linux/drivers/rtc/interface.c
<<
>>
Prefs
   1/*
   2 * RTC subsystem, interface functions
   3 *
   4 * Copyright (C) 2005 Tower Technologies
   5 * Author: Alessandro Zummo <a.zummo@towertech.it>
   6 *
   7 * based on arch/arm/common/rtctime.c
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12*/
  13
  14#include <linux/rtc.h>
  15#include <linux/sched.h>
  16#include <linux/module.h>
  17#include <linux/log2.h>
  18#include <linux/workqueue.h>
  19
  20#define CREATE_TRACE_POINTS
  21#include <trace/events/rtc.h>
  22
  23static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
  24static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
  25
  26static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm)
  27{
  28        time64_t secs;
  29
  30        if (!rtc->offset_secs)
  31                return;
  32
  33        secs = rtc_tm_to_time64(tm);
  34
  35        /*
  36         * Since the reading time values from RTC device are always in the RTC
  37         * original valid range, but we need to skip the overlapped region
  38         * between expanded range and original range, which is no need to add
  39         * the offset.
  40         */
  41        if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) ||
  42            (rtc->start_secs < rtc->range_min &&
  43             secs <= (rtc->start_secs + rtc->range_max - rtc->range_min)))
  44                return;
  45
  46        rtc_time64_to_tm(secs + rtc->offset_secs, tm);
  47}
  48
  49static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm)
  50{
  51        time64_t secs;
  52
  53        if (!rtc->offset_secs)
  54                return;
  55
  56        secs = rtc_tm_to_time64(tm);
  57
  58        /*
  59         * If the setting time values are in the valid range of RTC hardware
  60         * device, then no need to subtract the offset when setting time to RTC
  61         * device. Otherwise we need to subtract the offset to make the time
  62         * values are valid for RTC hardware device.
  63         */
  64        if (secs >= rtc->range_min && secs <= rtc->range_max)
  65                return;
  66
  67        rtc_time64_to_tm(secs - rtc->offset_secs, tm);
  68}
  69
  70static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm)
  71{
  72        if (rtc->range_min != rtc->range_max) {
  73                time64_t time = rtc_tm_to_time64(tm);
  74                time64_t range_min = rtc->set_start_time ? rtc->start_secs :
  75                        rtc->range_min;
  76                time64_t range_max = rtc->set_start_time ?
  77                        (rtc->start_secs + rtc->range_max - rtc->range_min) :
  78                        rtc->range_max;
  79
  80                if (time < range_min || time > range_max)
  81                        return -ERANGE;
  82        }
  83
  84        return 0;
  85}
  86
  87static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
  88{
  89        int err;
  90        if (!rtc->ops)
  91                err = -ENODEV;
  92        else if (!rtc->ops->read_time)
  93                err = -EINVAL;
  94        else {
  95                memset(tm, 0, sizeof(struct rtc_time));
  96                err = rtc->ops->read_time(rtc->dev.parent, tm);
  97                if (err < 0) {
  98                        dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
  99                                err);
 100                        return err;
 101                }
 102
 103                rtc_add_offset(rtc, tm);
 104
 105                err = rtc_valid_tm(tm);
 106                if (err < 0)
 107                        dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
 108        }
 109        return err;
 110}
 111
 112int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 113{
 114        int err;
 115
 116        err = mutex_lock_interruptible(&rtc->ops_lock);
 117        if (err)
 118                return err;
 119
 120        err = __rtc_read_time(rtc, tm);
 121        mutex_unlock(&rtc->ops_lock);
 122
 123        trace_rtc_read_time(rtc_tm_to_time64(tm), err);
 124        return err;
 125}
 126EXPORT_SYMBOL_GPL(rtc_read_time);
 127
 128int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
 129{
 130        int err;
 131
 132        err = rtc_valid_tm(tm);
 133        if (err != 0)
 134                return err;
 135
 136        err = rtc_valid_range(rtc, tm);
 137        if (err)
 138                return err;
 139
 140        rtc_subtract_offset(rtc, tm);
 141
 142        err = mutex_lock_interruptible(&rtc->ops_lock);
 143        if (err)
 144                return err;
 145
 146        if (!rtc->ops)
 147                err = -ENODEV;
 148        else if (rtc->ops->set_time)
 149                err = rtc->ops->set_time(rtc->dev.parent, tm);
 150        else if (rtc->ops->set_mmss64) {
 151                time64_t secs64 = rtc_tm_to_time64(tm);
 152
 153                err = rtc->ops->set_mmss64(rtc->dev.parent, secs64);
 154        } else if (rtc->ops->set_mmss) {
 155                time64_t secs64 = rtc_tm_to_time64(tm);
 156                err = rtc->ops->set_mmss(rtc->dev.parent, secs64);
 157        } else
 158                err = -EINVAL;
 159
 160        pm_stay_awake(rtc->dev.parent);
