linux/fs/gfs2/aops.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   3 * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
   4 *
   5 * This copyrighted material is made available to anyone wishing to use,
   6 * modify, copy, or redistribute it subject to the terms and conditions
   7 * of the GNU General Public License version 2.
   8 */
   9
  10#include <linux/sched.h>
  11#include <linux/slab.h>
  12#include <linux/spinlock.h>
  13#include <linux/completion.h>
  14#include <linux/buffer_head.h>
  15#include <linux/pagemap.h>
  16#include <linux/pagevec.h>
  17#include <linux/mpage.h>
  18#include <linux/fs.h>
  19#include <linux/writeback.h>
  20#include <linux/swap.h>
  21#include <linux/gfs2_ondisk.h>
  22#include <linux/backing-dev.h>
  23#include <linux/uio.h>
  24#include <trace/events/writeback.h>
  25#include <linux/sched/signal.h>
  26
  27#include "gfs2.h"
  28#include "incore.h"
  29#include "bmap.h"
  30#include "glock.h"
  31#include "inode.h"
  32#include "log.h"
  33#include "meta_io.h"
  34#include "quota.h"
  35#include "trans.h"
  36#include "rgrp.h"
  37#include "super.h"
  38#include "util.h"
  39#include "glops.h"
  40#include "aops.h"
  41
  42
  43void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
  44                            unsigned int from, unsigned int len)
  45{
  46        struct buffer_head *head = page_buffers(page);
  47        unsigned int bsize = head->b_size;
  48        struct buffer_head *bh;
  49        unsigned int to = from + len;
  50        unsigned int start, end;
  51
  52        for (bh = head, start = 0; bh != head || !start;
  53             bh = bh->b_this_page, start = end) {
  54                end = start + bsize;
  55                if (end <= from)
  56                        continue;
  57                if (start >= to)
  58                        break;
  59                set_buffer_uptodate(bh);
  60                gfs2_trans_add_data(ip->i_gl, bh);
  61        }
  62}
  63
  64/**
  65 * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
  66 * @inode: The inode
  67 * @lblock: The block number to look up
  68 * @bh_result: The buffer head to return the result in
  69 * @create: Non-zero if we may add block to the file
  70 *
  71 * Returns: errno
  72 */
  73
  74static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
  75                                  struct buffer_head *bh_result, int create)
  76{
  77        int error;
  78
  79        error = gfs2_block_map(inode, lblock, bh_result, 0);
  80        if (error)
  81                return error;
  82        if (!buffer_mapped(bh_result))
  83                return -EIO;
  84        return 0;
  85}
  86
  87/**
  88 * gfs2_writepage_common - Common bits of writepage
  89 * @page: The page to be written
  90 * @wbc: The writeback control
  91 *
  92 * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
  93 */
  94
  95static int gfs2_writepage_common(struct page *page,
  96                                 struct writeback_control *wbc)
  97{
  98        struct inode *inode = page->mapping->host;
  99        struct gfs2_inode *ip = GFS2_I(inode);
 100        struct gfs2_sbd *sdp = GFS2_SB(inode);
 101        loff_t i_size = i_size_read(inode);
 102        pgoff_t end_index = i_size >> PAGE_SHIFT;
 103        unsigned offset;
 104
 105        if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
 106                goto out;
 107        if (current->journal_info)
 108                goto redirty;
 109        /* Is the page fully outside i_size? (truncate in progress) */
 110        offset = i_size & (PAGE_SIZE-1);
 111        if (page->index > end_index || (page->index == end_index && !offset)) {
 112                page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
 113                goto out;
 114        }
 115        return 1;
 116redirty:
 117        redirty_page_for_writepage(wbc, page);
 118out:
 119        unlock_page(page);
 120        return 0;
 121}
 122
 123/**
 124 * gfs2_writepage - Write page for writeback mappings
 125 * @page: The page
 126 * @wbc: The writeback control
 127 *
 128 */
 129
 130static int gfs2_writepage(struct page *page, struct writeback_control *wbc)
 131{
 132        int ret;
 133
 134        ret = gfs2_writepage_common(page, wbc);
 135        if (ret <= 0)
 136                return ret;
 137
 138        return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
 139}
 140
 141/* This is the same as calling block_write_full_page, but it also
 142 * writes pages outside of i_size
 143 */
 144static int gfs2_write_full_page(struct page *page, get_block_t *get_block,
 145                                struct writeback_control *wbc)
 146{
 147        struct inode * const inode = page->mapping->host;
 148        loff_t i_size = i_size_read(inode);
 149        const pgoff_t end_index = i_size >> PAGE_SHIFT;
 150        unsigned offset;
 151
 152        /*
 153         * The page straddles i_size.  It must be zeroed out on each and every
 154         * writepage invocation because it may be mmapped.  "A file is mapped
 155         * in multiples of the page size.  For a file that is not a multiple of
 156         * the  page size, the remaining memory is zeroed when mapped, and
 157         * writes to that region are not written out to the file."
