linux/drivers/net/ethernet/sfc/efx_common.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2018 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11#include "net_driver.h"
  12#include <linux/module.h>
  13#include <linux/netdevice.h>
  14#include "efx_common.h"
  15#include "efx_channels.h"
  16#include "efx.h"
  17#include "mcdi.h"
  18#include "selftest.h"
  19#include "rx_common.h"
  20#include "tx_common.h"
  21#include "nic.h"
  22#include "io.h"
  23#include "mcdi_pcol.h"
  24
  25static unsigned int debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
  26                             NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
  27                             NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
  28                             NETIF_MSG_TX_ERR | NETIF_MSG_HW);
  29module_param(debug, uint, 0);
  30MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
  31
  32/* This is the time (in jiffies) between invocations of the hardware
  33 * monitor.
  34 * On Falcon-based NICs, this will:
  35 * - Check the on-board hardware monitor;
  36 * - Poll the link state and reconfigure the hardware as necessary.
  37 * On Siena-based NICs for power systems with EEH support, this will give EEH a
  38 * chance to start.
  39 */
  40static unsigned int efx_monitor_interval = 1 * HZ;
  41
  42/* How often and how many times to poll for a reset while waiting for a
  43 * BIST that another function started to complete.
  44 */
  45#define BIST_WAIT_DELAY_MS      100
  46#define BIST_WAIT_DELAY_COUNT   100
  47
  48/* Default stats update time */
  49#define STATS_PERIOD_MS_DEFAULT 1000
  50
  51const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
  52const char *const efx_reset_type_names[] = {
  53        [RESET_TYPE_INVISIBLE]          = "INVISIBLE",
  54        [RESET_TYPE_ALL]                = "ALL",
  55        [RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
  56        [RESET_TYPE_WORLD]              = "WORLD",
  57        [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
  58        [RESET_TYPE_DATAPATH]           = "DATAPATH",
  59        [RESET_TYPE_MC_BIST]            = "MC_BIST",
  60        [RESET_TYPE_DISABLE]            = "DISABLE",
  61        [RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
  62        [RESET_TYPE_INT_ERROR]          = "INT_ERROR",
  63        [RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
  64        [RESET_TYPE_TX_SKIP]            = "TX_SKIP",
  65        [RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
  66        [RESET_TYPE_MCDI_TIMEOUT]       = "MCDI_TIMEOUT (FLR)",
  67};
  68
  69#define RESET_TYPE(type) \
  70        STRING_TABLE_LOOKUP(type, efx_reset_type)
  71
  72/* Loopback mode names (see LOOPBACK_MODE()) */
  73const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
  74const char *const efx_loopback_mode_names[] = {
  75        [LOOPBACK_NONE]         = "NONE",
  76        [LOOPBACK_DATA]         = "DATAPATH",
  77        [LOOPBACK_GMAC]         = "GMAC",
  78        [LOOPBACK_XGMII]        = "XGMII",
  79        [LOOPBACK_XGXS]         = "XGXS",
  80        [LOOPBACK_XAUI]         = "XAUI",
  81        [LOOPBACK_GMII]         = "GMII",
  82        [LOOPBACK_SGMII]        = "SGMII",
  83        [LOOPBACK_XGBR]         = "XGBR",
  84        [LOOPBACK_XFI]          = "XFI",
  85        [LOOPBACK_XAUI_FAR]     = "XAUI_FAR",
  86        [LOOPBACK_GMII_FAR]     = "GMII_FAR",
  87        [LOOPBACK_SGMII_FAR]    = "SGMII_FAR",
  88        [LOOPBACK_XFI_FAR]      = "XFI_FAR",
  89        [LOOPBACK_GPHY]         = "GPHY",
  90        [LOOPBACK_PHYXS]        = "PHYXS",
  91        [LOOPBACK_PCS]          = "PCS",
  92        [LOOPBACK_PMAPMD]       = "PMA/PMD",
  93        [LOOPBACK_XPORT]        = "XPORT",
  94        [LOOPBACK_XGMII_WS]     = "XGMII_WS",
  95        [LOOPBACK_XAUI_WS]      = "XAUI_WS",
  96        [LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
  97        [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
  98        [LOOPBACK_GMII_WS]      = "GMII_WS",
  99        [LOOPBACK_XFI_WS]       = "XFI_WS",
 100        [LOOPBACK_XFI_WS_FAR]   = "XFI_WS_FAR",
 101        [LOOPBACK_PHYXS_WS]     = "PHYXS_WS",
 102};
 103
 104/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 105 * queued onto this work queue. This is not a per-nic work queue, because
 106 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 107 */
 108static struct workqueue_struct *reset_workqueue;
 109
 110int efx_create_reset_workqueue(void)
 111{
 112        reset_workqueue = create_singlethread_workqueue("sfc_reset");
 113        if (!reset_workqueue) {
 114                printk(KERN_ERR "Failed to create reset workqueue\n");
 115                return -ENOMEM;
 116        }
 117
 118        return 0;
 119}
 120
 121void efx_queue_reset_work(struct efx_nic *efx)
 122{
 123        queue_work(reset_workqueue, &efx->reset_work);
 124}
 125
 126void efx_flush_reset_workqueue(struct efx_nic *efx)
 127{
 128        cancel_work_sync(&efx->reset_work);
 129}
 130
 131void efx_destroy_reset_workqueue(void)
 132{
 133        if (reset_workqueue) {
 134                destroy_workqueue(reset_workqueue);
 135                reset_workqueue = NULL;
 136        }
 137}
 138
 139/* We assume that efx->type->reconfigure_mac will always try to sync RX
 140 * filters and therefore needs to read-lock the filter table against freeing
 141 */
 142void efx_mac_reconfigure(struct efx_nic *efx)
 143{
 144        if (efx->type->reconfigure_mac) {
 145                down_read(&efx->filter_sem);
 146                efx->type->reconfigure_mac(efx);
 147                up_read(&efx->filter_sem);
 148        }
 149}
 150
 151/* Asynchronous work item for changing MAC promiscuity and multicast
 152 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 153 * MAC directly.