 161        mutex_unlock(&rtc->ops_lock);
 162        /* A timer might have just expired */
 163        schedule_work(&rtc->irqwork);
 164
 165        trace_rtc_set_time(rtc_tm_to_time64(tm), err);
 166        return err;
 167}
 168EXPORT_SYMBOL_GPL(rtc_set_time);
 169
 170static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 171{
 172        int err;
 173
 174        err = mutex_lock_interruptible(&rtc->ops_lock);
 175        if (err)
 176                return err;
 177
 178        if (rtc->ops == NULL)
 179                err = -ENODEV;
 180        else if (!rtc->ops->read_alarm)
 181                err = -EINVAL;
 182        else {
 183                alarm->enabled = 0;
 184                alarm->pending = 0;
 185                alarm->time.tm_sec = -1;
 186                alarm->time.tm_min = -1;
 187                alarm->time.tm_hour = -1;
 188                alarm->time.tm_mday = -1;
 189                alarm->time.tm_mon = -1;
 190                alarm->time.tm_year = -1;
 191                alarm->time.tm_wday = -1;
 192                alarm->time.tm_yday = -1;
 193                alarm->time.tm_isdst = -1;
 194                err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
 195        }
 196
 197        mutex_unlock(&rtc->ops_lock);
 198
 199        trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
 200        return err;
 201}
 202
 203int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 204{
 205        int err;
 206        struct rtc_time before, now;
 207        int first_time = 1;
 208        time64_t t_now, t_alm;
 209        enum { none, day, month, year } missing = none;
 210        unsigned days;
 211
 212        /* The lower level RTC driver may return -1 in some fields,
 213         * creating invalid alarm->time values, for reasons like:
 214         *
 215         *   - The hardware may not be capable of filling them in;
 216         *     many alarms match only on time-of-day fields, not
 217         *     day/month/year calendar data.
 218         *
 219         *   - Some hardware uses illegal values as "wildcard" match
 220         *     values, which non-Linux firmware (like a BIOS) may try
 221         *     to set up as e.g. "alarm 15 minutes after each hour".
 222         *     Linux uses only oneshot alarms.
 223         *
 224         * When we see that here, we deal with it by using values from
 225         * a current RTC timestamp for any missing (-1) values.  The
 226         * RTC driver prevents "periodic alarm" modes.
 227         *
 228         * But this can be racey, because some fields of the RTC timestamp
 229         * may have wrapped in the interval since we read the RTC alarm,
 230         * which would lead to us inserting inconsistent values in place
 231         * of the -1 fields.
 232         *
 233         * Reading the alarm and timestamp in the reverse sequence
 234         * would have the same race condition, and not solve the issue.
 235         *
 236         * So, we must first read the RTC timestamp,
 237         * then read the RTC alarm value,
 238         * and then read a second RTC timestamp.
 239         *
 240         * If any fields of the second timestamp have changed
 241         * when compared with the first timestamp, then we know
 242         * our timestamp may be inconsistent with that used by
 243         * the low-level rtc_read_alarm_internal() function.
 244         *
 245         * So, when the two timestamps disagree, we just loop and do
 246         * the process again to get a fully consistent set of values.
 247         *
 248         * This could all instead be done in the lower level driver,
 249         * but since more than one lower level RTC implementation needs it,
 250         * then it's probably best best to do it here instead of there..
 251         */
 252
 253        /* Get the "before" timestamp */
 254        err = rtc_read_time(rtc, &before);
 255        if (err < 0)
 256                return err;
 257        do {
 258                if (!first_time)
 259                        memcpy(&before, &now, sizeof(struct rtc_time));
 260                first_time = 0;
 261
 262                /* get the RTC alarm values, which may be incomplete */
 263                err = rtc_read_alarm_internal(rtc, alarm);
 264                if (err)
 265                        return err;
 266
 267                /* full-function RTCs won't have such missing fields */
 268                if (rtc_valid_tm(&alarm->time) == 0) {
 269                        rtc_add_offset(rtc, &alarm->time);
 270                        return 0;
 271                }
 272
 273                /* get the "after" timestamp, to detect wrapped fields */
 274                err = rtc_read_time(rtc, &now);
 275                if (err < 0)
 276                        return err;
 277
 278                /* note that tm_sec is a "don't care" value here: */
 279        } while (   before.tm_min   != now.tm_min
 280                 || before.tm_hour  != now.tm_hour
 281                 || before.tm_mon   != now.tm_mon
 282                 || before.tm_year  != now.tm_year);
 283
 284        /* Fill in the missing alarm fields using the timestamp; we
 285         * know there's at least one since alarm->time is invalid.
