linux/drivers/net/wireless/ath/ath5k/eeprom.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
   3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
   4 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
   5 *
   6 * Permission to use, copy, modify, and distribute this software for any
   7 * purpose with or without fee is hereby granted, provided that the above
   8 * copyright notice and this permission notice appear in all copies.
   9 *
  10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  17 *
  18 */
  19
  20/*************************************\
  21* EEPROM access functions and helpers *
  22\*************************************/
  23
  24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  25
  26#include <linux/slab.h>
  27
  28#include "ath5k.h"
  29#include "reg.h"
  30#include "debug.h"
  31
  32
  33/******************\
  34* Helper functions *
  35\******************/
  36
  37/*
  38 * Translate binary channel representation in EEPROM to frequency
  39 */
  40static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
  41                                                        unsigned int mode)
  42{
  43        u16 val;
  44
  45        if (bin == AR5K_EEPROM_CHANNEL_DIS)
  46                return bin;
  47
  48        if (mode == AR5K_EEPROM_MODE_11A) {
  49                if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  50                        val = (5 * bin) + 4800;
  51                else
  52                        val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
  53                                (bin * 10) + 5100;
  54        } else {
  55                if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  56                        val = bin + 2300;
  57                else
  58                        val = bin + 2400;
  59        }
  60
  61        return val;
  62}
  63
  64
  65/*********\
  66* Parsers *
  67\*********/
  68
  69/*
  70 * Initialize eeprom & capabilities structs
  71 */
  72static int
  73ath5k_eeprom_init_header(struct ath5k_hw *ah)
  74{
  75        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  76        u16 val;
  77        u32 cksum, offset, eep_max = AR5K_EEPROM_INFO_MAX;
  78
  79        /*
  80         * Read values from EEPROM and store them in the capability structure
  81         */
  82        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
  83        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
  84        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
  85        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
  86        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
  87
  88        /* Return if we have an old EEPROM */
  89        if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
  90                return 0;
  91
  92        /*
  93         * Validate the checksum of the EEPROM date. There are some
  94         * devices with invalid EEPROMs.
  95         */
  96        AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER, val);
  97        if (val) {
  98                eep_max = (val & AR5K_EEPROM_SIZE_UPPER_MASK) <<
  99                           AR5K_EEPROM_SIZE_ENDLOC_SHIFT;
 100                AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER, val);
 101                eep_max = (eep_max | val) - AR5K_EEPROM_INFO_BASE;
 102
 103                /*
 104                 * Fail safe check to prevent stupid loops due
 105                 * to busted EEPROMs. XXX: This value is likely too
 106                 * big still, waiting on a better value.
 107                 */
 108                if (eep_max > (3 * AR5K_EEPROM_INFO_MAX)) {
 109                        ATH5K_ERR(ah, "Invalid max custom EEPROM size: "
 110                                  "%d (0x%04x) max expected: %d (0x%04x)\n",
 111                                  eep_max, eep_max,
 112                                  3 * AR5K_EEPROM_INFO_MAX,
 113                                  3 * AR5K_EEPROM_INFO_MAX);
 114                        return -EIO;
 115                }
 116        }
 117
 118        for (cksum = 0, offset = 0; offset < eep_max; offset++) {
 119                AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
 120                cksum ^= val;
 121        }
 122        if (cksum != AR5K_EEPROM_INFO_CKSUM) {
 123                ATH5K_ERR(ah, "Invalid EEPROM "
 124                          "checksum: 0x%04x eep_max: 0x%04x (%s)\n",
 125                          cksum, eep_max,
 126                          eep_max == AR5K_EEPROM_INFO_MAX ?
 127                                "default size" : "custom size");
 128                return -EIO;
 129        }
 130
 131        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
 132            ee_ant_gain);
 133
 134        if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
 135                AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
 136                AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
 137
 138                /* XXX: Don't know which versions include these two */
 139                AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
 140
 141                if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
 142                        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
 143
 144                if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
 145                        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
 146                        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
 147                        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
 148                }
 149        }
 150
 151        if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
 152                AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
 153                ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
 154                ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
 155
 156                AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
 157                ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
 158                ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
 159        }
 160
 161        AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
 162
 163        if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
 164                ee->ee_is_hb63 = true;
 165        else
 166                ee->ee_is_hb63 = false;
 167
 168        AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
 169        ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
 170        ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
 171
 172        /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
 173         * and enable serdes programming if needed.
 174         *
 175         * XXX: Serdes values seem to be fixed so
 176         * no need to read them here, we write them
 177         * during ath5k_hw_init */
 178        AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
 179        ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
 180                                                        true : false;
 181
 182        return 0;
 183}
 184
 185
 186/*
 187 * Read antenna infos from eeprom
 188 */
 189static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
 190                unsigned int mode)
 191{
 192        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 193        u32 o = *offset;
 194        u16 val;
 195        int i = 0;
 196
 197        AR5K_EEPROM_READ(o++, val);
 198        ee->ee_switch_settling[mode]    = (val >> 8) & 0x7f;
 199        ee->ee_atn_tx_rx[mode]          = (val >> 2) & 0x3f;
 200        ee->ee_ant_control[mode][i]     = (val << 4) & 0x3f;
 201
 202        AR5K_EEPROM_READ(o++, val);
 203        ee->ee_ant_control[mode][i++]   |= (val >> 12) & 0xf;
 204        ee->ee_ant_control[mode][i++]   = (val >> 6) & 0x3f;
 205        ee->ee_ant_control[mode][i++]   = val & 0x3f;
 206
 207        AR5K_EEPROM_READ(o++, val);
 208        ee->ee_ant_control[mode][i++]   = (val >> 10) & 0x3f;
 209        ee->ee_ant_control[mode][i++]   = (val >> 4) & 0x3f;
 210        ee->ee_ant_control[mode][i]     = (val << 2) & 0x3f;
 211
 212        AR5K_EEPROM_READ(o++, val);
 213        ee->ee_ant_control[mode][i++]   |= (val >> 14) & 0x3;
 214        ee->ee_ant_control[mode][i++]   = (val >> 8) & 0x3f;
 215        ee->ee_ant_control[mode][i++]   = (val >> 2) & 0x3f;
 216        ee->ee_ant_control[mode][i]     = (val << 4) & 0x3f;
 217
 218        AR5K_EEPROM_READ(o++, val);
 219        ee->ee_ant_control[mode][i++]   |= (val >> 12) & 0xf;
 220        ee->ee_ant_control[mode][i++]   = (val >> 6) & 0x3f;
 221        ee->ee_ant_control[mode][i++]   = val & 0x3f;
 222
 223        /* Get antenna switch tables */
 224        ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
 225            (ee->ee_ant_control[mode][0] << 4);
 226        ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
 227             ee->ee_ant_control[mode][1]        |
 228            (ee->ee_ant_control[mode][2] << 6)  |
 229            (ee->ee_ant_control[mode][3] << 12) |
 230            (ee->ee_ant_control[mode][4] << 18) |
 231            (ee->ee_ant_control[mode][5] << 24);
 232        ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
 233             ee->ee_ant_control[mode][6]        |
 234            (ee->ee_ant_control[mode][7] << 6)  |
 235            (ee->ee_ant_control[mode][8] << 12) |
 236            (ee->ee_ant_control[mode][9] << 18) |
 237            (ee->ee_ant_control[mode][10] << 24);
 238
 239        /* return new offset */
 240        *offset = o;
 241
 242        return 0;
 243}
 244
 245/*
 246 * Read supported modes and some mode-specific calibration data
 247 * from eeprom
 248 */
 249static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
 250                unsigned int mode)
 251{