 158         */
 159        offset = i_size & (PAGE_SIZE-1);
 160        if (page->index == end_index && offset)
 161                zero_user_segment(page, offset, PAGE_SIZE);
 162
 163        return __block_write_full_page(inode, page, get_block, wbc,
 164                                       end_buffer_async_write);
 165}
 166
 167/**
 168 * __gfs2_jdata_writepage - The core of jdata writepage
 169 * @page: The page to write
 170 * @wbc: The writeback control
 171 *
 172 * This is shared between writepage and writepages and implements the
 173 * core of the writepage operation. If a transaction is required then
 174 * PageChecked will have been set and the transaction will have
 175 * already been started before this is called.
 176 */
 177
 178static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
 179{
 180        struct inode *inode = page->mapping->host;
 181        struct gfs2_inode *ip = GFS2_I(inode);
 182        struct gfs2_sbd *sdp = GFS2_SB(inode);
 183
 184        if (PageChecked(page)) {
 185                ClearPageChecked(page);
 186                if (!page_has_buffers(page)) {
 187                        create_empty_buffers(page, inode->i_sb->s_blocksize,
 188                                             BIT(BH_Dirty)|BIT(BH_Uptodate));
 189                }
 190                gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize);
 191        }
 192        return gfs2_write_full_page(page, gfs2_get_block_noalloc, wbc);
 193}
 194
 195/**
 196 * gfs2_jdata_writepage - Write complete page
 197 * @page: Page to write
 198 * @wbc: The writeback control
 199 *
 200 * Returns: errno
 201 *
 202 */
 203
 204static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
 205{
 206        struct inode *inode = page->mapping->host;
 207        struct gfs2_inode *ip = GFS2_I(inode);
 208        struct gfs2_sbd *sdp = GFS2_SB(inode);
 209        int ret;
 210
 211        if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
 212                goto out;
 213        if (PageChecked(page) || current->journal_info)
 214                goto out_ignore;
 215        ret = __gfs2_jdata_writepage(page, wbc);
 216        return ret;
 217
 218out_ignore:
 219        redirty_page_for_writepage(wbc, page);
 220out:
 221        unlock_page(page);
 222        return 0;
 223}
 224
 225/**
 226 * gfs2_writepages - Write a bunch of dirty pages back to disk
 227 * @mapping: The mapping to write
 228 * @wbc: Write-back control
 229 *
 230 * Used for both ordered and writeback modes.
 231 */
 232static int gfs2_writepages(struct address_space *mapping,
 233                           struct writeback_control *wbc)
 234{
 235        struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
 236        int ret = mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
 237
 238        /*
 239         * Even if we didn't write any pages here, we might still be holding
 240         * dirty pages in the ail. We forcibly flush the ail because we don't
 241         * want balance_dirty_pages() to loop indefinitely trying to write out
 242         * pages held in the ail that it can't find.