 286         */
 287        if (alarm->time.tm_sec == -1)
 288                alarm->time.tm_sec = now.tm_sec;
 289        if (alarm->time.tm_min == -1)
 290                alarm->time.tm_min = now.tm_min;
 291        if (alarm->time.tm_hour == -1)
 292                alarm->time.tm_hour = now.tm_hour;
 293
 294        /* For simplicity, only support date rollover for now */
 295        if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
 296                alarm->time.tm_mday = now.tm_mday;
 297                missing = day;
 298        }
 299        if ((unsigned)alarm->time.tm_mon >= 12) {
 300                alarm->time.tm_mon = now.tm_mon;
 301                if (missing == none)
 302                        missing = month;
 303        }
 304        if (alarm->time.tm_year == -1) {
 305                alarm->time.tm_year = now.tm_year;
 306                if (missing == none)
 307                        missing = year;
 308        }
 309
 310        /* Can't proceed if alarm is still invalid after replacing
 311         * missing fields.
 312         */
 313        err = rtc_valid_tm(&alarm->time);
 314        if (err)
 315                goto done;
 316
 317        /* with luck, no rollover is needed */
 318        t_now = rtc_tm_to_time64(&now);
 319        t_alm = rtc_tm_to_time64(&alarm->time);
 320        if (t_now < t_alm)
 321                goto done;
 322
 323        switch (missing) {
 324
 325        /* 24 hour rollover ... if it's now 10am Monday, an alarm that
 326         * that will trigger at 5am will do so at 5am Tuesday, which
 327         * could also be in the next month or year.  This is a common
 328         * case, especially for PCs.
 329         */
 330        case day:
 331                dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
 332                t_alm += 24 * 60 * 60;
 333                rtc_time64_to_tm(t_alm, &alarm->time);
 334                break;
 335
 336        /* Month rollover ... if it's the 31th, an alarm on the 3rd will
 337         * be next month.  An alarm matching on the 30th, 29th, or 28th
 338         * may end up in the month after that!  Many newer PCs support
 339         * this type of alarm.
 340         */
 341        case month:
 342                dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
 343                do {
 344                        if (alarm->time.tm_mon < 11)
 345                                alarm->time.tm_mon++;
 346                        else {
 347                                alarm->time.tm_mon = 0;
 348                                alarm->time.tm_year++;
 349                        }
 350                        days = rtc_month_days(alarm->time.tm_mon,
 351                                        alarm->time.tm_year);
 352                } while (days < alarm->time.tm_mday);
 353                break;
 354
 355        /* Year rollover ... easy except for leap years! */
 356        case year:
 357                dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
 358                do {
 359                        alarm->time.tm_year++;
 360                } while (!is_leap_year(alarm->time.tm_year + 1900)
 361                        && rtc_valid_tm(&alarm->time) != 0);
 362                break;
 363
 364        default:
 365                dev_warn(&rtc->dev, "alarm rollover not handled\n");
 366        }
 367
 368        err = rtc_valid_tm(&alarm->time);
 369
 370done:
 371        if (err) {
 372                dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
 373                        alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
 374                        alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
 375                        alarm->time.tm_sec);
 376        }
 377
 378        return err;
 379}
 380
 381int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 382{
 383        int err;
 384
 385        err = mutex_lock_interruptible(&rtc->ops_lock);
 386        if (err)
 387                return err;
 388        if (rtc->ops == NULL)
 389                err = -ENODEV;
 390        else if (!rtc->ops->read_alarm)
 391                err = -EINVAL;
 392        else {
 393                memset(alarm, 0, sizeof(struct rtc_wkalrm));
 394                alarm->enabled = rtc->aie_timer.enabled;
 395                alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
 396        }
 397        mutex_unlock(&rtc->ops_lock);
 398
 399        trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
 400        return err;
 401}
 402EXPORT_SYMBOL_GPL(rtc_read_alarm);
 403
 404static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 405{
 406        struct rtc_time tm;
 407        time64_t now, scheduled;
 408        int err;
 409
 410        err = rtc_valid_tm(&alarm->time);
 411        if (err)
 412                return err;
 413
 414        scheduled = rtc_tm_to_time64(&alarm->time);
 415
 416        /* Make sure we're not setting alarms in the past */
 417        err = __rtc_read_time(rtc, &tm);
 418        if (err)
 419                return err;
 420        now = rtc_tm_to_time64(&tm);
 421        if (scheduled <= now)
 422                return -ETIME;
 423        /*
 424         * XXX - We just checked to make sure the alarm time is not
 425         * in the past, but there is still a race window where if
 426         * the is alarm set for the next second and the second ticks
 427         * over right here, before we set the alarm.