 154 */
 155static void efx_mac_work(struct work_struct *data)
 156{
 157        struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
 158
 159        mutex_lock(&efx->mac_lock);
 160        if (efx->port_enabled)
 161                efx_mac_reconfigure(efx);
 162        mutex_unlock(&efx->mac_lock);
 163}
 164
 165/* This ensures that the kernel is kept informed (via
 166 * netif_carrier_on/off) of the link status, and also maintains the
 167 * link status's stop on the port's TX queue.
 168 */
 169void efx_link_status_changed(struct efx_nic *efx)
 170{
 171        struct efx_link_state *link_state = &efx->link_state;
 172
 173        /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
 174         * that no events are triggered between unregister_netdev() and the
 175         * driver unloading. A more general condition is that NETDEV_CHANGE
 176         * can only be generated between NETDEV_UP and NETDEV_DOWN
 177         */
 178        if (!netif_running(efx->net_dev))
 179                return;
 180
 181        if (link_state->up != netif_carrier_ok(efx->net_dev)) {
 182                efx->n_link_state_changes++;
 183
 184                if (link_state->up)
 185                        netif_carrier_on(efx->net_dev);
 186                else
 187                        netif_carrier_off(efx->net_dev);
 188        }
 189
 190        /* Status message for kernel log */
 191        if (link_state->up)
 192                netif_info(efx, link, efx->net_dev,
 193                           "link up at %uMbps %s-duplex (MTU %d)\n",
 194                           link_state->speed, link_state->fd ? "full" : "half",
 195                           efx->net_dev->mtu);
 196        else
 197                netif_info(efx, link, efx->net_dev, "link down\n");
 198}
 199
 200unsigned int efx_xdp_max_mtu(struct efx_nic *efx)
 201{
 202        /* The maximum MTU that we can fit in a single page, allowing for
 203         * framing, overhead and XDP headroom + tailroom.
 204         */
 205        int overhead = EFX_MAX_FRAME_LEN(0) + sizeof(struct efx_rx_page_state) +
 206                       efx->rx_prefix_size + efx->type->rx_buffer_padding +
 207                       efx->rx_ip_align + EFX_XDP_HEADROOM + EFX_XDP_TAILROOM;
 208
 209        return PAGE_SIZE - overhead;
 210}
 211
 212/* Context: process, rtnl_lock() held. */
 213int efx_change_mtu(struct net_device *net_dev, int new_mtu)
 214{
 215        struct efx_nic *efx = netdev_priv(net_dev);
 216        int rc;
 217
 218        rc = efx_check_disabled(efx);
 219        if (rc)
 220                return rc;
 221
 222        if (rtnl_dereference(efx->xdp_prog) &&
 223            new_mtu > efx_xdp_max_mtu(efx)) {
 224                netif_err(efx, drv, efx->net_dev,
 225                          "Requested MTU of %d too big for XDP (max: %d)\n",
 226                          new_mtu, efx_xdp_max_mtu(efx));
 227                return -EINVAL;
 228        }
 229
 230        netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
 231
 232        efx_device_detach_sync(efx);
 233        efx_stop_all(efx);
 234
 235        mutex_lock(&efx->mac_lock);
 236        net_dev->mtu = new_mtu;
 237        efx_mac_reconfigure(efx);
 238        mutex_unlock(&efx->mac_lock);
 239
 240        efx_start_all(efx);
 241        efx_device_attach_if_not_resetting(efx);
 242        return 0;
 243}
 244
 245/**************************************************************************
 246 *
 247 * Hardware monitor
 248 *
 249 **************************************************************************/
 250
 251/* Run periodically off the general workqueue */
 252static void efx_monitor(struct work_struct *data)
 253{
 254        struct efx_nic *efx = container_of(data, struct efx_nic,
 255                                           monitor_work.work);
 256
 257        netif_vdbg(efx, timer, efx->net_dev,
 258                   "hardware monitor executing on CPU %d\n",
 259                   raw_smp_processor_id());
 260        BUG_ON(efx->type->monitor == NULL);
 261
 262        /* If the mac_lock is already held then it is likely a port
 263         * reconfiguration is already in place, which will likely do
 264         * most of the work of monitor() anyway.