 243         */
 244        if (ret == 0)
 245                set_bit(SDF_FORCE_AIL_FLUSH, &sdp->sd_flags);
 246
 247        return ret;
 248}
 249
 250/**
 251 * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
 252 * @mapping: The mapping
 253 * @wbc: The writeback control
 254 * @pvec: The vector of pages
 255 * @nr_pages: The number of pages to write
 256 * @done_index: Page index
 257 *
 258 * Returns: non-zero if loop should terminate, zero otherwise
 259 */
 260
 261static int gfs2_write_jdata_pagevec(struct address_space *mapping,
 262                                    struct writeback_control *wbc,
 263                                    struct pagevec *pvec,
 264                                    int nr_pages,
 265                                    pgoff_t *done_index)
 266{
 267        struct inode *inode = mapping->host;
 268        struct gfs2_sbd *sdp = GFS2_SB(inode);
 269        unsigned nrblocks = nr_pages * (PAGE_SIZE/inode->i_sb->s_blocksize);
 270        int i;
 271        int ret;
 272
 273        ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
 274        if (ret < 0)
 275                return ret;
 276
 277        for(i = 0; i < nr_pages; i++) {
 278                struct page *page = pvec->pages[i];
 279
 280                *done_index = page->index;
 281
 282                lock_page(page);
 283
 284                if (unlikely(page->mapping != mapping)) {
 285continue_unlock:
 286                        unlock_page(page);
 287                        continue;
 288                }
 289
 290                if (!PageDirty(page)) {
 291                        /* someone wrote it for us */
 292                        goto continue_unlock;
 293                }
 294
 295                if (PageWriteback(page)) {
 296                        if (wbc->sync_mode != WB_SYNC_NONE)
 297                                wait_on_page_writeback(page);
 298                        else
 299                                goto continue_unlock;
 300                }
 301
 302                BUG_ON(PageWriteback(page));
 303                if (!clear_page_dirty_for_io(page))
 304                        goto continue_unlock;
 305
 306                trace_wbc_writepage(wbc, inode_to_bdi(inode));
 307
 308                ret = __gfs2_jdata_writepage(page, wbc);
 309                if (unlikely(ret)) {
 310                        if (ret == AOP_WRITEPAGE_ACTIVATE) {
 311                                unlock_page(page);
 312                                ret = 0;
 313                        } else {
 314
 315                                /*
 316                                 * done_index is set past this page,
 317                                 * so media errors will not choke
 318                                 * background writeout for the entire
 319                                 * file. This has consequences for
 320                                 * range_cyclic semantics (ie. it may
 321                                 * not be suitable for data integrity
 322                                 * writeout).
 323                                 */
 324                                *done_index = page->index + 1;
 325                                ret = 1;
 326                                break;
 327                        }
 328                }
 329
 330                /*
 331                 * We stop writing back only if we are not doing
 332                 * integrity sync. In case of integrity sync we have to
 333                 * keep going until we have written all the pages
 334                 * we tagged for writeback prior to entering this loop.
 335                 */
 336                if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) {
 337                        ret = 1;
 338                        break;
 339                }
 340
 341        }
 342        gfs2_trans_end(sdp);
 343        return ret;
 344}
 345
 346/**
 347 * gfs2_write_cache_jdata - Like write_cache_pages but different
 348 * @mapping: The mapping to write
 349 * @wbc: The writeback control
 350 *
 351 * The reason that we use our own function here is that we need to
 352 * start transactions before we grab page locks. This allows us
 353 * to get the ordering right.