 428         */
 429
 430        rtc_subtract_offset(rtc, &alarm->time);
 431
 432        if (!rtc->ops)
 433                err = -ENODEV;
 434        else if (!rtc->ops->set_alarm)
 435                err = -EINVAL;
 436        else
 437                err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
 438
 439        trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err);
 440        return err;
 441}
 442
 443int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 444{
 445        int err;
 446
 447        if (!rtc->ops)
 448                return -ENODEV;
 449        else if (!rtc->ops->set_alarm)
 450                return -EINVAL;
 451
 452        err = rtc_valid_tm(&alarm->time);
 453        if (err != 0)
 454                return err;
 455
 456        err = rtc_valid_range(rtc, &alarm->time);
 457        if (err)
 458                return err;
 459
 460        err = mutex_lock_interruptible(&rtc->ops_lock);
 461        if (err)
 462                return err;
 463        if (rtc->aie_timer.enabled)
 464                rtc_timer_remove(rtc, &rtc->aie_timer);
 465
 466        rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
 467        rtc->aie_timer.period = 0;
 468        if (alarm->enabled)
 469                err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
 470
 471        mutex_unlock(&rtc->ops_lock);
 472
 473        return err;
 474}
 475EXPORT_SYMBOL_GPL(rtc_set_alarm);
 476
 477/* Called once per device from rtc_device_register */
 478int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 479{
 480        int err;
 481        struct rtc_time now;
 482
 483        err = rtc_valid_tm(&alarm->time);
 484        if (err != 0)
 485                return err;
 486
 487        err = rtc_read_time(rtc, &now);
 488        if (err)
 489                return err;
 490
 491        err = mutex_lock_interruptible(&rtc->ops_lock);
 492        if (err)
 493                return err;
 494
 495        rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
 496        rtc->aie_timer.period = 0;
 497
 498        /* Alarm has to be enabled & in the future for us to enqueue it */
 499        if (alarm->enabled && (rtc_tm_to_ktime(now) <
 500                         rtc->aie_timer.node.expires)) {
 501
 502                rtc->aie_timer.enabled = 1;
 503                timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
 504                trace_rtc_timer_enqueue(&rtc->aie_timer);
 505        }
 506        mutex_unlock(&rtc->ops_lock);
 507        return err;
 508}
 509EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
 510
 511int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 512{
 513        int err = mutex_lock_interruptible(&rtc->ops_lock);
 514        if (err)
 515                return err;
 516
 517        if (rtc->aie_timer.enabled != enabled) {
 518                if (enabled)
 519                        err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
 520                else
 521                        rtc_timer_remove(rtc, &rtc->aie_timer);
 522        }
 523
 524        if (err)
 525                /* nothing */;
 526        else if (!rtc->ops)
 527                err = -ENODEV;
 528        else if (!rtc->ops->alarm_irq_enable)
 529                err = -EINVAL;
 530        else
 531                err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
 532
 533        mutex_unlock(&rtc->ops_lock);
 534
 535        trace_rtc_alarm_irq_enable(enabled, err);
 536        return err;
 537}
 538EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
 539
 540int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 541{
 542        int err = mutex_lock_interruptible(&rtc->ops_lock);
 543        if (err)
 544                return err;
 545
 546#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 547        if (enabled == 0 && rtc->uie_irq_active) {
 548                mutex_unlock(&rtc->ops_lock);
 549                return rtc_dev_update_irq_enable_emul(rtc, 0);
 550        }
 551#endif
 552        /* make sure we're changing state */
 553        if (rtc->uie_rtctimer.enabled == enabled)
 554                goto out;
 555
 556        if (rtc->uie_unsupported) {
 557                err = -EINVAL;
 558                goto out;
 559        }
 560
 561        if (enabled) {
 562                struct rtc_time tm;
 563                ktime_t now, onesec;
 564
 565                __rtc_read_time(rtc, &tm);
 566                onesec = ktime_set(1, 0);
 567                now = rtc_tm_to_ktime(tm);
 568                rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
 569                rtc->uie_rtctimer.period = ktime_set(1, 0);
 570                err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
 571        } else
 572                rtc_timer_remove(rtc, &rtc->uie_rtctimer);
 573
 574out:
 575        mutex_unlock(&rtc->ops_lock);
 576#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 577        /*
 578         * Enable emulation if the driver did not provide
 579         * the update_irq_enable function pointer or if returned
 580         * -EINVAL to signal that it has been configured without
 581         * interrupts or that are not available at the moment.
