linux/fs/btrfs/extent_io.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include <linux/bitops.h>
   4#include <linux/slab.h>
   5#include <linux/bio.h>
   6#include <linux/mm.h>
   7#include <linux/pagemap.h>
   8#include <linux/page-flags.h>
   9#include <linux/spinlock.h>
  10#include <linux/blkdev.h>
  11#include <linux/swap.h>
  12#include <linux/writeback.h>
  13#include <linux/pagevec.h>
  14#include <linux/prefetch.h>
  15#include <linux/cleancache.h>
  16#include "extent_io.h"
  17#include "extent_map.h"
  18#include "ctree.h"
  19#include "btrfs_inode.h"
  20#include "volumes.h"
  21#include "check-integrity.h"
  22#include "locking.h"
  23#include "rcu-string.h"
  24#include "backref.h"
  25#include "disk-io.h"
  26
  27static struct kmem_cache *extent_state_cache;
  28static struct kmem_cache *extent_buffer_cache;
  29static struct bio_set btrfs_bioset;
  30
  31static inline bool extent_state_in_tree(const struct extent_state *state)
  32{
  33        return !RB_EMPTY_NODE(&state->rb_node);
  34}
  35
  36#ifdef CONFIG_BTRFS_DEBUG
  37static LIST_HEAD(buffers);
  38static LIST_HEAD(states);
  39
  40static DEFINE_SPINLOCK(leak_lock);
  41
  42static inline
  43void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
  44{
  45        unsigned long flags;
  46
  47        spin_lock_irqsave(&leak_lock, flags);
  48        list_add(new, head);
  49        spin_unlock_irqrestore(&leak_lock, flags);
  50}
  51
  52static inline
  53void btrfs_leak_debug_del(struct list_head *entry)
  54{
  55        unsigned long flags;
  56
  57        spin_lock_irqsave(&leak_lock, flags);
  58        list_del(entry);
  59        spin_unlock_irqrestore(&leak_lock, flags);
  60}
  61
  62static inline
  63void btrfs_leak_debug_check(void)
  64{
  65        struct extent_state *state;
  66        struct extent_buffer *eb;
  67
  68        while (!list_empty(&states)) {
  69                state = list_entry(states.next, struct extent_state, leak_list);
  70                pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
  71                       state->start, state->end, state->state,
  72                       extent_state_in_tree(state),
  73                       refcount_read(&state->refs));
  74                list_del(&state->leak_list);
  75                kmem_cache_free(extent_state_cache, state);
  76        }
  77
  78        while (!list_empty(&buffers)) {
  79                eb = list_entry(buffers.next, struct extent_buffer, leak_list);
  80                pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
  81                       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
  82                list_del(&eb->leak_list);
  83                kmem_cache_free(extent_buffer_cache, eb);
  84        }
  85}
  86
  87#define btrfs_debug_check_extent_io_range(tree, start, end)             \
  88        __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
  89static inline void __btrfs_debug_check_extent_io_range(const char *caller,
  90                struct extent_io_tree *tree, u64 start, u64 end)
  91{
  92        if (tree->ops && tree->ops->check_extent_io_range)
  93                tree->ops->check_extent_io_range(tree->private_data, caller,
  94                                                 start, end);
  95}
  96#else
  97#define btrfs_leak_debug_add(new, head) do {} while (0)
  98#define btrfs_leak_debug_del(entry)     do {} while (0)
  99#define btrfs_leak_debug_check()        do {} while (0)
 100#define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
 101#endif
 102
 103#define BUFFER_LRU_MAX 64
 104
 105struct tree_entry {
 106        u64 start;
 107        u64 end;
 108        struct rb_node rb_node;
 109};
 110
 111struct extent_page_data {
 112        struct bio *bio;
 113        struct extent_io_tree *tree;
 114        /* tells writepage not to lock the state bits for this range
 115         * it still does the unlocking
 116         */
 117        unsigned int extent_locked:1;
 118
 119        /* tells the submit_bio code to use REQ_SYNC */
 120        unsigned int sync_io:1;
 121};
 122
 123static int add_extent_changeset(struct extent_state *state, unsigned bits,
 124                                 struct extent_changeset *changeset,
 125                                 int set)
 126{
 127        int ret;
 128
 129        if (!changeset)
 130                return 0;
 131        if (set && (state->state & bits) == bits)
 132                return 0;
 133        if (!set && (state->state & bits) == 0)
 134                return 0;
 135        changeset->bytes_changed += state->end - state->start + 1;
 136        ret = ulist_add(&changeset->range_changed, state->start, state->end,
 137                        GFP_ATOMIC);
 138        return ret;
 139}
 140
 141static void flush_write_bio(struct extent_page_data *epd);
 142
 143static inline struct btrfs_fs_info *
 144tree_fs_info(struct extent_io_tree *tree)
 145{
 146        if (tree->ops)
 147                return tree->ops->tree_fs_info(tree->private_data);
 148        return NULL;
 149}
 150
 151int __init extent_io_init(void)
 152{
 153        extent_state_cache = kmem_cache_create("btrfs_extent_state",
 154                        sizeof(struct extent_state), 0,
 155                        SLAB_MEM_SPREAD, NULL);
 156        if (!extent_state_cache)
 157                return -ENOMEM;
 158
 159        extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
 160                        sizeof(struct extent_buffer), 0,
 161                        SLAB_MEM_SPREAD, NULL);
 162        if (!extent_buffer_cache)
 163                goto free_state_cache;
 164
 165        if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
 166                        offsetof(struct btrfs_io_bio, bio),
 167                        BIOSET_NEED_BVECS))
 168                goto free_buffer_cache;
 169
 170        if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
 171                goto free_bioset;
 172
 173        return 0;
 174
 175free_bioset:
 176        bioset_exit(&btrfs_bioset);
 177
 178free_buffer_cache:
 179        kmem_cache_destroy(extent_buffer_cache);
 180        extent_buffer_cache = NULL;
 181
 182free_state_cache:
 183        kmem_cache_destroy(extent_state_cache);
 184        extent_state_cache = NULL;
 185        return -ENOMEM;
 186}
 187
 188void __cold extent_io_exit(void)
 189{
 190        btrfs_leak_debug_check();
 191
 192        /*
 193         * Make sure all delayed rcu free are flushed before we
 194         * destroy caches.
 195         */
 196        rcu_barrier();
 197        kmem_cache_destroy(extent_state_cache);
 198        kmem_cache_destroy(extent_buffer_cache);
 199        bioset_exit(&btrfs_bioset);
 200}
 201
 202void extent_io_tree_init(struct extent_io_tree *tree,
 203                         void *private_data)
 204{
 205        tree->state = RB_ROOT;
 206        tree->ops = NULL;
 207        tree->dirty_bytes = 0;
 208        spin_lock_init(&tree->lock);
 209        tree->private_data = private_data;
 210}
 211
 212static struct extent_state *alloc_extent_state(gfp_t mask)
 213{
 214        struct extent_state *state;
 215
 216        /*
 217         * The given mask might be not appropriate for the slab allocator,
 218         * drop the unsupported bits
 219         */
 220        mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
 221        state = kmem_cache_alloc(extent_state_cache, mask);
 222        if (!state)
 223                return state;
 224        state->state = 0;
 225        state->failrec = NULL;
 226        RB_CLEAR_NODE(&state->rb_node);
 227        btrfs_leak_debug_add(&state->leak_list, &states);
 228        refcount_set(&state->refs, 1);
 229        init_waitqueue_head(&state->wq);
 230        trace_alloc_extent_state(state, mask, _RET_IP_);
 231        return state;
 232}
 233
 234void free_extent_state(struct extent_state *state)
 235{
 236        if (!state)
 237                return;
 238        if (refcount_dec_and_test(&state->refs)) {
 239                WARN_ON(extent_state_in_tree(state));
 240                btrfs_leak_debug_del(&state->leak_list);
 241                trace_free_extent_state(state, _RET_IP_);
 242                kmem_cache_free(extent_state_cache, state);
 243        }
 244}
 245
 246static struct rb_node *tree_insert(struct rb_root *root,
 247                                   struct rb_node *search_start,
 248                                   u64 offset,
 249                                   struct rb_node *node,
 250                                   struct rb_node ***p_in,
 251                                   struct rb_node **parent_in)
 252{
 253        struct rb_node **p;
 254        struct rb_node *parent = NULL;
 255        struct tree_entry *entry;
 256
 257        if (p_in && parent_in) {
 258                p = *p_in;
 259                parent = *parent_in;
 260                goto do_insert;
 261        }
 262
 263        p = search_start ? &search_start : &root->rb_node;
 264        while (*p) {
 265                parent = *p;
 266                entry = rb_entry(parent, struct tree_entry, rb_node);
 267
 268                if (offset < entry->start)
 269                        p = &(*p)->rb_left;
 270                else if (offset > entry->end)
 271                        p = &(*p)->rb_right;
 272                else
 273                        return parent;
 274        }
 275
 276do_insert:
 277        rb_link_node(node, parent, p);
 278        rb_insert_color(node, root);
 279        return NULL;
 280}
 281
 282static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
 283                                      struct rb_node **prev_ret,
 284                                      struct rb_node **next_ret,
 285                                      struct rb_node ***p_ret,
 286                                      struct rb_node **parent_ret)
 287{
 288        struct rb_root *root = &tree->state;
 289        struct rb_node **n = &root->rb_node;
 290        struct rb_node *prev = NULL;
 291        struct rb_node *orig_prev = NULL;
 292        struct tree_entry *entry;
 293        struct tree_entry *prev_entry = NULL;
 294
 295        while (*n) {
 296                prev = *n;
 297                entry = rb_entry(prev, struct tree_entry, rb_node);
 298                prev_entry = entry;
 299
 300                if (offset < entry->start)
 301                        n = &(*n)->rb_left;
 302                else if (offset > entry->end)
 303                        n = &(*n)->rb_right;
 304                else
 305                        return *n;
 306        }
 307
 308        if (p_ret)
 309                *p_ret = n;
 310        if (parent_ret)
 311                *parent_ret = prev;
 312
 313        if (prev_ret) {
 314                orig_prev = prev;
 315                while (prev && offset > prev_entry->end) {
 316                        prev = rb_next(prev);
 317                        prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 318                }
 319                *prev_ret = prev;
 320                prev = orig_prev;
 321        }
 322
 323        if (next_ret) {
 324                prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 325                while (prev && offset < prev_entry->start) {
 326                        prev = rb_prev(prev);
 327                        prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 328                }
 329                *next_ret = prev;
 330        }
 331        return NULL;
 332}
 333
 334static inline struct rb_node *
 335tree_search_for_insert(struct extent_io_tree *tree,
 336                       u64 offset,
 337                       struct rb_node ***p_ret,
 338                       struct rb_node **parent_ret)
 339{
 340        struct rb_node *prev = NULL;
 341        struct rb_node *ret;
 342
 343        ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
 344        if (!ret)
 345                return prev;
 346        return ret;
 347}
 348
 349static inline struct rb_node *tree_search(struct extent_io_tree *tree,
 350                                          u64 offset)
 351{
 352        return tree_search_for_insert(tree, offset, NULL, NULL);
 353}
 354
 355static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
 356                     struct extent_state *other)
 357{
 358        if (tree->ops && tree->ops->merge_extent_hook)
 359                tree->ops->merge_extent_hook(tree->private_data, new, other);
 360}
 361
 362/*
 363 * utility function to look for merge candidates inside a given range.
 364 * Any extents with matching state are merged together into a single
 365 * extent in the tree.  Extents with EXTENT_IO in their state field
 366 * are not merged because the end_io handlers need to be able to do
 367 * operations on them without sleeping (or doing allocations/splits).
 368 *
 369 * This should be called with the tree lock held.
 370 */
 371static void merge_state(struct extent_io_tree *tree,
 372                        struct extent_state *state)
 373{
 374        struct extent_state *other;
 375        struct rb_node *other_node;
 376
 377        if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 378                return;
 379
 380        other_node = rb_prev(&state->rb_node);
 381        if (other_node) {
 382                other = rb_entry(other_node, struct extent_state, rb_node);
 383                if (other->end == state->start - 1 &&
 384                    other->state == state->state) {
 385                        merge_cb(tree, state, other);
 386                        state->start = other->start;
 387                        rb_erase(&other->rb_node, &tree->state);
 388                        RB_CLEAR_NODE(&other->rb_node);
 389                        free_extent_state(other);
 390                }
 391        }
 392        other_node = rb_next(&state->rb_node);
 393        if (other_node) {
 394                other = rb_entry(other_node, struct extent_state, rb_node);
 395                if (other->start == state->end + 1 &&
 396                    other->state == state->state) {
 397                        merge_cb(tree, state, other);
 398                        state->end = other->end;
 399                        rb_erase(&other->rb_node, &tree->state);
 400                        RB_CLEAR_NODE(&other->rb_node);
 401                        free_extent_state(other);
 402                }
 403        }
 404}
 405
 406static void set_state_cb(struct extent_io_tree *tree,
 407                         struct extent_state *state, unsigned *bits)
 408{
 409        if (tree->ops && tree->ops->set_bit_hook)
 410                tree->ops->set_bit_hook(tree->private_data, state, bits);
 411}
 412
 413static void clear_state_cb(struct extent_io_tree *tree,
 414                           struct extent_state *state, unsigned *bits)
 415{
 416        if (tree->ops && tree->ops->clear_bit_hook)
 417                tree->ops->clear_bit_hook(tree->private_data, state, bits);
 418}
 419
 420static void set_state_bits(struct extent_io_tree *tree,
 421                           struct extent_state *state, unsigned *bits,
 422                           struct extent_changeset *changeset);
 423
 424/*
 425 * insert an extent_state struct into the tree.  'bits' are set on the
 426 * struct before it is inserted.
 427 *
 428 * This may return -EEXIST if the extent is already there, in which case the
 429 * state struct is freed.
 430 *
 431 * The tree lock is not taken internally.  This is a utility function and
 432 * probably isn't what you want to call (see set/clear_extent_bit).
 433 */
 434static int insert_state(struct extent_io_tree *tree,
 435                        struct extent_state *state, u64 start, u64 end,
 436                        struct rb_node ***p,
 437                        struct rb_node **parent,
 438                        unsigned *bits, struct extent_changeset *changeset)
 439{
 440        struct rb_node *node;
 441
 442        if (end < start)
 443                WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
 444                       end, start);
 445        state->start = start;
 446        state->end = end;
 447
 448        set_state_bits(tree, state, bits, changeset);
 449
 450        node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
 451        if (node) {
 452                struct extent_state *found;
 453                found = rb_entry(node, struct extent_state, rb_node);
 454                pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
 455                       found->start, found->end, start, end);
 456                return -EEXIST;
 457        }
 458        merge_state(tree, state);
 459        return 0;
 460}
 461
 462static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
 463                     u64 split)
 464{
 465        if (tree->ops && tree->ops->split_extent_hook)
 466                tree->ops->split_extent_hook(tree->private_data, orig, split);
 467}
 468
 469/*
 470 * split a given extent state struct in two, inserting the preallocated
 471 * struct 'prealloc' as the newly created second half.  'split' indicates an
 472 * offset inside 'orig' where it should be split.
 473 *
 474 * Before calling,
 475 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 476 * are two extent state structs in the tree:
 477 * prealloc: [orig->start, split - 1]
 478 * orig: [ split, orig->end ]
 479 *
 480 * The tree locks are not taken by this function. They need to be held
 481 * by the caller.
 482 */
 483static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
 484                       struct extent_state *prealloc, u64 split)
 485{
 486        struct rb_node *node;
 487
 488        split_cb(tree, orig, split);
 489
 490        prealloc->start = orig->start;
 491        prealloc->end = split - 1;
 492        prealloc->state = orig->state;
 493        orig->start = split;
 494
 495        node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
 496                           &prealloc->rb_node, NULL, NULL);
 497        if (node) {
 498                free_extent_state(prealloc);
 499                return -EEXIST;
 500        }
 501        return 0;
 502}
 503
 504static struct extent_state *next_state(struct extent_state *state)
 505{
 506        struct rb_node *next = rb_next(&state->rb_node);
 507        if (next)
 508                return rb_entry(next, struct extent_state, rb_node);
 509        else
 510                return NULL;
 511}
 512
 513/*
 514 * utility function to clear some bits in an extent state struct.
 515 * it will optionally wake up any one waiting on this state (wake == 1).
 516 *
 517 * If no bits are set on the state struct after clearing things, the
 518 * struct is freed and removed from the tree
 519 */
 520static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
 521                                            struct extent_state *state,
 522                                            unsigned *bits, int wake,
 523                                            struct extent_changeset *changeset)
 524{
 525        struct extent_state *next;
 526        unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
 527        int ret;
 528
 529        if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
 530                u64 range = state->end - state->start + 1;
 531                WARN_ON(range > tree->dirty_bytes);
 532                tree->dirty_bytes -= range;
 533        }
 534        clear_state_cb(tree, state, bits);
 535        ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
 536        BUG_ON(ret < 0);
 537        state->state &= ~bits_to_clear;
 538        if (wake)
 539                wake_up(&state->wq);
 540        if (state->state == 0) {
 541                next = next_state(state);
 542                if (extent_state_in_tree(state)) {
 543                        rb_erase(&state->rb_node, &tree->state);
 544                        RB_CLEAR_NODE(&state->rb_node);
 545                        free_extent_state(state);
 546                } else {
 547                        WARN_ON(1);
 548                }
 549        } else {
 550                merge_state(tree, state);
 551                next = next_state(state);
 552        }
 553        return next;
 554}
 555
 556static struct extent_state *
 557alloc_extent_state_atomic(struct extent_state *prealloc)
 558{
 559        if (!prealloc)
 560                prealloc = alloc_extent_state(GFP_ATOMIC);
 561
 562        return prealloc;
 563}
 564
 565static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
 566{
 567        btrfs_panic(tree_fs_info(tree), err,
 568                    "Locking error: Extent tree was modified by another thread while locked.");
 569}
 570
 571/*
 572 * clear some bits on a range in the tree.  This may require splitting
 573 * or inserting elements in the tree, so the gfp mask is used to
 574 * indicate which allocations or sleeping are allowed.
 575 *
 576 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 577 * the given range from the tree regardless of state (ie for truncate).
 578 *
 579 * the range [start, end] is inclusive.
 580 *
 581 * This takes the tree lock, and returns 0 on success and < 0 on error.
 582 */
 583int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 584                              unsigned bits, int wake, int delete,
 585                              struct extent_state **cached_state,
 586                              gfp_t mask, struct extent_changeset *changeset)
 587{
 588        struct extent_state *state;
 589        struct extent_state *cached;
 590        struct extent_state *prealloc = NULL;
 591        struct rb_node *node;
 592        u64 last_end;
 593        int err;
 594        int clear = 0;
 595
 596        btrfs_debug_check_extent_io_range(tree, start, end);
 597
 598        if (bits & EXTENT_DELALLOC)
 599                bits |= EXTENT_NORESERVE;
 600
 601        if (delete)
 602                bits |= ~EXTENT_CTLBITS;
 603        bits |= EXTENT_FIRST_DELALLOC;
 604
 605        if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 606                clear = 1;
 607again:
 608        if (!prealloc && gfpflags_allow_blocking(mask)) {
 609                /*
 610                 * Don't care for allocation failure here because we might end
 611                 * up not needing the pre-allocated extent state at all, which
 612                 * is the case if we only have in the tree extent states that
 613                 * cover our input range and don't cover too any other range.
 614                 * If we end up needing a new extent state we allocate it later.
 615                 */
 616                prealloc = alloc_extent_state(mask);
 617        }
 618
 619        spin_lock(&tree->lock);
 620        if (cached_state) {
 621                cached = *cached_state;
 622
 623                if (clear) {
 624                        *cached_state = NULL;
 625                        cached_state = NULL;
 626                }
 627
 628                if (cached && extent_state_in_tree(cached) &&
 629                    cached->start <= start && cached->end > start) {
 630                        if (clear)
 631                                refcount_dec(&cached->refs);
 632                        state = cached;
 633                        goto hit_next;
 634                }
 635                if (clear)
 636                        free_extent_state(cached);
 637        }
 638        /*
 639         * this search will find the extents that end after
 640         * our range starts
 641         */
 642        node = tree_search(tree, start);
 643        if (!node)
 644                goto out;
 645        state = rb_entry(node, struct extent_state, rb_node);
 646hit_next:
 647        if (state->start > end)
 648                goto out;
 649        WARN_ON(state->end < start);
 650        last_end = state->end;
 651
 652        /* the state doesn't have the wanted bits, go ahead */
 653        if (!(state->state & bits)) {
 654                state = next_state(state);
 655                goto next;
 656        }
 657
 658        /*
 659         *     | ---- desired range ---- |
 660         *  | state | or
 661         *  | ------------- state -------------- |
 662         *
 663         * We need to split the extent we found, and may flip
 664         * bits on second half.
 665         *
 666         * If the extent we found extends past our range, we
 667         * just split and search again.  It'll get split again
 668         * the next time though.
 669         *
 670         * If the extent we found is inside our range, we clear
 671         * the desired bit on it.
 672         */
 673
 674        if (state->start < start) {
 675                prealloc = alloc_extent_state_atomic(prealloc);
 676                BUG_ON(!prealloc);
 677                err = split_state(tree, state, prealloc, start);
 678                if (err)
 679                        extent_io_tree_panic(tree, err);
 680
 681                prealloc = NULL;
 682                if (err)
 683                        goto out;
 684                if (state->end <= end) {
 685                        state = clear_state_bit(tree, state, &bits, wake,
 686                                                changeset);
 687                        goto next;
 688                }
 689                goto search_again;
 690        }
 691        /*
 692         * | ---- desired range ---- |
 693         *                        | state |
 694         * We need to split the extent, and clear the bit
 695         * on the first half
 696         */
 697        if (state->start <= end && state->end > end) {
 698                prealloc = alloc_extent_state_atomic(prealloc);
 699                BUG_ON(!prealloc);
 700                err = split_state(tree, state, prealloc, end + 1);
 701                if (err)
 702                        extent_io_tree_panic(tree, err);
 703
 704                if (wake)
 705                        wake_up(&state->wq);
 706
 707                clear_state_bit(tree, prealloc, &bits, wake, changeset);
 708
 709                prealloc = NULL;
 710                goto out;
 711        }
 712
 713        state = clear_state_bit(tree, state, &bits, wake, changeset);
 714next:
 715        if (last_end == (u64)-1)
 716                goto out;
 717        start = last_end + 1;
 718        if (start <= end && state && !need_resched())
 719                goto hit_next;
 720
 721search_again:
 722        if (start > end)
 723                goto out;
 724        spin_unlock(&tree->lock);
 725        if (gfpflags_allow_blocking(mask))
 726                cond_resched();
 727        goto again;
 728
 729out:
 730        spin_unlock(&tree->lock);
 731        if (prealloc)
 732                free_extent_state(prealloc);
 733
 734        return 0;
 735
 736}
 737
 738static void wait_on_state(struct extent_io_tree *tree,
 739                          struct extent_state *state)
 740                __releases(tree->lock)
 741                __acquires(tree->lock)
 742{
 743        DEFINE_WAIT(wait);
 744        prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
 745        spin_unlock(&tree->lock);
 746        schedule();
 747        spin_lock(&tree->lock);
 748        finish_wait(&state->wq, &wait);
 749}
 750
 751/*
 752 * waits for one or more bits to clear on a range in the state tree.