 265         */
 266        if (mutex_trylock(&efx->mac_lock)) {
 267                if (efx->port_enabled && efx->type->monitor)
 268                        efx->type->monitor(efx);
 269                mutex_unlock(&efx->mac_lock);
 270        }
 271
 272        efx_start_monitor(efx);
 273}
 274
 275void efx_start_monitor(struct efx_nic *efx)
 276{
 277        if (efx->type->monitor)
 278                queue_delayed_work(efx->workqueue, &efx->monitor_work,
 279                                   efx_monitor_interval);
 280}
 281
 282/**************************************************************************
 283 *
 284 * Event queue processing
 285 *
 286 *************************************************************************/
 287
 288/* Channels are shutdown and reinitialised whilst the NIC is running
 289 * to propagate configuration changes (mtu, checksum offload), or
 290 * to clear hardware error conditions
 291 */
 292static void efx_start_datapath(struct efx_nic *efx)
 293{
 294        netdev_features_t old_features = efx->net_dev->features;
 295        bool old_rx_scatter = efx->rx_scatter;
 296        size_t rx_buf_len;
 297
 298        /* Calculate the rx buffer allocation parameters required to
 299         * support the current MTU, including padding for header
 300         * alignment and overruns.
 301         */
 302        efx->rx_dma_len = (efx->rx_prefix_size +
 303                           EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
 304                           efx->type->rx_buffer_padding);
 305        rx_buf_len = (sizeof(struct efx_rx_page_state)   + EFX_XDP_HEADROOM +
 306                      efx->rx_ip_align + efx->rx_dma_len + EFX_XDP_TAILROOM);
 307
 308        if (rx_buf_len <= PAGE_SIZE) {
 309                efx->rx_scatter = efx->type->always_rx_scatter;
 310                efx->rx_buffer_order = 0;
 311        } else if (efx->type->can_rx_scatter) {
 312                BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
 313                BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
 314                             2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
 315                                       EFX_RX_BUF_ALIGNMENT) >
 316                             PAGE_SIZE);
 317                efx->rx_scatter = true;
 318                efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
 319                efx->rx_buffer_order = 0;
 320        } else {
 321                efx->rx_scatter = false;
 322                efx->rx_buffer_order = get_order(rx_buf_len);
 323        }
 324
 325        efx_rx_config_page_split(efx);
 326        if (efx->rx_buffer_order)
 327                netif_dbg(efx, drv, efx->net_dev,
 328                          "RX buf len=%u; page order=%u batch=%u\n",
 329                          efx->rx_dma_len, efx->rx_buffer_order,
 330                          efx->rx_pages_per_batch);
 331        else
 332                netif_dbg(efx, drv, efx->net_dev,
 333                          "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
 334                          efx->rx_dma_len, efx->rx_page_buf_step,
 335                          efx->rx_bufs_per_page, efx->rx_pages_per_batch);
 336
 337        /* Restore previously fixed features in hw_features and remove
 338         * features which are fixed now
 339         */
 340        efx->net_dev->hw_features |= efx->net_dev->features;
 341        efx->net_dev->hw_features &= ~efx->fixed_features;
 342        efx->net_dev->features |= efx->fixed_features;
 343        if (efx->net_dev->features != old_features)
 344                netdev_features_change(efx->net_dev);
 345
 346        /* RX filters may also have scatter-enabled flags */
 347        if ((efx->rx_scatter != old_rx_scatter) &&
 348            efx->type->filter_update_rx_scatter)
 349                efx->type->filter_update_rx_scatter(efx);
 350
 351        /* We must keep at least one descriptor in a TX ring empty.
 352         * We could avoid this when the queue size does not exactly
 353         * match the hardware ring size, but it's not that important.
 354         * Therefore we stop the queue when one more skb might fill
 355         * the ring completely.  We wake it when half way back to
 356         * empty.
 357         */
 358        efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
 359        efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
 360
 361        /* Initialise the channels */
 362        efx_start_channels(efx);
 363
 364        efx_ptp_start_datapath(efx);
 365
 366        if (netif_device_present(efx->net_dev))
 367                netif_tx_wake_all_queues(efx->net_dev);
 368}
 369
 370static void efx_stop_datapath(struct efx_nic *efx)
 371{
 372        EFX_ASSERT_RESET_SERIALISED(efx);
 373        BUG_ON(efx->port_enabled);
 374
 375        efx_ptp_stop_datapath(efx);
 376
 377        efx_stop_channels(efx);
 378}
 379
 380/**************************************************************************
 381 *
 382 * Port handling
 383 *
 384 **************************************************************************/
 385
 386static void efx_start_port(struct efx_nic *efx)
 387{
 388        netif_dbg(efx, ifup, efx->net_dev, "start port\n");
 389        BUG_ON(efx->port_enabled);
 390
 391        mutex_lock(&efx->mac_lock);
 392        efx->port_enabled = true;
 393
 394        /* Ensure MAC ingress/egress is enabled */
 395        efx_mac_reconfigure(efx);
 396
 397        mutex_unlock(&efx->mac_lock);
 398}
 399
 400/* Cancel work for MAC reconfiguration, periodic hardware monitoring
 401 * and the async self-test, wait for them to finish and prevent them
 402 * being scheduled again.  This doesn't cover online resets, which
 403 * should only be cancelled when removing the device.