 582         */
 583        if (err == -EINVAL)
 584                err = rtc_dev_update_irq_enable_emul(rtc, enabled);
 585#endif
 586        return err;
 587
 588}
 589EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
 590
 591
 592/**
 593 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
 594 * @rtc: pointer to the rtc device
 595 *
 596 * This function is called when an AIE, UIE or PIE mode interrupt
 597 * has occurred (or been emulated).
 598 *
 599 * Triggers the registered irq_task function callback.
 600 */
 601void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
 602{
 603        unsigned long flags;
 604
 605        /* mark one irq of the appropriate mode */
 606        spin_lock_irqsave(&rtc->irq_lock, flags);
 607        rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
 608        spin_unlock_irqrestore(&rtc->irq_lock, flags);
 609
 610        /* call the task func */
 611        spin_lock_irqsave(&rtc->irq_task_lock, flags);
 612        if (rtc->irq_task)
 613                rtc->irq_task->func(rtc->irq_task->private_data);
 614        spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 615
 616        wake_up_interruptible(&rtc->irq_queue);
 617        kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
 618}
 619
 620
 621/**
 622 * rtc_aie_update_irq - AIE mode rtctimer hook
 623 * @private: pointer to the rtc_device
 624 *
 625 * This functions is called when the aie_timer expires.
 626 */
 627void rtc_aie_update_irq(void *private)
 628{
 629        struct rtc_device *rtc = (struct rtc_device *)private;
 630        rtc_handle_legacy_irq(rtc, 1, RTC_AF);
 631}
 632
 633
 634/**
 635 * rtc_uie_update_irq - UIE mode rtctimer hook
 636 * @private: pointer to the rtc_device
 637 *
 638 * This functions is called when the uie_timer expires.
 639 */
 640void rtc_uie_update_irq(void *private)
 641{
 642        struct rtc_device *rtc = (struct rtc_device *)private;
 643        rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
 644}
 645
 646
 647/**
 648 * rtc_pie_update_irq - PIE mode hrtimer hook
 649 * @timer: pointer to the pie mode hrtimer
 650 *
 651 * This function is used to emulate PIE mode interrupts
 652 * using an hrtimer. This function is called when the periodic
 653 * hrtimer expires.
 654 */
 655enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
 656{
 657        struct rtc_device *rtc;
 658        ktime_t period;
 659        int count;
 660        rtc = container_of(timer, struct rtc_device, pie_timer);
 661
 662        period = NSEC_PER_SEC / rtc->irq_freq;
 663        count = hrtimer_forward_now(timer, period);
 664
 665        rtc_handle_legacy_irq(rtc, count, RTC_PF);
 666
 667        return HRTIMER_RESTART;
 668}
 669
 670/**
 671 * rtc_update_irq - Triggered when a RTC interrupt occurs.
 672 * @rtc: the rtc device
 673 * @num: how many irqs are being reported (usually one)
 674 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
 675 * Context: any
 676 */
 677void rtc_update_irq(struct rtc_device *rtc,
 678                unsigned long num, unsigned long events)
 679{
 680        if (IS_ERR_OR_NULL(rtc))
 681                return;
 682
 683        pm_stay_awake(rtc->dev.parent);
 684        schedule_work(&rtc->irqwork);
 685}
 686EXPORT_SYMBOL_GPL(rtc_update_irq);
 687
 688struct rtc_device *rtc_class_open(const char *name)
 689{
 690        struct device *dev;
 691        struct rtc_device *rtc = NULL;
 692
 693        dev = class_find_device_by_name(rtc_class, name);
 694        if (dev)
 695                rtc = to_rtc_device(dev);
 696
 697        if (rtc) {
 698                if (!try_module_get(rtc->owner)) {
 699                        put_device(dev);
 700                        rtc = NULL;
 701                }
 702        }
 703
 704        return rtc;
 705}
 706EXPORT_SYMBOL_GPL(rtc_class_open);
 707
 708void rtc_class_close(struct rtc_device *rtc)
 709{
 710        module_put(rtc->owner);
 711        put_device(&rtc->dev);
 712}
 713EXPORT_SYMBOL_GPL(rtc_class_close);
 714
 715int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
 716{
 717        int retval = -EBUSY;
 718
 719        if (task == NULL || task->func == NULL)
 720                return -EINVAL;
 721
 722        /* Cannot register while the char dev is in use */
 723        if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
 724                return -EBUSY;
 725
 726        spin_lock_irq(&rtc->irq_task_lock);
 727        if (rtc->irq_task == NULL) {
 728                rtc->irq_task = task;
 729                retval = 0;
 730        }
 731        spin_unlock_irq(&rtc->irq_task_lock);
 732
 733        clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
 734
 735        return retval;
 736}
 737EXPORT_SYMBOL_GPL(rtc_irq_register);
 738
 739void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
 740{
 741        spin_lock_irq(&rtc->irq_task_lock);
 742        if (rtc->irq_task == task)
 743                rtc->irq_task = NULL;
 744        spin_unlock_irq(&rtc->irq_task_lock);
 745}
 746EXPORT_SYMBOL_GPL(rtc_irq_unregister);
 747
 748static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
 749{
 750        /*
 751         * We always cancel the timer here first, because otherwise
 752         * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
 753         * when we manage to start the timer before the callback
 754         * returns HRTIMER_RESTART.