 252        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 253        u32 o = *offset;
 254        u16 val;
 255
 256        ee->ee_n_piers[mode] = 0;
 257        AR5K_EEPROM_READ(o++, val);
 258        ee->ee_adc_desired_size[mode]   = (s8)((val >> 8) & 0xff);
 259        switch (mode) {
 260        case AR5K_EEPROM_MODE_11A:
 261                ee->ee_ob[mode][3]      = (val >> 5) & 0x7;
 262                ee->ee_db[mode][3]      = (val >> 2) & 0x7;
 263                ee->ee_ob[mode][2]      = (val << 1) & 0x7;
 264
 265                AR5K_EEPROM_READ(o++, val);
 266                ee->ee_ob[mode][2]      |= (val >> 15) & 0x1;
 267                ee->ee_db[mode][2]      = (val >> 12) & 0x7;
 268                ee->ee_ob[mode][1]      = (val >> 9) & 0x7;
 269                ee->ee_db[mode][1]      = (val >> 6) & 0x7;
 270                ee->ee_ob[mode][0]      = (val >> 3) & 0x7;
 271                ee->ee_db[mode][0]      = val & 0x7;
 272                break;
 273        case AR5K_EEPROM_MODE_11G:
 274        case AR5K_EEPROM_MODE_11B:
 275                ee->ee_ob[mode][1]      = (val >> 4) & 0x7;
 276                ee->ee_db[mode][1]      = val & 0x7;
 277                break;
 278        }
 279
 280        AR5K_EEPROM_READ(o++, val);
 281        ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
 282        ee->ee_thr_62[mode]             = val & 0xff;
 283
 284        if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
 285                ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
 286
 287        AR5K_EEPROM_READ(o++, val);
 288        ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
 289        ee->ee_tx_frm2xpa_enable[mode]  = val & 0xff;
 290
 291        AR5K_EEPROM_READ(o++, val);
 292        ee->ee_pga_desired_size[mode]   = (val >> 8) & 0xff;
 293
 294        if ((val & 0xff) & 0x80)
 295                ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
 296        else
 297                ee->ee_noise_floor_thr[mode] = val & 0xff;
 298
 299        if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
 300                ee->ee_noise_floor_thr[mode] =
 301                    mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
 302
 303        AR5K_EEPROM_READ(o++, val);
 304        ee->ee_xlna_gain[mode]          = (val >> 5) & 0xff;
 305        ee->ee_x_gain[mode]             = (val >> 1) & 0xf;
 306        ee->ee_xpd[mode]                = val & 0x1;
 307
 308        if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
 309            mode != AR5K_EEPROM_MODE_11B)
 310                ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
 311
 312        if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
 313                AR5K_EEPROM_READ(o++, val);
 314                ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
 315
 316                if (mode == AR5K_EEPROM_MODE_11A)
 317                        ee->ee_xr_power[mode] = val & 0x3f;
 318                else {
 319                        /* b_DB_11[bg] and b_OB_11[bg] */
 320                        ee->ee_ob[mode][0] = val & 0x7;
 321                        ee->ee_db[mode][0] = (val >> 3) & 0x7;
 322                }
 323        }
 324
 325        if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
 326                ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
 327                ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
 328        } else {
 329                ee->ee_i_gain[mode] = (val >> 13) & 0x7;
 330
 331                AR5K_EEPROM_READ(o++, val);
 332                ee->ee_i_gain[mode] |= (val << 3) & 0x38;
 333
 334                if (mode == AR5K_EEPROM_MODE_11G) {
 335                        ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
 336                        if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
 337                                ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
 338                }
 339        }
 340
 341        if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
 342                        mode == AR5K_EEPROM_MODE_11A) {
 343                ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
 344                ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
 345        }
 346
 347        if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
 348                goto done;
 349
 350        /* Note: >= v5 have bg freq piers on another location
 351         * so these freq piers are ignored for >= v5 (should be 0xff
 352         * anyway) */
 353        switch (mode) {
 354        case AR5K_EEPROM_MODE_11A:
 355                if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
 356                        break;
 357
 358                AR5K_EEPROM_READ(o++, val);
 359                ee->ee_margin_tx_rx[mode] = val & 0x3f;
 360                break;
 361        case AR5K_EEPROM_MODE_11B:
 362                AR5K_EEPROM_READ(o++, val);
 363
 364                ee->ee_pwr_cal_b[0].freq =
 365                        ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
 366                if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
 367                        ee->ee_n_piers[mode]++;
 368
 369                ee->ee_pwr_cal_b[1].freq =
 370                        ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
 371                if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
 372                        ee->ee_n_piers[mode]++;
 373
 374                AR5K_EEPROM_READ(o++, val);
 375                ee->ee_pwr_cal_b[2].freq =
 376                        ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
 377                if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
 378                        ee->ee_n_piers[mode]++;
 379
 380                if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
 381                        ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
 382                break;
 383        case AR5K_EEPROM_MODE_11G:
 384                AR5K_EEPROM_READ(o++, val);
 385
 386                ee->ee_pwr_cal_g[0].freq =
 387                        ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
 388                if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
 389                        ee->ee_n_piers[mode]++;
 390
 391                ee->ee_pwr_cal_g[1].freq =
 392                        ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
 393                if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
 394                        ee->ee_n_piers[mode]++;
 395
 396                AR5K_EEPROM_READ(o++, val);
 397                ee->ee_turbo_max_power[mode] = val & 0x7f;
 398                ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
 399
 400                AR5K_EEPROM_READ(o++, val);
 401                ee->ee_pwr_cal_g[2].freq =
 402                        ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
 403                if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
 404                        ee->ee_n_piers[mode]++;
 405
 406                if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
 407                        ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
 408
 409                AR5K_EEPROM_READ(o++, val);
 410                ee->ee_i_cal[mode] = (val >> 5) & 0x3f;
 411                ee->ee_q_cal[mode] = val & 0x1f;
 412
 413                if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
 414                        AR5K_EEPROM_READ(o++, val);
 415                        ee->ee_cck_ofdm_gain_delta = val & 0xff;
 416                }
 417                break;
 418        }
 419
 420        /*
 421         * Read turbo mode information on newer EEPROM versions
 422         */
 423        if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
 424                goto done;
 425
 426        switch (mode) {
 427        case AR5K_EEPROM_MODE_11A:
 428                ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
 429
 430                ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
 431                AR5K_EEPROM_READ(o++, val);
 432                ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
 433                ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
 434
 435                ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
 436                AR5K_EEPROM_READ(o++, val);
 437                ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
 438                ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
 439
 440                if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >= 2)
 441                        ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
 442                break;
 443        case AR5K_EEPROM_MODE_11G:
 444                ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
 445
 446                ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
 447                AR5K_EEPROM_READ(o++, val);
 448                ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
 449                ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
 450
 451                ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
 452                AR5K_EEPROM_READ(o++, val);
 453                ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
 454                ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
 455                break;
 456        }
 457
 458done:
 459        /* return new offset */
 460        *offset = o;
 461
 462        return 0;
 463}
 464
 465/* Read mode-specific data (except power calibration data) */
 466static int
 467ath5k_eeprom_init_modes(struct ath5k_hw *ah)
 468{
 469        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 470        u32 mode_offset[3];
 471        unsigned int mode;
 472        u32 offset;
 473        int ret;
 474
 475        /*