 753 * The range [start, end] is inclusive.
 754 * The tree lock is taken by this function
 755 */
 756static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 757                            unsigned long bits)
 758{
 759        struct extent_state *state;
 760        struct rb_node *node;
 761
 762        btrfs_debug_check_extent_io_range(tree, start, end);
 763
 764        spin_lock(&tree->lock);
 765again:
 766        while (1) {
 767                /*
 768                 * this search will find all the extents that end after
 769                 * our range starts
 770                 */
 771                node = tree_search(tree, start);
 772process_node:
 773                if (!node)
 774                        break;
 775
 776                state = rb_entry(node, struct extent_state, rb_node);
 777
 778                if (state->start > end)
 779                        goto out;
 780
 781                if (state->state & bits) {
 782                        start = state->start;
 783                        refcount_inc(&state->refs);
 784                        wait_on_state(tree, state);
 785                        free_extent_state(state);
 786                        goto again;
 787                }
 788                start = state->end + 1;
 789
 790                if (start > end)
 791                        break;
 792
 793                if (!cond_resched_lock(&tree->lock)) {
 794                        node = rb_next(node);
 795                        goto process_node;
 796                }
 797        }
 798out:
 799        spin_unlock(&tree->lock);
 800}
 801
 802static void set_state_bits(struct extent_io_tree *tree,
 803                           struct extent_state *state,
 804                           unsigned *bits, struct extent_changeset *changeset)
 805{
 806        unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
 807        int ret;
 808
 809        set_state_cb(tree, state, bits);
 810        if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
 811                u64 range = state->end - state->start + 1;
 812                tree->dirty_bytes += range;
 813        }
 814        ret = add_extent_changeset(state, bits_to_set, changeset, 1);
 815        BUG_ON(ret < 0);
 816        state->state |= bits_to_set;
 817}
 818
 819static void cache_state_if_flags(struct extent_state *state,
 820                                 struct extent_state **cached_ptr,
 821                                 unsigned flags)
 822{
 823        if (cached_ptr && !(*cached_ptr)) {
 824                if (!flags || (state->state & flags)) {
 825                        *cached_ptr = state;
 826                        refcount_inc(&state->refs);
 827                }
 828        }
 829}
 830
 831static void cache_state(struct extent_state *state,
 832                        struct extent_state **cached_ptr)
 833{
 834        return cache_state_if_flags(state, cached_ptr,
 835                                    EXTENT_IOBITS | EXTENT_BOUNDARY);
 836}
 837
 838/*
 839 * set some bits on a range in the tree.  This may require allocations or
 840 * sleeping, so the gfp mask is used to indicate what is allowed.
 841 *
 842 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 843 * part of the range already has the desired bits set.  The start of the
 844 * existing range is returned in failed_start in this case.
 845 *
 846 * [start, end] is inclusive This takes the tree lock.
 847 */
 848
 849static int __must_check
 850__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 851                 unsigned bits, unsigned exclusive_bits,
 852                 u64 *failed_start, struct extent_state **cached_state,
 853                 gfp_t mask, struct extent_changeset *changeset)
 854{
 855        struct extent_state *state;
 856        struct extent_state *prealloc = NULL;
 857        struct rb_node *node;
 858        struct rb_node **p;
 859        struct rb_node *parent;
 860        int err = 0;
 861        u64 last_start;
 862        u64 last_end;
 863
 864        btrfs_debug_check_extent_io_range(tree, start, end);
 865
 866        bits |= EXTENT_FIRST_DELALLOC;
 867again:
 868        if (!prealloc && gfpflags_allow_blocking(mask)) {
 869                /*
 870                 * Don't care for allocation failure here because we might end
 871                 * up not needing the pre-allocated extent state at all, which
 872                 * is the case if we only have in the tree extent states that
 873                 * cover our input range and don't cover too any other range.
 874                 * If we end up needing a new extent state we allocate it later.
 875                 */
 876                prealloc = alloc_extent_state(mask);
 877        }
 878
 879        spin_lock(&tree->lock);
 880        if (cached_state && *cached_state) {
 881                state = *cached_state;
 882                if (state->start <= start && state->end > start &&
 883                    extent_state_in_tree(state)) {
 884                        node = &state->rb_node;
 885                        goto hit_next;
 886                }
 887        }
 888        /*
 889         * this search will find all the extents that end after
 890         * our range starts.
 891         */
 892        node = tree_search_for_insert(tree, start, &p, &parent);
 893        if (!node) {
 894                prealloc = alloc_extent_state_atomic(prealloc);
 895                BUG_ON(!prealloc);
 896                err = insert_state(tree, prealloc, start, end,
 897                                   &p, &parent, &bits, changeset);
 898                if (err)
 899                        extent_io_tree_panic(tree, err);
 900
 901                cache_state(prealloc, cached_state);
 902                prealloc = NULL;
 903                goto out;
 904        }
 905        state = rb_entry(node, struct extent_state, rb_node);
 906hit_next:
 907        last_start = state->start;
 908        last_end = state->end;
 909
 910        /*
 911         * | ---- desired range ---- |
 912         * | state |
 913         *
 914         * Just lock what we found and keep going
 915         */
 916        if (state->start == start && state->end <= end) {
 917                if (state->state & exclusive_bits) {
 918                        *failed_start = state->start;
 919                        err = -EEXIST;
 920                        goto out;
 921                }
 922
 923                set_state_bits(tree, state, &bits, changeset);
 924                cache_state(state, cached_state);
 925                merge_state(tree, state);
 926                if (last_end == (u64)-1)
 927                        goto out;
 928                start = last_end + 1;
 929                state = next_state(state);
 930                if (start < end && state && state->start == start &&
 931                    !need_resched())
 932                        goto hit_next;
 933                goto search_again;
 934        }
 935
 936        /*
 937         *     | ---- desired range ---- |
 938         * | state |
 939         *   or
 940         * | ------------- state -------------- |
 941         *
 942         * We need to split the extent we found, and may flip bits on
 943         * second half.
 944         *
 945         * If the extent we found extends past our
 946         * range, we just split and search again.  It'll get split
 947         * again the next time though.
 948         *
 949         * If the extent we found is inside our range, we set the
 950         * desired bit on it.
 951         */
 952        if (state->start < start) {
 953                if (state->state & exclusive_bits) {
 954                        *failed_start = start;
 955                        err = -EEXIST;
 956                        goto out;
 957                }
 958
 959                prealloc = alloc_extent_state_atomic(prealloc);
 960                BUG_ON(!prealloc);
 961                err = split_state(tree, state, prealloc, start);
 962                if (err)
 963                        extent_io_tree_panic(tree, err);
 964
 965                prealloc = NULL;
 966                if (err)
 967                        goto out;
 968                if (state->end <= end) {
 969                        set_state_bits(tree, state, &bits, changeset);
 970                        cache_state(state, cached_state);
 971                        merge_state(tree, state);
 972                        if (last_end == (u64)-1)
 973                                goto out;
 974                        start = last_end + 1;
 975                        state = next_state(state);
 976                        if (start < end && state && state->start == start &&
 977                            !need_resched())
 978                                goto hit_next;
 979                }
 980                goto search_again;
 981        }
 982        /*
 983         * | ---- desired range ---- |
 984         *     | state | or               | state |
 985         *
 986         * There's a hole, we need to insert something in it and
 987         * ignore the extent we found.
 988         */
 989        if (state->start > start) {
 990                u64 this_end;
 991                if (end < last_start)
 992                        this_end = end;
 993                else
 994                        this_end = last_start - 1;
 995
 996                prealloc = alloc_extent_state_atomic(prealloc);
 997                BUG_ON(!prealloc);
 998
 999                /*
1000                 * Avoid to free 'prealloc' if it can be merged with
1001                 * the later extent.
1002                 */
1003                err = insert_state(tree, prealloc, start, this_end,
1004                                   NULL, NULL, &bits, changeset);
1005                if (err)
1006                        extent_io_tree_panic(tree, err);
1007
1008                cache_state(prealloc, cached_state);
1009                prealloc = NULL;
1010                start = this_end + 1;
1011                goto search_again;
1012        }
1013        /*
1014         * | ---- desired range ---- |
1015         *                        | state |
1016         * We need to split the extent, and set the bit
1017         * on the first half
1018         */
1019        if (state->start <= end && state->end > end) {
1020                if (state->state & exclusive_bits) {
1021                        *failed_start = start;
1022                        err = -EEXIST;
1023                        goto out;
1024                }
1025
1026                prealloc = alloc_extent_state_atomic(prealloc);
1027                BUG_ON(!prealloc);
1028                err = split_state(tree, state, prealloc, end + 1);
1029                if (err)
1030                        extent_io_tree_panic(tree, err);
1031
1032                set_state_bits(tree, prealloc, &bits, changeset);
1033                cache_state(prealloc, cached_state);
1034                merge_state(tree, prealloc);
1035                prealloc = NULL;
1036                goto out;
1037        }
1038
1039search_again:
1040        if (start > end)
1041                goto out;
1042        spin_unlock(&tree->lock);
1043        if (gfpflags_allow_blocking(mask))
1044                cond_resched();
1045        goto again;
1046
1047out:
1048        spin_unlock(&tree->lock);
1049        if (prealloc)
1050                free_extent_state(prealloc);
1051
1052        return err;
1053
1054}
1055
1056int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1057                   unsigned bits, u64 * failed_start,
1058                   struct extent_state **cached_state, gfp_t mask)
1059{
1060        return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1061                                cached_state, mask, NULL);
1062}
1063
1064
1065/**
1066 * convert_extent_bit - convert all bits in a given range from one bit to
1067 *                      another
1068 * @tree:       the io tree to search
1069 * @start:      the start offset in bytes
1070 * @end:        the end offset in bytes (inclusive)
1071 * @bits:       the bits to set in this range
1072 * @clear_bits: the bits to clear in this range
1073 * @cached_state:       state that we're going to cache
1074 *
1075 * This will go through and set bits for the given range.  If any states exist
1076 * already in this range they are set with the given bit and cleared of the
1077 * clear_bits.  This is only meant to be used by things that are mergeable, ie
1078 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1079 * boundary bits like LOCK.
1080 *
1081 * All allocations are done with GFP_NOFS.
1082 */
1083int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1084                       unsigned bits, unsigned clear_bits,
1085                       struct extent_state **cached_state)
1086{
1087        struct extent_state *state;
1088        struct extent_state *prealloc = NULL;
1089        struct rb_node *node;
1090        struct rb_node **p;
1091        struct rb_node *parent;
1092        int err = 0;
1093        u64 last_start;
1094        u64 last_end;
1095        bool first_iteration = true;
1096
1097        btrfs_debug_check_extent_io_range(tree, start, end);
1098
1099again:
1100        if (!prealloc) {
1101                /*
1102                 * Best effort, don't worry if extent state allocation fails
1103                 * here for the first iteration. We might have a cached state
1104                 * that matches exactly the target range, in which case no
1105                 * extent state allocations are needed. We'll only know this
1106                 * after locking the tree.
1107                 */
1108                prealloc = alloc_extent_state(GFP_NOFS);
1109                if (!prealloc && !first_iteration)
1110                        return -ENOMEM;
1111        }
1112
1113        spin_lock(&tree->lock);
1114        if (cached_state && *cached_state) {
1115                state = *cached_state;
1116                if (state->start <= start && state->end > start &&
1117                    extent_state_in_tree(state)) {
1118                        node = &state->rb_node;
1119                        goto hit_next;
1120                }
1121        }
1122
1123        /*
1124         * this search will find all the extents that end after
1125         * our range starts.
1126         */
1127        node = tree_search_for_insert(tree, start, &p, &parent);
1128        if (!node) {
1129                prealloc = alloc_extent_state_atomic(prealloc);
1130                if (!prealloc) {
1131                        err = -ENOMEM;
1132                        goto out;
1133                }
1134                err = insert_state(tree, prealloc, start, end,
1135                                   &p, &parent, &bits, NULL);
1136                if (err)
1137                        extent_io_tree_panic(tree, err);
1138                cache_state(prealloc, cached_state);
1139                prealloc = NULL;
1140                goto out;
1141        }
1142        state = rb_entry(node, struct extent_state, rb_node);
1143hit_next:
1144        last_start = state->start;
1145        last_end = state->end;
1146
1147        /*
1148         * | ---- desired range ---- |
1149         * | state |
1150         *
1151         * Just lock what we found and keep going
1152         */
1153        if (state->start == start && state->end <= end) {
1154                set_state_bits(tree, state, &bits, NULL);
1155                cache_state(state, cached_state);
1156                state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1157                if (last_end == (u64)-1)
1158                        goto out;
1159                start = last_end + 1;
1160                if (start < end && state && state->start == start &&
1161                    !need_resched())
1162                        goto hit_next;
1163                goto search_again;
1164        }
1165
1166        /*
1167         *     | ---- desired range ---- |
1168         * | state |
1169         *   or
1170         * | ------------- state -------------- |
1171         *
1172         * We need to split the extent we found, and may flip bits on
1173         * second half.
1174         *
1175         * If the extent we found extends past our
1176         * range, we just split and search again.  It'll get split
1177         * again the next time though.
1178         *
1179         * If the extent we found is inside our range, we set the
1180         * desired bit on it.
1181         */
1182        if (state->start < start) {
1183                prealloc = alloc_extent_state_atomic(prealloc);
1184                if (!prealloc) {
1185                        err = -ENOMEM;
1186                        goto out;
1187                }
1188                err = split_state(tree, state, prealloc, start);
1189                if (err)
1190                        extent_io_tree_panic(tree, err);
1191                prealloc = NULL;
1192                if (err)
1193                        goto out;
1194                if (state->end <= end) {
1195                        set_state_bits(tree, state, &bits, NULL);
1196                        cache_state(state, cached_state);
1197                        state = clear_state_bit(tree, state, &clear_bits, 0,
1198                                                NULL);
1199                        if (last_end == (u64)-1)
1200                                goto out;
1201                        start = last_end + 1;
1202                        if (start < end && state && state->start == start &&
1203                            !need_resched())
1204                                goto hit_next;
1205                }
1206                goto search_again;
1207        }
1208        /*
1209         * | ---- desired range ---- |
1210         *     | state | or               | state |
1211         *
1212         * There's a hole, we need to insert something in it and
1213         * ignore the extent we found.
1214         */
1215        if (state->start > start) {
1216                u64 this_end;
1217                if (end < last_start)
1218                        this_end = end;
1219                else
1220                        this_end = last_start - 1;
1221
1222                prealloc = alloc_extent_state_atomic(prealloc);
1223                if (!prealloc) {
1224                        err = -ENOMEM;
1225                        goto out;
1226                }
1227
1228                /*
1229                 * Avoid to free 'prealloc' if it can be merged with
1230                 * the later extent.
1231                 */
1232                err = insert_state(tree, prealloc, start, this_end,
1233                                   NULL, NULL, &bits, NULL);
1234                if (err)
1235                        extent_io_tree_panic(tree, err);
1236                cache_state(prealloc, cached_state);
1237                prealloc = NULL;
1238                start = this_end + 1;
1239                goto search_again;
1240        }
1241        /*
1242         * | ---- desired range ---- |
1243         *                        | state |
1244         * We need to split the extent, and set the bit
1245         * on the first half
1246         */
1247        if (state->start <= end && state->end > end) {
1248                prealloc = alloc_extent_state_atomic(prealloc);
1249                if (!prealloc) {
1250                        err = -ENOMEM;
1251                        goto out;
1252                }
1253
1254                err = split_state(tree, state, prealloc, end + 1);
1255                if (err)
1256                        extent_io_tree_panic(tree, err);
1257
1258                set_state_bits(tree, prealloc, &bits, NULL);
1259                cache_state(prealloc, cached_state);
1260                clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1261                prealloc = NULL;
1262                goto out;
1263        }
1264
1265search_again:
1266        if (start > end)
1267                goto out;
1268        spin_unlock(&tree->lock);
1269        cond_resched();
1270        first_iteration = false;
1271        goto again;
1272
1273out:
1274        spin_unlock(&tree->lock);
1275        if (prealloc)
1276                free_extent_state(prealloc);
1277
1278        return err;
1279}
1280
1281/* wrappers around set/clear extent bit */
1282int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1283                           unsigned bits, struct extent_changeset *changeset)
1284{
1285        /*
1286         * We don't support EXTENT_LOCKED yet, as current changeset will
1287         * record any bits changed, so for EXTENT_LOCKED case, it will
1288         * either fail with -EEXIST or changeset will record the whole
1289         * range.
1290         */
1291        BUG_ON(bits & EXTENT_LOCKED);
1292
1293        return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1294                                changeset);
1295}
1296
1297int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1298                     unsigned bits, int wake, int delete,
1299                     struct extent_state **cached)
1300{
1301        return __clear_extent_bit(tree, start, end, bits, wake, delete,
1302                                  cached, GFP_NOFS, NULL);
1303}
1304
1305int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1306                unsigned bits, struct extent_changeset *changeset)
1307{
1308        /*
1309         * Don't support EXTENT_LOCKED case, same reason as
1310         * set_record_extent_bits().
1311         */
1312        BUG_ON(bits & EXTENT_LOCKED);
1313
1314        return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1315                                  changeset);
1316}
1317
1318/*
1319 * either insert or lock state struct between start and end use mask to tell
1320 * us if waiting is desired.
1321 */
1322int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1323                     struct extent_state **cached_state)
1324{
1325        int err;
1326        u64 failed_start;
1327
1328        while (1) {
1329                err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1330                                       EXTENT_LOCKED, &failed_start,
1331                                       cached_state, GFP_NOFS, NULL);
1332                if (err == -EEXIST) {
1333                        wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1334                        start = failed_start;
1335                } else
1336                        break;
1337                WARN_ON(start > end);
1338        }
1339        return err;
1340}
1341
1342int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1343{
1344        int err;
1345        u64 failed_start;
1346
1347        err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1348                               &failed_start, NULL, GFP_NOFS, NULL);
1349        if (err == -EEXIST) {
1350                if (failed_start > start)
1351                        clear_extent_bit(tree, start, failed_start - 1,
1352                                         EXTENT_LOCKED, 1, 0, NULL);
1353                return 0;
1354        }
1355        return 1;
1356}
1357
1358void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1359{
1360        unsigned long index = start >> PAGE_SHIFT;
1361        unsigned long end_index = end >> PAGE_SHIFT;
1362        struct page *page;
1363
1364        while (index <= end_index) {
1365                page = find_get_page(inode->i_mapping, index);
1366                BUG_ON(!page); /* Pages should be in the extent_io_tree */
1367                clear_page_dirty_for_io(page);
1368                put_page(page);
1369                index++;
1370        }
1371}
1372
1373void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1374{
1375        unsigned long index = start >> PAGE_SHIFT;
1376        unsigned long end_index = end >> PAGE_SHIFT;
1377        struct page *page;
1378
1379        while (index <= end_index) {
1380                page = find_get_page(inode->i_mapping, index);
1381                BUG_ON(!page); /* Pages should be in the extent_io_tree */
1382                __set_page_dirty_nobuffers(page);
1383                account_page_redirty(page);
1384                put_page(page);
1385                index++;
1386        }
1387}
1388
1389/*
1390 * helper function to set both pages and extents in the tree writeback
1391 */
1392static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1393{
1394        tree->ops->set_range_writeback(tree->private_data, start, end);
1395}
1396
1397/* find the first state struct with 'bits' set after 'start', and
1398 * return it.  tree->lock must be held.  NULL will returned if
1399 * nothing was found after 'start'
1400 */
1401static struct extent_state *
1402find_first_extent_bit_state(struct extent_io_tree *tree,
1403                            u64 start, unsigned bits)
1404{
1405        struct rb_node *node;
1406        struct extent_state *state;
1407
1408        /*
1409         * this search will find all the extents that end after
1410         * our range starts.
1411         */
1412        node = tree_search(tree, start);
1413        if (!node)
1414                goto out;
1415
1416        while (1) {
1417                state = rb_entry(node, struct extent_state, rb_node);
1418                if (state->end >= start && (state->state & bits))
1419                        return state;
1420
1421                node = rb_next(node);
1422                if (!node)
1423                        break;
1424        }
1425out:
1426        return NULL;
1427}
1428
1429/*
1430 * find the first offset in the io tree with 'bits' set. zero is
1431 * returned if we find something, and *start_ret and *end_ret are
1432 * set to reflect the state struct that was found.
1433 *
1434 * If nothing was found, 1 is returned. If found something, return 0.
1435 */
1436int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1437                          u64 *start_ret, u64 *end_ret, unsigned bits,
1438                          struct extent_state **cached_state)
1439{
1440        struct extent_state *state;
1441        struct rb_node *n;
1442        int ret = 1;
1443
1444        spin_lock(&tree->lock);
1445        if (cached_state && *cached_state) {
1446                state = *cached_state;
1447                if (state->end == start - 1 && extent_state_in_tree(state)) {
1448                        n = rb_next(&state->rb_node);
1449                        while (n) {
1450                                state = rb_entry(n, struct extent_state,
1451                                                 rb_node);
1452                                if (state->state & bits)
1453                                        goto got_it;
1454                                n = rb_next(n);
1455                        }
1456                        free_extent_state(*cached_state);
1457                        *cached_state = NULL;
1458                        goto out;
1459                }
1460                free_extent_state(*cached_state);
1461                *cached_state = NULL;
1462        }
1463
1464        state = find_first_extent_bit_state(tree, start, bits);
1465got_it:
1466        if (state) {
1467                cache_state_if_flags(state, cached_state, 0);
1468                *start_ret = state->start;
1469                *end_ret = state->end;
1470                ret = 0;
1471        }
1472out:
1473        spin_unlock(&tree->lock);
1474        return ret;
1475}
1476
1477/*
1478 * find a contiguous range of bytes in the file marked as delalloc, not
1479 * more than 'max_bytes'.  start and end are used to return the range,
1480 *
1481 * 1 is returned if we find something, 0 if nothing was in the tree
1482 */
1483static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1484                                        u64 *start, u64 *end, u64 max_bytes,
1485                                        struct extent_state **cached_state)
1486{
1487        struct rb_node *node;
1488        struct extent_state *state;
1489        u64 cur_start = *start;
1490        u64 found = 0;
1491        u64 total_bytes = 0;
1492
1493        spin_lock(&tree->lock);
1494
1495        /*
1496         * this search will find all the extents that end after
1497         * our range starts.