 755         *
 756         * We cannot use hrtimer_cancel() here as a running callback
 757         * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
 758         * would spin forever.
 759         */
 760        if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
 761                return -1;
 762
 763        if (enabled) {
 764                ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
 765
 766                hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
 767        }
 768        return 0;
 769}
 770
 771/**
 772 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
 773 * @rtc: the rtc device
 774 * @task: currently registered with rtc_irq_register()
 775 * @enabled: true to enable periodic IRQs
 776 * Context: any
 777 *
 778 * Note that rtc_irq_set_freq() should previously have been used to
 779 * specify the desired frequency of periodic IRQ task->func() callbacks.
 780 */
 781int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
 782{
 783        int err = 0;
 784        unsigned long flags;
 785
 786retry:
 787        spin_lock_irqsave(&rtc->irq_task_lock, flags);
 788        if (rtc->irq_task != NULL && task == NULL)
 789                err = -EBUSY;
 790        else if (rtc->irq_task != task)
 791                err = -EACCES;
 792        else {
 793                if (rtc_update_hrtimer(rtc, enabled) < 0) {
 794                        spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 795                        cpu_relax();
 796                        goto retry;
 797                }
 798                rtc->pie_enabled = enabled;
 799        }
 800        spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 801
 802        trace_rtc_irq_set_state(enabled, err);
 803        return err;
 804}
 805EXPORT_SYMBOL_GPL(rtc_irq_set_state);
 806
 807/**
 808 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
 809 * @rtc: the rtc device
 810 * @task: currently registered with rtc_irq_register()
 811 * @freq: positive frequency with which task->func() will be called
 812 * Context: any
 813 *
 814 * Note that rtc_irq_set_state() is used to enable or disable the
 815 * periodic IRQs.
 816 */
 817int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
 818{
 819        int err = 0;
 820        unsigned long flags;
 821
 822        if (freq <= 0 || freq > RTC_MAX_FREQ)
 823                return -EINVAL;
 824retry:
 825        spin_lock_irqsave(&rtc->irq_task_lock, flags);
 826        if (rtc->irq_task != NULL && task == NULL)
 827                err = -EBUSY;
 828        else if (rtc->irq_task != task)
 829                err = -EACCES;
 830        else {
 831                rtc->irq_freq = freq;
 832                if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
 833                        spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 834                        cpu_relax();
 835                        goto retry;
 836                }
 837        }
 838        spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 839
 840        trace_rtc_irq_set_freq(freq, err);
 841        return err;
 842}
 843EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
 844
 845/**
 846 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
 847 * @rtc rtc device
 848 * @timer timer being added.
 849 *
 850 * Enqueues a timer onto the rtc devices timerqueue and sets
 851 * the next alarm event appropriately.
 852 *
 853 * Sets the enabled bit on the added timer.