 476         * Get values for all modes
 477         */
 478        mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
 479        mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
 480        mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
 481
 482        ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
 483                AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
 484
 485        for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
 486                offset = mode_offset[mode];
 487
 488                ret = ath5k_eeprom_read_ants(ah, &offset, mode);
 489                if (ret)
 490                        return ret;
 491
 492                ret = ath5k_eeprom_read_modes(ah, &offset, mode);
 493                if (ret)
 494                        return ret;
 495        }
 496
 497        /* override for older eeprom versions for better performance */
 498        if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
 499                ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
 500                ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
 501                ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
 502        }
 503
 504        return 0;
 505}
 506
 507/* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
 508 * frequency mask) */
 509static inline int
 510ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
 511                        struct ath5k_chan_pcal_info *pc, unsigned int mode)
 512{
 513        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 514        int o = *offset;
 515        int i = 0;
 516        u8 freq1, freq2;
 517        u16 val;
 518
 519        ee->ee_n_piers[mode] = 0;
 520        while (i < max) {
 521                AR5K_EEPROM_READ(o++, val);
 522
 523                freq1 = val & 0xff;
 524                if (!freq1)
 525                        break;
 526
 527                pc[i++].freq = ath5k_eeprom_bin2freq(ee,
 528                                freq1, mode);
 529                ee->ee_n_piers[mode]++;
 530
 531                freq2 = (val >> 8) & 0xff;
 532                if (!freq2)
 533                        break;
 534
 535                pc[i++].freq = ath5k_eeprom_bin2freq(ee,
 536                                freq2, mode);
 537                ee->ee_n_piers[mode]++;
 538        }
 539
 540        /* return new offset */
 541        *offset = o;
 542
 543        return 0;
 544}
 545
 546/* Read frequency piers for 802.11a */
 547static int
 548ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
 549{
 550        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 551        struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
 552        int i;
 553        u16 val;
 554        u8 mask;
 555
 556        if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
 557                ath5k_eeprom_read_freq_list(ah, &offset,
 558                        AR5K_EEPROM_N_5GHZ_CHAN, pcal,
 559                        AR5K_EEPROM_MODE_11A);
 560        } else {
 561                mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
 562
 563                AR5K_EEPROM_READ(offset++, val);
 564                pcal[0].freq  = (val >> 9) & mask;
 565                pcal[1].freq  = (val >> 2) & mask;
 566                pcal[2].freq  = (val << 5) & mask;
 567
 568                AR5K_EEPROM_READ(offset++, val);
 569                pcal[2].freq |= (val >> 11) & 0x1f;
 570                pcal[3].freq  = (val >> 4) & mask;
 571                pcal[4].freq  = (val << 3) & mask;
 572
 573                AR5K_EEPROM_READ(offset++, val);
 574                pcal[4].freq |= (val >> 13) & 0x7;
 575                pcal[5].freq  = (val >> 6) & mask;
 576                pcal[6].freq  = (val << 1) & mask;
 577
 578                AR5K_EEPROM_READ(offset++, val);
 579                pcal[6].freq |= (val >> 15) & 0x1;
 580                pcal[7].freq  = (val >> 8) & mask;
 581                pcal[8].freq  = (val >> 1) & mask;
 582                pcal[9].freq  = (val << 6) & mask;
 583
 584                AR5K_EEPROM_READ(offset++, val);
 585                pcal[9].freq |= (val >> 10) & 0x3f;
 586
 587                /* Fixed number of piers */
 588                ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
 589
 590                for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
 591                        pcal[i].freq = ath5k_eeprom_bin2freq(ee,
 592                                pcal[i].freq, AR5K_EEPROM_MODE_11A);
 593                }
 594        }
 595
 596        return 0;
 597}
 598
 599/* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
 600static inline int
 601ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
 602{
 603        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 604        struct ath5k_chan_pcal_info *pcal;
 605
 606        switch (mode) {
 607        case AR5K_EEPROM_MODE_11B:
 608                pcal = ee->ee_pwr_cal_b;
 609                break;
 610        case AR5K_EEPROM_MODE_11G:
 611                pcal = ee->ee_pwr_cal_g;
 612                break;
 613        default:
 614                return -EINVAL;
 615        }
 616
 617        ath5k_eeprom_read_freq_list(ah, &offset,
 618                AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
 619                mode);
 620
 621        return 0;
 622}
 623
 624
 625/*
 626 * Read power calibration for RF5111 chips
 627 *
 628 * For RF5111 we have an XPD -eXternal Power Detector- curve
 629 * for each calibrated channel. Each curve has 0,5dB Power steps
 630 * on x axis and PCDAC steps (offsets) on y axis and looks like an
 631 * exponential function. To recreate the curve we read 11 points
 632 * here and interpolate later.
 633 */
 634
 635/* Used to match PCDAC steps with power values on RF5111 chips
 636 * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
 637 * steps that match with the power values we read from eeprom. On
 638 * older eeprom versions (< 3.2) these steps are equally spaced at
 639 * 10% of the pcdac curve -until the curve reaches its maximum-
 640 * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
 641 * these 11 steps are spaced in a different way. This function returns
 642 * the pcdac steps based on eeprom version and curve min/max so that we
 643 * can have pcdac/pwr points.
 644 */
 645static inline void
 646ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
 647{
 648        static const u16 intercepts3[] = {
 649                0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100
 650        };
 651        static const u16 intercepts3_2[] = {
 652                0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
 653        };
 654        const u16 *ip;
 655        int i;
 656
 657        if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
 658                ip = intercepts3_2;
 659        else
 660                ip = intercepts3;
 661
 662        for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
 663                vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
 664}
 665
 666static int
 667ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
 668{
 669        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 670        struct ath5k_chan_pcal_info *chinfo;
 671        u8 pier, pdg;
 672
 673        switch (mode) {
 674        case AR5K_EEPROM_MODE_11A:
 675                if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
 676                        return 0;
 677                chinfo = ee->ee_pwr_cal_a;
 678                break;
 679        case AR5K_EEPROM_MODE_11B:
 680                if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
 681                        return 0;
 682                chinfo = ee->ee_pwr_cal_b;
 683                break;
 684        case AR5K_EEPROM_MODE_11G:
 685                if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
 686                        return 0;
 687                chinfo = ee->ee_pwr_cal_g;
 688                break;
 689        default:
 690                return -EINVAL;
 691        }
 692
 693        for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
 694                if (!chinfo[pier].pd_curves)
 695                        continue;
 696
 697                for (pdg = 0; pdg < AR5K_EEPROM_N_PD_CURVES; pdg++) {
 698                        struct ath5k_pdgain_info *pd =
 699                                        &chinfo[pier].pd_curves[pdg];
 700
 701                        kfree(pd->pd_step);
 702                        kfree(pd->pd_pwr);
 703                }
 704
 705                kfree(chinfo[pier].pd_curves);
 706        }
 707
 708        return 0;
 709}
 710
 711/* Convert RF5111 specific data to generic raw data
 712 * used by interpolation code */
 713static int
 714ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
 715                                struct ath5k_chan_pcal_info *chinfo)
 716{
 717        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 718        struct ath5k_chan_pcal_info_rf5111 *pcinfo;
 719        struct ath5k_pdgain_info *pd;
 720        u8 pier, point, idx;
 721        u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
 722
 723        /* Fill raw data for each calibration pier */
 724        for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
 725
 726                pcinfo = &chinfo[pier].rf5111_info;
 727
 728                /* Allocate pd_curves for this cal pier */
 729                chinfo[pier].pd_curves =
 730                        kcalloc(AR5K_EEPROM_N_PD_CURVES,
 731                                sizeof(struct ath5k_pdgain_info),
 732                                GFP_KERNEL);
 733
 734                if (!chinfo[pier].pd_curves)
 735                        goto err_out;
 736
 737                /* Only one curve for RF5111
 738                 * find out which one and place
 739                 * in pd_curves.