1498         */
1499        node = tree_search(tree, cur_start);
1500        if (!node) {
1501                if (!found)
1502                        *end = (u64)-1;
1503                goto out;
1504        }
1505
1506        while (1) {
1507                state = rb_entry(node, struct extent_state, rb_node);
1508                if (found && (state->start != cur_start ||
1509                              (state->state & EXTENT_BOUNDARY))) {
1510                        goto out;
1511                }
1512                if (!(state->state & EXTENT_DELALLOC)) {
1513                        if (!found)
1514                                *end = state->end;
1515                        goto out;
1516                }
1517                if (!found) {
1518                        *start = state->start;
1519                        *cached_state = state;
1520                        refcount_inc(&state->refs);
1521                }
1522                found++;
1523                *end = state->end;
1524                cur_start = state->end + 1;
1525                node = rb_next(node);
1526                total_bytes += state->end - state->start + 1;
1527                if (total_bytes >= max_bytes)
1528                        break;
1529                if (!node)
1530                        break;
1531        }
1532out:
1533        spin_unlock(&tree->lock);
1534        return found;
1535}
1536
1537static int __process_pages_contig(struct address_space *mapping,
1538                                  struct page *locked_page,
1539                                  pgoff_t start_index, pgoff_t end_index,
1540                                  unsigned long page_ops, pgoff_t *index_ret);
1541
1542static noinline void __unlock_for_delalloc(struct inode *inode,
1543                                           struct page *locked_page,
1544                                           u64 start, u64 end)
1545{
1546        unsigned long index = start >> PAGE_SHIFT;
1547        unsigned long end_index = end >> PAGE_SHIFT;
1548
1549        ASSERT(locked_page);
1550        if (index == locked_page->index && end_index == index)
1551                return;
1552
1553        __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1554                               PAGE_UNLOCK, NULL);
1555}
1556
1557static noinline int lock_delalloc_pages(struct inode *inode,
1558                                        struct page *locked_page,
1559                                        u64 delalloc_start,
1560                                        u64 delalloc_end)
1561{
1562        unsigned long index = delalloc_start >> PAGE_SHIFT;
1563        unsigned long index_ret = index;
1564        unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1565        int ret;
1566
1567        ASSERT(locked_page);
1568        if (index == locked_page->index && index == end_index)
1569                return 0;
1570
1571        ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1572                                     end_index, PAGE_LOCK, &index_ret);
1573        if (ret == -EAGAIN)
1574                __unlock_for_delalloc(inode, locked_page, delalloc_start,
1575                                      (u64)index_ret << PAGE_SHIFT);
1576        return ret;
1577}
1578
1579/*
1580 * find a contiguous range of bytes in the file marked as delalloc, not
1581 * more than 'max_bytes'.  start and end are used to return the range,
1582 *
1583 * 1 is returned if we find something, 0 if nothing was in the tree
1584 */
1585STATIC u64 find_lock_delalloc_range(struct inode *inode,
1586                                    struct extent_io_tree *tree,
1587                                    struct page *locked_page, u64 *start,
1588                                    u64 *end, u64 max_bytes)
1589{
1590        u64 delalloc_start;
1591        u64 delalloc_end;
1592        u64 found;
1593        struct extent_state *cached_state = NULL;
1594        int ret;
1595        int loops = 0;
1596
1597again:
1598        /* step one, find a bunch of delalloc bytes starting at start */
1599        delalloc_start = *start;
1600        delalloc_end = 0;
1601        found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1602                                    max_bytes, &cached_state);
1603        if (!found || delalloc_end <= *start) {
1604                *start = delalloc_start;
1605                *end = delalloc_end;
1606                free_extent_state(cached_state);
1607                return 0;
1608        }
1609
1610        /*
1611         * start comes from the offset of locked_page.  We have to lock
1612         * pages in order, so we can't process delalloc bytes before
1613         * locked_page
1614         */
1615        if (delalloc_start < *start)
1616                delalloc_start = *start;
1617
1618        /*
1619         * make sure to limit the number of pages we try to lock down
1620         */
1621        if (delalloc_end + 1 - delalloc_start > max_bytes)
1622                delalloc_end = delalloc_start + max_bytes - 1;
1623
1624        /* step two, lock all the pages after the page that has start */
1625        ret = lock_delalloc_pages(inode, locked_page,
1626                                  delalloc_start, delalloc_end);
1627        if (ret == -EAGAIN) {
1628                /* some of the pages are gone, lets avoid looping by
1629                 * shortening the size of the delalloc range we're searching
1630                 */
1631                free_extent_state(cached_state);
1632                cached_state = NULL;
1633                if (!loops) {
1634                        max_bytes = PAGE_SIZE;
1635                        loops = 1;
1636                        goto again;
1637                } else {
1638                        found = 0;
1639                        goto out_failed;
1640                }
1641        }
1642        BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1643
1644        /* step three, lock the state bits for the whole range */
1645        lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1646
1647        /* then test to make sure it is all still delalloc */
1648        ret = test_range_bit(tree, delalloc_start, delalloc_end,
1649                             EXTENT_DELALLOC, 1, cached_state);
1650        if (!ret) {
1651                unlock_extent_cached(tree, delalloc_start, delalloc_end,
1652                                     &cached_state);
1653                __unlock_for_delalloc(inode, locked_page,
1654                              delalloc_start, delalloc_end);
1655                cond_resched();
1656                goto again;
1657        }
1658        free_extent_state(cached_state);
1659        *start = delalloc_start;
1660        *end = delalloc_end;
1661out_failed:
1662        return found;
1663}
1664
1665static int __process_pages_contig(struct address_space *mapping,
1666                                  struct page *locked_page,
1667                                  pgoff_t start_index, pgoff_t end_index,
1668                                  unsigned long page_ops, pgoff_t *index_ret)
1669{
1670        unsigned long nr_pages = end_index - start_index + 1;
1671        unsigned long pages_locked = 0;
1672        pgoff_t index = start_index;
1673        struct page *pages[16];
1674        unsigned ret;
1675        int err = 0;
1676        int i;
1677
1678        if (page_ops & PAGE_LOCK) {
1679                ASSERT(page_ops == PAGE_LOCK);
1680                ASSERT(index_ret && *index_ret == start_index);
1681        }
1682
1683        if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1684                mapping_set_error(mapping, -EIO);
1685
1686        while (nr_pages > 0) {
1687                ret = find_get_pages_contig(mapping, index,
1688                                     min_t(unsigned long,
1689                                     nr_pages, ARRAY_SIZE(pages)), pages);
1690                if (ret == 0) {
1691                        /*
1692                         * Only if we're going to lock these pages,
1693                         * can we find nothing at @index.
1694                         */
1695                        ASSERT(page_ops & PAGE_LOCK);
1696                        err = -EAGAIN;
1697                        goto out;
1698                }
1699
1700                for (i = 0; i < ret; i++) {
1701                        if (page_ops & PAGE_SET_PRIVATE2)
1702                                SetPagePrivate2(pages[i]);
1703
1704                        if (pages[i] == locked_page) {
1705                                put_page(pages[i]);
1706                                pages_locked++;
1707                                continue;
1708                        }
1709                        if (page_ops & PAGE_CLEAR_DIRTY)
1710                                clear_page_dirty_for_io(pages[i]);
1711                        if (page_ops & PAGE_SET_WRITEBACK)
1712                                set_page_writeback(pages[i]);
1713                        if (page_ops & PAGE_SET_ERROR)
1714                                SetPageError(pages[i]);
1715                        if (page_ops & PAGE_END_WRITEBACK)
1716                                end_page_writeback(pages[i]);
1717                        if (page_ops & PAGE_UNLOCK)
1718                                unlock_page(pages[i]);
1719                        if (page_ops & PAGE_LOCK) {
1720                                lock_page(pages[i]);
1721                                if (!PageDirty(pages[i]) ||
1722                                    pages[i]->mapping != mapping) {
1723                                        unlock_page(pages[i]);
1724                                        put_page(pages[i]);
1725                                        err = -EAGAIN;
1726                                        goto out;
1727                                }
1728                        }
1729                        put_page(pages[i]);
1730                        pages_locked++;
1731                }
1732                nr_pages -= ret;
1733                index += ret;
1734                cond_resched();
1735        }
1736out:
1737        if (err && index_ret)
1738                *index_ret = start_index + pages_locked - 1;
1739        return err;
1740}
1741
1742void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1743                                 u64 delalloc_end, struct page *locked_page,
1744                                 unsigned clear_bits,
1745                                 unsigned long page_ops)
1746{
1747        clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1748                         NULL);
1749
1750        __process_pages_contig(inode->i_mapping, locked_page,
1751                               start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1752                               page_ops, NULL);
1753}
1754
1755/*
1756 * count the number of bytes in the tree that have a given bit(s)
1757 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1758 * cached.  The total number found is returned.
1759 */
1760u64 count_range_bits(struct extent_io_tree *tree,
1761                     u64 *start, u64 search_end, u64 max_bytes,
1762                     unsigned bits, int contig)
1763{
1764        struct rb_node *node;
1765        struct extent_state *state;
1766        u64 cur_start = *start;
1767        u64 total_bytes = 0;
1768        u64 last = 0;
1769        int found = 0;
1770
1771        if (WARN_ON(search_end <= cur_start))
1772                return 0;
1773
1774        spin_lock(&tree->lock);
1775        if (cur_start == 0 && bits == EXTENT_DIRTY) {
1776                total_bytes = tree->dirty_bytes;
1777                goto out;
1778        }
1779        /*
1780         * this search will find all the extents that end after
1781         * our range starts.
1782         */
1783        node = tree_search(tree, cur_start);
1784        if (!node)
1785                goto out;
1786
1787        while (1) {
1788                state = rb_entry(node, struct extent_state, rb_node);
1789                if (state->start > search_end)
1790                        break;
1791                if (contig && found && state->start > last + 1)
1792                        break;
1793                if (state->end >= cur_start && (state->state & bits) == bits) {
1794                        total_bytes += min(search_end, state->end) + 1 -
1795                                       max(cur_start, state->start);
1796                        if (total_bytes >= max_bytes)
1797                                break;
1798                        if (!found) {
1799                                *start = max(cur_start, state->start);
1800                                found = 1;
1801                        }
1802                        last = state->end;
1803                } else if (contig && found) {
1804                        break;
1805                }
1806                node = rb_next(node);
1807                if (!node)
1808                        break;
1809        }
1810out:
1811        spin_unlock(&tree->lock);
1812        return total_bytes;
1813}
1814
1815/*
1816 * set the private field for a given byte offset in the tree.  If there isn't
1817 * an extent_state there already, this does nothing.
1818 */
1819static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1820                struct io_failure_record *failrec)
1821{
1822        struct rb_node *node;
1823        struct extent_state *state;
1824        int ret = 0;
1825
1826        spin_lock(&tree->lock);
1827        /*
1828         * this search will find all the extents that end after
1829         * our range starts.
1830         */
1831        node = tree_search(tree, start);
1832        if (!node) {
1833                ret = -ENOENT;
1834                goto out;
1835        }
1836        state = rb_entry(node, struct extent_state, rb_node);
1837        if (state->start != start) {
1838                ret = -ENOENT;
1839                goto out;
1840        }
1841        state->failrec = failrec;
1842out:
1843        spin_unlock(&tree->lock);
1844        return ret;
1845}
1846
1847static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1848                struct io_failure_record **failrec)
1849{
1850        struct rb_node *node;
1851        struct extent_state *state;
1852        int ret = 0;
1853
1854        spin_lock(&tree->lock);
1855        /*
1856         * this search will find all the extents that end after
1857         * our range starts.
1858         */
1859        node = tree_search(tree, start);
1860        if (!node) {
1861                ret = -ENOENT;
1862                goto out;
1863        }
1864        state = rb_entry(node, struct extent_state, rb_node);
1865        if (state->start != start) {
1866                ret = -ENOENT;
1867                goto out;
1868        }
1869        *failrec = state->failrec;
1870out:
1871        spin_unlock(&tree->lock);
1872        return ret;
1873}
1874
1875/*
1876 * searches a range in the state tree for a given mask.
1877 * If 'filled' == 1, this returns 1 only if every extent in the tree
1878 * has the bits set.  Otherwise, 1 is returned if any bit in the
1879 * range is found set.
1880 */
1881int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1882                   unsigned bits, int filled, struct extent_state *cached)
1883{
1884        struct extent_state *state = NULL;
1885        struct rb_node *node;
1886        int bitset = 0;
1887
1888        spin_lock(&tree->lock);
1889        if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1890            cached->end > start)
1891                node = &cached->rb_node;
1892        else
1893                node = tree_search(tree, start);
1894        while (node && start <= end) {
1895                state = rb_entry(node, struct extent_state, rb_node);
1896
1897                if (filled && state->start > start) {
1898                        bitset = 0;
1899                        break;
1900                }
1901
1902                if (state->start > end)
1903                        break;
1904
1905                if (state->state & bits) {
1906                        bitset = 1;
1907                        if (!filled)
1908                                break;
1909                } else if (filled) {
1910                        bitset = 0;
1911                        break;
1912                }
1913
1914                if (state->end == (u64)-1)
1915                        break;
1916
1917                start = state->end + 1;
1918                if (start > end)
1919                        break;
1920                node = rb_next(node);
1921                if (!node) {
1922                        if (filled)
1923                                bitset = 0;
1924                        break;
1925                }
1926        }
1927        spin_unlock(&tree->lock);
1928        return bitset;
1929}
1930
1931/*
1932 * helper function to set a given page up to date if all the
1933 * extents in the tree for that page are up to date
1934 */
1935static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1936{
1937        u64 start = page_offset(page);
1938        u64 end = start + PAGE_SIZE - 1;
1939        if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1940                SetPageUptodate(page);
1941}
1942
1943int free_io_failure(struct extent_io_tree *failure_tree,
1944                    struct extent_io_tree *io_tree,
1945                    struct io_failure_record *rec)
1946{
1947        int ret;
1948        int err = 0;
1949
1950        set_state_failrec(failure_tree, rec->start, NULL);
1951        ret = clear_extent_bits(failure_tree, rec->start,
1952                                rec->start + rec->len - 1,
1953                                EXTENT_LOCKED | EXTENT_DIRTY);
1954        if (ret)
1955                err = ret;
1956
1957        ret = clear_extent_bits(io_tree, rec->start,
1958                                rec->start + rec->len - 1,
1959                                EXTENT_DAMAGED);
1960        if (ret && !err)
1961                err = ret;
1962
1963        kfree(rec);
1964        return err;
1965}
1966
1967/*
1968 * this bypasses the standard btrfs submit functions deliberately, as
1969 * the standard behavior is to write all copies in a raid setup. here we only
1970 * want to write the one bad copy. so we do the mapping for ourselves and issue
1971 * submit_bio directly.
1972 * to avoid any synchronization issues, wait for the data after writing, which
1973 * actually prevents the read that triggered the error from finishing.
1974 * currently, there can be no more than two copies of every data bit. thus,
1975 * exactly one rewrite is required.
1976 */
1977int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1978                      u64 length, u64 logical, struct page *page,
1979                      unsigned int pg_offset, int mirror_num)
1980{
1981        struct bio *bio;
1982        struct btrfs_device *dev;
1983        u64 map_length = 0;
1984        u64 sector;
1985        struct btrfs_bio *bbio = NULL;
1986        int ret;
1987
1988        ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
1989        BUG_ON(!mirror_num);
1990
1991        bio = btrfs_io_bio_alloc(1);
1992        bio->bi_iter.bi_size = 0;
1993        map_length = length;
1994
1995        /*
1996         * Avoid races with device replace and make sure our bbio has devices
1997         * associated to its stripes that don't go away while we are doing the
1998         * read repair operation.
1999         */
2000        btrfs_bio_counter_inc_blocked(fs_info);
2001        if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2002                /*
2003                 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2004                 * to update all raid stripes, but here we just want to correct
2005                 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2006                 * stripe's dev and sector.
2007                 */
2008                ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2009                                      &map_length, &bbio, 0);
2010                if (ret) {
2011                        btrfs_bio_counter_dec(fs_info);
2012                        bio_put(bio);
2013                        return -EIO;
2014                }
2015                ASSERT(bbio->mirror_num == 1);
2016        } else {
2017                ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2018                                      &map_length, &bbio, mirror_num);
2019                if (ret) {
2020                        btrfs_bio_counter_dec(fs_info);
2021                        bio_put(bio);
2022                        return -EIO;
2023                }
2024                BUG_ON(mirror_num != bbio->mirror_num);
2025        }
2026
2027        sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2028        bio->bi_iter.bi_sector = sector;
2029        dev = bbio->stripes[bbio->mirror_num - 1].dev;
2030        btrfs_put_bbio(bbio);
2031        if (!dev || !dev->bdev ||
2032            !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2033                btrfs_bio_counter_dec(fs_info);
2034                bio_put(bio);
2035                return -EIO;
2036        }
2037        bio_set_dev(bio, dev->bdev);
2038        bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2039        bio_add_page(bio, page, length, pg_offset);
2040
2041        if (btrfsic_submit_bio_wait(bio)) {
2042                /* try to remap that extent elsewhere? */
2043                btrfs_bio_counter_dec(fs_info);
2044                bio_put(bio);
2045                btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2046                return -EIO;
2047        }
2048
2049        btrfs_info_rl_in_rcu(fs_info,
2050                "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2051                                  ino, start,
2052                                  rcu_str_deref(dev->name), sector);
2053        btrfs_bio_counter_dec(fs_info);
2054        bio_put(bio);
2055        return 0;
2056}
2057
2058int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2059                         struct extent_buffer *eb, int mirror_num)
2060{
2061        u64 start = eb->start;
2062        unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2063        int ret = 0;
2064
2065        if (sb_rdonly(fs_info->sb))
2066                return -EROFS;
2067
2068        for (i = 0; i < num_pages; i++) {
2069                struct page *p = eb->pages[i];
2070
2071                ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2072                                        start - page_offset(p), mirror_num);
2073                if (ret)
2074                        break;
2075                start += PAGE_SIZE;
2076        }
2077
2078        return ret;
2079}
2080
2081/*
2082 * each time an IO finishes, we do a fast check in the IO failure tree
2083 * to see if we need to process or clean up an io_failure_record
2084 */
2085int clean_io_failure(struct btrfs_fs_info *fs_info,
2086                     struct extent_io_tree *failure_tree,
2087                     struct extent_io_tree *io_tree, u64 start,
2088                     struct page *page, u64 ino, unsigned int pg_offset)
2089{
2090        u64 private;
2091        struct io_failure_record *failrec;
2092        struct extent_state *state;
2093        int num_copies;
2094        int ret;
2095
2096        private = 0;
2097        ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2098                               EXTENT_DIRTY, 0);
2099        if (!ret)
2100                return 0;
2101
2102        ret = get_state_failrec(failure_tree, start, &failrec);
2103        if (ret)
2104                return 0;
2105
2106        BUG_ON(!failrec->this_mirror);
2107
2108        if (failrec->in_validation) {
2109                /* there was no real error, just free the record */
2110                btrfs_debug(fs_info,
2111                        "clean_io_failure: freeing dummy error at %llu",
2112                        failrec->start);
2113                goto out;
2114        }
2115        if (sb_rdonly(fs_info->sb))
2116                goto out;
2117
2118        spin_lock(&io_tree->lock);
2119        state = find_first_extent_bit_state(io_tree,
2120                                            failrec->start,
2121                                            EXTENT_LOCKED);
2122        spin_unlock(&io_tree->lock);
2123
2124        if (state && state->start <= failrec->start &&
2125            state->end >= failrec->start + failrec->len - 1) {
2126                num_copies = btrfs_num_copies(fs_info, failrec->logical,
2127                                              failrec->len);
2128                if (num_copies > 1)  {
2129                        repair_io_failure(fs_info, ino, start, failrec->len,
2130                                          failrec->logical, page, pg_offset,
2131                                          failrec->failed_mirror);
2132                }
2133        }
2134
2135out:
2136        free_io_failure(failure_tree, io_tree, failrec);
2137
2138        return 0;
2139}
2140
2141/*
2142 * Can be called when
2143 * - hold extent lock
2144 * - under ordered extent
2145 * - the inode is freeing
2146 */
2147void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2148{
2149        struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2150        struct io_failure_record *failrec;
2151        struct extent_state *state, *next;
2152
2153        if (RB_EMPTY_ROOT(&failure_tree->state))
2154                return;
2155
2156        spin_lock(&failure_tree->lock);
2157        state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2158        while (state) {
2159                if (state->start > end)
2160                        break;
2161
2162                ASSERT(state->end <= end);
2163
2164                next = next_state(state);
2165
2166                failrec = state->failrec;
2167                free_extent_state(state);
2168                kfree(failrec);
2169
2170                state = next;
2171        }
2172        spin_unlock(&failure_tree->lock);
2173}
2174
2175int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2176                struct io_failure_record **failrec_ret)
2177{
2178        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2179        struct io_failure_record *failrec;
2180        struct extent_map *em;
2181        struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2182        struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2183        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2184        int ret;
2185        u64 logical;
2186
2187        ret = get_state_failrec(failure_tree, start, &failrec);
2188        if (ret) {
2189                failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2190                if (!failrec)
2191                        return -ENOMEM;
2192
2193                failrec->start = start;
2194                failrec->len = end - start + 1;
2195                failrec->this_mirror = 0;
2196                failrec->bio_flags = 0;
2197                failrec->in_validation = 0;
2198
2199                read_lock(&em_tree->lock);
2200                em = lookup_extent_mapping(em_tree, start, failrec->len);
2201                if (!em) {
2202                        read_unlock(&em_tree->lock);
2203                        kfree(failrec);
2204                        return -EIO;
2205                }
2206
2207                if (em->start > start || em->start + em->len <= start) {
2208                        free_extent_map(em);
2209                        em = NULL;
2210                }
2211                read_unlock(&em_tree->lock);
2212                if (!em) {
2213                        kfree(failrec);
2214                        return -EIO;
2215                }
2216
2217                logical = start - em->start;
2218                logical = em->block_start + logical;
2219                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2220                        logical = em->block_start;
2221                        failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2222                        extent_set_compress_type(&failrec->bio_flags,
2223                                                 em->compress_type);
2224                }
2225
2226                btrfs_debug(fs_info,
2227                        "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2228                        logical, start, failrec->len);
2229
2230                failrec->logical = logical;
2231                free_extent_map(em);
2232
2233                /* set the bits in the private failure tree */
2234                ret = set_extent_bits(failure_tree, start, end,
2235                                        EXTENT_LOCKED | EXTENT_DIRTY);
2236                if (ret >= 0)
2237                        ret = set_state_failrec(failure_tree, start, failrec);
2238                /* set the bits in the inode's tree */
2239                if (ret >= 0)
2240                        ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2241                if (ret < 0) {
2242                        kfree(failrec);
2243                        return ret;
2244                }
2245        } else {
2246                btrfs_debug(fs_info,
2247                        "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2248                        failrec->logical, failrec->start, failrec->len,
2249                        failrec->in_validation);
2250                /*
2251                 * when data can be on disk more than twice, add to failrec here
2252                 * (e.g. with a list for failed_mirror) to make
2253                 * clean_io_failure() clean all those errors at once.
2254                 */
2255        }
2256
2257        *failrec_ret = failrec;
2258
2259        return 0;
2260}
2261
2262bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2263                           struct io_failure_record *failrec, int failed_mirror)
2264{
2265        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2266        int num_copies;
2267
2268        num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2269        if (num_copies == 1) {
2270                /*
2271                 * we only have a single copy of the data, so don't bother with
2272                 * all the retry and error correction code that follows. no
2273                 * matter what the error is, it is very likely to persist.