 354 */
 355
 356static int gfs2_write_cache_jdata(struct address_space *mapping,
 357                                  struct writeback_control *wbc)
 358{
 359        int ret = 0;
 360        int done = 0;
 361        struct pagevec pvec;
 362        int nr_pages;
 363        pgoff_t uninitialized_var(writeback_index);
 364        pgoff_t index;
 365        pgoff_t end;
 366        pgoff_t done_index;
 367        int cycled;
 368        int range_whole = 0;
 369        int tag;
 370
 371        pagevec_init(&pvec);
 372        if (wbc->range_cyclic) {
 373                writeback_index = mapping->writeback_index; /* prev offset */
 374                index = writeback_index;
 375                if (index == 0)
 376                        cycled = 1;
 377                else
 378                        cycled = 0;
 379                end = -1;
 380        } else {
 381                index = wbc->range_start >> PAGE_SHIFT;
 382                end = wbc->range_end >> PAGE_SHIFT;
 383                if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
 384                        range_whole = 1;
 385                cycled = 1; /* ignore range_cyclic tests */
 386        }
 387        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
 388                tag = PAGECACHE_TAG_TOWRITE;
 389        else
 390                tag = PAGECACHE_TAG_DIRTY;
 391
 392retry:
 393        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
 394                tag_pages_for_writeback(mapping, index, end);
 395        done_index = index;
 396        while (!done && (index <= end)) {
 397                nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
 398                                tag);
 399                if (nr_pages == 0)
 400                        break;
 401
 402                ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, &done_index);
 403                if (ret)
 404                        done = 1;
 405                if (ret > 0)
 406                        ret = 0;
 407                pagevec_release(&pvec);
 408                cond_resched();
 409        }
 410
 411        if (!cycled && !done) {
 412                /*
 413                 * range_cyclic:
 414                 * We hit the last page and there is more work to be done: wrap
 415                 * back to the start of the file
 416                 */
 417                cycled = 1;
 418                index = 0;
 419                end = writeback_index - 1;
 420                goto retry;
 421        }
 422
 423        if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
 424                mapping->writeback_index = done_index;
 425
 426        return ret;
 427}
 428
 429
 430/**
 431 * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
 432 * @mapping: The mapping to write
 433 * @wbc: The writeback control
 434 * 
 435 */
 436
 437static int gfs2_jdata_writepages(struct address_space *mapping,
 438                                 struct writeback_control *wbc)
 439{
 440        struct gfs2_inode *ip = GFS2_I(mapping->host);
 441        struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
 442        int ret;
 443
 444        ret = gfs2_write_cache_jdata(mapping, wbc);
 445        if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
 446                gfs2_log_flush(sdp, ip->i_gl, GFS2_LOG_HEAD_FLUSH_NORMAL |
 447                               GFS2_LFC_JDATA_WPAGES);
 448                ret = gfs2_write_cache_jdata(mapping, wbc);
 449        }
 450        return ret;
 451}
 452
 453/**
 454 * stuffed_readpage - Fill in a Linux page with stuffed file data
 455 * @ip: the inode
 456 * @page: the page
 457 *
 458 * Returns: errno
 459 */
 460
 461int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
 462{
 463        struct buffer_head *dibh;
 464        u64 dsize = i_size_read(&ip->i_inode);
 465        void *kaddr;
 466        int error;
 467
 468        /*
 469         * Due to the order of unstuffing files and ->fault(), we can be
 470         * asked for a zero page in the case of a stuffed file being extended,
 471         * so we need to supply one here. It doesn't happen often.
 472         */
 473        if (unlikely(page->index)) {
 474                zero_user(page, 0, PAGE_SIZE);
 475                SetPageUptodate(page);
 476                return 0;
 477        }
 478
 479        error = gfs2_meta_inode_buffer(ip, &dibh);
 480        if (error)
 481                return error;
 482
 483        kaddr = kmap_atomic(page);
 484        if (dsize > gfs2_max_stuffed_size(ip))
 485                dsize = gfs2_max_stuffed_size(ip);
 486        memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
 487        memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
 488        kunmap_atomic(kaddr);
 489        flush_dcache_page(page);
 490        brelse(dibh);
 491        SetPageUptodate(page);
 492
 493        return 0;
 494}
 495
 496
 497/**
 498 * __gfs2_readpage - readpage
 499 * @file: The file to read a page for
 500 * @page: The page to read
 501 *
 502 * This is the core of gfs2's readpage. It's used by the internal file
 503 * reading code as in that case we already hold the glock. Also it's
 504 * called by gfs2_readpage() once the required lock has been granted.
 505 */
 506
 507static int __gfs2_readpage(void *file, struct page *page)
 508{
 509        struct gfs2_inode *ip = GFS2_I(page->mapping->host);
 510        struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
 511
 512        int error;
 513
 514        if (i_blocksize(page->mapping->host) == PAGE_SIZE &&
 515            !page_has_buffers(page)) {
 516                error = iomap_readpage(page, &gfs2_iomap_ops);
 517        } else if (gfs2_is_stuffed(ip)) {
 518                error = stuffed_readpage(ip, page);
 519                unlock_page(page);
 520        } else {
 521                error = mpage_readpage(page, gfs2_block_map);
 522        }
 523
 524        if (unlikely(gfs2_withdrawn(sdp)))
 525                return -EIO;
 526
 527        return error;
 528}
 529
 530/**
 531 * gfs2_readpage - read a page of a file
 532 * @file: The file to read
 533 * @page: The page of the file
 534 *
 535 * This deals with the locking required. We have to unlock and
 536 * relock the page in order to get the locking in the right
 537 * order.