 740                 * Note: ee_x_gain is reversed here */
 741                for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
 742
 743                        if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
 744                                pdgain_idx[0] = idx;
 745                                break;
 746                        }
 747                }
 748
 749                ee->ee_pd_gains[mode] = 1;
 750
 751                pd = &chinfo[pier].pd_curves[idx];
 752
 753                pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
 754
 755                /* Allocate pd points for this curve */
 756                pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
 757                                        sizeof(u8), GFP_KERNEL);
 758                if (!pd->pd_step)
 759                        goto err_out;
 760
 761                pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
 762                                        sizeof(s16), GFP_KERNEL);
 763                if (!pd->pd_pwr)
 764                        goto err_out;
 765
 766                /* Fill raw dataset
 767                 * (convert power to 0.25dB units
 768                 * for RF5112 compatibility) */
 769                for (point = 0; point < pd->pd_points; point++) {
 770
 771                        /* Absolute values */
 772                        pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
 773
 774                        /* Already sorted */
 775                        pd->pd_step[point] = pcinfo->pcdac[point];
 776                }
 777
 778                /* Set min/max pwr */
 779                chinfo[pier].min_pwr = pd->pd_pwr[0];
 780                chinfo[pier].max_pwr = pd->pd_pwr[10];
 781
 782        }
 783
 784        return 0;
 785
 786err_out:
 787        ath5k_eeprom_free_pcal_info(ah, mode);
 788        return -ENOMEM;
 789}
 790
 791/* Parse EEPROM data */
 792static int
 793ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
 794{
 795        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 796        struct ath5k_chan_pcal_info *pcal;
 797        int offset, ret;
 798        int i;
 799        u16 val;
 800
 801        offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
 802        switch (mode) {
 803        case AR5K_EEPROM_MODE_11A:
 804                if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
 805                        return 0;
 806
 807                ret = ath5k_eeprom_init_11a_pcal_freq(ah,
 808                        offset + AR5K_EEPROM_GROUP1_OFFSET);
 809                if (ret < 0)
 810                        return ret;
 811
 812                offset += AR5K_EEPROM_GROUP2_OFFSET;
 813                pcal = ee->ee_pwr_cal_a;
 814                break;
 815        case AR5K_EEPROM_MODE_11B:
 816                if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
 817                    !AR5K_EEPROM_HDR_11G(ee->ee_header))
 818                        return 0;
 819
 820                pcal = ee->ee_pwr_cal_b;
 821                offset += AR5K_EEPROM_GROUP3_OFFSET;
 822
 823                /* fixed piers */
 824                pcal[0].freq = 2412;
 825                pcal[1].freq = 2447;
 826                pcal[2].freq = 2484;
 827                ee->ee_n_piers[mode] = 3;
 828                break;
 829        case AR5K_EEPROM_MODE_11G:
 830                if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
 831                        return 0;
 832
 833                pcal = ee->ee_pwr_cal_g;
 834                offset += AR5K_EEPROM_GROUP4_OFFSET;
 835
 836                /* fixed piers */
 837                pcal[0].freq = 2312;
 838                pcal[1].freq = 2412;
 839                pcal[2].freq = 2484;
 840                ee->ee_n_piers[mode] = 3;
 841                break;
 842        default:
 843                return -EINVAL;
 844        }
 845
 846        for (i = 0; i < ee->ee_n_piers[mode]; i++) {
 847                struct ath5k_chan_pcal_info_rf5111 *cdata =
 848                        &pcal[i].rf5111_info;
 849
 850                AR5K_EEPROM_READ(offset++, val);
 851                cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
 852                cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
 853                cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
 854
 855                AR5K_EEPROM_READ(offset++, val);
 856                cdata->pwr[0] |= ((val >> 14) & 0x3);
 857                cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
 858                cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
 859                cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
 860
 861                AR5K_EEPROM_READ(offset++, val);
 862                cdata->pwr[3] |= ((val >> 12) & 0xf);
 863                cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
 864                cdata->pwr[5] = (val  & AR5K_EEPROM_POWER_M);
 865
 866                AR5K_EEPROM_READ(offset++, val);
 867                cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
 868                cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
 869                cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
 870
 871                AR5K_EEPROM_READ(offset++, val);
 872                cdata->pwr[8] |= ((val >> 14) & 0x3);
 873                cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
 874                cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
 875
 876                ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
 877                        cdata->pcdac_max, cdata->pcdac);
 878        }
 879
 880        return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
 881}
 882
 883
 884/*
 885 * Read power calibration for RF5112 chips
 886 *
 887 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
 888 * for each calibrated channel on 0, -6, -12 and -18dBm but we only
 889 * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
 890 * power steps on x axis and PCDAC steps on y axis and looks like a
 891 * linear function. To recreate the curve and pass the power values
 892 * on hw, we read 4 points for xpd 0 (lower gain -> max power)
 893 * and 3 points for xpd 3 (higher gain -> lower power) here and
 894 * interpolate later.