 404 */
 405static void efx_stop_port(struct efx_nic *efx)
 406{
 407        netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
 408
 409        EFX_ASSERT_RESET_SERIALISED(efx);
 410
 411        mutex_lock(&efx->mac_lock);
 412        efx->port_enabled = false;
 413        mutex_unlock(&efx->mac_lock);
 414
 415        /* Serialise against efx_set_multicast_list() */
 416        netif_addr_lock_bh(efx->net_dev);
 417        netif_addr_unlock_bh(efx->net_dev);
 418
 419        cancel_delayed_work_sync(&efx->monitor_work);
 420        efx_selftest_async_cancel(efx);
 421        cancel_work_sync(&efx->mac_work);
 422}
 423
 424/* If the interface is supposed to be running but is not, start
 425 * the hardware and software data path, regular activity for the port
 426 * (MAC statistics, link polling, etc.) and schedule the port to be
 427 * reconfigured.  Interrupts must already be enabled.  This function
 428 * is safe to call multiple times, so long as the NIC is not disabled.
 429 * Requires the RTNL lock.
 430 */
 431void efx_start_all(struct efx_nic *efx)
 432{
 433        EFX_ASSERT_RESET_SERIALISED(efx);
 434        BUG_ON(efx->state == STATE_DISABLED);
 435
 436        /* Check that it is appropriate to restart the interface. All
 437         * of these flags are safe to read under just the rtnl lock
 438         */
 439        if (efx->port_enabled || !netif_running(efx->net_dev) ||
 440            efx->reset_pending)
 441                return;
 442
 443        efx_start_port(efx);
 444        efx_start_datapath(efx);
 445
 446        /* Start the hardware monitor if there is one */
 447        efx_start_monitor(efx);
 448
 449        /* Link state detection is normally event-driven; we have
 450         * to poll now because we could have missed a change
 451         */
 452        mutex_lock(&efx->mac_lock);
 453        if (efx->phy_op->poll(efx))
 454                efx_link_status_changed(efx);
 455        mutex_unlock(&efx->mac_lock);
 456
 457        if (efx->type->start_stats) {
 458                efx->type->start_stats(efx);
 459                efx->type->pull_stats(efx);
 460                spin_lock_bh(&efx->stats_lock);
 461                efx->type->update_stats(efx, NULL, NULL);
 462                spin_unlock_bh(&efx->stats_lock);
 463        }
 464}
 465
 466/* Quiesce the hardware and software data path, and regular activity
 467 * for the port without bringing the link down.  Safe to call multiple
 468 * times with the NIC in almost any state, but interrupts should be
 469 * enabled.  Requires the RTNL lock.
 470 */
 471void efx_stop_all(struct efx_nic *efx)
 472{
 473        EFX_ASSERT_RESET_SERIALISED(efx);
 474
 475        /* port_enabled can be read safely under the rtnl lock */
 476        if (!efx->port_enabled)
 477                return;
 478
 479        if (efx->type->update_stats) {
 480                /* update stats before we go down so we can accurately count
 481                 * rx_nodesc_drops
 482                 */
 483                efx->type->pull_stats(efx);
 484                spin_lock_bh(&efx->stats_lock);
 485                efx->type->update_stats(efx, NULL, NULL);
 486                spin_unlock_bh(&efx->stats_lock);
 487                efx->type->stop_stats(efx);
 488        }
 489
 490        efx_stop_port(efx);
 491
 492        /* Stop the kernel transmit interface.  This is only valid if
 493         * the device is stopped or detached; otherwise the watchdog
 494         * may fire immediately.
 495         */
 496        WARN_ON(netif_running(efx->net_dev) &&
 497                netif_device_present(efx->net_dev));
 498        netif_tx_disable(efx->net_dev);
 499
 500        efx_stop_datapath(efx);
 501}
 502
 503/* Context: process, dev_base_lock or RTNL held, non-blocking. */
 504void efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
 505{
 506        struct efx_nic *efx = netdev_priv(net_dev);
 507
 508        spin_lock_bh(&efx->stats_lock);
 509        efx->type->update_stats(efx, NULL, stats);
 510        spin_unlock_bh(&efx->stats_lock);
 511}
 512
 513/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 514 * the MAC appropriately. All other PHY configuration changes are pushed
 515 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 516 * through efx_monitor().