 854 *
 855 * Must hold ops_lock for proper serialization of timerqueue
 856 */
 857static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
 858{
 859        struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
 860        struct rtc_time tm;
 861        ktime_t now;
 862
 863        timer->enabled = 1;
 864        __rtc_read_time(rtc, &tm);
 865        now = rtc_tm_to_ktime(tm);
 866
 867        /* Skip over expired timers */
 868        while (next) {
 869                if (next->expires >= now)
 870                        break;
 871                next = timerqueue_iterate_next(next);
 872        }
 873
 874        timerqueue_add(&rtc->timerqueue, &timer->node);
 875        trace_rtc_timer_enqueue(timer);
 876        if (!next || ktime_before(timer->node.expires, next->expires)) {
 877                struct rtc_wkalrm alarm;
 878                int err;
 879                alarm.time = rtc_ktime_to_tm(timer->node.expires);
 880                alarm.enabled = 1;
 881                err = __rtc_set_alarm(rtc, &alarm);
 882                if (err == -ETIME) {
 883                        pm_stay_awake(rtc->dev.parent);
 884                        schedule_work(&rtc->irqwork);
 885                } else if (err) {
 886                        timerqueue_del(&rtc->timerqueue, &timer->node);
 887                        trace_rtc_timer_dequeue(timer);
 888                        timer->enabled = 0;
 889                        return err;
 890                }
 891        }
 892        return 0;
 893}
 894
 895static void rtc_alarm_disable(struct rtc_device *rtc)
 896{
 897        if (!rtc->ops || !rtc->ops->alarm_irq_enable)
 898                return;
 899
 900        rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
 901        trace_rtc_alarm_irq_enable(0, 0);
 902}
 903
 904/**
 905 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
 906 * @rtc rtc device
 907 * @timer timer being removed.
 908 *
 909 * Removes a timer onto the rtc devices timerqueue and sets
 910 * the next alarm event appropriately.
 911 *
 912 * Clears the enabled bit on the removed timer.
 913 *
 914 * Must hold ops_lock for proper serialization of timerqueue
 915 */
 916static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
 917{
 918        struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
 919        timerqueue_del(&rtc->timerqueue, &timer->node);
 920        trace_rtc_timer_dequeue(timer);
 921        timer->enabled = 0;
 922        if (next == &timer->node) {
 923                struct rtc_wkalrm alarm;
 924                int err;
 925                next = timerqueue_getnext(&rtc->timerqueue);
 926                if (!next) {
 927                        rtc_alarm_disable(rtc);
 928                        return;
 929                }
 930                alarm.time = rtc_ktime_to_tm(next->expires);
 931                alarm.enabled = 1;
 932                err = __rtc_set_alarm(rtc, &alarm);
 933                if (err == -ETIME) {
 934                        pm_stay_awake(rtc->dev.parent);
 935                        schedule_work(&rtc->irqwork);
 936                }
 937        }
 938}
 939
 940/**
 941 * rtc_timer_do_work - Expires rtc timers
 942 * @rtc rtc device
 943 * @timer timer being removed.
 944 *
 945 * Expires rtc timers. Reprograms next alarm event if needed.
 946 * Called via worktask.
 947 *
 948 * Serializes access to timerqueue via ops_lock mutex
 949 */
 950void rtc_timer_do_work(struct work_struct *work)
 951{
 952        struct rtc_timer *timer;
 953        struct timerqueue_node *next;
 954        ktime_t now;
 955        struct rtc_time tm;
 956
 957        struct rtc_device *rtc =
 958                container_of(work, struct rtc_device, irqwork);
 959
 960        mutex_lock(&rtc->ops_lock);
 961again:
 962        __rtc_read_time(rtc, &tm);
 963        now = rtc_tm_to_ktime(tm);
 964        while ((next = timerqueue_getnext(&rtc->timerqueue))) {
 965                if (next->expires > now)
 966                        break;
 967
 968                /* expire timer */
 969                timer = container_of(next, struct rtc_timer, node);
 970                timerqueue_del(&rtc->timerqueue, &timer->node);
 971                trace_rtc_timer_dequeue(timer);
 972                timer->enabled = 0;
 973                if (timer->task.func)
 974                        timer->task.func(timer->task.private_data);
 975
 976                trace_rtc_timer_fired(timer);
 977                /* Re-add/fwd periodic timers */
 978                if (ktime_to_ns(timer->period)) {
 979                        timer->node.expires = ktime_add(timer->node.expires,
 980                                                        timer->period);
 981                        timer->enabled = 1;
 982                        timerqueue_add(&rtc->timerqueue, &timer->node);
 983                        trace_rtc_timer_enqueue(timer);
 984                }
 985        }
 986
 987        /* Set next alarm */
 988        if (next) {
 989                struct rtc_wkalrm alarm;
 990                int err;
 991                int retry = 3;
 992
 993                alarm.time = rtc_ktime_to_tm(next->expires);
 994                alarm.enabled = 1;
 995reprogram:
 996                err = __rtc_set_alarm(rtc, &alarm);
 997                if (err == -ETIME)
 998                        goto again;
 999                else if (err) {
1000                        if (retry-- > 0)
1001                                goto reprogram;
1002
1003                        timer = container_of(next, struct rtc_timer, node);
1004                        timerqueue_del(&rtc->timerqueue, &timer->node);
1005                        trace_rtc_timer_dequeue(timer);
1006                        timer->enabled = 0;
1007                        dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
1008                        goto again;
1009                }
1010        } else
1011                rtc_alarm_disable(rtc);
1012
1013        pm_relax(rtc->dev.parent);
1014        mutex_unlock(&rtc->ops_lock);
1015}
1016
1017
1018/* rtc_timer_init - Initializes an rtc_timer
1019 * @timer: timer to be intiialized
1020 * @f: function pointer to be called when timer fires
1021 * @data: private data passed to function pointer
1022 *
1023 * Kernel interface to initializing an rtc_timer.