 895 *
 896 * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
 897 */
 898
 899/* Convert RF5112 specific data to generic raw data
 900 * used by interpolation code */
 901static int
 902ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
 903                                struct ath5k_chan_pcal_info *chinfo)
 904{
 905        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 906        struct ath5k_chan_pcal_info_rf5112 *pcinfo;
 907        u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
 908        unsigned int pier, pdg, point;
 909
 910        /* Fill raw data for each calibration pier */
 911        for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
 912
 913                pcinfo = &chinfo[pier].rf5112_info;
 914
 915                /* Allocate pd_curves for this cal pier */
 916                chinfo[pier].pd_curves =
 917                                kcalloc(AR5K_EEPROM_N_PD_CURVES,
 918                                        sizeof(struct ath5k_pdgain_info),
 919                                        GFP_KERNEL);
 920
 921                if (!chinfo[pier].pd_curves)
 922                        goto err_out;
 923
 924                /* Fill pd_curves */
 925                for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
 926
 927                        u8 idx = pdgain_idx[pdg];
 928                        struct ath5k_pdgain_info *pd =
 929                                        &chinfo[pier].pd_curves[idx];
 930
 931                        /* Lowest gain curve (max power) */
 932                        if (pdg == 0) {
 933                                /* One more point for better accuracy */
 934                                pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
 935
 936                                /* Allocate pd points for this curve */
 937                                pd->pd_step = kcalloc(pd->pd_points,
 938                                                sizeof(u8), GFP_KERNEL);
 939
 940                                if (!pd->pd_step)
 941                                        goto err_out;
 942
 943                                pd->pd_pwr = kcalloc(pd->pd_points,
 944                                                sizeof(s16), GFP_KERNEL);
 945
 946                                if (!pd->pd_pwr)
 947                                        goto err_out;
 948
 949                                /* Fill raw dataset
 950                                 * (all power levels are in 0.25dB units) */
 951                                pd->pd_step[0] = pcinfo->pcdac_x0[0];
 952                                pd->pd_pwr[0] = pcinfo->pwr_x0[0];
 953
 954                                for (point = 1; point < pd->pd_points;
 955                                point++) {
 956                                        /* Absolute values */
 957                                        pd->pd_pwr[point] =
 958                                                pcinfo->pwr_x0[point];
 959
 960                                        /* Deltas */
 961                                        pd->pd_step[point] =
 962                                                pd->pd_step[point - 1] +
 963                                                pcinfo->pcdac_x0[point];
 964                                }
 965
 966                                /* Set min power for this frequency */
 967                                chinfo[pier].min_pwr = pd->pd_pwr[0];
 968
 969                        /* Highest gain curve (min power) */
 970                        } else if (pdg == 1) {
 971
 972                                pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
 973
 974                                /* Allocate pd points for this curve */
 975                                pd->pd_step = kcalloc(pd->pd_points,
 976                                                sizeof(u8), GFP_KERNEL);
 977
 978                                if (!pd->pd_step)
 979                                        goto err_out;
 980
 981                                pd->pd_pwr = kcalloc(pd->pd_points,
 982                                                sizeof(s16), GFP_KERNEL);
 983
 984                                if (!pd->pd_pwr)
 985                                        goto err_out;
 986
 987                                /* Fill raw dataset
 988                                 * (all power levels are in 0.25dB units) */
 989                                for (point = 0; point < pd->pd_points;
 990                                point++) {
 991                                        /* Absolute values */
 992                                        pd->pd_pwr[point] =
 993                                                pcinfo->pwr_x3[point];
 994
 995                                        /* Fixed points */
 996                                        pd->pd_step[point] =
 997                                                pcinfo->pcdac_x3[point];
 998                                }
 999
1000                                /* Since we have a higher gain curve
1001                                 * override min power */
1002                                chinfo[pier].min_pwr = pd->pd_pwr[0];
1003                        }
1004                }
1005        }
1006
1007        return 0;
1008
1009err_out:
1010        ath5k_eeprom_free_pcal_info(ah, mode);
1011        return -ENOMEM;
1012}
1013
1014/* Parse EEPROM data */
1015static int
1016ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
1017{
1018        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1019        struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
1020        struct ath5k_chan_pcal_info *gen_chan_info;
1021        u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1022        u32 offset;
1023        u8 i, c;
1024        u16 val;
1025        u8 pd_gains = 0;
1026
1027        /* Count how many curves we have and
1028         * identify them (which one of the 4
1029         * available curves we have on each count).
1030         * Curves are stored from lower (x0) to
1031         * higher (x3) gain */
1032        for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
1033                /* ee_x_gain[mode] is x gain mask */
1034                if ((ee->ee_x_gain[mode] >> i) & 0x1)
1035                        pdgain_idx[pd_gains++] = i;
1036        }
1037        ee->ee_pd_gains[mode] = pd_gains;
1038
1039        if (pd_gains == 0 || pd_gains > 2)
1040                return -EINVAL;
1041
1042        switch (mode) {
1043        case AR5K_EEPROM_MODE_11A:
1044                /*
1045                 * Read 5GHz EEPROM channels
1046                 */
1047                offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1048                ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1049
1050                offset += AR5K_EEPROM_GROUP2_OFFSET;
1051                gen_chan_info = ee->ee_pwr_cal_a;
1052                break;
1053        case AR5K_EEPROM_MODE_11B:
1054                offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1055                if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1056                        offset += AR5K_EEPROM_GROUP3_OFFSET;
1057
1058                /* NB: frequency piers parsed during mode init */
1059                gen_chan_info = ee->ee_pwr_cal_b;
1060                break;
1061        case AR5K_EEPROM_MODE_11G:
1062                offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1063                if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1064                        offset += AR5K_EEPROM_GROUP4_OFFSET;
1065                else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1066                        offset += AR5K_EEPROM_GROUP2_OFFSET;
1067
1068                /* NB: frequency piers parsed during mode init */
1069                gen_chan_info = ee->ee_pwr_cal_g;
1070                break;
1071        default:
1072                return -EINVAL;
1073        }
1074
1075        for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1076                chan_pcal_info = &gen_chan_info[i].rf5112_info;
1077
1078                /* Power values in quarter dB
1079                 * for the lower xpd gain curve
1080                 * (0 dBm -> higher output power) */
1081                for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
1082                        AR5K_EEPROM_READ(offset++, val);
1083                        chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
1084                        chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
1085                }
1086
1087                /* PCDAC steps
1088                 * corresponding to the above power
1089                 * measurements */
1090                AR5K_EEPROM_READ(offset++, val);
1091                chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
1092                chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
1093                chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
1094
1095                /* Power values in quarter dB
1096                 * for the higher xpd gain curve
1097                 * (18 dBm -> lower output power) */
1098                AR5K_EEPROM_READ(offset++, val);
1099                chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
1100                chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
1101
1102                AR5K_EEPROM_READ(offset++, val);
1103                chan_pcal_info->pwr_x3[2] = (val & 0xff);
1104
1105                /* PCDAC steps
1106                 * corresponding to the above power
1107                 * measurements (fixed) */
1108                chan_pcal_info->pcdac_x3[0] = 20;
1109                chan_pcal_info->pcdac_x3[1] = 35;
1110                chan_pcal_info->pcdac_x3[2] = 63;
1111
1112                if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
1113                        chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
1114
1115                        /* Last xpd0 power level is also channel maximum */
1116                        gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
1117                } else {
1118                        chan_pcal_info->pcdac_x0[0] = 1;
1119                        gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
1120                }
1121
1122        }
1123
1124        return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
1125}
1126
1127
1128/*
1129 * Read power calibration for RF2413 chips
1130 *
1131 * For RF2413 we have a Power to PDDAC table (Power Detector)
1132 * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1133 * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1134 * axis and looks like an exponential function like the RF5111 curve.
1135 *
1136 * To recreate the curves we read here the points and interpolate
1137 * later. Note that in most cases only 2 (higher and lower) curves are
1138 * used (like RF5112) but vendors have the opportunity to include all
1139 * 4 curves on eeprom. The final curve (higher power) has an extra
1140 * point for better accuracy like RF5112.