 517 *
 518 * Callers must hold the mac_lock
 519 */
 520int __efx_reconfigure_port(struct efx_nic *efx)
 521{
 522        enum efx_phy_mode phy_mode;
 523        int rc = 0;
 524
 525        WARN_ON(!mutex_is_locked(&efx->mac_lock));
 526
 527        /* Disable PHY transmit in mac level loopbacks */
 528        phy_mode = efx->phy_mode;
 529        if (LOOPBACK_INTERNAL(efx))
 530                efx->phy_mode |= PHY_MODE_TX_DISABLED;
 531        else
 532                efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
 533
 534        if (efx->type->reconfigure_port)
 535                rc = efx->type->reconfigure_port(efx);
 536
 537        if (rc)
 538                efx->phy_mode = phy_mode;
 539
 540        return rc;
 541}
 542
 543/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 544 * disabled.
 545 */
 546int efx_reconfigure_port(struct efx_nic *efx)
 547{
 548        int rc;
 549
 550        EFX_ASSERT_RESET_SERIALISED(efx);
 551
 552        mutex_lock(&efx->mac_lock);
 553        rc = __efx_reconfigure_port(efx);
 554        mutex_unlock(&efx->mac_lock);
 555
 556        return rc;
 557}
 558
 559/**************************************************************************
 560 *
 561 * Device reset and suspend
 562 *
 563 **************************************************************************/
 564
 565static void efx_wait_for_bist_end(struct efx_nic *efx)
 566{
 567        int i;
 568
 569        for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
 570                if (efx_mcdi_poll_reboot(efx))
 571                        goto out;
 572                msleep(BIST_WAIT_DELAY_MS);
 573        }
 574
 575        netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
 576out:
 577        /* Either way unset the BIST flag. If we found no reboot we probably
 578         * won't recover, but we should try.
 579         */
 580        efx->mc_bist_for_other_fn = false;
 581}
 582
 583/* Try recovery mechanisms.
 584 * For now only EEH is supported.
 585 * Returns 0 if the recovery mechanisms are unsuccessful.
 586 * Returns a non-zero value otherwise.
 587 */
 588int efx_try_recovery(struct efx_nic *efx)
 589{
 590#ifdef CONFIG_EEH
 591        /* A PCI error can occur and not be seen by EEH because nothing
 592         * happens on the PCI bus. In this case the driver may fail and
 593         * schedule a 'recover or reset', leading to this recovery handler.
 594         * Manually call the eeh failure check function.
 595         */
 596        struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
 597        if (eeh_dev_check_failure(eehdev)) {
 598                /* The EEH mechanisms will handle the error and reset the
 599                 * device if necessary.
 600                 */
 601                return 1;
 602        }
 603#endif
 604        return 0;
 605}
 606
 607/* Tears down the entire software state and most of the hardware state
 608 * before reset.
 609 */
 610void efx_reset_down(struct efx_nic *efx, enum reset_type method)
 611{
 612        EFX_ASSERT_RESET_SERIALISED(efx);
 613
 614        if (method == RESET_TYPE_MCDI_TIMEOUT)
 615                efx->type->prepare_flr(efx);
 616
 617        efx_stop_all(efx);
 618        efx_disable_interrupts(efx);
 619
 620        mutex_lock(&efx->mac_lock);
 621        down_write(&efx->filter_sem);
 622        mutex_lock(&efx->rss_lock);
 623        if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
 624            method != RESET_TYPE_DATAPATH)
 625                efx->phy_op->fini(efx);
 626        efx->type->fini(efx);
 627}
 628
 629/* This function will always ensure that the locks acquired in
 630 * efx_reset_down() are released. A failure return code indicates
 631 * that we were unable to reinitialise the hardware, and the
 632 * driver should be disabled. If ok is false, then the rx and tx
 633 * engines are not restarted, pending a RESET_DISABLE.
 634 */
 635int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
 636{
 637        int rc;
 638
 639        EFX_ASSERT_RESET_SERIALISED(efx);
 640
 641        if (method == RESET_TYPE_MCDI_TIMEOUT)
 642                efx->type->finish_flr(efx);
 643
 644        /* Ensure that SRAM is initialised even if we're disabling the device */
 645        rc = efx->type->init(efx);
 646        if (rc) {
 647                netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
 648                goto fail;
 649        }
 650
 651        if (!ok)
 652                goto fail;
 653
 654        if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
 655            method != RESET_TYPE_DATAPATH) {
 656                rc = efx->phy_op->init(efx);
 657                if (rc)
 658                        goto fail;
 659                rc = efx->phy_op->reconfigure(efx);
 660                if (rc && rc != -EPERM)
 661                        netif_err(efx, drv, efx->net_dev,
 662                                  "could not restore PHY settings\n");
 663        }
 664
 665        rc = efx_enable_interrupts(efx);
 666        if (rc)
 667                goto fail;
 668
 669#ifdef CONFIG_SFC_SRIOV
 670        rc = efx->type->vswitching_restore(efx);
 671        if (rc) /* not fatal; the PF will still work fine */
 672                netif_warn(efx, probe, efx->net_dev,
 673                           "failed to restore vswitching rc=%d;"
 674                           " VFs may not function\n", rc);
 675#endif
 676
 677        if (efx->type->rx_restore_rss_contexts)
 678                efx->type->rx_restore_rss_contexts(efx);
 679        mutex_unlock(&efx->rss_lock);
 680        efx->type->filter_table_restore(efx);
 681        up_write(&efx->filter_sem);
 682        if (efx->type->sriov_reset)
 683                efx->type->sriov_reset(efx);
 684
 685        mutex_unlock(&efx->mac_lock);
 686
 687        efx_start_all(efx);
 688
 689        if (efx->type->udp_tnl_push_ports)
 690                efx->type->udp_tnl_push_ports(efx);
 691
 692        return 0;
 693
 694fail:
 695        efx->port_initialized = false;
 696
 697        mutex_unlock(&efx->rss_lock);
 698        up_write(&efx->filter_sem);
 699        mutex_unlock(&efx->mac_lock);
 700
 701        return rc;
 702}
 703
 704/* Reset the NIC using the specified method.  Note that the reset may
 705 * fail, in which case the card will be left in an unusable state.