1024 */
1025void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
1026{
1027        timerqueue_init(&timer->node);
1028        timer->enabled = 0;
1029        timer->task.func = f;
1030        timer->task.private_data = data;
1031}
1032
1033/* rtc_timer_start - Sets an rtc_timer to fire in the future
1034 * @ rtc: rtc device to be used
1035 * @ timer: timer being set
1036 * @ expires: time at which to expire the timer
1037 * @ period: period that the timer will recur
1038 *
1039 * Kernel interface to set an rtc_timer
1040 */
1041int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
1042                        ktime_t expires, ktime_t period)
1043{
1044        int ret = 0;
1045        mutex_lock(&rtc->ops_lock);
1046        if (timer->enabled)
1047                rtc_timer_remove(rtc, timer);
1048
1049        timer->node.expires = expires;
1050        timer->period = period;
1051
1052        ret = rtc_timer_enqueue(rtc, timer);
1053
1054        mutex_unlock(&rtc->ops_lock);
1055        return ret;
1056}
1057
1058/* rtc_timer_cancel - Stops an rtc_timer
1059 * @ rtc: rtc device to be used
1060 * @ timer: timer being set
1061 *
1062 * Kernel interface to cancel an rtc_timer
1063 */
1064void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
1065{
1066        mutex_lock(&rtc->ops_lock);
1067        if (timer->enabled)
1068                rtc_timer_remove(rtc, timer);
1069        mutex_unlock(&rtc->ops_lock);
1070}
1071
1072/**
1073 * rtc_read_offset - Read the amount of rtc offset in parts per billion
1074 * @ rtc: rtc device to be used
1075 * @ offset: the offset in parts per billion
1076 *
1077 * see below for details.
1078 *
1079 * Kernel interface to read rtc clock offset
1080 * Returns 0 on success, or a negative number on error.
1081 * If read_offset() is not implemented for the rtc, return -EINVAL
1082 */
1083int rtc_read_offset(struct rtc_device *rtc, long *offset)
1084{
1085        int ret;
1086
1087        if (!rtc->ops)
1088                return -ENODEV;
1089
1090        if (!rtc->ops->read_offset)
1091                return -EINVAL;
1092
1093        mutex_lock(&rtc->ops_lock);
1094        ret = rtc->ops->read_offset(rtc->dev.parent, offset);
1095        mutex_unlock(&rtc->ops_lock);
1096
1097        trace_rtc_read_offset(*offset, ret);
1098        return ret;
1099}
1100
1101/**
1102 * rtc_set_offset - Adjusts the duration of the average second
1103 * @ rtc: rtc device to be used
1104 * @ offset: the offset in parts per billion
1105 *
1106 * Some rtc's allow an adjustment to the average duration of a second
1107 * to compensate for differences in the actual clock rate due to temperature,
1108 * the crystal, capacitor, etc.
1109 *
1110 * The adjustment applied is as follows:
1111 *   t = t0 * (1 + offset * 1e-9)
1112 * where t0 is the measured length of 1 RTC second with offset = 0
1113 *
1114 * Kernel interface to adjust an rtc clock offset.
1115 * Return 0 on success, or a negative number on error.
1116 * If the rtc offset is not setable (or not implemented), return -EINVAL
1117 */
1118int rtc_set_offset(struct rtc_device *rtc, long offset)
1119{
1120        int ret;
1121
1122        if (!rtc->ops)
1123                return -ENODEV;
1124
1125        if (!rtc->ops->set_offset)
1126                return -EINVAL;
1127
1128        mutex_lock(&rtc->ops_lock);
1129        ret = rtc->ops->set_offset(rtc->dev.parent, offset);
1130        mutex_unlock(&rtc->ops_lock);
1131
1132        trace_rtc_set_offset(offset, ret);
1133        return ret;
1134}
1135