1141 */
1142
1143/* For RF2413 power calibration data doesn't start on a fixed location and
1144 * if a mode is not supported, its section is missing -not zeroed-.
1145 * So we need to calculate the starting offset for each section by using
1146 * these two functions */
1147
1148/* Return the size of each section based on the mode and the number of pd
1149 * gains available (maximum 4). */
1150static inline unsigned int
1151ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
1152{
1153        static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
1154        unsigned int sz;
1155
1156        sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
1157        sz *= ee->ee_n_piers[mode];
1158
1159        return sz;
1160}
1161
1162/* Return the starting offset for a section based on the modes supported
1163 * and each section's size. */
1164static unsigned int
1165ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
1166{
1167        u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
1168
1169        switch (mode) {
1170        case AR5K_EEPROM_MODE_11G:
1171                if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1172                        offset += ath5k_pdgains_size_2413(ee,
1173                                        AR5K_EEPROM_MODE_11B) +
1174                                        AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1175                /* fall through */
1176        case AR5K_EEPROM_MODE_11B:
1177                if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1178                        offset += ath5k_pdgains_size_2413(ee,
1179                                        AR5K_EEPROM_MODE_11A) +
1180                                        AR5K_EEPROM_N_5GHZ_CHAN / 2;
1181                /* fall through */
1182        case AR5K_EEPROM_MODE_11A:
1183                break;
1184        default:
1185                break;
1186        }
1187
1188        return offset;
1189}
1190
1191/* Convert RF2413 specific data to generic raw data
1192 * used by interpolation code */
1193static int
1194ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
1195                                struct ath5k_chan_pcal_info *chinfo)
1196{
1197        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1198        struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1199        u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1200        unsigned int pier, pdg, point;
1201
1202        /* Fill raw data for each calibration pier */
1203        for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1204
1205                pcinfo = &chinfo[pier].rf2413_info;
1206
1207                /* Allocate pd_curves for this cal pier */
1208                chinfo[pier].pd_curves =
1209                                kcalloc(AR5K_EEPROM_N_PD_CURVES,
1210                                        sizeof(struct ath5k_pdgain_info),
1211                                        GFP_KERNEL);
1212
1213                if (!chinfo[pier].pd_curves)
1214                        goto err_out;
1215
1216                /* Fill pd_curves */
1217                for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1218
1219                        u8 idx = pdgain_idx[pdg];
1220                        struct ath5k_pdgain_info *pd =
1221                                        &chinfo[pier].pd_curves[idx];
1222
1223                        /* One more point for the highest power
1224                         * curve (lowest gain) */
1225                        if (pdg == ee->ee_pd_gains[mode] - 1)
1226                                pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
1227                        else
1228                                pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
1229
1230                        /* Allocate pd points for this curve */
1231                        pd->pd_step = kcalloc(pd->pd_points,
1232                                        sizeof(u8), GFP_KERNEL);
1233
1234                        if (!pd->pd_step)
1235                                goto err_out;
1236
1237                        pd->pd_pwr = kcalloc(pd->pd_points,
1238                                        sizeof(s16), GFP_KERNEL);
1239
1240                        if (!pd->pd_pwr)
1241                                goto err_out;
1242
1243                        /* Fill raw dataset
1244                         * convert all pwr levels to
1245                         * quarter dB for RF5112 compatibility */
1246                        pd->pd_step[0] = pcinfo->pddac_i[pdg];
1247                        pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
1248
1249                        for (point = 1; point < pd->pd_points; point++) {
1250
1251                                pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
1252                                        2 * pcinfo->pwr[pdg][point - 1];
1253
1254                                pd->pd_step[point] = pd->pd_step[point - 1] +
1255                                                pcinfo->pddac[pdg][point - 1];
1256
1257                        }
1258
1259                        /* Highest gain curve -> min power */
1260                        if (pdg == 0)
1261                                chinfo[pier].min_pwr = pd->pd_pwr[0];
1262
1263                        /* Lowest gain curve -> max power */
1264                        if (pdg == ee->ee_pd_gains[mode] - 1)
1265                                chinfo[pier].max_pwr =
1266                                        pd->pd_pwr[pd->pd_points - 1];
1267                }
1268        }
1269
1270        return 0;
1271
1272err_out:
1273        ath5k_eeprom_free_pcal_info(ah, mode);
1274        return -ENOMEM;
1275}
1276
1277/* Parse EEPROM data */
1278static int
1279ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1280{
1281        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1282        struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1283        struct ath5k_chan_pcal_info *chinfo;
1284        u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1285        u32 offset;
1286        int idx, i;
1287        u16 val;
1288        u8 pd_gains = 0;
1289
1290        /* Count how many curves we have and
1291         * identify them (which one of the 4
1292         * available curves we have on each count).
1293         * Curves are stored from higher to
1294         * lower gain so we go backwards */
1295        for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
1296                /* ee_x_gain[mode] is x gain mask */
1297                if ((ee->ee_x_gain[mode] >> idx) & 0x1)
1298                        pdgain_idx[pd_gains++] = idx;
1299
1300        }
1301        ee->ee_pd_gains[mode] = pd_gains;
1302
1303        if (pd_gains == 0)
1304                return -EINVAL;
1305
1306        offset = ath5k_cal_data_offset_2413(ee, mode);
1307        switch (mode) {
1308        case AR5K_EEPROM_MODE_11A:
1309                if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1310                        return 0;
1311
1312                ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1313                offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
1314                chinfo = ee->ee_pwr_cal_a;
1315                break;
1316        case AR5K_EEPROM_MODE_11B:
1317                if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1318                        return 0;
1319
1320                ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1321                offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1322                chinfo = ee->ee_pwr_cal_b;
1323                break;
1324        case AR5K_EEPROM_MODE_11G:
1325                if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1326                        return 0;
1327
1328                ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1329                offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1330                chinfo = ee->ee_pwr_cal_g;
1331                break;
1332        default:
1333                return -EINVAL;
1334        }
1335
1336        for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1337                pcinfo = &chinfo[i].rf2413_info;
1338
1339                /*
1340                 * Read pwr_i, pddac_i and the first
1341                 * 2 pd points (pwr, pddac)
1342                 */
1343                AR5K_EEPROM_READ(offset++, val);
1344                pcinfo->pwr_i[0] = val & 0x1f;
1345                pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
1346                pcinfo->pwr[0][0] = (val >> 12) & 0xf;
1347
1348                AR5K_EEPROM_READ(offset++, val);
1349                pcinfo->pddac[0][0] = val & 0x3f;
1350                pcinfo->pwr[0][1] = (val >> 6) & 0xf;
1351                pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
1352
1353                AR5K_EEPROM_READ(offset++, val);
1354                pcinfo->pwr[0][2] = val & 0xf;
1355                pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
1356
1357                pcinfo->pwr[0][3] = 0;
1358                pcinfo->pddac[0][3] = 0;
1359
1360                if (pd_gains > 1) {
1361                        /*
1362                         * Pd gain 0 is not the last pd gain
1363                         * so it only has 2 pd points.
1364                         * Continue with pd gain 1.