 706 *
 707 * Caller must hold the rtnl_lock.
 708 */
 709int efx_reset(struct efx_nic *efx, enum reset_type method)
 710{
 711        bool disabled;
 712        int rc, rc2;
 713
 714        netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
 715                   RESET_TYPE(method));
 716
 717        efx_device_detach_sync(efx);
 718        efx_reset_down(efx, method);
 719
 720        rc = efx->type->reset(efx, method);
 721        if (rc) {
 722                netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
 723                goto out;
 724        }
 725
 726        /* Clear flags for the scopes we covered.  We assume the NIC and
 727         * driver are now quiescent so that there is no race here.
 728         */
 729        if (method < RESET_TYPE_MAX_METHOD)
 730                efx->reset_pending &= -(1 << (method + 1));
 731        else /* it doesn't fit into the well-ordered scope hierarchy */
 732                __clear_bit(method, &efx->reset_pending);
 733
 734        /* Reinitialise bus-mastering, which may have been turned off before
 735         * the reset was scheduled. This is still appropriate, even in the
 736         * RESET_TYPE_DISABLE since this driver generally assumes the hardware
 737         * can respond to requests.
 738         */
 739        pci_set_master(efx->pci_dev);
 740
 741out:
 742        /* Leave device stopped if necessary */
 743        disabled = rc ||
 744                method == RESET_TYPE_DISABLE ||
 745                method == RESET_TYPE_RECOVER_OR_DISABLE;
 746        rc2 = efx_reset_up(efx, method, !disabled);
 747        if (rc2) {
 748                disabled = true;
 749                if (!rc)
 750                        rc = rc2;
 751        }
 752
 753        if (disabled) {
 754                dev_close(efx->net_dev);
 755                netif_err(efx, drv, efx->net_dev, "has been disabled\n");
 756                efx->state = STATE_DISABLED;
 757        } else {
 758                netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
 759                efx_device_attach_if_not_resetting(efx);
 760        }
 761        return rc;
 762}
 763
 764/* The worker thread exists so that code that cannot sleep can
 765 * schedule a reset for later.
 766 */
 767static void efx_reset_work(struct work_struct *data)
 768{
 769        struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
 770        unsigned long pending;
 771        enum reset_type method;
 772
 773        pending = READ_ONCE(efx->reset_pending);
 774        method = fls(pending) - 1;
 775
 776        if (method == RESET_TYPE_MC_BIST)
 777                efx_wait_for_bist_end(efx);
 778
 779        if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
 780             method == RESET_TYPE_RECOVER_OR_ALL) &&
 781            efx_try_recovery(efx))
 782                return;
 783
 784        if (!pending)
 785                return;
 786
 787        rtnl_lock();
 788
 789        /* We checked the state in efx_schedule_reset() but it may
 790         * have changed by now.  Now that we have the RTNL lock,
 791         * it cannot change again.
 792         */
 793        if (efx->state == STATE_READY)
 794                (void)efx_reset(efx, method);
 795
 796        rtnl_unlock();
 797}
 798
 799void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
 800{
 801        enum reset_type method;
 802
 803        if (efx->state == STATE_RECOVERY) {
 804                netif_dbg(efx, drv, efx->net_dev,
 805                          "recovering: skip scheduling %s reset\n",
 806                          RESET_TYPE(type));
 807                return;
 808        }
 809
 810        switch (type) {
 811        case RESET_TYPE_INVISIBLE:
 812        case RESET_TYPE_ALL:
 813        case RESET_TYPE_RECOVER_OR_ALL:
 814        case RESET_TYPE_WORLD:
 815        case RESET_TYPE_DISABLE:
 816        case RESET_TYPE_RECOVER_OR_DISABLE:
 817        case RESET_TYPE_DATAPATH:
 818        case RESET_TYPE_MC_BIST:
 819        case RESET_TYPE_MCDI_TIMEOUT:
 820                method = type;
 821                netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
 822                          RESET_TYPE(method));
 823                break;
 824        default:
 825                method = efx->type->map_reset_reason(type);
 826                netif_dbg(efx, drv, efx->net_dev,
 827                          "scheduling %s reset for %s\n",
 828                          RESET_TYPE(method), RESET_TYPE(type));
 829                break;
 830        }
 831
 832        set_bit(method, &efx->reset_pending);
 833        smp_mb(); /* ensure we change reset_pending before checking state */
 834
 835        /* If we're not READY then just leave the flags set as the cue
 836         * to abort probing or reschedule the reset later.