 538 */
 539
 540static int gfs2_readpage(struct file *file, struct page *page)
 541{
 542        struct address_space *mapping = page->mapping;
 543        struct gfs2_inode *ip = GFS2_I(mapping->host);
 544        struct gfs2_holder gh;
 545        int error;
 546
 547        unlock_page(page);
 548        gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 549        error = gfs2_glock_nq(&gh);
 550        if (unlikely(error))
 551                goto out;
 552        error = AOP_TRUNCATED_PAGE;
 553        lock_page(page);
 554        if (page->mapping == mapping && !PageUptodate(page))
 555                error = __gfs2_readpage(file, page);
 556        else
 557                unlock_page(page);
 558        gfs2_glock_dq(&gh);
 559out:
 560        gfs2_holder_uninit(&gh);
 561        if (error && error != AOP_TRUNCATED_PAGE)
 562                lock_page(page);
 563        return error;
 564}
 565
 566/**
 567 * gfs2_internal_read - read an internal file
 568 * @ip: The gfs2 inode
 569 * @buf: The buffer to fill
 570 * @pos: The file position
 571 * @size: The amount to read
 572 *
 573 */
 574
 575int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos,
 576                       unsigned size)
 577{
 578        struct address_space *mapping = ip->i_inode.i_mapping;
 579        unsigned long index = *pos / PAGE_SIZE;
 580        unsigned offset = *pos & (PAGE_SIZE - 1);
 581        unsigned copied = 0;
 582        unsigned amt;
 583        struct page *page;
 584        void *p;
 585
 586        do {
 587                amt = size - copied;
 588                if (offset + size > PAGE_SIZE)
 589                        amt = PAGE_SIZE - offset;
 590                page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
 591                if (IS_ERR(page))
 592                        return PTR_ERR(page);
 593                p = kmap_atomic(page);
 594                memcpy(buf + copied, p + offset, amt);
 595                kunmap_atomic(p);
 596                put_page(page);
 597                copied += amt;
 598                index++;
 599                offset = 0;
 600        } while(copied < size);
 601        (*pos) += size;
 602        return size;
 603}
 604
 605/**
 606 * gfs2_readpages - Read a bunch of pages at once
 607 * @file: The file to read from
 608 * @mapping: Address space info
 609 * @pages: List of pages to read
 610 * @nr_pages: Number of pages to read
 611 *
 612 * Some notes:
 613 * 1. This is only for readahead, so we can simply ignore any things
 614 *    which are slightly inconvenient (such as locking conflicts between
 615 *    the page lock and the glock) and return having done no I/O. Its
 616 *    obviously not something we'd want to do on too regular a basis.
 617 *    Any I/O we ignore at this time will be done via readpage later.
 618 * 2. We don't handle stuffed files here we let readpage do the honours.
 619 * 3. mpage_readpages() does most of the heavy lifting in the common case.