1365                         */
1366                        pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
1367
1368                        pcinfo->pddac_i[1] = (val >> 15) & 0x1;
1369                        AR5K_EEPROM_READ(offset++, val);
1370                        pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
1371
1372                        pcinfo->pwr[1][0] = (val >> 6) & 0xf;
1373                        pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
1374
1375                        AR5K_EEPROM_READ(offset++, val);
1376                        pcinfo->pwr[1][1] = val & 0xf;
1377                        pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
1378                        pcinfo->pwr[1][2] = (val >> 10) & 0xf;
1379
1380                        pcinfo->pddac[1][2] = (val >> 14) & 0x3;
1381                        AR5K_EEPROM_READ(offset++, val);
1382                        pcinfo->pddac[1][2] |= (val & 0xF) << 2;
1383
1384                        pcinfo->pwr[1][3] = 0;
1385                        pcinfo->pddac[1][3] = 0;
1386                } else if (pd_gains == 1) {
1387                        /*
1388                         * Pd gain 0 is the last one so
1389                         * read the extra point.
1390                         */
1391                        pcinfo->pwr[0][3] = (val >> 10) & 0xf;
1392
1393                        pcinfo->pddac[0][3] = (val >> 14) & 0x3;
1394                        AR5K_EEPROM_READ(offset++, val);
1395                        pcinfo->pddac[0][3] |= (val & 0xF) << 2;
1396                }
1397
1398                /*
1399                 * Proceed with the other pd_gains
1400                 * as above.
1401                 */
1402                if (pd_gains > 2) {
1403                        pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
1404                        pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
1405
1406                        AR5K_EEPROM_READ(offset++, val);
1407                        pcinfo->pwr[2][0] = (val >> 0) & 0xf;
1408                        pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
1409                        pcinfo->pwr[2][1] = (val >> 10) & 0xf;
1410
1411                        pcinfo->pddac[2][1] = (val >> 14) & 0x3;
1412                        AR5K_EEPROM_READ(offset++, val);
1413                        pcinfo->pddac[2][1] |= (val & 0xF) << 2;
1414
1415                        pcinfo->pwr[2][2] = (val >> 4) & 0xf;
1416                        pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
1417
1418                        pcinfo->pwr[2][3] = 0;
1419                        pcinfo->pddac[2][3] = 0;
1420                } else if (pd_gains == 2) {
1421                        pcinfo->pwr[1][3] = (val >> 4) & 0xf;
1422                        pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
1423                }
1424
1425                if (pd_gains > 3) {
1426                        pcinfo->pwr_i[3] = (val >> 14) & 0x3;
1427                        AR5K_EEPROM_READ(offset++, val);
1428                        pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1429
1430                        pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
1431                        pcinfo->pwr[3][0] = (val >> 10) & 0xf;
1432                        pcinfo->pddac[3][0] = (val >> 14) & 0x3;
1433
1434                        AR5K_EEPROM_READ(offset++, val);
1435                        pcinfo->pddac[3][0] |= (val & 0xF) << 2;
1436                        pcinfo->pwr[3][1] = (val >> 4) & 0xf;
1437                        pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
1438
1439                        pcinfo->pwr[3][2] = (val >> 14) & 0x3;
1440                        AR5K_EEPROM_READ(offset++, val);
1441                        pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
1442
1443                        pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
1444                        pcinfo->pwr[3][3] = (val >> 8) & 0xf;
1445
1446                        pcinfo->pddac[3][3] = (val >> 12) & 0xF;
1447                        AR5K_EEPROM_READ(offset++, val);
1448                        pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
1449                } else if (pd_gains == 3) {
1450                        pcinfo->pwr[2][3] = (val >> 14) & 0x3;
1451                        AR5K_EEPROM_READ(offset++, val);
1452                        pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
1453
1454                        pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
1455                }
1456        }
1457
1458        return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
1459}
1460
1461
1462/*
1463 * Read per rate target power (this is the maximum tx power
1464 * supported by the card). This info is used when setting
1465 * tx power, no matter the channel.
1466 *
1467 * This also works for v5 EEPROMs.
1468 */
1469static int
1470ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1471{
1472        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1473        struct ath5k_rate_pcal_info *rate_pcal_info;
1474        u8 *rate_target_pwr_num;
1475        u32 offset;
1476        u16 val;
1477        int i;
1478
1479        offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1480        rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1481        switch (mode) {
1482        case AR5K_EEPROM_MODE_11A:
1483                offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1484                rate_pcal_info = ee->ee_rate_tpwr_a;
1485                ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_RATE_CHAN;
1486                break;
1487        case AR5K_EEPROM_MODE_11B:
1488                offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1489                rate_pcal_info = ee->ee_rate_tpwr_b;
1490                ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1491                break;
1492        case AR5K_EEPROM_MODE_11G:
1493                offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1494                rate_pcal_info = ee->ee_rate_tpwr_g;
1495                ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1496                break;
1497        default:
1498                return -EINVAL;
1499        }
1500
1501        /* Different freq mask for older eeproms (<= v3.2) */
1502        if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1503                for (i = 0; i < (*rate_target_pwr_num); i++) {
1504                        AR5K_EEPROM_READ(offset++, val);
1505                        rate_pcal_info[i].freq =
1506                            ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1507
1508                        rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1509                        rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1510
1511                        AR5K_EEPROM_READ(offset++, val);
1512
1513                        if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1514                            val == 0) {
1515                                (*rate_target_pwr_num) = i;
1516                                break;
1517                        }
1518
1519                        rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1520                        rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1521                        rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1522                }
1523        } else {
1524                for (i = 0; i < (*rate_target_pwr_num); i++) {
1525                        AR5K_EEPROM_READ(offset++, val);
1526                        rate_pcal_info[i].freq =
1527                            ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1528
1529                        rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1530                        rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1531
1532                        AR5K_EEPROM_READ(offset++, val);
1533
1534                        if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1535                            val == 0) {
1536                                (*rate_target_pwr_num) = i;
1537                                break;
1538                        }
1539
1540                        rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1541                        rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1542                        rate_pcal_info[i].target_power_54 = (val & 0x3f);
1543                }
1544        }
1545
1546        return 0;
1547}
1548
1549
1550/*
1551 * Read per channel calibration info from EEPROM
1552 *
1553 * This info is used to calibrate the baseband power table. Imagine
1554 * that for each channel there is a power curve that's hw specific
1555 * (depends on amplifier etc) and we try to "correct" this curve using
1556 * offsets we pass on to phy chip (baseband -> before amplifier) so that
1557 * it can use accurate power values when setting tx power (takes amplifier's
1558 * performance on each channel into account).
1559 *
1560 * EEPROM provides us with the offsets for some pre-calibrated channels
1561 * and we have to interpolate to create the full table for these channels and
1562 * also the table for any channel.
