942        if (!only_32bit_dma && !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3943                using_dac = 1;
3944                err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3945        } else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
3946                using_dac = 0;
3947                err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3948        }
3949
3950        if (err) {
3951                dev_err(&pdev->dev, "no usable DMA configuration\n");
3952                goto err_out_free_regions;
3953        }
3954
3955#ifdef __BIG_ENDIAN
3956        /* byte swap descriptors in hardware */
3957        {
3958                u32 reg;
3959
3960                pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3961                reg |= PCI_REV_DESC;
3962                pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3963        }
3964#endif
3965
3966        err = -ENOMEM;
3967        /* space for skge@pci:0000:04:00.0 */
3968        hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
3969                     + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
3970        if (!hw)
3971                goto err_out_free_regions;
3972
3973        sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
3974
3975        hw->pdev = pdev;
3976        spin_lock_init(&hw->hw_lock);
3977        spin_lock_init(&hw->phy_lock);
3978        tasklet_init(&hw->phy_task, skge_extirq, (unsigned long) hw);
3979
3980        hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3981        if (!hw->regs) {
3982                dev_err(&pdev->dev, "cannot map device registers\n");
3983                goto err_out_free_hw;
3984        }
3985
3986        err = skge_reset(hw);
3987        if (err)
3988                goto err_out_iounmap;
3989
3990        pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3991                DRV_VERSION,
3992                (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3993                skge_board_name(hw), hw->chip_rev);
3994
3995        dev = skge_devinit(hw, 0, using_dac);
3996        if (!dev) {
3997                err = -ENOMEM;
3998                goto err_out_led_off;
3999        }
4000
4001        /* Some motherboards are broken and has zero in ROM. */
4002        if (!is_valid_ether_addr(dev->dev_addr))
4003                dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
4004
4005        err = register_netdev(dev);
4006        if (err) {
4007                dev_err(&pdev->dev, "cannot register net device\n");
4008                goto err_out_free_netdev;
4009        }
4010
4011        skge_show_addr(dev);
4012
4013        if (hw->ports > 1) {
4014                dev1 = skge_devinit(hw, 1, using_dac);
4015                if (!dev1) {
4016                        err = -ENOMEM;
4017                        goto err_out_unregister;
4018                }
4019
4020                err = register_netdev(dev1);
4021                if (err) {
4022                        dev_err(&pdev->dev, "cannot register second net device\n");
4023                        goto err_out_free_dev1;
4024                }
4025
4026                err = request_irq(pdev->irq, skge_intr, IRQF_SHARED,
4027                                  hw->irq_name, hw);
4028                if (err) {
4029                        dev_err(&pdev->dev, "cannot assign irq %d\n",
4030                                pdev->irq);
4031                        goto err_out_unregister_dev1;
4032                }
4033
4034                skge_show_addr(dev1);
4035        }
4036        pci_set_drvdata(pdev, hw);
4037
4038        return 0;
4039
4040err_out_unregister_dev1:
4041        unregister_netdev(dev1);
4042err_out_free_dev1:
4043        free_netdev(dev1);
4044err_out_unregister:
4045        unregister_netdev(dev);
4046err_out_free_netdev:
4047        free_netdev(dev);
4048err_out_led_off:
4049        skge_write16(hw, B0_LED, LED_STAT_OFF);
4050err_out_iounmap:
4051        iounmap(hw->regs);
4052err_out_free_hw:
4053        kfree(hw);
4054err_out_free_regions:
4055        pci_release_regions(pdev);
4056err_out_disable_pdev:
4057        pci_disable_device(pdev);
4058err_out:
4059        return err;
4060}
4061
4062static void skge_remove(struct pci_dev *pdev)
4063{
4064        struct skge_hw *hw  = pci_get_drvdata(pdev);
4065        struct net_device *dev0, *dev1;
4066
4067        if (!hw)
4068                return;
4069
4070        dev1 = hw->dev[1];
4071        if (dev1)
4072                unregister_netdev(dev1);
4073        dev0 = hw->dev[0];
4074        unregister_netdev(dev0);
4075
4076        tasklet_kill(&hw->phy_task);
4077
4078        spin_lock_irq(&hw->hw_lock);
4079        hw->intr_mask = 0;