2274                 */
2275                btrfs_debug(fs_info,
2276                        "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2277                        num_copies, failrec->this_mirror, failed_mirror);
2278                return false;
2279        }
2280
2281        /*
2282         * there are two premises:
2283         *      a) deliver good data to the caller
2284         *      b) correct the bad sectors on disk
2285         */
2286        if (failed_bio_pages > 1) {
2287                /*
2288                 * to fulfill b), we need to know the exact failing sectors, as
2289                 * we don't want to rewrite any more than the failed ones. thus,
2290                 * we need separate read requests for the failed bio
2291                 *
2292                 * if the following BUG_ON triggers, our validation request got
2293                 * merged. we need separate requests for our algorithm to work.
2294                 */
2295                BUG_ON(failrec->in_validation);
2296                failrec->in_validation = 1;
2297                failrec->this_mirror = failed_mirror;
2298        } else {
2299                /*
2300                 * we're ready to fulfill a) and b) alongside. get a good copy
2301                 * of the failed sector and if we succeed, we have setup
2302                 * everything for repair_io_failure to do the rest for us.
2303                 */
2304                if (failrec->in_validation) {
2305                        BUG_ON(failrec->this_mirror != failed_mirror);
2306                        failrec->in_validation = 0;
2307                        failrec->this_mirror = 0;
2308                }
2309                failrec->failed_mirror = failed_mirror;
2310                failrec->this_mirror++;
2311                if (failrec->this_mirror == failed_mirror)
2312                        failrec->this_mirror++;
2313        }
2314
2315        if (failrec->this_mirror > num_copies) {
2316                btrfs_debug(fs_info,
2317                        "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2318                        num_copies, failrec->this_mirror, failed_mirror);
2319                return false;
2320        }
2321
2322        return true;
2323}
2324
2325
2326struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2327                                    struct io_failure_record *failrec,
2328                                    struct page *page, int pg_offset, int icsum,
2329                                    bio_end_io_t *endio_func, void *data)
2330{
2331        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2332        struct bio *bio;
2333        struct btrfs_io_bio *btrfs_failed_bio;
2334        struct btrfs_io_bio *btrfs_bio;
2335
2336        bio = btrfs_io_bio_alloc(1);
2337        bio->bi_end_io = endio_func;
2338        bio->bi_iter.bi_sector = failrec->logical >> 9;
2339        bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2340        bio->bi_iter.bi_size = 0;
2341        bio->bi_private = data;
2342
2343        btrfs_failed_bio = btrfs_io_bio(failed_bio);
2344        if (btrfs_failed_bio->csum) {
2345                u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2346
2347                btrfs_bio = btrfs_io_bio(bio);
2348                btrfs_bio->csum = btrfs_bio->csum_inline;
2349                icsum *= csum_size;
2350                memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2351                       csum_size);
2352        }
2353
2354        bio_add_page(bio, page, failrec->len, pg_offset);
2355
2356        return bio;
2357}
2358
2359/*
2360 * this is a generic handler for readpage errors (default
2361 * readpage_io_failed_hook). if other copies exist, read those and write back
2362 * good data to the failed position. does not investigate in remapping the
2363 * failed extent elsewhere, hoping the device will be smart enough to do this as
2364 * needed
2365 */
2366
2367static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2368                              struct page *page, u64 start, u64 end,
2369                              int failed_mirror)
2370{
2371        struct io_failure_record *failrec;
2372        struct inode *inode = page->mapping->host;
2373        struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2374        struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2375        struct bio *bio;
2376        int read_mode = 0;
2377        blk_status_t status;
2378        int ret;
2379        unsigned failed_bio_pages = failed_bio->bi_iter.bi_size >> PAGE_SHIFT;
2380
2381        BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2382
2383        ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2384        if (ret)
2385                return ret;
2386
2387        if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2388                                    failed_mirror)) {
2389                free_io_failure(failure_tree, tree, failrec);
2390                return -EIO;
2391        }
2392
2393        if (failed_bio_pages > 1)
2394                read_mode |= REQ_FAILFAST_DEV;
2395
2396        phy_offset >>= inode->i_sb->s_blocksize_bits;
2397        bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2398                                      start - page_offset(page),
2399                                      (int)phy_offset, failed_bio->bi_end_io,
2400                                      NULL);
2401        bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2402
2403        btrfs_debug(btrfs_sb(inode->i_sb),
2404                "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2405                read_mode, failrec->this_mirror, failrec->in_validation);
2406
2407        status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2408                                         failrec->bio_flags, 0);
2409        if (status) {
2410                free_io_failure(failure_tree, tree, failrec);
2411                bio_put(bio);
2412                ret = blk_status_to_errno(status);
2413        }
2414
2415        return ret;
2416}
2417
2418/* lots and lots of room for performance fixes in the end_bio funcs */
2419
2420void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2421{
2422        int uptodate = (err == 0);
2423        struct extent_io_tree *tree;
2424        int ret = 0;
2425
2426        tree = &BTRFS_I(page->mapping->host)->io_tree;
2427
2428        if (tree->ops && tree->ops->writepage_end_io_hook)
2429                tree->ops->writepage_end_io_hook(page, start, end, NULL,
2430                                uptodate);
2431
2432        if (!uptodate) {
2433                ClearPageUptodate(page);
2434                SetPageError(page);
2435                ret = err < 0 ? err : -EIO;
2436                mapping_set_error(page->mapping, ret);
2437        }
2438}
2439
2440/*
2441 * after a writepage IO is done, we need to:
2442 * clear the uptodate bits on error
2443 * clear the writeback bits in the extent tree for this IO
2444 * end_page_writeback if the page has no more pending IO
2445 *
2446 * Scheduling is not allowed, so the extent state tree is expected
2447 * to have one and only one object corresponding to this IO.
2448 */
2449static void end_bio_extent_writepage(struct bio *bio)
2450{
2451        int error = blk_status_to_errno(bio->bi_status);
2452        struct bio_vec *bvec;
2453        u64 start;
2454        u64 end;
2455        int i;
2456
2457        ASSERT(!bio_flagged(bio, BIO_CLONED));
2458        bio_for_each_segment_all(bvec, bio, i) {
2459                struct page *page = bvec->bv_page;
2460                struct inode *inode = page->mapping->host;
2461                struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2462
2463                /* We always issue full-page reads, but if some block
2464                 * in a page fails to read, blk_update_request() will
2465                 * advance bv_offset and adjust bv_len to compensate.
2466                 * Print a warning for nonzero offsets, and an error
2467                 * if they don't add up to a full page.  */
2468                if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2469                        if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2470                                btrfs_err(fs_info,
2471                                   "partial page write in btrfs with offset %u and length %u",
2472                                        bvec->bv_offset, bvec->bv_len);
2473                        else
2474                                btrfs_info(fs_info,
2475                                   "incomplete page write in btrfs with offset %u and length %u",
2476                                        bvec->bv_offset, bvec->bv_len);
2477                }
2478
2479                start = page_offset(page);
2480                end = start + bvec->bv_offset + bvec->bv_len - 1;
2481
2482                end_extent_writepage(page, error, start, end);
2483                end_page_writeback(page);
2484        }
2485
2486        bio_put(bio);
2487}
2488
2489static void
2490endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2491                              int uptodate)
2492{
2493        struct extent_state *cached = NULL;
2494        u64 end = start + len - 1;
2495
2496        if (uptodate && tree->track_uptodate)
2497                set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2498        unlock_extent_cached_atomic(tree, start, end, &cached);
2499}
2500
2501/*
2502 * after a readpage IO is done, we need to:
2503 * clear the uptodate bits on error
2504 * set the uptodate bits if things worked
2505 * set the page up to date if all extents in the tree are uptodate
2506 * clear the lock bit in the extent tree
2507 * unlock the page if there are no other extents locked for it
2508 *
2509 * Scheduling is not allowed, so the extent state tree is expected
2510 * to have one and only one object corresponding to this IO.
2511 */
2512static void end_bio_extent_readpage(struct bio *bio)
2513{
2514        struct bio_vec *bvec;
2515        int uptodate = !bio->bi_status;
2516        struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2517        struct extent_io_tree *tree, *failure_tree;
2518        u64 offset = 0;
2519        u64 start;
2520        u64 end;
2521        u64 len;
2522        u64 extent_start = 0;
2523        u64 extent_len = 0;
2524        int mirror;
2525        int ret;
2526        int i;
2527
2528        ASSERT(!bio_flagged(bio, BIO_CLONED));
2529        bio_for_each_segment_all(bvec, bio, i) {
2530                struct page *page = bvec->bv_page;
2531                struct inode *inode = page->mapping->host;
2532                struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2533
2534                btrfs_debug(fs_info,
2535                        "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2536                        (u64)bio->bi_iter.bi_sector, bio->bi_status,
2537                        io_bio->mirror_num);
2538                tree = &BTRFS_I(inode)->io_tree;
2539                failure_tree = &BTRFS_I(inode)->io_failure_tree;
2540
2541                /* We always issue full-page reads, but if some block
2542                 * in a page fails to read, blk_update_request() will
2543                 * advance bv_offset and adjust bv_len to compensate.
2544                 * Print a warning for nonzero offsets, and an error
2545                 * if they don't add up to a full page.  */
2546                if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2547                        if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2548                                btrfs_err(fs_info,
2549                                        "partial page read in btrfs with offset %u and length %u",
2550                                        bvec->bv_offset, bvec->bv_len);
2551                        else
2552                                btrfs_info(fs_info,
2553                                        "incomplete page read in btrfs with offset %u and length %u",
2554                                        bvec->bv_offset, bvec->bv_len);
2555                }
2556
2557                start = page_offset(page);
2558                end = start + bvec->bv_offset + bvec->bv_len - 1;
2559                len = bvec->bv_len;
2560
2561                mirror = io_bio->mirror_num;
2562                if (likely(uptodate && tree->ops)) {
2563                        ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2564                                                              page, start, end,
2565                                                              mirror);
2566                        if (ret)
2567                                uptodate = 0;
2568                        else
2569                                clean_io_failure(BTRFS_I(inode)->root->fs_info,
2570                                                 failure_tree, tree, start,
2571                                                 page,
2572                                                 btrfs_ino(BTRFS_I(inode)), 0);
2573                }
2574
2575                if (likely(uptodate))
2576                        goto readpage_ok;
2577
2578                if (tree->ops) {
2579                        ret = tree->ops->readpage_io_failed_hook(page, mirror);
2580                        if (ret == -EAGAIN) {
2581                                /*
2582                                 * Data inode's readpage_io_failed_hook() always
2583                                 * returns -EAGAIN.
2584                                 *
2585                                 * The generic bio_readpage_error handles errors
2586                                 * the following way: If possible, new read
2587                                 * requests are created and submitted and will
2588                                 * end up in end_bio_extent_readpage as well (if
2589                                 * we're lucky, not in the !uptodate case). In
2590                                 * that case it returns 0 and we just go on with
2591                                 * the next page in our bio. If it can't handle
2592                                 * the error it will return -EIO and we remain
2593                                 * responsible for that page.
2594                                 */
2595                                ret = bio_readpage_error(bio, offset, page,
2596                                                         start, end, mirror);
2597                                if (ret == 0) {
2598                                        uptodate = !bio->bi_status;
2599                                        offset += len;
2600                                        continue;
2601                                }
2602                        }
2603
2604                        /*
2605                         * metadata's readpage_io_failed_hook() always returns
2606                         * -EIO and fixes nothing.  -EIO is also returned if
2607                         * data inode error could not be fixed.
2608                         */
2609                        ASSERT(ret == -EIO);
2610                }
2611readpage_ok:
2612                if (likely(uptodate)) {
2613                        loff_t i_size = i_size_read(inode);
2614                        pgoff_t end_index = i_size >> PAGE_SHIFT;
2615                        unsigned off;
2616
2617                        /* Zero out the end if this page straddles i_size */
2618                        off = i_size & (PAGE_SIZE-1);
2619                        if (page->index == end_index && off)
2620                                zero_user_segment(page, off, PAGE_SIZE);
2621                        SetPageUptodate(page);
2622                } else {
2623                        ClearPageUptodate(page);
2624                        SetPageError(page);
2625                }
2626                unlock_page(page);
2627                offset += len;
2628
2629                if (unlikely(!uptodate)) {
2630                        if (extent_len) {
2631                                endio_readpage_release_extent(tree,
2632                                                              extent_start,
2633                                                              extent_len, 1);
2634                                extent_start = 0;
2635                                extent_len = 0;
2636                        }
2637                        endio_readpage_release_extent(tree, start,
2638                                                      end - start + 1, 0);
2639                } else if (!extent_len) {
2640                        extent_start = start;
2641                        extent_len = end + 1 - start;
2642                } else if (extent_start + extent_len == start) {
2643                        extent_len += end + 1 - start;
2644                } else {
2645                        endio_readpage_release_extent(tree, extent_start,
2646                                                      extent_len, uptodate);
2647                        extent_start = start;
2648                        extent_len = end + 1 - start;
2649                }
2650        }
2651
2652        if (extent_len)
2653                endio_readpage_release_extent(tree, extent_start, extent_len,
2654                                              uptodate);
2655        if (io_bio->end_io)
2656                io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status));
2657        bio_put(bio);
2658}
2659
2660/*
2661 * Initialize the members up to but not including 'bio'. Use after allocating a
2662 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2663 * 'bio' because use of __GFP_ZERO is not supported.
2664 */
2665static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2666{
2667        memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2668}
2669
2670/*
2671 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2672 * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2673 * for the appropriate container_of magic
2674 */
2675struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
2676{
2677        struct bio *bio;
2678
2679        bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2680        bio_set_dev(bio, bdev);
2681        bio->bi_iter.bi_sector = first_byte >> 9;
2682        btrfs_io_bio_init(btrfs_io_bio(bio));
2683        return bio;
2684}
2685
2686struct bio *btrfs_bio_clone(struct bio *bio)
2687{
2688        struct btrfs_io_bio *btrfs_bio;
2689        struct bio *new;
2690
2691        /* Bio allocation backed by a bioset does not fail */
2692        new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2693        btrfs_bio = btrfs_io_bio(new);
2694        btrfs_io_bio_init(btrfs_bio);
2695        btrfs_bio->iter = bio->bi_iter;
2696        return new;
2697}
2698
2699struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2700{
2701        struct bio *bio;
2702
2703        /* Bio allocation backed by a bioset does not fail */
2704        bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2705        btrfs_io_bio_init(btrfs_io_bio(bio));
2706        return bio;
2707}
2708
2709struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2710{
2711        struct bio *bio;
2712        struct btrfs_io_bio *btrfs_bio;
2713
2714        /* this will never fail when it's backed by a bioset */
2715        bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2716        ASSERT(bio);
2717
2718        btrfs_bio = btrfs_io_bio(bio);
2719        btrfs_io_bio_init(btrfs_bio);
2720
2721        bio_trim(bio, offset >> 9, size >> 9);
2722        btrfs_bio->iter = bio->bi_iter;
2723        return bio;
2724}
2725
2726static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2727                                       unsigned long bio_flags)
2728{
2729        blk_status_t ret = 0;
2730        struct bio_vec *bvec = bio_last_bvec_all(bio);
2731        struct page *page = bvec->bv_page;
2732        struct extent_io_tree *tree = bio->bi_private;
2733        u64 start;
2734
2735        start = page_offset(page) + bvec->bv_offset;
2736
2737        bio->bi_private = NULL;
2738
2739        if (tree->ops)
2740                ret = tree->ops->submit_bio_hook(tree->private_data, bio,
2741                                           mirror_num, bio_flags, start);
2742        else
2743                btrfsic_submit_bio(bio);
2744
2745        return blk_status_to_errno(ret);
2746}
2747
2748/*
2749 * @opf:        bio REQ_OP_* and REQ_* flags as one value
2750 * @tree:       tree so we can call our merge_bio hook
2751 * @wbc:        optional writeback control for io accounting
2752 * @page:       page to add to the bio
2753 * @pg_offset:  offset of the new bio or to check whether we are adding
2754 *              a contiguous page to the previous one
2755 * @size:       portion of page that we want to write
2756 * @offset:     starting offset in the page
2757 * @bdev:       attach newly created bios to this bdev
2758 * @bio_ret:    must be valid pointer, newly allocated bio will be stored there
2759 * @end_io_func:     end_io callback for new bio
2760 * @mirror_num:      desired mirror to read/write
2761 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
2762 * @bio_flags:  flags of the current bio to see if we can merge them
2763 */
2764static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2765                              struct writeback_control *wbc,
2766                              struct page *page, u64 offset,
2767                              size_t size, unsigned long pg_offset,
2768                              struct block_device *bdev,
2769                              struct bio **bio_ret,
2770                              bio_end_io_t end_io_func,
2771                              int mirror_num,
2772                              unsigned long prev_bio_flags,
2773                              unsigned long bio_flags,
2774                              bool force_bio_submit)
2775{
2776        int ret = 0;
2777        struct bio *bio;
2778        size_t page_size = min_t(size_t, size, PAGE_SIZE);
2779        sector_t sector = offset >> 9;
2780
2781        ASSERT(bio_ret);
2782
2783        if (*bio_ret) {
2784                bool contig;
2785                bool can_merge = true;
2786
2787                bio = *bio_ret;
2788                if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2789                        contig = bio->bi_iter.bi_sector == sector;
2790                else
2791                        contig = bio_end_sector(bio) == sector;
2792
2793                if (tree->ops && tree->ops->merge_bio_hook(page, offset,
2794                                        page_size, bio, bio_flags))
2795                        can_merge = false;
2796
2797                if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2798                    force_bio_submit ||
2799                    bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2800                        ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2801                        if (ret < 0) {
2802                                *bio_ret = NULL;
2803                                return ret;
2804                        }
2805                        bio = NULL;
2806                } else {
2807                        if (wbc)
2808                                wbc_account_cgroup_owner(wbc, page, page_size);
2809                        return 0;
2810                }
2811        }
2812
2813        bio = btrfs_bio_alloc(bdev, offset);
2814        bio_add_page(bio, page, page_size, pg_offset);
2815        bio->bi_end_io = end_io_func;
2816        bio->bi_private = tree;
2817        bio->bi_write_hint = page->mapping->host->i_write_hint;
2818        bio->bi_opf = opf;
2819        if (wbc) {
2820                wbc_init_bio(wbc, bio);
2821                wbc_account_cgroup_owner(wbc, page, page_size);
2822        }
2823
2824        *bio_ret = bio;
2825
2826        return ret;
2827}
2828
2829static void attach_extent_buffer_page(struct extent_buffer *eb,
2830                                      struct page *page)
2831{
2832        if (!PagePrivate(page)) {
2833                SetPagePrivate(page);
2834                get_page(page);
2835                set_page_private(page, (unsigned long)eb);
2836        } else {
2837                WARN_ON(page->private != (unsigned long)eb);
2838        }
2839}
2840
2841void set_page_extent_mapped(struct page *page)
2842{
2843        if (!PagePrivate(page)) {
2844                SetPagePrivate(page);
2845                get_page(page);
2846                set_page_private(page, EXTENT_PAGE_PRIVATE);
2847        }
2848}
2849
2850static struct extent_map *
2851__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2852                 u64 start, u64 len, get_extent_t *get_extent,
2853                 struct extent_map **em_cached)
2854{
2855        struct extent_map *em;
2856
2857        if (em_cached && *em_cached) {
2858                em = *em_cached;
2859                if (extent_map_in_tree(em) && start >= em->start &&
2860                    start < extent_map_end(em)) {
2861                        refcount_inc(&em->refs);
2862                        return em;
2863                }
2864
2865                free_extent_map(em);
2866                *em_cached = NULL;
2867        }
2868
2869        em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2870        if (em_cached && !IS_ERR_OR_NULL(em)) {
2871                BUG_ON(*em_cached);
2872                refcount_inc(&em->refs);
2873                *em_cached = em;
2874        }
2875        return em;
2876}
2877/*
2878 * basic readpage implementation.  Locked extent state structs are inserted
2879 * into the tree that are removed when the IO is done (by the end_io
2880 * handlers)
2881 * XXX JDM: This needs looking at to ensure proper page locking
2882 * return 0 on success, otherwise return error
2883 */
2884static int __do_readpage(struct extent_io_tree *tree,
2885                         struct page *page,
2886                         get_extent_t *get_extent,
2887                         struct extent_map **em_cached,
2888                         struct bio **bio, int mirror_num,
2889                         unsigned long *bio_flags, unsigned int read_flags,
2890                         u64 *prev_em_start)
2891{
2892        struct inode *inode = page->mapping->host;
2893        u64 start = page_offset(page);
2894        const u64 end = start + PAGE_SIZE - 1;
2895        u64 cur = start;
2896        u64 extent_offset;
2897        u64 last_byte = i_size_read(inode);
2898        u64 block_start;
2899        u64 cur_end;
2900        struct extent_map *em;
2901        struct block_device *bdev;
2902        int ret = 0;
2903        int nr = 0;
2904        size_t pg_offset = 0;
2905        size_t iosize;
2906        size_t disk_io_size;
2907        size_t blocksize = inode->i_sb->s_blocksize;
2908        unsigned long this_bio_flag = 0;
2909
2910        set_page_extent_mapped(page);
2911
2912        if (!PageUptodate(page)) {
2913                if (cleancache_get_page(page) == 0) {
2914                        BUG_ON(blocksize != PAGE_SIZE);
2915                        unlock_extent(tree, start, end);
2916                        goto out;
2917                }
2918        }
2919
2920        if (page->index == last_byte >> PAGE_SHIFT) {
2921                char *userpage;
2922                size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2923
2924                if (zero_offset) {
2925                        iosize = PAGE_SIZE - zero_offset;
2926                        userpage = kmap_atomic(page);
2927                        memset(userpage + zero_offset, 0, iosize);
2928                        flush_dcache_page(page);
2929                        kunmap_atomic(userpage);
2930                }
2931        }
2932        while (cur <= end) {
2933                bool force_bio_submit = false;
2934                u64 offset;
2935
2936                if (cur >= last_byte) {
2937                        char *userpage;
2938                        struct extent_state *cached = NULL;
2939
2940                        iosize = PAGE_SIZE - pg_offset;
2941                        userpage = kmap_atomic(page);
2942                        memset(userpage + pg_offset, 0, iosize);
2943                        flush_dcache_page(page);
2944                        kunmap_atomic(userpage);
2945                        set_extent_uptodate(tree, cur, cur + iosize - 1,
2946                                            &cached, GFP_NOFS);
2947                        unlock_extent_cached(tree, cur,
2948                                             cur + iosize - 1, &cached);
2949                        break;
2950                }
2951                em = __get_extent_map(inode, page, pg_offset, cur,
2952                                      end - cur + 1, get_extent, em_cached);
2953                if (IS_ERR_OR_NULL(em)) {
2954                        SetPageError(page);
2955                        unlock_extent(tree, cur, end);
2956                        break;
2957                }
2958                extent_offset = cur - em->start;
2959                BUG_ON(extent_map_end(em) <= cur);
2960                BUG_ON(end < cur);
2961
2962                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2963                        this_bio_flag |= EXTENT_BIO_COMPRESSED;
2964                        extent_set_compress_type(&this_bio_flag,
2965                                                 em->compress_type);
2966                }
2967
2968                iosize = min(extent_map_end(em) - cur, end - cur + 1);
2969                cur_end = min(extent_map_end(em) - 1, end);
2970                iosize = ALIGN(iosize, blocksize);
2971                if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2972                        disk_io_size = em->block_len;
2973                        offset = em->block_start;
2974                } else {
2975                        offset = em->block_start + extent_offset;
2976                        disk_io_size = iosize;
2977                }
2978                bdev = em->bdev;
2979                block_start = em->block_start;
2980                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2981                        block_start = EXTENT_MAP_HOLE;
2982
2983                /*
2984                 * If we have a file range that points to a compressed extent
2985                 * and it's followed by a consecutive file range that points to
2986                 * to the same compressed extent (possibly with a different
2987                 * offset and/or length, so it either points to the whole extent
2988                 * or only part of it), we must make sure we do not submit a
2989                 * single bio to populate the pages for the 2 ranges because
2990                 * this makes the compressed extent read zero out the pages
2991                 * belonging to the 2nd range. Imagine the following scenario:
2992                 *
2993                 *  File layout
2994                 *  [0 - 8K]                     [8K - 24K]
2995                 *    |                               |
2996                 *    |                               |
2997                 * points to extent X,         points to extent X,
2998                 * offset 4K, length of 8K     offset 0, length 16K
2999                 *
3000                 * [extent X, compressed length = 4K uncompressed length = 16K]
3001                 *
3002                 * If the bio to read the compressed extent covers both ranges,
3003                 * it will decompress extent X into the pages belonging to the
3004                 * first range and then it will stop, zeroing out the remaining
3005                 * pages that belong to the other range that points to extent X.