1563 */
1564static int
1565ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1566{
1567        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1568        int (*read_pcal)(struct ath5k_hw *hw, int mode);
1569        int mode;
1570        int err;
1571
1572        if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1573                        (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1574                read_pcal = ath5k_eeprom_read_pcal_info_5112;
1575        else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1576                        (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1577                read_pcal = ath5k_eeprom_read_pcal_info_2413;
1578        else
1579                read_pcal = ath5k_eeprom_read_pcal_info_5111;
1580
1581
1582        for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
1583        mode++) {
1584                err = read_pcal(ah, mode);
1585                if (err)
1586                        return err;
1587
1588                err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1589                if (err < 0)
1590                        return err;
1591        }
1592
1593        return 0;
1594}
1595
1596/* Read conformance test limits used for regulatory control */
1597static int
1598ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1599{
1600        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1601        struct ath5k_edge_power *rep;
1602        unsigned int fmask, pmask;
1603        unsigned int ctl_mode;
1604        int i, j;
1605        u32 offset;
1606        u16 val;
1607
1608        pmask = AR5K_EEPROM_POWER_M;
1609        fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1610        offset = AR5K_EEPROM_CTL(ee->ee_version);
1611        ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1612        for (i = 0; i < ee->ee_ctls; i += 2) {
1613                AR5K_EEPROM_READ(offset++, val);
1614                ee->ee_ctl[i] = (val >> 8) & 0xff;
1615                ee->ee_ctl[i + 1] = val & 0xff;
1616        }
1617
1618        offset = AR5K_EEPROM_GROUP8_OFFSET;
1619        if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1620                offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1621                        AR5K_EEPROM_GROUP5_OFFSET;
1622        else
1623                offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1624
1625        rep = ee->ee_ctl_pwr;
1626        for (i = 0; i < ee->ee_ctls; i++) {
1627                switch (ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1628                case AR5K_CTL_11A:
1629                case AR5K_CTL_TURBO:
1630                        ctl_mode = AR5K_EEPROM_MODE_11A;
1631                        break;
1632                default:
1633                        ctl_mode = AR5K_EEPROM_MODE_11G;
1634                        break;
1635                }
1636                if (ee->ee_ctl[i] == 0) {
1637                        if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1638                                offset += 8;
1639                        else
1640                                offset += 7;
1641                        rep += AR5K_EEPROM_N_EDGES;
1642                        continue;
1643                }
1644                if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1645                        for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1646                                AR5K_EEPROM_READ(offset++, val);
1647                                rep[j].freq = (val >> 8) & fmask;
1648                                rep[j + 1].freq = val & fmask;
1649                        }
1650                        for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1651                                AR5K_EEPROM_READ(offset++, val);
1652                                rep[j].edge = (val >> 8) & pmask;
1653                                rep[j].flag = (val >> 14) & 1;
1654                                rep[j + 1].edge = val & pmask;
1655                                rep[j + 1].flag = (val >> 6) & 1;
1656                        }
1657                } else {
1658                        AR5K_EEPROM_READ(offset++, val);
1659                        rep[0].freq = (val >> 9) & fmask;
1660                        rep[1].freq = (val >> 2) & fmask;
1661                        rep[2].freq = (val << 5) & fmask;
1662
1663                        AR5K_EEPROM_READ(offset++, val);
1664                        rep[2].freq |= (val >> 11) & 0x1f;
1665                        rep[3].freq = (val >> 4) & fmask;
1666                        rep[4].freq = (val << 3) & fmask;
1667
1668                        AR5K_EEPROM_READ(offset++, val);
1669                        rep[4].freq |= (val >> 13) & 0x7;
1670                        rep[5].freq = (val >> 6) & fmask;
1671                        rep[6].freq = (val << 1) & fmask;
1672
1673                        AR5K_EEPROM_READ(offset++, val);
1674                        rep[6].freq |= (val >> 15) & 0x1;
1675                        rep[7].freq = (val >> 8) & fmask;
1676
1677                        rep[0].edge = (val >> 2) & pmask;
1678                        rep[1].edge = (val << 4) & pmask;
1679
1680                        AR5K_EEPROM_READ(offset++, val);
1681                        rep[1].edge |= (val >> 12) & 0xf;
1682                        rep[2].edge = (val >> 6) & pmask;
1683                        rep[3].edge = val & pmask;
1684
1685                        AR5K_EEPROM_READ(offset++, val);
1686                        rep[4].edge = (val >> 10) & pmask;
1687                        rep[5].edge = (val >> 4) & pmask;
1688                        rep[6].edge = (val << 2) & pmask;
1689
1690                        AR5K_EEPROM_READ(offset++, val);
1691                        rep[6].edge |= (val >> 14) & 0x3;
1692                        rep[7].edge = (val >> 8) & pmask;
1693                }
1694                for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1695                        rep[j].freq = ath5k_eeprom_bin2freq(ee,
1696                                rep[j].freq, ctl_mode);
1697                }
1698                rep += AR5K_EEPROM_N_EDGES;
1699        }
1700
1701        return 0;
1702}
1703
1704static int
1705ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
1706{
1707        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1708        u32 offset;
1709        u16 val;
1710        int  i;
1711
1712        offset = AR5K_EEPROM_CTL(ee->ee_version) +
1713                                AR5K_EEPROM_N_CTLS(ee->ee_version);
1714
1715        if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
1716                /* No spur info for 5GHz */
1717                ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
1718                /* 2 channels for 2GHz (2464/2420) */
1719                ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
1720                ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
1721                ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
1722        } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
1723                for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1724                        AR5K_EEPROM_READ(offset, val);
1725                        ee->ee_spur_chans[i][0] = val;
1726                        AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
1727                                                                        val);
1728                        ee->ee_spur_chans[i][1] = val;
1729                        offset++;
1730                }
1731        }
1732
1733        return 0;
1734}
1735
1736
1737/***********************\
1738* Init/Detach functions *
1739\***********************/
1740
1741/*
1742 * Initialize eeprom data structure
1743 */
1744int
1745ath5k_eeprom_init(struct ath5k_hw *ah)
1746{
1747        int err;
1748
1749        err = ath5k_eeprom_init_header(ah);
1750        if (err < 0)
1751                return err;
1752
1753        err = ath5k_eeprom_init_modes(ah);
1754        if (err < 0)
1755                return err;
1756
1757        err = ath5k_eeprom_read_pcal_info(ah);
1758        if (err < 0)
1759                return err;
1760
1761        err = ath5k_eeprom_read_ctl_info(ah);
1762        if (err < 0)
1763                return err;
1764
1765        err = ath5k_eeprom_read_spur_chans(ah);
1766        if (err < 0)
1767                return err;
1768
1769        return 0;
1770}
1771
1772void
1773ath5k_eeprom_detach(struct ath5k_hw *ah)
1774{
1775        u8 mode;
1776
1777        for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
1778                ath5k_eeprom_free_pcal_info(ah, mode);
1779}
1780
1781int
1782ath5k_eeprom_mode_from_channel(struct ath5k_hw *ah,
1783                struct ieee80211_channel *channel)
1784{
1785        switch (channel->hw_value) {
1786        case AR5K_MODE_11A:
1787                return AR5K_EEPROM_MODE_11A;
1788        case AR5K_MODE_11G:
1789                return AR5K_EEPROM_MODE_11G;
1790        case AR5K_MODE_11B:
1791                return AR5K_EEPROM_MODE_11B;
1792        default:
1793                ATH5K_WARN(ah, "channel is not A/B/G!");
1794                return AR5K_EEPROM_MODE_11A;
1795        }
1796}
1797