 620 * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
 621 */
 622
 623static int gfs2_readpages(struct file *file, struct address_space *mapping,
 624                          struct list_head *pages, unsigned nr_pages)
 625{
 626        struct inode *inode = mapping->host;
 627        struct gfs2_inode *ip = GFS2_I(inode);
 628        struct gfs2_sbd *sdp = GFS2_SB(inode);
 629        struct gfs2_holder gh;
 630        int ret;
 631
 632        gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 633        ret = gfs2_glock_nq(&gh);
 634        if (unlikely(ret))
 635                goto out_uninit;
 636        if (!gfs2_is_stuffed(ip))
 637                ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
 638        gfs2_glock_dq(&gh);
 639out_uninit:
 640        gfs2_holder_uninit(&gh);
 641        if (unlikely(gfs2_withdrawn(sdp)))
 642                ret = -EIO;
 643        return ret;
 644}
 645
 646/**
 647 * adjust_fs_space - Adjusts the free space available due to gfs2_grow
 648 * @inode: the rindex inode
 649 */
 650void adjust_fs_space(struct inode *inode)
 651{
 652        struct gfs2_sbd *sdp = GFS2_SB(inode);
 653        struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 654        struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
 655        struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
 656        struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
 657        struct buffer_head *m_bh, *l_bh;
 658        u64 fs_total, new_free;
 659
 660        if (gfs2_trans_begin(sdp, 2 * RES_STATFS, 0) != 0)
 661                return;
 662
 663        /* Total up the file system space, according to the latest rindex. */
 664        fs_total = gfs2_ri_total(sdp);
 665        if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
 666                goto out;
 667
 668        spin_lock(&sdp->sd_statfs_spin);
 669        gfs2_statfs_change_in(m_sc, m_bh->b_data +
 670                              sizeof(struct gfs2_dinode));
 671        if (fs_total > (m_sc->sc_total + l_sc->sc_total))
 672                new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
 673        else
 674                new_free = 0;
 675        spin_unlock(&sdp->sd_statfs_spin);
 676        fs_warn(sdp, "File system extended by %llu blocks.\n",
 677                (unsigned long long)new_free);
 678        gfs2_statfs_change(sdp, new_free, new_free, 0);
 679
 680        if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
 681                goto out2;
 682        update_statfs(sdp, m_bh, l_bh);
 683        brelse(l_bh);
 684out2:
 685        brelse(m_bh);
 686out:
 687        sdp->sd_rindex_uptodate = 0;
 688        gfs2_trans_end(sdp);
 689}
 690
 691/**
 692 * gfs2_stuffed_write_end - Write end for stuffed files
 693 * @inode: The inode
 694 * @dibh: The buffer_head containing the on-disk inode
 695 * @pos: The file position
 696 * @copied: How much was actually copied by the VFS
 697 * @page: The page
 698 *
 699 * This copies the data from the page into the inode block after
 700 * the inode data structure itself.
 701 *
 702 * Returns: copied bytes or errno
 703 */
 704int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
 705                           loff_t pos, unsigned copied,
 706                           struct page *page)
 707{
 708        struct gfs2_inode *ip = GFS2_I(inode);
 709        u64 to = pos + copied;
 710        void *kaddr;
 711        unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
 712
 713        BUG_ON(pos + copied > gfs2_max_stuffed_size(ip));
 714
 715        kaddr = kmap_atomic(page);
 716        memcpy(buf + pos, kaddr + pos, copied);
 717        flush_dcache_page(page);
 718        kunmap_atomic(kaddr);
 719
 720        WARN_ON(!PageUptodate(page));
 721        unlock_page(page);
 722        put_page(page);
 723
 724        if (copied) {
 725                if (inode->i_size < to)
 726                        i_size_write(inode, to);
 727                mark_inode_dirty(inode);
 728        }
 729        return copied;
 730}
 731
 732/**
 733 * jdata_set_page_dirty - Page dirtying function
 734 * @page: The page to dirty
 735 *
 736 * Returns: 1 if it dirtyed the page, or 0 otherwise
 737 */
 738 
 739static int jdata_set_page_dirty(struct page *page)
 740{
 741        SetPageChecked(page);
 742        return __set_page_dirty_buffers(page);
 743}
 744
 745/**
 746 * gfs2_bmap - Block map function
 747 * @mapping: Address space info
 748 * @lblock: The block to map
 749 *
 750 * Returns: The disk address for the block or 0 on hole or error
 751 */
 752
 753static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
 754{
 755        struct gfs2_inode *ip = GFS2_I(mapping->host);
 756        struct gfs2_holder i_gh;