3006                 * So here we make sure we submit 2 bios, one for the first
3007                 * range and another one for the third range. Both will target
3008                 * the same physical extent from disk, but we can't currently
3009                 * make the compressed bio endio callback populate the pages
3010                 * for both ranges because each compressed bio is tightly
3011                 * coupled with a single extent map, and each range can have
3012                 * an extent map with a different offset value relative to the
3013                 * uncompressed data of our extent and different lengths. This
3014                 * is a corner case so we prioritize correctness over
3015                 * non-optimal behavior (submitting 2 bios for the same extent).
3016                 */
3017                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3018                    prev_em_start && *prev_em_start != (u64)-1 &&
3019                    *prev_em_start != em->orig_start)
3020                        force_bio_submit = true;
3021
3022                if (prev_em_start)
3023                        *prev_em_start = em->orig_start;
3024
3025                free_extent_map(em);
3026                em = NULL;
3027
3028                /* we've found a hole, just zero and go on */
3029                if (block_start == EXTENT_MAP_HOLE) {
3030                        char *userpage;
3031                        struct extent_state *cached = NULL;
3032
3033                        userpage = kmap_atomic(page);
3034                        memset(userpage + pg_offset, 0, iosize);
3035                        flush_dcache_page(page);
3036                        kunmap_atomic(userpage);
3037
3038                        set_extent_uptodate(tree, cur, cur + iosize - 1,
3039                                            &cached, GFP_NOFS);
3040                        unlock_extent_cached(tree, cur,
3041                                             cur + iosize - 1, &cached);
3042                        cur = cur + iosize;
3043                        pg_offset += iosize;
3044                        continue;
3045                }
3046                /* the get_extent function already copied into the page */
3047                if (test_range_bit(tree, cur, cur_end,
3048                                   EXTENT_UPTODATE, 1, NULL)) {
3049                        check_page_uptodate(tree, page);
3050                        unlock_extent(tree, cur, cur + iosize - 1);
3051                        cur = cur + iosize;
3052                        pg_offset += iosize;
3053                        continue;
3054                }
3055                /* we have an inline extent but it didn't get marked up
3056                 * to date.  Error out
3057                 */
3058                if (block_start == EXTENT_MAP_INLINE) {
3059                        SetPageError(page);
3060                        unlock_extent(tree, cur, cur + iosize - 1);
3061                        cur = cur + iosize;
3062                        pg_offset += iosize;
3063                        continue;
3064                }
3065
3066                ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3067                                         page, offset, disk_io_size,
3068                                         pg_offset, bdev, bio,
3069                                         end_bio_extent_readpage, mirror_num,
3070                                         *bio_flags,
3071                                         this_bio_flag,
3072                                         force_bio_submit);
3073                if (!ret) {
3074                        nr++;
3075                        *bio_flags = this_bio_flag;
3076                } else {
3077                        SetPageError(page);
3078                        unlock_extent(tree, cur, cur + iosize - 1);
3079                        goto out;
3080                }
3081                cur = cur + iosize;
3082                pg_offset += iosize;
3083        }
3084out:
3085        if (!nr) {
3086                if (!PageError(page))
3087                        SetPageUptodate(page);
3088                unlock_page(page);
3089        }
3090        return ret;
3091}
3092
3093static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3094                                             struct page *pages[], int nr_pages,
3095                                             u64 start, u64 end,
3096                                             struct extent_map **em_cached,
3097                                             struct bio **bio,
3098                                             unsigned long *bio_flags,
3099                                             u64 *prev_em_start)
3100{
3101        struct inode *inode;
3102        struct btrfs_ordered_extent *ordered;
3103        int index;
3104
3105        inode = pages[0]->mapping->host;
3106        while (1) {
3107                lock_extent(tree, start, end);
3108                ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3109                                                     end - start + 1);
3110                if (!ordered)
3111                        break;
3112                unlock_extent(tree, start, end);
3113                btrfs_start_ordered_extent(inode, ordered, 1);
3114                btrfs_put_ordered_extent(ordered);
3115        }
3116
3117        for (index = 0; index < nr_pages; index++) {
3118                __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3119                                bio, 0, bio_flags, 0, prev_em_start);
3120                put_page(pages[index]);
3121        }
3122}
3123
3124static void __extent_readpages(struct extent_io_tree *tree,
3125                               struct page *pages[],
3126                               int nr_pages,
3127                               struct extent_map **em_cached,
3128                               struct bio **bio, unsigned long *bio_flags,
3129                               u64 *prev_em_start)
3130{
3131        u64 start = 0;
3132        u64 end = 0;
3133        u64 page_start;
3134        int index;
3135        int first_index = 0;
3136
3137        for (index = 0; index < nr_pages; index++) {
3138                page_start = page_offset(pages[index]);
3139                if (!end) {
3140                        start = page_start;
3141                        end = start + PAGE_SIZE - 1;
3142                        first_index = index;
3143                } else if (end + 1 == page_start) {
3144                        end += PAGE_SIZE;
3145                } else {
3146                        __do_contiguous_readpages(tree, &pages[first_index],
3147                                                  index - first_index, start,
3148                                                  end, em_cached,
3149                                                  bio, bio_flags,
3150                                                  prev_em_start);
3151                        start = page_start;
3152                        end = start + PAGE_SIZE - 1;
3153                        first_index = index;
3154                }
3155        }
3156
3157        if (end)
3158                __do_contiguous_readpages(tree, &pages[first_index],
3159                                          index - first_index, start,
3160                                          end, em_cached, bio,
3161                                          bio_flags, prev_em_start);
3162}
3163
3164static int __extent_read_full_page(struct extent_io_tree *tree,
3165                                   struct page *page,
3166                                   get_extent_t *get_extent,
3167                                   struct bio **bio, int mirror_num,
3168                                   unsigned long *bio_flags,
3169                                   unsigned int read_flags)
3170{
3171        struct inode *inode = page->mapping->host;
3172        struct btrfs_ordered_extent *ordered;
3173        u64 start = page_offset(page);
3174        u64 end = start + PAGE_SIZE - 1;
3175        int ret;
3176
3177        while (1) {
3178                lock_extent(tree, start, end);
3179                ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3180                                                PAGE_SIZE);
3181                if (!ordered)
3182                        break;
3183                unlock_extent(tree, start, end);
3184                btrfs_start_ordered_extent(inode, ordered, 1);
3185                btrfs_put_ordered_extent(ordered);
3186        }
3187
3188        ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3189                            bio_flags, read_flags, NULL);
3190        return ret;
3191}
3192
3193int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3194                            get_extent_t *get_extent, int mirror_num)
3195{
3196        struct bio *bio = NULL;
3197        unsigned long bio_flags = 0;
3198        int ret;
3199
3200        ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3201                                      &bio_flags, 0);
3202        if (bio)
3203                ret = submit_one_bio(bio, mirror_num, bio_flags);
3204        return ret;
3205}
3206
3207static void update_nr_written(struct writeback_control *wbc,
3208                              unsigned long nr_written)
3209{
3210        wbc->nr_to_write -= nr_written;
3211}
3212
3213/*
3214 * helper for __extent_writepage, doing all of the delayed allocation setup.
3215 *
3216 * This returns 1 if our fill_delalloc function did all the work required
3217 * to write the page (copy into inline extent).  In this case the IO has
3218 * been started and the page is already unlocked.
3219 *
3220 * This returns 0 if all went well (page still locked)
3221 * This returns < 0 if there were errors (page still locked)
3222 */
3223static noinline_for_stack int writepage_delalloc(struct inode *inode,
3224                              struct page *page, struct writeback_control *wbc,
3225                              struct extent_page_data *epd,
3226                              u64 delalloc_start,
3227                              unsigned long *nr_written)
3228{
3229        struct extent_io_tree *tree = epd->tree;
3230        u64 page_end = delalloc_start + PAGE_SIZE - 1;
3231        u64 nr_delalloc;
3232        u64 delalloc_to_write = 0;
3233        u64 delalloc_end = 0;
3234        int ret;
3235        int page_started = 0;
3236
3237        if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3238                return 0;
3239
3240        while (delalloc_end < page_end) {
3241                nr_delalloc = find_lock_delalloc_range(inode, tree,
3242                                               page,
3243                                               &delalloc_start,
3244                                               &delalloc_end,
3245                                               BTRFS_MAX_EXTENT_SIZE);
3246                if (nr_delalloc == 0) {
3247                        delalloc_start = delalloc_end + 1;
3248                        continue;
3249                }
3250                ret = tree->ops->fill_delalloc(inode, page,
3251                                               delalloc_start,
3252                                               delalloc_end,
3253                                               &page_started,
3254                                               nr_written, wbc);
3255                /* File system has been set read-only */
3256                if (ret) {
3257                        SetPageError(page);
3258                        /* fill_delalloc should be return < 0 for error
3259                         * but just in case, we use > 0 here meaning the
3260                         * IO is started, so we don't want to return > 0
3261                         * unless things are going well.
3262                         */
3263                        ret = ret < 0 ? ret : -EIO;
3264                        goto done;
3265                }
3266                /*
3267                 * delalloc_end is already one less than the total length, so
3268                 * we don't subtract one from PAGE_SIZE
3269                 */
3270                delalloc_to_write += (delalloc_end - delalloc_start +
3271                                      PAGE_SIZE) >> PAGE_SHIFT;
3272                delalloc_start = delalloc_end + 1;
3273        }
3274        if (wbc->nr_to_write < delalloc_to_write) {
3275                int thresh = 8192;
3276
3277                if (delalloc_to_write < thresh * 2)
3278                        thresh = delalloc_to_write;
3279                wbc->nr_to_write = min_t(u64, delalloc_to_write,
3280                                         thresh);
3281        }
3282
3283        /* did the fill delalloc function already unlock and start
3284         * the IO?
3285         */
3286        if (page_started) {
3287                /*
3288                 * we've unlocked the page, so we can't update
3289                 * the mapping's writeback index, just update
3290                 * nr_to_write.
3291                 */
3292                wbc->nr_to_write -= *nr_written;
3293                return 1;
3294        }
3295
3296        ret = 0;
3297
3298done:
3299        return ret;
3300}
3301
3302/*
3303 * helper for __extent_writepage.  This calls the writepage start hooks,
3304 * and does the loop to map the page into extents and bios.
3305 *
3306 * We return 1 if the IO is started and the page is unlocked,
3307 * 0 if all went well (page still locked)
3308 * < 0 if there were errors (page still locked)
3309 */
3310static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3311                                 struct page *page,
3312                                 struct writeback_control *wbc,
3313                                 struct extent_page_data *epd,
3314                                 loff_t i_size,
3315                                 unsigned long nr_written,
3316                                 unsigned int write_flags, int *nr_ret)
3317{
3318        struct extent_io_tree *tree = epd->tree;
3319        u64 start = page_offset(page);
3320        u64 page_end = start + PAGE_SIZE - 1;
3321        u64 end;
3322        u64 cur = start;
3323        u64 extent_offset;
3324        u64 block_start;
3325        u64 iosize;
3326        struct extent_map *em;
3327        struct block_device *bdev;
3328        size_t pg_offset = 0;
3329        size_t blocksize;
3330        int ret = 0;
3331        int nr = 0;
3332        bool compressed;
3333
3334        if (tree->ops && tree->ops->writepage_start_hook) {
3335                ret = tree->ops->writepage_start_hook(page, start,
3336                                                      page_end);
3337                if (ret) {
3338                        /* Fixup worker will requeue */
3339                        if (ret == -EBUSY)
3340                                wbc->pages_skipped++;
3341                        else
3342                                redirty_page_for_writepage(wbc, page);
3343
3344                        update_nr_written(wbc, nr_written);
3345                        unlock_page(page);
3346                        return 1;
3347                }
3348        }
3349
3350        /*
3351         * we don't want to touch the inode after unlocking the page,
3352         * so we update the mapping writeback index now
3353         */
3354        update_nr_written(wbc, nr_written + 1);
3355
3356        end = page_end;
3357        if (i_size <= start) {
3358                if (tree->ops && tree->ops->writepage_end_io_hook)
3359                        tree->ops->writepage_end_io_hook(page, start,
3360                                                         page_end, NULL, 1);
3361                goto done;
3362        }
3363
3364        blocksize = inode->i_sb->s_blocksize;
3365
3366        while (cur <= end) {
3367                u64 em_end;
3368                u64 offset;
3369
3370                if (cur >= i_size) {
3371                        if (tree->ops && tree->ops->writepage_end_io_hook)
3372                                tree->ops->writepage_end_io_hook(page, cur,
3373                                                         page_end, NULL, 1);
3374                        break;
3375                }
3376                em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
3377                                     end - cur + 1, 1);
3378                if (IS_ERR_OR_NULL(em)) {
3379                        SetPageError(page);
3380                        ret = PTR_ERR_OR_ZERO(em);
3381                        break;
3382                }
3383
3384                extent_offset = cur - em->start;
3385                em_end = extent_map_end(em);
3386                BUG_ON(em_end <= cur);
3387                BUG_ON(end < cur);
3388                iosize = min(em_end - cur, end - cur + 1);
3389                iosize = ALIGN(iosize, blocksize);
3390                offset = em->block_start + extent_offset;
3391                bdev = em->bdev;
3392                block_start = em->block_start;
3393                compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3394                free_extent_map(em);
3395                em = NULL;
3396
3397                /*
3398                 * compressed and inline extents are written through other
3399                 * paths in the FS
3400                 */
3401                if (compressed || block_start == EXTENT_MAP_HOLE ||
3402                    block_start == EXTENT_MAP_INLINE) {
3403                        /*
3404                         * end_io notification does not happen here for
3405                         * compressed extents
3406                         */
3407                        if (!compressed && tree->ops &&
3408                            tree->ops->writepage_end_io_hook)
3409                                tree->ops->writepage_end_io_hook(page, cur,
3410                                                         cur + iosize - 1,
3411                                                         NULL, 1);
3412                        else if (compressed) {
3413                                /* we don't want to end_page_writeback on
3414                                 * a compressed extent.  this happens
3415                                 * elsewhere
3416                                 */
3417                                nr++;
3418                        }
3419
3420                        cur += iosize;
3421                        pg_offset += iosize;
3422                        continue;
3423                }
3424
3425                set_range_writeback(tree, cur, cur + iosize - 1);
3426                if (!PageWriteback(page)) {
3427                        btrfs_err(BTRFS_I(inode)->root->fs_info,
3428                                   "page %lu not writeback, cur %llu end %llu",
3429                               page->index, cur, end);
3430                }
3431
3432                ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3433                                         page, offset, iosize, pg_offset,
3434                                         bdev, &epd->bio,
3435                                         end_bio_extent_writepage,
3436                                         0, 0, 0, false);
3437                if (ret) {
3438                        SetPageError(page);
3439                        if (PageWriteback(page))
3440                                end_page_writeback(page);
3441                }
3442
3443                cur = cur + iosize;
3444                pg_offset += iosize;
3445                nr++;
3446        }
3447done:
3448        *nr_ret = nr;
3449        return ret;
3450}
3451
3452/*
3453 * the writepage semantics are similar to regular writepage.  extent
3454 * records are inserted to lock ranges in the tree, and as dirty areas
3455 * are found, they are marked writeback.  Then the lock bits are removed
3456 * and the end_io handler clears the writeback ranges
3457 */
3458static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3459                              struct extent_page_data *epd)
3460{
3461        struct inode *inode = page->mapping->host;
3462        u64 start = page_offset(page);
3463        u64 page_end = start + PAGE_SIZE - 1;
3464        int ret;
3465        int nr = 0;
3466        size_t pg_offset = 0;
3467        loff_t i_size = i_size_read(inode);
3468        unsigned long end_index = i_size >> PAGE_SHIFT;
3469        unsigned int write_flags = 0;
3470        unsigned long nr_written = 0;
3471
3472        write_flags = wbc_to_write_flags(wbc);
3473
3474        trace___extent_writepage(page, inode, wbc);
3475
3476        WARN_ON(!PageLocked(page));
3477
3478        ClearPageError(page);
3479
3480        pg_offset = i_size & (PAGE_SIZE - 1);
3481        if (page->index > end_index ||
3482           (page->index == end_index && !pg_offset)) {
3483                page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3484                unlock_page(page);
3485                return 0;
3486        }
3487
3488        if (page->index == end_index) {
3489                char *userpage;
3490
3491                userpage = kmap_atomic(page);
3492                memset(userpage + pg_offset, 0,
3493                       PAGE_SIZE - pg_offset);
3494                kunmap_atomic(userpage);
3495                flush_dcache_page(page);
3496        }
3497
3498        pg_offset = 0;
3499
3500        set_page_extent_mapped(page);
3501
3502        ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3503        if (ret == 1)
3504                goto done_unlocked;
3505        if (ret)
3506                goto done;
3507
3508        ret = __extent_writepage_io(inode, page, wbc, epd,
3509                                    i_size, nr_written, write_flags, &nr);
3510        if (ret == 1)
3511                goto done_unlocked;
3512
3513done:
3514        if (nr == 0) {
3515                /* make sure the mapping tag for page dirty gets cleared */
3516                set_page_writeback(page);
3517                end_page_writeback(page);
3518        }
3519        if (PageError(page)) {
3520                ret = ret < 0 ? ret : -EIO;
3521                end_extent_writepage(page, ret, start, page_end);
3522        }
3523        unlock_page(page);
3524        return ret;
3525
3526done_unlocked:
3527        return 0;
3528}
3529
3530void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3531{
3532        wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3533                       TASK_UNINTERRUPTIBLE);
3534}
3535
3536static noinline_for_stack int
3537lock_extent_buffer_for_io(struct extent_buffer *eb,
3538                          struct btrfs_fs_info *fs_info,
3539                          struct extent_page_data *epd)
3540{
3541        unsigned long i, num_pages;
3542        int flush = 0;
3543        int ret = 0;
3544
3545        if (!btrfs_try_tree_write_lock(eb)) {
3546                flush = 1;
3547                flush_write_bio(epd);
3548                btrfs_tree_lock(eb);
3549        }
3550
3551        if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3552                btrfs_tree_unlock(eb);
3553                if (!epd->sync_io)
3554                        return 0;
3555                if (!flush) {
3556                        flush_write_bio(epd);
3557                        flush = 1;
3558                }
3559                while (1) {
3560                        wait_on_extent_buffer_writeback(eb);
3561                        btrfs_tree_lock(eb);
3562                        if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3563                                break;
3564                        btrfs_tree_unlock(eb);
3565                }
3566        }
3567
3568        /*
3569         * We need to do this to prevent races in people who check if the eb is
3570         * under IO since we can end up having no IO bits set for a short period
3571         * of time.
3572         */
3573        spin_lock(&eb->refs_lock);
3574        if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3575                set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3576                spin_unlock(&eb->refs_lock);
3577                btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3578                percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3579                                         -eb->len,
3580                                         fs_info->dirty_metadata_batch);
3581                ret = 1;
3582        } else {
3583                spin_unlock(&eb->refs_lock);
3584        }
3585
3586        btrfs_tree_unlock(eb);
3587
3588        if (!ret)
3589                return ret;
3590
3591        num_pages = num_extent_pages(eb->start, eb->len);
3592        for (i = 0; i < num_pages; i++) {
3593                struct page *p = eb->pages[i];
3594
3595                if (!trylock_page(p)) {
3596                        if (!flush) {
3597                                flush_write_bio(epd);
3598                                flush = 1;
3599                        }
3600                        lock_page(p);
3601                }
3602        }
3603
3604        return ret;
3605}
3606
3607static void end_extent_buffer_writeback(struct extent_buffer *eb)
3608{
3609        clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3610        smp_mb__after_atomic();
3611        wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3612}
3613
3614static void set_btree_ioerr(struct page *page)
3615{
3616        struct extent_buffer *eb = (struct extent_buffer *)page->private;
3617
3618        SetPageError(page);
3619        if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3620                return;
3621
3622        /*
3623         * If writeback for a btree extent that doesn't belong to a log tree
3624         * failed, increment the counter transaction->eb_write_errors.
3625         * We do this because while the transaction is running and before it's
3626         * committing (when we call filemap_fdata[write|wait]_range against
3627         * the btree inode), we might have
3628         * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3629         * returns an error or an error happens during writeback, when we're
3630         * committing the transaction we wouldn't know about it, since the pages
3631         * can be no longer dirty nor marked anymore for writeback (if a
3632         * subsequent modification to the extent buffer didn't happen before the
3633         * transaction commit), which makes filemap_fdata[write|wait]_range not
3634         * able to find the pages tagged with SetPageError at transaction
3635         * commit time. So if this happens we must abort the transaction,
3636         * otherwise we commit a super block with btree roots that point to
3637         * btree nodes/leafs whose content on disk is invalid - either garbage
3638         * or the content of some node/leaf from a past generation that got
3639         * cowed or deleted and is no longer valid.
3640         *
3641         * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3642         * not be enough - we need to distinguish between log tree extents vs
3643         * non-log tree extents, and the next filemap_fdatawait_range() call
3644         * will catch and clear such errors in the mapping - and that call might
3645         * be from a log sync and not from a transaction commit. Also, checking
3646         * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3647         * not done and would not be reliable - the eb might have been released
3648         * from memory and reading it back again means that flag would not be
3649         * set (since it's a runtime flag, not persisted on disk).