 837         */
 838        if (READ_ONCE(efx->state) != STATE_READY)
 839                return;
 840
 841        /* efx_process_channel() will no longer read events once a
 842         * reset is scheduled. So switch back to poll'd MCDI completions.
 843         */
 844        efx_mcdi_mode_poll(efx);
 845
 846        efx_queue_reset_work(efx);
 847}
 848
 849/**************************************************************************
 850 *
 851 * Dummy PHY/MAC operations
 852 *
 853 * Can be used for some unimplemented operations
 854 * Needed so all function pointers are valid and do not have to be tested
 855 * before use
 856 *
 857 **************************************************************************/
 858int efx_port_dummy_op_int(struct efx_nic *efx)
 859{
 860        return 0;
 861}
 862void efx_port_dummy_op_void(struct efx_nic *efx) {}
 863
 864static bool efx_port_dummy_op_poll(struct efx_nic *efx)
 865{
 866        return false;
 867}
 868
 869static const struct efx_phy_operations efx_dummy_phy_operations = {
 870        .init            = efx_port_dummy_op_int,
 871        .reconfigure     = efx_port_dummy_op_int,
 872        .poll            = efx_port_dummy_op_poll,
 873        .fini            = efx_port_dummy_op_void,
 874};
 875
 876/**************************************************************************
 877 *
 878 * Data housekeeping
 879 *
 880 **************************************************************************/
 881
 882/* This zeroes out and then fills in the invariants in a struct
 883 * efx_nic (including all sub-structures).
 884 */
 885int efx_init_struct(struct efx_nic *efx,
 886                    struct pci_dev *pci_dev, struct net_device *net_dev)
 887{
 888        int rc = -ENOMEM;
 889
 890        /* Initialise common structures */
 891        INIT_LIST_HEAD(&efx->node);
 892        INIT_LIST_HEAD(&efx->secondary_list);
 893        spin_lock_init(&efx->biu_lock);
 894#ifdef CONFIG_SFC_MTD
 895        INIT_LIST_HEAD(&efx->mtd_list);
 896#endif
 897        INIT_WORK(&efx->reset_work, efx_reset_work);
 898        INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
 899        efx_selftest_async_init(efx);
 900        efx->pci_dev = pci_dev;
 901        efx->msg_enable = debug;
 902        efx->state = STATE_UNINIT;
 903        strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
 904
 905        efx->net_dev = net_dev;
 906        efx->rx_prefix_size = efx->type->rx_prefix_size;
 907        efx->rx_ip_align =
 908                NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
 909        efx->rx_packet_hash_offset =
 910                efx->type->rx_hash_offset - efx->type->rx_prefix_size;
 911        efx->rx_packet_ts_offset =
 912                efx->type->rx_ts_offset - efx->type->rx_prefix_size;
 913        INIT_LIST_HEAD(&efx->rss_context.list);
 914        mutex_init(&efx->rss_lock);
 915        spin_lock_init(&efx->stats_lock);
 916        efx->vi_stride = EFX_DEFAULT_VI_STRIDE;
 917        efx->num_mac_stats = MC_CMD_MAC_NSTATS;
 918        BUILD_BUG_ON(MC_CMD_MAC_NSTATS - 1 != MC_CMD_MAC_GENERATION_END);
 919        mutex_init(&efx->mac_lock);
 920#ifdef CONFIG_RFS_ACCEL
 921        mutex_init(&efx->rps_mutex);
 922        spin_lock_init(&efx->rps_hash_lock);
 923        /* Failure to allocate is not fatal, but may degrade ARFS performance */
 924        efx->rps_hash_table = kcalloc(EFX_ARFS_HASH_TABLE_SIZE,
 925                                      sizeof(*efx->rps_hash_table), GFP_KERNEL);
 926#endif
 927        efx->phy_op = &efx_dummy_phy_operations;
 928        efx->mdio.dev = net_dev;
 929        INIT_WORK(&efx->mac_work, efx_mac_work);
 930        init_waitqueue_head(&efx->flush_wq);
 931
 932        rc = efx_init_channels(efx);
 933        if (rc)
 934                goto fail;
 935
 936        /* Would be good to use the net_dev name, but we're too early */
 937        snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
 938                 pci_name(pci_dev));
 939        efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
 940        if (!efx->workqueue) {
 941                rc = -ENOMEM;
 942                goto fail;
 943        }
 944
 945        return 0;
 946
 947fail:
 948        efx_fini_struct(efx);
 949        return rc;
 950}
 951
 952void efx_fini_struct(struct efx_nic *efx)
 953{
 954#ifdef CONFIG_RFS_ACCEL
 955        kfree(efx->rps_hash_table);
 956#endif
 957
 958        efx_fini_channels(efx);
 959
 960        kfree(efx->vpd_sn);
 961
 962        if (efx->workqueue) {
 963                destroy_workqueue(efx->workqueue);
 964                efx->workqueue = NULL;
 965        }
 966}
 967
 968/* This configures the PCI device to enable I/O and DMA. */
 969int efx_init_io(struct efx_nic *efx, int bar, dma_addr_t dma_mask,
 970                unsigned int mem_map_size)
 971{
 972        struct pci_dev *pci_dev = efx->pci_dev;
 973        int rc;
 974
 975        netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
 976
 977        rc = pci_enable_device(pci_dev);
 978        if (rc) {
 979                netif_err(efx, probe, efx->net_dev,
 980                          "failed to enable PCI device\n");
 981                goto fail1;
 982        }
 983
 984        pci_set_master(pci_dev);
 985
 986        /* Set the PCI DMA mask.  Try all possibilities from our
 987         * genuine mask down to 32 bits, because some architectures
 988         * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
 989         * masks event though they reject 46 bit masks.