4080
4081        if (hw->ports > 1) {
4082                skge_write32(hw, B0_IMSK, 0);
4083                skge_read32(hw, B0_IMSK);
4084        }
4085        spin_unlock_irq(&hw->hw_lock);
4086
4087        skge_write16(hw, B0_LED, LED_STAT_OFF);
4088        skge_write8(hw, B0_CTST, CS_RST_SET);
4089
4090        if (hw->ports > 1)
4091                free_irq(pdev->irq, hw);
4092        pci_release_regions(pdev);
4093        pci_disable_device(pdev);
4094        if (dev1)
4095                free_netdev(dev1);
4096        free_netdev(dev0);
4097
4098        iounmap(hw->regs);
4099        kfree(hw);
4100}
4101
4102#ifdef CONFIG_PM_SLEEP
4103static int skge_suspend(struct device *dev)
4104{
4105        struct pci_dev *pdev = to_pci_dev(dev);
4106        struct skge_hw *hw  = pci_get_drvdata(pdev);
4107        int i;
4108
4109        if (!hw)
4110                return 0;
4111
4112        for (i = 0; i < hw->ports; i++) {
4113                struct net_device *dev = hw->dev[i];
4114                struct skge_port *skge = netdev_priv(dev);
4115
4116                if (netif_running(dev))
4117                        skge_down(dev);
4118
4119                if (skge->wol)
4120                        skge_wol_init(skge);
4121        }
4122
4123        skge_write32(hw, B0_IMSK, 0);
4124
4125        return 0;
4126}
4127
4128static int skge_resume(struct device *dev)
4129{
4130        struct pci_dev *pdev = to_pci_dev(dev);
4131        struct skge_hw *hw  = pci_get_drvdata(pdev);
4132        int i, err;
4133
4134        if (!hw)
4135                return 0;
4136
4137        err = skge_reset(hw);
4138        if (err)
4139                goto out;
4140
4141        for (i = 0; i < hw->ports; i++) {
4142                struct net_device *dev = hw->dev[i];
4143
4144                if (netif_running(dev)) {
4145                        err = skge_up(dev);
4146
4147                        if (err) {
4148                                netdev_err(dev, "could not up: %d\n", err);
4149                                dev_close(dev);
4150                                goto out;
4151                        }
4152                }
4153        }
4154out:
4155        return err;
4156}
4157
4158static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
4159#define SKGE_PM_OPS (&skge_pm_ops)
4160
4161#else
4162
4163#define SKGE_PM_OPS NULL
4164#endif /* CONFIG_PM_SLEEP */
4165
4166static void skge_shutdown(struct pci_dev *pdev)
4167{
4168        struct skge_hw *hw  = pci_get_drvdata(pdev);
4169        int i;
4170
4171        if (!hw)
4172                return;
4173
4174        for (i = 0; i < hw->ports; i++) {
4175                struct net_device *dev = hw->dev[i];
4176                struct skge_port *skge = netdev_priv(dev);
4177
4178                if (skge->wol)
4179                        skge_wol_init(skge);
4180        }
4181
4182        pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
4183        pci_set_power_state(pdev, PCI_D3hot);
4184}
4185
4186static struct pci_driver skge_driver = {
4187        .name =         DRV_NAME,
4188        .id_table =     skge_id_table,
4189        .probe =        skge_probe,
4190        .remove =       skge_remove,
4191        .shutdown =     skge_shutdown,
4192        .driver.pm =    SKGE_PM_OPS,
4193};
4194
4195static const struct dmi_system_id skge_32bit_dma_boards[] = {
4196        {
4197                .ident = "Gigabyte nForce boards",
4198                .matches = {
4199                        DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
4200                        DMI_MATCH(DMI_BOARD_NAME, "nForce"),
4201                },
4202        },
4203        {
4204                .ident = "ASUS P5NSLI",
4205                .matches = {
4206                        DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
4207                        DMI_MATCH(DMI_BOARD_NAME, "P5NSLI")
4208                },
4209        },
4210        {
4211                .ident = "FUJITSU SIEMENS A8NE-FM",
4212                .matches = {
4213                        DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."),
4214                        DMI_MATCH(DMI_BOARD_NAME, "A8NE-FM")
4215                },
4216        },
4217        {}
4218};
4219
4220static int __init skge_init_module(void)
4221{
4222        if (dmi_check_system(skge_32bit_dma_boards))
4223                only_32bit_dma = 1;
4224        skge_debug_init();
4225        return pci_register_driver(&skge_driver);
4226}
4227
4228static void __exit skge_cleanup_module(void)
4229{
4230        pci_unregister_driver(&skge_driver);
4231        skge_debug_cleanup();
4232}
4233
4234module_init(skge_init_module);
4235module_exit(skge_cleanup_module);
4236