3650         *
3651         * Using the flags below in the btree inode also makes us achieve the
3652         * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3653         * writeback for all dirty pages and before filemap_fdatawait_range()
3654         * is called, the writeback for all dirty pages had already finished
3655         * with errors - because we were not using AS_EIO/AS_ENOSPC,
3656         * filemap_fdatawait_range() would return success, as it could not know
3657         * that writeback errors happened (the pages were no longer tagged for
3658         * writeback).
3659         */
3660        switch (eb->log_index) {
3661        case -1:
3662                set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3663                break;
3664        case 0:
3665                set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3666                break;
3667        case 1:
3668                set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3669                break;
3670        default:
3671                BUG(); /* unexpected, logic error */
3672        }
3673}
3674
3675static void end_bio_extent_buffer_writepage(struct bio *bio)
3676{
3677        struct bio_vec *bvec;
3678        struct extent_buffer *eb;
3679        int i, done;
3680
3681        ASSERT(!bio_flagged(bio, BIO_CLONED));
3682        bio_for_each_segment_all(bvec, bio, i) {
3683                struct page *page = bvec->bv_page;
3684
3685                eb = (struct extent_buffer *)page->private;
3686                BUG_ON(!eb);
3687                done = atomic_dec_and_test(&eb->io_pages);
3688
3689                if (bio->bi_status ||
3690                    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3691                        ClearPageUptodate(page);
3692                        set_btree_ioerr(page);
3693                }
3694
3695                end_page_writeback(page);
3696
3697                if (!done)
3698                        continue;
3699
3700                end_extent_buffer_writeback(eb);
3701        }
3702
3703        bio_put(bio);
3704}
3705
3706static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3707                        struct btrfs_fs_info *fs_info,
3708                        struct writeback_control *wbc,
3709                        struct extent_page_data *epd)
3710{
3711        struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3712        struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3713        u64 offset = eb->start;
3714        u32 nritems;
3715        unsigned long i, num_pages;
3716        unsigned long start, end;
3717        unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3718        int ret = 0;
3719
3720        clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3721        num_pages = num_extent_pages(eb->start, eb->len);
3722        atomic_set(&eb->io_pages, num_pages);
3723
3724        /* set btree blocks beyond nritems with 0 to avoid stale content. */
3725        nritems = btrfs_header_nritems(eb);
3726        if (btrfs_header_level(eb) > 0) {
3727                end = btrfs_node_key_ptr_offset(nritems);
3728
3729                memzero_extent_buffer(eb, end, eb->len - end);
3730        } else {
3731                /*
3732                 * leaf:
3733                 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3734                 */
3735                start = btrfs_item_nr_offset(nritems);
3736                end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
3737                memzero_extent_buffer(eb, start, end - start);
3738        }
3739
3740        for (i = 0; i < num_pages; i++) {
3741                struct page *p = eb->pages[i];
3742
3743                clear_page_dirty_for_io(p);
3744                set_page_writeback(p);
3745                ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3746                                         p, offset, PAGE_SIZE, 0, bdev,
3747                                         &epd->bio,
3748                                         end_bio_extent_buffer_writepage,
3749                                         0, 0, 0, false);
3750                if (ret) {
3751                        set_btree_ioerr(p);
3752                        if (PageWriteback(p))
3753                                end_page_writeback(p);
3754                        if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3755                                end_extent_buffer_writeback(eb);
3756                        ret = -EIO;
3757                        break;
3758                }
3759                offset += PAGE_SIZE;
3760                update_nr_written(wbc, 1);
3761                unlock_page(p);
3762        }
3763
3764        if (unlikely(ret)) {
3765                for (; i < num_pages; i++) {
3766                        struct page *p = eb->pages[i];
3767                        clear_page_dirty_for_io(p);
3768                        unlock_page(p);
3769                }
3770        }
3771
3772        return ret;
3773}
3774
3775int btree_write_cache_pages(struct address_space *mapping,
3776                                   struct writeback_control *wbc)
3777{
3778        struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3779        struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3780        struct extent_buffer *eb, *prev_eb = NULL;
3781        struct extent_page_data epd = {
3782                .bio = NULL,
3783                .tree = tree,
3784                .extent_locked = 0,
3785                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3786        };
3787        int ret = 0;
3788        int done = 0;
3789        int nr_to_write_done = 0;
3790        struct pagevec pvec;
3791        int nr_pages;
3792        pgoff_t index;
3793        pgoff_t end;            /* Inclusive */
3794        int scanned = 0;
3795        int tag;
3796
3797        pagevec_init(&pvec);
3798        if (wbc->range_cyclic) {
3799                index = mapping->writeback_index; /* Start from prev offset */
3800                end = -1;
3801        } else {
3802                index = wbc->range_start >> PAGE_SHIFT;
3803                end = wbc->range_end >> PAGE_SHIFT;
3804                scanned = 1;
3805        }
3806        if (wbc->sync_mode == WB_SYNC_ALL)
3807                tag = PAGECACHE_TAG_TOWRITE;
3808        else
3809                tag = PAGECACHE_TAG_DIRTY;
3810retry:
3811        if (wbc->sync_mode == WB_SYNC_ALL)
3812                tag_pages_for_writeback(mapping, index, end);
3813        while (!done && !nr_to_write_done && (index <= end) &&
3814               (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3815                        tag))) {
3816                unsigned i;
3817
3818                scanned = 1;
3819                for (i = 0; i < nr_pages; i++) {
3820                        struct page *page = pvec.pages[i];
3821
3822                        if (!PagePrivate(page))
3823                                continue;
3824
3825                        spin_lock(&mapping->private_lock);
3826                        if (!PagePrivate(page)) {
3827                                spin_unlock(&mapping->private_lock);
3828                                continue;
3829                        }
3830
3831                        eb = (struct extent_buffer *)page->private;
3832
3833                        /*
3834                         * Shouldn't happen and normally this would be a BUG_ON
3835                         * but no sense in crashing the users box for something
3836                         * we can survive anyway.
3837                         */
3838                        if (WARN_ON(!eb)) {
3839                                spin_unlock(&mapping->private_lock);
3840                                continue;
3841                        }
3842
3843                        if (eb == prev_eb) {
3844                                spin_unlock(&mapping->private_lock);
3845                                continue;
3846                        }
3847
3848                        ret = atomic_inc_not_zero(&eb->refs);
3849                        spin_unlock(&mapping->private_lock);
3850                        if (!ret)
3851                                continue;
3852
3853                        prev_eb = eb;
3854                        ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3855                        if (!ret) {
3856                                free_extent_buffer(eb);
3857                                continue;
3858                        }
3859
3860                        ret = write_one_eb(eb, fs_info, wbc, &epd);
3861                        if (ret) {
3862                                done = 1;
3863                                free_extent_buffer(eb);
3864                                break;
3865                        }
3866                        free_extent_buffer(eb);
3867
3868                        /*
3869                         * the filesystem may choose to bump up nr_to_write.
3870                         * We have to make sure to honor the new nr_to_write
3871                         * at any time
3872                         */
3873                        nr_to_write_done = wbc->nr_to_write <= 0;
3874                }
3875                pagevec_release(&pvec);
3876                cond_resched();
3877        }
3878        if (!scanned && !done) {
3879                /*
3880                 * We hit the last page and there is more work to be done: wrap
3881                 * back to the start of the file
3882                 */
3883                scanned = 1;
3884                index = 0;
3885                goto retry;
3886        }
3887        flush_write_bio(&epd);
3888        return ret;
3889}
3890
3891/**
3892 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3893 * @mapping: address space structure to write
3894 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3895 * @data: data passed to __extent_writepage function
3896 *
3897 * If a page is already under I/O, write_cache_pages() skips it, even
3898 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3899 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3900 * and msync() need to guarantee that all the data which was dirty at the time
3901 * the call was made get new I/O started against them.  If wbc->sync_mode is
3902 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3903 * existing IO to complete.
3904 */
3905static int extent_write_cache_pages(struct address_space *mapping,
3906                             struct writeback_control *wbc,
3907                             struct extent_page_data *epd)
3908{
3909        struct inode *inode = mapping->host;
3910        int ret = 0;
3911        int done = 0;
3912        int nr_to_write_done = 0;
3913        struct pagevec pvec;
3914        int nr_pages;
3915        pgoff_t index;
3916        pgoff_t end;            /* Inclusive */
3917        pgoff_t done_index;
3918        int range_whole = 0;
3919        int scanned = 0;
3920        int tag;
3921
3922        /*
3923         * We have to hold onto the inode so that ordered extents can do their
3924         * work when the IO finishes.  The alternative to this is failing to add
3925         * an ordered extent if the igrab() fails there and that is a huge pain
3926         * to deal with, so instead just hold onto the inode throughout the
3927         * writepages operation.  If it fails here we are freeing up the inode
3928         * anyway and we'd rather not waste our time writing out stuff that is
3929         * going to be truncated anyway.
3930         */
3931        if (!igrab(inode))
3932                return 0;
3933
3934        pagevec_init(&pvec);
3935        if (wbc->range_cyclic) {
3936                index = mapping->writeback_index; /* Start from prev offset */
3937                end = -1;
3938        } else {
3939                index = wbc->range_start >> PAGE_SHIFT;
3940                end = wbc->range_end >> PAGE_SHIFT;
3941                if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3942                        range_whole = 1;
3943                scanned = 1;
3944        }
3945        if (wbc->sync_mode == WB_SYNC_ALL)
3946                tag = PAGECACHE_TAG_TOWRITE;
3947        else
3948                tag = PAGECACHE_TAG_DIRTY;
3949retry:
3950        if (wbc->sync_mode == WB_SYNC_ALL)
3951                tag_pages_for_writeback(mapping, index, end);
3952        done_index = index;
3953        while (!done && !nr_to_write_done && (index <= end) &&
3954                        (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3955                                                &index, end, tag))) {
3956                unsigned i;
3957
3958                scanned = 1;
3959                for (i = 0; i < nr_pages; i++) {
3960                        struct page *page = pvec.pages[i];
3961
3962                        done_index = page->index;
3963                        /*
3964                         * At this point we hold neither the i_pages lock nor
3965                         * the page lock: the page may be truncated or
3966                         * invalidated (changing page->mapping to NULL),
3967                         * or even swizzled back from swapper_space to
3968                         * tmpfs file mapping
3969                         */
3970                        if (!trylock_page(page)) {
3971                                flush_write_bio(epd);
3972                                lock_page(page);
3973                        }
3974
3975                        if (unlikely(page->mapping != mapping)) {
3976                                unlock_page(page);
3977                                continue;
3978                        }
3979
3980                        if (wbc->sync_mode != WB_SYNC_NONE) {
3981                                if (PageWriteback(page))
3982                                        flush_write_bio(epd);
3983                                wait_on_page_writeback(page);
3984                        }
3985
3986                        if (PageWriteback(page) ||
3987                            !clear_page_dirty_for_io(page)) {
3988                                unlock_page(page);
3989                                continue;
3990                        }
3991
3992                        ret = __extent_writepage(page, wbc, epd);
3993
3994                        if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3995                                unlock_page(page);
3996                                ret = 0;
3997                        }
3998                        if (ret < 0) {
3999                                /*
4000                                 * done_index is set past this page,
4001                                 * so media errors will not choke
4002                                 * background writeout for the entire
4003                                 * file. This has consequences for
4004                                 * range_cyclic semantics (ie. it may
4005                                 * not be suitable for data integrity
4006                                 * writeout).
4007                                 */
4008                                done_index = page->index + 1;
4009                                done = 1;
4010                                break;
4011                        }
4012
4013                        /*
4014                         * the filesystem may choose to bump up nr_to_write.
4015                         * We have to make sure to honor the new nr_to_write
4016                         * at any time
4017                         */
4018                        nr_to_write_done = wbc->nr_to_write <= 0;
4019                }
4020                pagevec_release(&pvec);
4021                cond_resched();
4022        }
4023        if (!scanned && !done) {
4024                /*
4025                 * We hit the last page and there is more work to be done: wrap
4026                 * back to the start of the file
4027                 */
4028                scanned = 1;
4029                index = 0;
4030                goto retry;
4031        }
4032
4033        if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4034                mapping->writeback_index = done_index;
4035
4036        btrfs_add_delayed_iput(inode);
4037        return ret;
4038}
4039
4040static void flush_write_bio(struct extent_page_data *epd)
4041{
4042        if (epd->bio) {
4043                int ret;
4044
4045                ret = submit_one_bio(epd->bio, 0, 0);
4046                BUG_ON(ret < 0); /* -ENOMEM */
4047                epd->bio = NULL;
4048        }
4049}
4050
4051int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4052{
4053        int ret;
4054        struct extent_page_data epd = {
4055                .bio = NULL,
4056                .tree = &BTRFS_I(page->mapping->host)->io_tree,
4057                .extent_locked = 0,
4058                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4059        };
4060
4061        ret = __extent_writepage(page, wbc, &epd);
4062
4063        flush_write_bio(&epd);
4064        return ret;
4065}
4066
4067int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4068                              int mode)
4069{
4070        int ret = 0;
4071        struct address_space *mapping = inode->i_mapping;
4072        struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4073        struct page *page;
4074        unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4075                PAGE_SHIFT;
4076
4077        struct extent_page_data epd = {
4078                .bio = NULL,
4079                .tree = tree,
4080                .extent_locked = 1,
4081                .sync_io = mode == WB_SYNC_ALL,
4082        };
4083        struct writeback_control wbc_writepages = {
4084                .sync_mode      = mode,
4085                .nr_to_write    = nr_pages * 2,
4086                .range_start    = start,
4087                .range_end      = end + 1,
4088        };
4089
4090        while (start <= end) {
4091                page = find_get_page(mapping, start >> PAGE_SHIFT);
4092                if (clear_page_dirty_for_io(page))
4093                        ret = __extent_writepage(page, &wbc_writepages, &epd);
4094                else {
4095                        if (tree->ops && tree->ops->writepage_end_io_hook)
4096                                tree->ops->writepage_end_io_hook(page, start,
4097                                                 start + PAGE_SIZE - 1,
4098                                                 NULL, 1);
4099                        unlock_page(page);
4100                }
4101                put_page(page);
4102                start += PAGE_SIZE;
4103        }
4104
4105        flush_write_bio(&epd);
4106        return ret;
4107}
4108
4109int extent_writepages(struct address_space *mapping,
4110                      struct writeback_control *wbc)
4111{
4112        int ret = 0;
4113        struct extent_page_data epd = {
4114                .bio = NULL,
4115                .tree = &BTRFS_I(mapping->host)->io_tree,
4116                .extent_locked = 0,
4117                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4118        };
4119
4120        ret = extent_write_cache_pages(mapping, wbc, &epd);
4121        flush_write_bio(&epd);
4122        return ret;
4123}
4124
4125int extent_readpages(struct address_space *mapping, struct list_head *pages,
4126                     unsigned nr_pages)
4127{
4128        struct bio *bio = NULL;
4129        unsigned page_idx;
4130        unsigned long bio_flags = 0;
4131        struct page *pagepool[16];
4132        struct page *page;
4133        struct extent_map *em_cached = NULL;
4134        struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
4135        int nr = 0;
4136        u64 prev_em_start = (u64)-1;
4137
4138        for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4139                page = list_entry(pages->prev, struct page, lru);
4140
4141                prefetchw(&page->flags);
4142                list_del(&page->lru);
4143                if (add_to_page_cache_lru(page, mapping,
4144                                        page->index,
4145                                        readahead_gfp_mask(mapping))) {
4146                        put_page(page);
4147                        continue;
4148                }
4149
4150                pagepool[nr++] = page;
4151                if (nr < ARRAY_SIZE(pagepool))
4152                        continue;
4153                __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4154                                &bio_flags, &prev_em_start);
4155                nr = 0;
4156        }
4157        if (nr)
4158                __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4159                                &bio_flags, &prev_em_start);
4160
4161        if (em_cached)
4162                free_extent_map(em_cached);
4163
4164        BUG_ON(!list_empty(pages));
4165        if (bio)
4166                return submit_one_bio(bio, 0, bio_flags);
4167        return 0;
4168}
4169
4170/*
4171 * basic invalidatepage code, this waits on any locked or writeback
4172 * ranges corresponding to the page, and then deletes any extent state
4173 * records from the tree
4174 */
4175int extent_invalidatepage(struct extent_io_tree *tree,
4176                          struct page *page, unsigned long offset)
4177{
4178        struct extent_state *cached_state = NULL;
4179        u64 start = page_offset(page);
4180        u64 end = start + PAGE_SIZE - 1;
4181        size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4182
4183        start += ALIGN(offset, blocksize);
4184        if (start > end)
4185                return 0;
4186
4187        lock_extent_bits(tree, start, end, &cached_state);
4188        wait_on_page_writeback(page);
4189        clear_extent_bit(tree, start, end,
4190                         EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4191                         EXTENT_DO_ACCOUNTING,
4192                         1, 1, &cached_state);
4193        return 0;
4194}
4195
4196/*
4197 * a helper for releasepage, this tests for areas of the page that
4198 * are locked or under IO and drops the related state bits if it is safe
4199 * to drop the page.
4200 */
4201static int try_release_extent_state(struct extent_io_tree *tree,
4202                                    struct page *page, gfp_t mask)
4203{
4204        u64 start = page_offset(page);
4205        u64 end = start + PAGE_SIZE - 1;
4206        int ret = 1;
4207
4208        if (test_range_bit(tree, start, end,
4209                           EXTENT_IOBITS, 0, NULL))
4210                ret = 0;
4211        else {
4212                /*
4213                 * at this point we can safely clear everything except the
4214                 * locked bit and the nodatasum bit
4215                 */
4216                ret = __clear_extent_bit(tree, start, end,
4217                                 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4218                                 0, 0, NULL, mask, NULL);
4219
4220                /* if clear_extent_bit failed for enomem reasons,
4221                 * we can't allow the release to continue.
4222                 */
4223                if (ret < 0)
4224                        ret = 0;
4225                else
4226                        ret = 1;
4227        }
4228        return ret;
4229}
4230
4231/*
4232 * a helper for releasepage.  As long as there are no locked extents
4233 * in the range corresponding to the page, both state records and extent
4234 * map records are removed
4235 */
4236int try_release_extent_mapping(struct page *page, gfp_t mask)
4237{
4238        struct extent_map *em;
4239        u64 start = page_offset(page);
4240        u64 end = start + PAGE_SIZE - 1;
4241        struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4242        struct extent_io_tree *tree = &btrfs_inode->io_tree;
4243        struct extent_map_tree *map = &btrfs_inode->extent_tree;
4244
4245        if (gfpflags_allow_blocking(mask) &&
4246            page->mapping->host->i_size > SZ_16M) {
4247                u64 len;
4248                while (start <= end) {
4249                        len = end - start + 1;
4250                        write_lock(&map->lock);
4251                        em = lookup_extent_mapping(map, start, len);
4252                        if (!em) {
4253                                write_unlock(&map->lock);
4254                                break;
4255                        }
4256                        if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4257                            em->start != start) {
4258                                write_unlock(&map->lock);
4259                                free_extent_map(em);
4260                                break;
4261                        }
4262                        if (!test_range_bit(tree, em->start,
4263                                            extent_map_end(em) - 1,
4264                                            EXTENT_LOCKED | EXTENT_WRITEBACK,
4265                                            0, NULL)) {
4266                                set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4267                                        &btrfs_inode->runtime_flags);
4268                                remove_extent_mapping(map, em);
4269                                /* once for the rb tree */
4270                                free_extent_map(em);
4271                        }
4272                        start = extent_map_end(em);
4273                        write_unlock(&map->lock);
4274
4275                        /* once for us */
4276                        free_extent_map(em);
4277                }
4278        }
4279        return try_release_extent_state(tree, page, mask);
4280}
4281
4282/*
4283 * helper function for fiemap, which doesn't want to see any holes.
4284 * This maps until we find something past 'last'
4285 */
4286static struct extent_map *get_extent_skip_holes(struct inode *inode,
4287                                                u64 offset, u64 last)
4288{
4289        u64 sectorsize = btrfs_inode_sectorsize(inode);
4290        struct extent_map *em;
4291        u64 len;
4292
4293        if (offset >= last)
4294                return NULL;
4295
4296        while (1) {
4297                len = last - offset;
4298                if (len == 0)
4299                        break;
4300                len = ALIGN(len, sectorsize);
4301                em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, offset,
4302                                len, 0);
4303                if (IS_ERR_OR_NULL(em))
4304                        return em;
4305
4306                /* if this isn't a hole return it */
4307                if (em->block_start != EXTENT_MAP_HOLE)
4308                        return em;
4309
4310                /* this is a hole, advance to the next extent */
4311                offset = extent_map_end(em);
4312                free_extent_map(em);
4313                if (offset >= last)
4314                        break;
4315        }
4316        return NULL;
4317}
4318
4319/*
4320 * To cache previous fiemap extent
4321 *
4322 * Will be used for merging fiemap extent
4323 */
4324struct fiemap_cache {
4325        u64 offset;
4326        u64 phys;
4327        u64 len;
4328        u32 flags;
4329        bool cached;
4330};
4331
4332/*
4333 * Helper to submit fiemap extent.
4334 *
4335 * Will try to merge current fiemap extent specified by @offset, @phys,
4336 * @len and @flags with cached one.
4337 * And only when we fails to merge, cached one will be submitted as
4338 * fiemap extent.
4339 *
4340 * Return value is the same as fiemap_fill_next_extent().
4341 */
4342static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4343                                struct fiemap_cache *cache,
4344                                u64 offset, u64 phys, u64 len, u32 flags)
4345{
4346        int ret = 0;
4347
4348        if (!cache->cached)
4349                goto assign;
4350
4351        /*
4352         * Sanity check, extent_fiemap() should have ensured that new
4353         * fiemap extent won't overlap with cahced one.
4354         * Not recoverable.
4355         *
4356         * NOTE: Physical address can overlap, due to compression
4357         */
4358        if (cache->offset + cache->len > offset) {
4359                WARN_ON(1);
4360                return -EINVAL;
4361        }
4362
4363        /*
4364         * Only merges fiemap extents if
4365         * 1) Their logical addresses are continuous
4366         *
4367         * 2) Their physical addresses are continuous
4368         *    So truly compressed (physical size smaller than logical size)
4369         *    extents won't get merged with each other
4370         *
4371         * 3) Share same flags except FIEMAP_EXTENT_LAST
4372         *    So regular extent won't get merged with prealloc extent
4373         */
4374        if (cache->offset + cache->len  == offset &&
4375            cache->phys + cache->len == phys  &&
4376            (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4377                        (flags & ~FIEMAP_EXTENT_LAST)) {
4378                cache->len += len;
4379                cache->flags |= flags;
4380                goto try_submit_last;
4381        }
4382
4383        /* Not mergeable, need to submit cached one */
4384        ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4385                                      cache->len, cache->flags);
4386        cache->cached = false;
4387        if (ret)
4388                return ret;
4389assign:
4390        cache->cached = true;
4391        cache->offset = offset;
4392        cache->phys = phys;
4393        cache->len = len;
4394        cache->flags = flags;
4395try_submit_last:
4396        if (cache->flags & FIEMAP_EXTENT_LAST) {
4397                ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4398                                cache->phys, cache->len, cache->flags);
4399                cache->cached = false;
4400        }
4401        return ret;
4402}
4403
4404/*
4405 * Emit last fiemap cache
4406 *
4407 * The last fiemap cache may still be cached in the following case:
4408 * 0                  4k                    8k
4409 * |<- Fiemap range ->|
4410 * |<------------  First extent ----------->|
4411 *
4412 * In this case, the first extent range will be cached but not emitted.