 990         */
 991        while (dma_mask > 0x7fffffffUL) {
 992                rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
 993                if (rc == 0)
 994                        break;
 995                dma_mask >>= 1;
 996        }
 997        if (rc) {
 998                netif_err(efx, probe, efx->net_dev,
 999                          "could not find a suitable DMA mask\n");
1000                goto fail2;
1001        }
1002        netif_dbg(efx, probe, efx->net_dev,
1003                  "using DMA mask %llx\n", (unsigned long long)dma_mask);
1004
1005        efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1006        if (!efx->membase_phys) {
1007                netif_err(efx, probe, efx->net_dev,
1008                          "ERROR: No BAR%d mapping from the BIOS. "
1009                          "Try pci=realloc on the kernel command line\n", bar);
1010                rc = -ENODEV;
1011                goto fail3;
1012        }
1013
1014        rc = pci_request_region(pci_dev, bar, "sfc");
1015        if (rc) {
1016                netif_err(efx, probe, efx->net_dev,
1017                          "request for memory BAR failed\n");
1018                rc = -EIO;
1019                goto fail3;
1020        }
1021
1022        efx->membase = ioremap(efx->membase_phys, mem_map_size);
1023        if (!efx->membase) {
1024                netif_err(efx, probe, efx->net_dev,
1025                          "could not map memory BAR at %llx+%x\n",
1026                          (unsigned long long)efx->membase_phys, mem_map_size);
1027                rc = -ENOMEM;
1028                goto fail4;
1029        }
1030        netif_dbg(efx, probe, efx->net_dev,
1031                  "memory BAR at %llx+%x (virtual %p)\n",
1032                  (unsigned long long)efx->membase_phys, mem_map_size,
1033                  efx->membase);
1034
1035        return 0;
1036
1037fail4:
1038        pci_release_region(efx->pci_dev, bar);
1039fail3:
1040        efx->membase_phys = 0;
1041fail2:
1042        pci_disable_device(efx->pci_dev);
1043fail1:
1044        return rc;
1045}
1046
1047void efx_fini_io(struct efx_nic *efx, int bar)
1048{
1049        netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1050
1051        if (efx->membase) {
1052                iounmap(efx->membase);
1053                efx->membase = NULL;
1054        }
1055
1056        if (efx->membase_phys) {
1057                pci_release_region(efx->pci_dev, bar);
1058                efx->membase_phys = 0;
1059        }
1060
1061        /* Don't disable bus-mastering if VFs are assigned */
1062        if (!pci_vfs_assigned(efx->pci_dev))
1063                pci_disable_device(efx->pci_dev);
1064}
1065
1066#ifdef CONFIG_SFC_MCDI_LOGGING
1067static ssize_t show_mcdi_log(struct device *dev, struct device_attribute *attr,
1068                             char *buf)
1069{
1070        struct efx_nic *efx = dev_get_drvdata(dev);
1071        struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1072
1073        return scnprintf(buf, PAGE_SIZE, "%d\n", mcdi->logging_enabled);
1074}
1075
1076static ssize_t set_mcdi_log(struct device *dev, struct device_attribute *attr,
1077                            const char *buf, size_t count)
1078{
1079        struct efx_nic *efx = dev_get_drvdata(dev);
1080        struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1081        bool enable = count > 0 && *buf != '0';
1082
1083        mcdi->logging_enabled = enable;
1084        return count;
1085}
1086
1087static DEVICE_ATTR(mcdi_logging, 0644, show_mcdi_log, set_mcdi_log);
1088
1089void efx_init_mcdi_logging(struct efx_nic *efx)
1090{
1091        int rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
1092
1093        if (rc) {
1094                netif_warn(efx, drv, efx->net_dev,
1095                           "failed to init net dev attributes\n");
1096        }
1097}
1098
1099void efx_fini_mcdi_logging(struct efx_nic *efx)
1100{
1101        device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
1102}
1103#endif
1104