4413 * So we must emit it before ending extent_fiemap().
4414 */
4415static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4416                                  struct fiemap_extent_info *fieinfo,
4417                                  struct fiemap_cache *cache)
4418{
4419        int ret;
4420
4421        if (!cache->cached)
4422                return 0;
4423
4424        ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4425                                      cache->len, cache->flags);
4426        cache->cached = false;
4427        if (ret > 0)
4428                ret = 0;
4429        return ret;
4430}
4431
4432int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4433                __u64 start, __u64 len)
4434{
4435        int ret = 0;
4436        u64 off = start;
4437        u64 max = start + len;
4438        u32 flags = 0;
4439        u32 found_type;
4440        u64 last;
4441        u64 last_for_get_extent = 0;
4442        u64 disko = 0;
4443        u64 isize = i_size_read(inode);
4444        struct btrfs_key found_key;
4445        struct extent_map *em = NULL;
4446        struct extent_state *cached_state = NULL;
4447        struct btrfs_path *path;
4448        struct btrfs_root *root = BTRFS_I(inode)->root;
4449        struct fiemap_cache cache = { 0 };
4450        int end = 0;
4451        u64 em_start = 0;
4452        u64 em_len = 0;
4453        u64 em_end = 0;
4454
4455        if (len == 0)
4456                return -EINVAL;
4457
4458        path = btrfs_alloc_path();
4459        if (!path)
4460                return -ENOMEM;
4461        path->leave_spinning = 1;
4462
4463        start = round_down(start, btrfs_inode_sectorsize(inode));
4464        len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4465
4466        /*
4467         * lookup the last file extent.  We're not using i_size here
4468         * because there might be preallocation past i_size
4469         */
4470        ret = btrfs_lookup_file_extent(NULL, root, path,
4471                        btrfs_ino(BTRFS_I(inode)), -1, 0);
4472        if (ret < 0) {
4473                btrfs_free_path(path);
4474                return ret;
4475        } else {
4476                WARN_ON(!ret);
4477                if (ret == 1)
4478                        ret = 0;
4479        }
4480
4481        path->slots[0]--;
4482        btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4483        found_type = found_key.type;
4484
4485        /* No extents, but there might be delalloc bits */
4486        if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4487            found_type != BTRFS_EXTENT_DATA_KEY) {
4488                /* have to trust i_size as the end */
4489                last = (u64)-1;
4490                last_for_get_extent = isize;
4491        } else {
4492                /*
4493                 * remember the start of the last extent.  There are a
4494                 * bunch of different factors that go into the length of the
4495                 * extent, so its much less complex to remember where it started
4496                 */
4497                last = found_key.offset;
4498                last_for_get_extent = last + 1;
4499        }
4500        btrfs_release_path(path);
4501
4502        /*
4503         * we might have some extents allocated but more delalloc past those
4504         * extents.  so, we trust isize unless the start of the last extent is
4505         * beyond isize
4506         */
4507        if (last < isize) {
4508                last = (u64)-1;
4509                last_for_get_extent = isize;
4510        }
4511
4512        lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4513                         &cached_state);
4514
4515        em = get_extent_skip_holes(inode, start, last_for_get_extent);
4516        if (!em)
4517                goto out;
4518        if (IS_ERR(em)) {
4519                ret = PTR_ERR(em);
4520                goto out;
4521        }
4522
4523        while (!end) {
4524                u64 offset_in_extent = 0;
4525
4526                /* break if the extent we found is outside the range */
4527                if (em->start >= max || extent_map_end(em) < off)
4528                        break;
4529
4530                /*
4531                 * get_extent may return an extent that starts before our
4532                 * requested range.  We have to make sure the ranges
4533                 * we return to fiemap always move forward and don't
4534                 * overlap, so adjust the offsets here
4535                 */
4536                em_start = max(em->start, off);
4537
4538                /*
4539                 * record the offset from the start of the extent
4540                 * for adjusting the disk offset below.  Only do this if the
4541                 * extent isn't compressed since our in ram offset may be past
4542                 * what we have actually allocated on disk.
4543                 */
4544                if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4545                        offset_in_extent = em_start - em->start;
4546                em_end = extent_map_end(em);
4547                em_len = em_end - em_start;
4548                flags = 0;
4549                if (em->block_start < EXTENT_MAP_LAST_BYTE)
4550                        disko = em->block_start + offset_in_extent;
4551                else
4552                        disko = 0;
4553
4554                /*
4555                 * bump off for our next call to get_extent
4556                 */
4557                off = extent_map_end(em);
4558                if (off >= max)
4559                        end = 1;
4560
4561                if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4562                        end = 1;
4563                        flags |= FIEMAP_EXTENT_LAST;
4564                } else if (em->block_start == EXTENT_MAP_INLINE) {
4565                        flags |= (FIEMAP_EXTENT_DATA_INLINE |
4566                                  FIEMAP_EXTENT_NOT_ALIGNED);
4567                } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4568                        flags |= (FIEMAP_EXTENT_DELALLOC |
4569                                  FIEMAP_EXTENT_UNKNOWN);
4570                } else if (fieinfo->fi_extents_max) {
4571                        u64 bytenr = em->block_start -
4572                                (em->start - em->orig_start);
4573
4574                        /*
4575                         * As btrfs supports shared space, this information
4576                         * can be exported to userspace tools via
4577                         * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4578                         * then we're just getting a count and we can skip the
4579                         * lookup stuff.
4580                         */
4581                        ret = btrfs_check_shared(root,
4582                                                 btrfs_ino(BTRFS_I(inode)),
4583                                                 bytenr);
4584                        if (ret < 0)
4585                                goto out_free;
4586                        if (ret)
4587                                flags |= FIEMAP_EXTENT_SHARED;
4588                        ret = 0;
4589                }
4590                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4591                        flags |= FIEMAP_EXTENT_ENCODED;
4592                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4593                        flags |= FIEMAP_EXTENT_UNWRITTEN;
4594
4595                free_extent_map(em);
4596                em = NULL;
4597                if ((em_start >= last) || em_len == (u64)-1 ||
4598                   (last == (u64)-1 && isize <= em_end)) {
4599                        flags |= FIEMAP_EXTENT_LAST;
4600                        end = 1;
4601                }
4602
4603                /* now scan forward to see if this is really the last extent. */
4604                em = get_extent_skip_holes(inode, off, last_for_get_extent);
4605                if (IS_ERR(em)) {
4606                        ret = PTR_ERR(em);
4607                        goto out;
4608                }
4609                if (!em) {
4610                        flags |= FIEMAP_EXTENT_LAST;
4611                        end = 1;
4612                }
4613                ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4614                                           em_len, flags);
4615                if (ret) {
4616                        if (ret == 1)
4617                                ret = 0;
4618                        goto out_free;
4619                }
4620        }
4621out_free:
4622        if (!ret)
4623                ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
4624        free_extent_map(em);
4625out:
4626        btrfs_free_path(path);
4627        unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4628                             &cached_state);
4629        return ret;
4630}
4631
4632static void __free_extent_buffer(struct extent_buffer *eb)
4633{
4634        btrfs_leak_debug_del(&eb->leak_list);
4635        kmem_cache_free(extent_buffer_cache, eb);
4636}
4637
4638int extent_buffer_under_io(struct extent_buffer *eb)
4639{
4640        return (atomic_read(&eb->io_pages) ||
4641                test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4642                test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4643}
4644
4645/*
4646 * Helper for releasing extent buffer page.
4647 */
4648static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4649{
4650        unsigned long index;
4651        struct page *page;
4652        int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4653
4654        BUG_ON(extent_buffer_under_io(eb));
4655
4656        index = num_extent_pages(eb->start, eb->len);
4657        if (index == 0)
4658                return;
4659
4660        do {
4661                index--;
4662                page = eb->pages[index];
4663                if (!page)
4664                        continue;
4665                if (mapped)
4666                        spin_lock(&page->mapping->private_lock);
4667                /*
4668                 * We do this since we'll remove the pages after we've
4669                 * removed the eb from the radix tree, so we could race
4670                 * and have this page now attached to the new eb.  So
4671                 * only clear page_private if it's still connected to
4672                 * this eb.
4673                 */
4674                if (PagePrivate(page) &&
4675                    page->private == (unsigned long)eb) {
4676                        BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4677                        BUG_ON(PageDirty(page));
4678                        BUG_ON(PageWriteback(page));
4679                        /*
4680                         * We need to make sure we haven't be attached
4681                         * to a new eb.
4682                         */
4683                        ClearPagePrivate(page);
4684                        set_page_private(page, 0);
4685                        /* One for the page private */
4686                        put_page(page);
4687                }
4688
4689                if (mapped)
4690                        spin_unlock(&page->mapping->private_lock);
4691
4692                /* One for when we allocated the page */
4693                put_page(page);
4694        } while (index != 0);
4695}
4696
4697/*
4698 * Helper for releasing the extent buffer.
4699 */
4700static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4701{
4702        btrfs_release_extent_buffer_page(eb);
4703        __free_extent_buffer(eb);
4704}
4705
4706static struct extent_buffer *
4707__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4708                      unsigned long len)
4709{
4710        struct extent_buffer *eb = NULL;
4711
4712        eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4713        eb->start = start;
4714        eb->len = len;
4715        eb->fs_info = fs_info;
4716        eb->bflags = 0;
4717        rwlock_init(&eb->lock);
4718        atomic_set(&eb->write_locks, 0);
4719        atomic_set(&eb->read_locks, 0);
4720        atomic_set(&eb->blocking_readers, 0);
4721        atomic_set(&eb->blocking_writers, 0);
4722        atomic_set(&eb->spinning_readers, 0);
4723        atomic_set(&eb->spinning_writers, 0);
4724        eb->lock_nested = 0;
4725        init_waitqueue_head(&eb->write_lock_wq);
4726        init_waitqueue_head(&eb->read_lock_wq);
4727
4728        btrfs_leak_debug_add(&eb->leak_list, &buffers);
4729
4730        spin_lock_init(&eb->refs_lock);
4731        atomic_set(&eb->refs, 1);
4732        atomic_set(&eb->io_pages, 0);
4733
4734        /*
4735         * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4736         */
4737        BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4738                > MAX_INLINE_EXTENT_BUFFER_SIZE);
4739        BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4740
4741        return eb;
4742}
4743
4744struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4745{
4746        unsigned long i;
4747        struct page *p;
4748        struct extent_buffer *new;
4749        unsigned long num_pages = num_extent_pages(src->start, src->len);
4750
4751        new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4752        if (new == NULL)
4753                return NULL;
4754
4755        for (i = 0; i < num_pages; i++) {
4756                p = alloc_page(GFP_NOFS);
4757                if (!p) {
4758                        btrfs_release_extent_buffer(new);
4759                        return NULL;
4760                }
4761                attach_extent_buffer_page(new, p);
4762                WARN_ON(PageDirty(p));
4763                SetPageUptodate(p);
4764                new->pages[i] = p;
4765                copy_page(page_address(p), page_address(src->pages[i]));
4766        }
4767
4768        set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4769        set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4770
4771        return new;
4772}
4773
4774struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4775                                                  u64 start, unsigned long len)
4776{
4777        struct extent_buffer *eb;
4778        unsigned long num_pages;
4779        unsigned long i;
4780
4781        num_pages = num_extent_pages(start, len);
4782
4783        eb = __alloc_extent_buffer(fs_info, start, len);
4784        if (!eb)
4785                return NULL;
4786
4787        for (i = 0; i < num_pages; i++) {
4788                eb->pages[i] = alloc_page(GFP_NOFS);
4789                if (!eb->pages[i])
4790                        goto err;
4791        }
4792        set_extent_buffer_uptodate(eb);
4793        btrfs_set_header_nritems(eb, 0);
4794        set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4795
4796        return eb;
4797err:
4798        for (; i > 0; i--)
4799                __free_page(eb->pages[i - 1]);
4800        __free_extent_buffer(eb);
4801        return NULL;
4802}
4803
4804struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4805                                                u64 start)
4806{
4807        return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4808}
4809
4810static void check_buffer_tree_ref(struct extent_buffer *eb)
4811{
4812        int refs;
4813        /* the ref bit is tricky.  We have to make sure it is set
4814         * if we have the buffer dirty.   Otherwise the
4815         * code to free a buffer can end up dropping a dirty
4816         * page
4817         *
4818         * Once the ref bit is set, it won't go away while the
4819         * buffer is dirty or in writeback, and it also won't
4820         * go away while we have the reference count on the
4821         * eb bumped.
4822         *
4823         * We can't just set the ref bit without bumping the
4824         * ref on the eb because free_extent_buffer might
4825         * see the ref bit and try to clear it.  If this happens
4826         * free_extent_buffer might end up dropping our original
4827         * ref by mistake and freeing the page before we are able
4828         * to add one more ref.
4829         *
4830         * So bump the ref count first, then set the bit.  If someone
4831         * beat us to it, drop the ref we added.
4832         */
4833        refs = atomic_read(&eb->refs);
4834        if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4835                return;
4836
4837        spin_lock(&eb->refs_lock);
4838        if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4839                atomic_inc(&eb->refs);
4840        spin_unlock(&eb->refs_lock);
4841}
4842
4843static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4844                struct page *accessed)
4845{
4846        unsigned long num_pages, i;
4847
4848        check_buffer_tree_ref(eb);
4849
4850        num_pages = num_extent_pages(eb->start, eb->len);
4851        for (i = 0; i < num_pages; i++) {
4852                struct page *p = eb->pages[i];
4853
4854                if (p != accessed)
4855                        mark_page_accessed(p);
4856        }
4857}
4858
4859struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4860                                         u64 start)
4861{
4862        struct extent_buffer *eb;
4863
4864        rcu_read_lock();
4865        eb = radix_tree_lookup(&fs_info->buffer_radix,
4866                               start >> PAGE_SHIFT);
4867        if (eb && atomic_inc_not_zero(&eb->refs)) {
4868                rcu_read_unlock();
4869                /*
4870                 * Lock our eb's refs_lock to avoid races with
4871                 * free_extent_buffer. When we get our eb it might be flagged
4872                 * with EXTENT_BUFFER_STALE and another task running
4873                 * free_extent_buffer might have seen that flag set,
4874                 * eb->refs == 2, that the buffer isn't under IO (dirty and
4875                 * writeback flags not set) and it's still in the tree (flag
4876                 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4877                 * of decrementing the extent buffer's reference count twice.
4878                 * So here we could race and increment the eb's reference count,
4879                 * clear its stale flag, mark it as dirty and drop our reference
4880                 * before the other task finishes executing free_extent_buffer,
4881                 * which would later result in an attempt to free an extent
4882                 * buffer that is dirty.
4883                 */
4884                if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4885                        spin_lock(&eb->refs_lock);
4886                        spin_unlock(&eb->refs_lock);
4887                }
4888                mark_extent_buffer_accessed(eb, NULL);
4889                return eb;
4890        }
4891        rcu_read_unlock();
4892
4893        return NULL;
4894}
4895
4896#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4897struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4898                                        u64 start)
4899{
4900        struct extent_buffer *eb, *exists = NULL;
4901        int ret;
4902
4903        eb = find_extent_buffer(fs_info, start);
4904        if (eb)
4905                return eb;
4906        eb = alloc_dummy_extent_buffer(fs_info, start);
4907        if (!eb)
4908                return NULL;
4909        eb->fs_info = fs_info;
4910again:
4911        ret = radix_tree_preload(GFP_NOFS);
4912        if (ret)
4913                goto free_eb;
4914        spin_lock(&fs_info->buffer_lock);
4915        ret = radix_tree_insert(&fs_info->buffer_radix,
4916                                start >> PAGE_SHIFT, eb);
4917        spin_unlock(&fs_info->buffer_lock);
4918        radix_tree_preload_end();
4919        if (ret == -EEXIST) {
4920                exists = find_extent_buffer(fs_info, start);
4921                if (exists)
4922                        goto free_eb;
4923                else
4924                        goto again;
4925        }
4926        check_buffer_tree_ref(eb);
4927        set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4928
4929        /*
4930         * We will free dummy extent buffer's if they come into
4931         * free_extent_buffer with a ref count of 2, but if we are using this we
4932         * want the buffers to stay in memory until we're done with them, so
4933         * bump the ref count again.
4934         */
4935        atomic_inc(&eb->refs);
4936        return eb;
4937free_eb:
4938        btrfs_release_extent_buffer(eb);
4939        return exists;
4940}
4941#endif
4942
4943struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4944                                          u64 start)
4945{
4946        unsigned long len = fs_info->nodesize;
4947        unsigned long num_pages = num_extent_pages(start, len);
4948        unsigned long i;
4949        unsigned long index = start >> PAGE_SHIFT;
4950        struct extent_buffer *eb;
4951        struct extent_buffer *exists = NULL;
4952        struct page *p;
4953        struct address_space *mapping = fs_info->btree_inode->i_mapping;
4954        int uptodate = 1;
4955        int ret;
4956
4957        if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4958                btrfs_err(fs_info, "bad tree block start %llu", start);
4959                return ERR_PTR(-EINVAL);
4960        }
4961
4962        eb = find_extent_buffer(fs_info, start);
4963        if (eb)
4964                return eb;
4965
4966        eb = __alloc_extent_buffer(fs_info, start, len);
4967        if (!eb)
4968                return ERR_PTR(-ENOMEM);
4969
4970        for (i = 0; i < num_pages; i++, index++) {
4971                p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4972                if (!p) {
4973                        exists = ERR_PTR(-ENOMEM);
4974                        goto free_eb;
4975                }
4976
4977                spin_lock(&mapping->private_lock);
4978                if (PagePrivate(p)) {
4979                        /*
4980                         * We could have already allocated an eb for this page
4981                         * and attached one so lets see if we can get a ref on
4982                         * the existing eb, and if we can we know it's good and
4983                         * we can just return that one, else we know we can just
4984                         * overwrite page->private.
4985                         */
4986                        exists = (struct extent_buffer *)p->private;
4987                        if (atomic_inc_not_zero(&exists->refs)) {
4988                                spin_unlock(&mapping->private_lock);
4989                                unlock_page(p);
4990                                put_page(p);
4991                                mark_extent_buffer_accessed(exists, p);
4992                                goto free_eb;
4993                        }
4994                        exists = NULL;
4995
4996                        /*
4997                         * Do this so attach doesn't complain and we need to
4998                         * drop the ref the old guy had.
4999                         */
5000                        ClearPagePrivate(p);
5001                        WARN_ON(PageDirty(p));
5002                        put_page(p);
5003                }
5004                attach_extent_buffer_page(eb, p);
5005                spin_unlock(&mapping->private_lock);
5006                WARN_ON(PageDirty(p));
5007                eb->pages[i] = p;
5008                if (!PageUptodate(p))
5009                        uptodate = 0;
5010
5011                /*
5012                 * see below about how we avoid a nasty race with release page
5013                 * and why we unlock later
5014                 */
5015        }
5016        if (uptodate)
5017                set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5018again:
5019        ret = radix_tree_preload(GFP_NOFS);
5020        if (ret) {
5021                exists = ERR_PTR(ret);
5022                goto free_eb;
5023        }
5024
5025        spin_lock(&fs_info->buffer_lock);
5026        ret = radix_tree_insert(&fs_info->buffer_radix,
5027                                start >> PAGE_SHIFT, eb);
5028        spin_unlock(&fs_info->buffer_lock);
5029        radix_tree_preload_end();
5030        if (ret == -EEXIST) {
5031                exists = find_extent_buffer(fs_info, start);
5032                if (exists)
5033                        goto free_eb;
5034                else
5035                        goto again;
5036        }
5037        /* add one reference for the tree */
5038        check_buffer_tree_ref(eb);
5039        set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5040
5041        /*
5042         * there is a race where release page may have
5043         * tried to find this extent buffer in the radix
5044         * but failed.  It will tell the VM it is safe to
5045         * reclaim the, and it will clear the page private bit.
5046         * We must make sure to set the page private bit properly
5047         * after the extent buffer is in the radix tree so
5048         * it doesn't get lost
5049         */
5050        SetPageChecked(eb->pages[0]);
5051        for (i = 1; i < num_pages; i++) {
5052                p = eb->pages[i];
5053                ClearPageChecked(p);
5054                unlock_page(p);
5055        }
5056        unlock_page(eb->pages[0]);
5057        return eb;
5058
5059free_eb:
5060        WARN_ON(!atomic_dec_and_test(&eb->refs));
5061        for (i = 0; i < num_pages; i++) {
5062                if (eb->pages[i])
5063                        unlock_page(eb->pages[i]);
5064        }
5065
5066        btrfs_release_extent_buffer(eb);
5067        return exists;
5068}
5069
5070static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5071{
5072        struct extent_buffer *eb =
5073                        container_of(head, struct extent_buffer, rcu_head);
5074
5075        __free_extent_buffer(eb);
5076}
5077
5078/* Expects to have eb->eb_lock already held */
5079static int release_extent_buffer(struct extent_buffer *eb)
5080{
5081        WARN_ON(atomic_read(&eb->refs) == 0);
5082        if (atomic_dec_and_test(&eb->refs)) {
5083                if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5084                        struct btrfs_fs_info *fs_info = eb->fs_info;
5085
5086                        spin_unlock(&eb->refs_lock);
5087
5088                        spin_lock(&fs_info->buffer_lock);
5089                        radix_tree_delete(&fs_info->buffer_radix,
5090                                          eb->start >> PAGE_SHIFT);
5091                        spin_unlock(&fs_info->buffer_lock);
5092                } else {
5093                        spin_unlock(&eb->refs_lock);
5094                }
5095
5096                /* Should be safe to release our pages at this point */
5097                btrfs_release_extent_buffer_page(eb);
5098#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5099                if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5100                        __free_extent_buffer(eb);
5101                        return 1;
5102                }
5103#endif
5104                call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5105                return 1;
5106        }
5107        spin_unlock(&eb->refs_lock);
5108
5109        return 0;
5110}
5111
5112void free_extent_buffer(struct extent_buffer *eb)
5113{
5114        int refs;
5115        int old;
5116        if (!eb)
5117                return;
5118
5119        while (1) {
5120                refs = atomic_read(&eb->refs);
5121                if (refs <= 3)
5122                        break;
5123                old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5124                if (old == refs)
5125                        return;
5126        }
5127
5128        spin_lock(&eb->refs_lock);
5129        if (atomic_read(&eb->refs) == 2 &&
5130            test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5131                atomic_dec(&eb->refs);
5132
5133        if (atomic_read(&eb->refs) == 2 &&
5134            test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5135            !extent_buffer_under_io(eb) &&
5136            test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5137                atomic_dec(&eb->refs);
5138
5139        /*
5140         * I know this is terrible, but it's temporary until we stop tracking
5141         * the uptodate bits and such for the extent buffers.
5142         */
5143        release_extent_buffer(eb);
5144}
5145
5146void free_extent_buffer_stale(struct extent_buffer *eb)
5147{
5148        if (!eb)
5149                return;
5150
5151        spin_lock(&eb->refs_lock);
5152        set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5153
5154        if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5155            test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5156                atomic_dec(&eb->refs);
5157        release_extent_buffer(eb);
5158}
5159
5160void clear_extent_buffer_dirty(struct extent_buffer *eb)
5161{
5162        unsigned long i;
5163        unsigned long num_pages;
5164        struct page *page;
5165
5166        num_pages = num_extent_pages(eb->start, eb->len);
5167
5168        for (i = 0; i < num_pages; i++) {
5169                page = eb->pages[i];
5170                if (!PageDirty(page))
5171                        continue;
5172
5173                lock_page(page);
5174                WARN_ON(!PagePrivate(page));
5175
5176                clear_page_dirty_for_io(page);
5177                xa_lock_irq(&page->mapping->i_pages);
5178                if (!PageDirty(page)) {
5179                        radix_tree_tag_clear(&page->mapping->i_pages,
5180                                                page_index(page),
5181                                                PAGECACHE_TAG_DIRTY);
5182                }
5183                xa_unlock_irq(&page->mapping->i_pages);
5184                ClearPageError(page);
5185                unlock_page(page);
5186        }
5187        WARN_ON(atomic_read(&eb->refs) == 0);
5188}
5189
5190int set_extent_buffer_dirty(struct extent_buffer *eb)
5191{
5192        unsigned long i;
5193        unsigned long num_pages;
5194        int was_dirty = 0;
5195
5196        check_buffer_tree_ref(eb);
5197
5198        was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5199
5200        num_pages = num_extent_pages(eb->start, eb->len);
5201        WARN_ON(atomic_read(&eb->refs) == 0);
5202        WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5203
5204        for (i = 0; i < num_pages; i++)
5205                set_page_dirty(eb->pages[i]);
5206        return was_dirty;
5207}
5208
5209void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5210{
5211        unsigned long i;
5212        struct page *page;
5213        unsigned long num_pages;
5214
5215        clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5216        num_pages = num_extent_pages(eb->start, eb->len);
5217        for (i = 0; i < num_pages; i++) {
5218                page = eb->pages[i];
5219                if (page)
5220                        ClearPageUptodate(page);
5221        }
5222}
5223
5224void set_extent_buffer_uptodate(struct extent_buffer *eb)
5225{
5226        unsigned long i;
5227        struct page *page;
5228        unsigned long num_pages;
5229
5230        set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5231        num_pages = num_extent_pages(eb->start, eb->len);
5232        for (i = 0; i < num_pages; i++) {
5233                page = eb->pages[i];
5234                SetPageUptodate(page);
5235        }
5236}
5237
5238int read_extent_buffer_pages(struct extent_io_tree *tree,
5239                             struct extent_buffer *eb, int wait, int mirror_num)
5240{
5241        unsigned long i;
5242        struct page *page;
5243        int err;
5244        int ret = 0;
5245        int locked_pages = 0;
5246        int all_uptodate = 1;
5247        unsigned long num_pages;
5248        unsigned long num_reads = 0;
5249        struct bio *bio = NULL;
5250        unsigned long bio_flags = 0;
5251
5252        if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5253                return 0;
5254
5255        num_pages = num_extent_pages(eb->start, eb->len);
5256        for (i = 0; i < num_pages; i++) {
5257                page = eb->pages[i];
5258                if (wait == WAIT_NONE) {
5259                        if (!trylock_page(page))
5260                                goto unlock_exit;
5261                } else {
5262                        lock_page(page);
5263                }
5264                locked_pages++;
5265        }
5266        /*
5267         * We need to firstly lock all pages to make sure that
5268         * the uptodate bit of our pages won't be affected by
5269         * clear_extent_buffer_uptodate().
5270         */
5271        for (i = 0; i < num_pages; i++) {
5272                page = eb->pages[i];
5273                if (!PageUptodate(page)) {
5274                        num_reads++;
5275                        all_uptodate = 0;
5276                }
5277        }
5278
5279        if (all_uptodate) {
5280                set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5281                goto unlock_exit;
5282        }
5283
5284        clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5285        eb->read_mirror = 0;
5286        atomic_set(&eb->io_pages, num_reads);
5287        for (i = 0; i < num_pages; i++) {
5288                page = eb->pages[i];
5289
5290                if (!PageUptodate(page)) {
5291                        if (ret) {
5292                                atomic_dec(&eb->io_pages);
5293                                unlock_page(page);
5294                                continue;
5295                        }
5296
5297                        ClearPageError(page);
5298                        err = __extent_read_full_page(tree, page,
5299                                                      btree_get_extent, &bio,
5300                                                      mirror_num, &bio_flags,
5301                                                      REQ_META);
5302                        if (err) {
5303                                ret = err;
5304                                /*
5305                                 * We use &bio in above __extent_read_full_page,
5306                                 * so we ensure that if it returns error, the
5307                                 * current page fails to add itself to bio and
5308                                 * it's been unlocked.
5309                                 *
5310                                 * We must dec io_pages by ourselves.
5311                                 */
5312                                atomic_dec(&eb->io_pages);
5313                        }
5314                } else {
5315                        unlock_page(page);
5316                }
5317        }
5318
5319        if (bio) {
5320                err = submit_one_bio(bio, mirror_num, bio_flags);
5321                if (err)
5322                        return err;
5323        }
5324
5325        if (ret || wait != WAIT_COMPLETE)
5326                return ret;
5327
5328        for (i = 0; i < num_pages; i++) {
5329                page = eb->pages[i];
5330                wait_on_page_locked(page);
5331                if (!PageUptodate(page))
5332                        ret = -EIO;
5333        }
5334
5335        return ret;
5336
5337unlock_exit:
5338        while (locked_pages > 0) {
5339                locked_pages--;
5340                page = eb->pages[locked_pages];
5341                unlock_page(page);
5342        }
5343        return ret;
5344}
5345
5346void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5347                        unsigned long start, unsigned long len)
5348{
5349        size_t cur;
5350        size_t offset;
5351        struct page *page;
5352        char *kaddr;
5353        char *dst = (char *)dstv;
5354        size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5355        unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5356
5357        if (start + len > eb->len) {
5358                WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5359                     eb->start, eb->len, start, len);
5360                memset(dst, 0, len);
5361                return;
5362        }
5363
5364        offset = (start_offset + start) & (PAGE_SIZE - 1);
5365
5366        while (len > 0) {
5367                page = eb->pages[i];
5368
5369                cur = min(len, (PAGE_SIZE - offset));
5370                kaddr = page_address(page);
5371                memcpy(dst, kaddr + offset, cur);
5372
5373                dst += cur;
5374                len -= cur;
5375                offset = 0;
5376                i++;
5377        }
5378}
5379
5380int read_extent_buffer_to_user(const struct extent_buffer *eb,
5381                               void __user *dstv,
5382                               unsigned long start, unsigned long len)
5383{
5384        size_t cur;
5385        size_t offset;
5386        struct page *page;
5387        char *kaddr;
5388        char __user *dst = (char __user *)dstv;
5389        size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5390        unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5391        int ret = 0;
5392
5393        WARN_ON(start > eb->len);
5394        WARN_ON(start + len > eb->start + eb->len);
5395
5396        offset = (start_offset + start) & (PAGE_SIZE - 1);
5397
5398        while (len > 0) {
5399                page = eb->pages[i];
5400
5401                cur = min(len, (PAGE_SIZE - offset));
5402                kaddr = page_address(page);
5403                if (copy_to_user(dst, kaddr + offset, cur)) {
5404                        ret = -EFAULT;
5405                        break;
5406                }
5407
5408                dst += cur;
5409                len -= cur;
5410                offset = 0;
5411                i++;
5412        }
5413
5414        return ret;
5415}
5416
5417/*
5418 * return 0 if the item is found within a page.
5419 * return 1 if the item spans two pages.
5420 * return -EINVAL otherwise.
5421 */
5422int map_private_extent_buffer(const struct extent_buffer *eb,
5423                              unsigned long start, unsigned long min_len,
5424                              char **map, unsigned long *map_start,
5425                              unsigned long *map_len)
5426{
5427        size_t offset = start & (PAGE_SIZE - 1);
5428        char *kaddr;
5429        struct page *p;
5430        size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5431        unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5432        unsigned long end_i = (start_offset + start + min_len - 1) >>
5433                PAGE_SHIFT;
5434
5435        if (start + min_len > eb->len) {
5436                WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5437                       eb->start, eb->len, start, min_len);
5438                return -EINVAL;
5439        }
5440
5441        if (i != end_i)
5442                return 1;
5443
5444        if (i == 0) {
5445                offset = start_offset;
5446                *map_start = 0;
5447        } else {
5448                offset = 0;
5449                *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5450        }
5451
5452        p = eb->pages[i];
5453        kaddr = page_address(p);
5454        *map = kaddr + offset;
5455        *map_len = PAGE_SIZE - offset;
5456        return 0;
5457}
5458
5459int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5460                         unsigned long start, unsigned long len)
5461{
5462        size_t cur;
5463        size_t offset;
5464        struct page *page;
5465        char *kaddr;
5466        char *ptr = (char *)ptrv;
5467        size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5468        unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5469        int ret = 0;
5470
5471        WARN_ON(start > eb->len);
5472        WARN_ON(start + len > eb->start + eb->len);
5473
5474        offset = (start_offset + start) & (PAGE_SIZE - 1);
5475
5476        while (len > 0) {
5477                page = eb->pages[i];
5478
5479                cur = min(len, (PAGE_SIZE - offset));
5480
5481                kaddr = page_address(page);
5482                ret = memcmp(ptr, kaddr + offset, cur);
5483                if (ret)
5484                        break;
5485
5486                ptr += cur;
5487                len -= cur;
5488                offset = 0;
5489                i++;
5490        }
5491        return ret;
5492}
5493
5494void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5495                const void *srcv)
5496{
5497        char *kaddr;
5498
5499        WARN_ON(!PageUptodate(eb->pages[0]));
5500        kaddr = page_address(eb->pages[0]);
5501        memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5502                        BTRFS_FSID_SIZE);
5503}
5504
5505void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5506{
5507        char *kaddr;
5508
5509        WARN_ON(!PageUptodate(eb->pages[0]));
5510        kaddr = page_address(eb->pages[0]);
5511        memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5512                        BTRFS_FSID_SIZE);
5513}
5514
5515void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5516                         unsigned long start, unsigned long len)
5517{
5518        size_t cur;
5519        size_t offset;
5520        struct page *page;
5521        char *kaddr;
5522        char *src = (char *)srcv;
5523        size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5524        unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5525
5526        WARN_ON(start > eb->len);
5527        WARN_ON(start + len > eb->start + eb->len);
5528
5529        offset = (start_offset + start) & (PAGE_SIZE - 1);
5530
5531        while (len > 0) {
5532                page = eb->pages[i];
5533                WARN_ON(!PageUptodate(page));
5534
5535                cur = min(len, PAGE_SIZE - offset);
5536                kaddr = page_address(page);
5537                memcpy(kaddr + offset, src, cur);
5538
5539                src += cur;
5540                len -= cur;
5541                offset = 0;
5542                i++;
5543        }
5544}
5545
5546void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5547                unsigned long len)
5548{
5549        size_t cur;
5550        size_t offset;
5551        struct page *page;
5552        char *kaddr;
5553        size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5554        unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5555
5556        WARN_ON(start > eb->len);
5557        WARN_ON(start + len > eb->start + eb->len);
5558
5559        offset = (start_offset + start) & (PAGE_SIZE - 1);
5560
5561        while (len > 0) {
5562                page = eb->pages[i];
5563                WARN_ON(!PageUptodate(page));
5564
5565                cur = min(len, PAGE_SIZE - offset);
5566                kaddr = page_address(page);
5567                memset(kaddr + offset, 0, cur);
5568
5569                len -= cur;
5570                offset = 0;
5571                i++;
5572        }
5573}
5574
5575void copy_extent_buffer_full(struct extent_buffer *dst,
5576                             struct extent_buffer *src)
5577{
5578        int i;
5579        unsigned num_pages;
5580
5581        ASSERT(dst->len == src->len);
5582
5583        num_pages = num_extent_pages(dst->start, dst->len);
5584        for (i = 0; i < num_pages; i++)
5585                copy_page(page_address(dst->pages[i]),
5586                                page_address(src->pages[i]));
5587}
5588
5589void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5590                        unsigned long dst_offset, unsigned long src_offset,
5591                        unsigned long len)
5592{
5593        u64 dst_len = dst->len;
5594        size_t cur;
5595        size_t offset;
5596        struct page *page;
5597        char *kaddr;
5598        size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5599        unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5600
5601        WARN_ON(src->len != dst_len);
5602
5603        offset = (start_offset + dst_offset) &
5604                (PAGE_SIZE - 1);
5605
5606        while (len > 0) {
5607                page = dst->pages[i];
5608                WARN_ON(!PageUptodate(page));
5609
5610                cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5611
5612                kaddr = page_address(page);
5613                read_extent_buffer(src, kaddr + offset, src_offset, cur);
5614
5615                src_offset += cur;
5616                len -= cur;
5617                offset = 0;
5618                i++;
5619        }
5620}
5621
5622/*
5623 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5624 * given bit number
5625 * @eb: the extent buffer
5626 * @start: offset of the bitmap item in the extent buffer
5627 * @nr: bit number
5628 * @page_index: return index of the page in the extent buffer that contains the
5629 * given bit number
5630 * @page_offset: return offset into the page given by page_index
5631 *
5632 * This helper hides the ugliness of finding the byte in an extent buffer which
5633 * contains a given bit.
5634 */
5635static inline void eb_bitmap_offset(struct extent_buffer *eb,
5636                                    unsigned long start, unsigned long nr,
5637                                    unsigned long *page_index,
5638                                    size_t *page_offset)
5639{
5640        size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5641        size_t byte_offset = BIT_BYTE(nr);
5642        size_t offset;
5643
5644        /*
5645         * The byte we want is the offset of the extent buffer + the offset of
5646         * the bitmap item in the extent buffer + the offset of the byte in the
5647         * bitmap item.
5648         */
5649        offset = start_offset + start + byte_offset;
5650
5651        *page_index = offset >> PAGE_SHIFT;
5652        *page_offset = offset & (PAGE_SIZE - 1);
5653}
5654
5655/**
5656 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5657 * @eb: the extent buffer
5658 * @start: offset of the bitmap item in the extent buffer
5659 * @nr: bit number to test
5660 */
5661int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5662                           unsigned long nr)
5663{
5664        u8 *kaddr;
5665        struct page *page;
5666        unsigned long i;
5667        size_t offset;
5668
5669        eb_bitmap_offset(eb, start, nr, &i, &offset);
5670        page = eb->pages[i];
5671        WARN_ON(!PageUptodate(page));
5672        kaddr = page_address(page);
5673        return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5674}
5675
5676/**
5677 * extent_buffer_bitmap_set - set an area of a bitmap
5678 * @eb: the extent buffer
5679 * @start: offset of the bitmap item in the extent buffer
5680 * @pos: bit number of the first bit
5681 * @len: number of bits to set
5682 */
5683void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5684                              unsigned long pos, unsigned long len)
5685{
5686        u8 *kaddr;
5687        struct page *page;
5688        unsigned long i;
5689        size_t offset;
5690        const unsigned int size = pos + len;
5691        int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5692        u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5693
5694        eb_bitmap_offset(eb, start, pos, &i, &offset);
5695        page = eb->pages[i];
5696        WARN_ON(!PageUptodate(page));
5697        kaddr = page_address(page);
5698
5699        while (len >= bits_to_set) {
5700                kaddr[offset] |= mask_to_set;
5701                len -= bits_to_set;
5702                bits_to_set = BITS_PER_BYTE;
5703                mask_to_set = ~0;
5704                if (++offset >= PAGE_SIZE && len > 0) {
5705                        offset = 0;
5706                        page = eb->pages[++i];
5707                        WARN_ON(!PageUptodate(page));
5708                        kaddr = page_address(page);
5709                }
5710        }
5711        if (len) {
5712                mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5713                kaddr[offset] |= mask_to_set;
5714        }
5715}
5716
5717
5718/**
5719 * extent_buffer_bitmap_clear - clear an area of a bitmap
5720 * @eb: the extent buffer
5721 * @start: offset of the bitmap item in the extent buffer
5722 * @pos: bit number of the first bit
5723 * @len: number of bits to clear
5724 */
5725void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5726                                unsigned long pos, unsigned long len)
5727{
5728        u8 *kaddr;
5729        struct page *page;
5730        unsigned long i;
5731        size_t offset;
5732        const unsigned int size = pos + len;
5733        int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5734        u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5735
5736        eb_bitmap_offset(eb, start, pos, &i, &offset);
5737        page = eb->pages[i];
5738        WARN_ON(!PageUptodate(page));
5739        kaddr = page_address(page);
5740
5741        while (len >= bits_to_clear) {
5742                kaddr[offset] &= ~mask_to_clear;
5743                len -= bits_to_clear;
5744                bits_to_clear = BITS_PER_BYTE;
5745                mask_to_clear = ~0;
5746                if (++offset >= PAGE_SIZE && len > 0) {
5747                        offset = 0;
5748                        page = eb->pages[++i];
5749                        WARN_ON(!PageUptodate(page));
5750                        kaddr = page_address(page);
5751                }
5752        }
5753        if (len) {
5754                mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5755                kaddr[offset] &= ~mask_to_clear;
5756        }
5757}
5758
5759static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5760{
5761        unsigned long distance = (src > dst) ? src - dst : dst - src;
5762        return distance < len;
5763}
5764
5765static void copy_pages(struct page *dst_page, struct page *src_page,
5766                       unsigned long dst_off, unsigned long src_off,
5767                       unsigned long len)
5768{
5769        char *dst_kaddr = page_address(dst_page);
5770        char *src_kaddr;
5771        int must_memmove = 0;
5772
5773        if (dst_page != src_page) {
5774                src_kaddr = page_address(src_page);
5775        } else {
5776                src_kaddr = dst_kaddr;
5777                if (areas_overlap(src_off, dst_off, len))
5778                        must_memmove = 1;
5779        }
5780
5781        if (must_memmove)
5782                memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5783        else
5784                memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5785}
5786
5787void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5788                           unsigned long src_offset, unsigned long len)
5789{
5790        struct btrfs_fs_info *fs_info = dst->fs_info;
5791        size_t cur;
5792        size_t dst_off_in_page;
5793        size_t src_off_in_page;
5794        size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5795        unsigned long dst_i;
5796        unsigned long src_i;
5797
5798        if (src_offset + len > dst->len) {
5799                btrfs_err(fs_info,
5800                        "memmove bogus src_offset %lu move len %lu dst len %lu",
5801                         src_offset, len, dst->len);
5802                BUG_ON(1);
5803        }
5804        if (dst_offset + len > dst->len) {
5805                btrfs_err(fs_info,
5806                        "memmove bogus dst_offset %lu move len %lu dst len %lu",
5807                         dst_offset, len, dst->len);
5808                BUG_ON(1);
5809        }
5810
5811        while (len > 0) {
5812                dst_off_in_page = (start_offset + dst_offset) &
5813                        (PAGE_SIZE - 1);
5814                src_off_in_page = (start_offset + src_offset) &
5815                        (PAGE_SIZE - 1);
5816
5817                dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5818                src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5819
5820                cur = min(len, (unsigned long)(PAGE_SIZE -
5821                                               src_off_in_page));
5822                cur = min_t(unsigned long, cur,
5823                        (unsigned long)(PAGE_SIZE - dst_off_in_page));
5824
5825                copy_pages(dst->pages[dst_i], dst->pages[src_i],
5826                           dst_off_in_page, src_off_in_page, cur);
5827
5828                src_offset += cur;
5829                dst_offset += cur;
5830                len -= cur;
5831        }
5832}
5833
5834void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5835                           unsigned long src_offset, unsigned long len)
5836{
5837        struct btrfs_fs_info *fs_info = dst->fs_info;
5838        size_t cur;
5839        size_t dst_off_in_page;
5840        size_t src_off_in_page;
5841        unsigned long dst_end = dst_offset + len - 1;
5842        unsigned long src_end = src_offset + len - 1;
5843        size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5844        unsigned long dst_i;
5845        unsigned long src_i;
5846
5847        if (src_offset + len > dst->len) {
5848                btrfs_err(fs_info,
5849                          "memmove bogus src_offset %lu move len %lu len %lu",
5850                          src_offset, len, dst->len);
5851                BUG_ON(1);
5852        }
5853        if (dst_offset + len > dst->len) {
5854                btrfs_err(fs_info,
5855                          "memmove bogus dst_offset %lu move len %lu len %lu",
5856                          dst_offset, len, dst->len);
5857                BUG_ON(1);
5858        }
5859        if (dst_offset < src_offset) {
5860                memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5861                return;
5862        }
5863        while (len > 0) {
5864                dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5865                src_i = (start_offset + src_end) >> PAGE_SHIFT;
5866
5867                dst_off_in_page = (start_offset + dst_end) &
5868                        (PAGE_SIZE - 1);
5869                src_off_in_page = (start_offset + src_end) &
5870                        (PAGE_SIZE - 1);
5871
5872                cur = min_t(unsigned long, len, src_off_in_page + 1);
5873                cur = min(cur, dst_off_in_page + 1);
5874                copy_pages(dst->pages[dst_i], dst->pages[src_i],
5875                           dst_off_in_page - cur + 1,
5876                           src_off_in_page - cur + 1, cur);
5877
5878                dst_end -= cur;
5879                src_end -= cur;
5880                len -= cur;
5881        }
5882}
5883
5884int try_release_extent_buffer(struct page *page)
5885{
5886        struct extent_buffer *eb;
5887
5888        /*
5889         * We need to make sure nobody is attaching this page to an eb right
5890         * now.
5891         */
5892        spin_lock(&page->mapping->private_lock);
5893        if (!PagePrivate(page)) {
5894                spin_unlock(&page->mapping->private_lock);
5895                return 1;
5896        }
5897
5898        eb = (struct extent_buffer *)page->private;
5899        BUG_ON(!eb);
5900
5901        /*
5902         * This is a little awful but should be ok, we need to make sure that
5903         * the eb doesn't disappear out from under us while we're looking at
5904         * this page.
5905         */
5906        spin_lock(&eb->refs_lock);
5907        if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5908                spin_unlock(&eb->refs_lock);
5909                spin_unlock(&page->mapping->private_lock);
5910                return 0;
5911        }
5912        spin_unlock(&page->mapping->private_lock);
5913
5914        /*
5915         * If tree ref isn't set then we know the ref on this eb is a real ref,
5916         * so just return, this page will likely be freed soon anyway.
5917         */
5918        if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5919                spin_unlock(&eb->refs_lock);
5920                return 0;
5921        }
5922
5923        return release_extent_buffer(eb);
5924}
5925