 757        sector_t dblock = 0;
 758        int error;
 759
 760        error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
 761        if (error)
 762                return 0;
 763
 764        if (!gfs2_is_stuffed(ip))
 765                dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
 766
 767        gfs2_glock_dq_uninit(&i_gh);
 768
 769        return dblock;
 770}
 771
 772static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
 773{
 774        struct gfs2_bufdata *bd;
 775
 776        lock_buffer(bh);
 777        gfs2_log_lock(sdp);
 778        clear_buffer_dirty(bh);
 779        bd = bh->b_private;
 780        if (bd) {
 781                if (!list_empty(&bd->bd_list) && !buffer_pinned(bh))
 782                        list_del_init(&bd->bd_list);
 783                else
 784                        gfs2_remove_from_journal(bh, REMOVE_JDATA);
 785        }
 786        bh->b_bdev = NULL;
 787        clear_buffer_mapped(bh);
 788        clear_buffer_req(bh);
 789        clear_buffer_new(bh);
 790        gfs2_log_unlock(sdp);
 791        unlock_buffer(bh);
 792}
 793
 794static void gfs2_invalidatepage(struct page *page, unsigned int offset,
 795                                unsigned int length)
 796{
 797        struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
 798        unsigned int stop = offset + length;
 799        int partial_page = (offset || length < PAGE_SIZE);
 800        struct buffer_head *bh, *head;
 801        unsigned long pos = 0;
 802
 803        BUG_ON(!PageLocked(page));
 804        if (!partial_page)
 805                ClearPageChecked(page);
 806        if (!page_has_buffers(page))
 807                goto out;
 808
 809        bh = head = page_buffers(page);
 810        do {
 811                if (pos + bh->b_size > stop)
 812                        return;
 813
 814                if (offset <= pos)
 815                        gfs2_discard(sdp, bh);
 816                pos += bh->b_size;
 817                bh = bh->b_this_page;
 818        } while (bh != head);
 819out:
 820        if (!partial_page)
 821                try_to_release_page(page, 0);
 822}
 823
 824/**
 825 * gfs2_releasepage - free the metadata associated with a page
 826 * @page: the page that's being released
 827 * @gfp_mask: passed from Linux VFS, ignored by us
 828 *
 829 * Call try_to_free_buffers() if the buffers in this page can be
 830 * released.
 831 *
 832 * Returns: 0
 833 */
 834
 835int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
 836{
 837        struct address_space *mapping = page->mapping;
 838        struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
 839        struct buffer_head *bh, *head;
 840        struct gfs2_bufdata *bd;
 841
 842        if (!page_has_buffers(page))
 843                return 0;
 844
 845        /*
 846         * From xfs_vm_releasepage: mm accommodates an old ext3 case where
 847         * clean pages might not have had the dirty bit cleared.  Thus, it can
 848         * send actual dirty pages to ->releasepage() via shrink_active_list().
 849         *
 850         * As a workaround, we skip pages that contain dirty buffers below.
 851         * Once ->releasepage isn't called on dirty pages anymore, we can warn
 852         * on dirty buffers like we used to here again.
 853         */
 854
 855        gfs2_log_lock(sdp);
 856        spin_lock(&sdp->sd_ail_lock);
 857        head = bh = page_buffers(page);
 858        do {
 859                if (atomic_read(&bh->b_count))
 860                        goto cannot_release;
 861                bd = bh->b_private;
 862                if (bd && bd->bd_tr)
 863                        goto cannot_release;
 864                if (buffer_dirty(bh) || WARN_ON(buffer_pinned(bh)))
 865                        goto cannot_release;
 866                bh = bh->b_this_page;
 867        } while(bh != head);
 868        spin_unlock(&sdp->sd_ail_lock);
 869
 870        head = bh = page_buffers(page);
 871        do {
 872                bd = bh->b_private;
 873                if (bd) {
 874                        gfs2_assert_warn(sdp, bd->bd_bh == bh);
 875                        bd->bd_bh = NULL;
 876                        bh->b_private = NULL;
 877                        /*
 878                         * The bd may still be queued as a revoke, in which
 879                         * case we must not dequeue nor free it.
 880                         */
 881                        if (!bd->bd_blkno && !list_empty(&bd->bd_list))
 882                                list_del_init(&bd->bd_list);
 883                        if (list_empty(&bd->bd_list))
 884                                kmem_cache_free(gfs2_bufdata_cachep, bd);
 885                }
 886
 887                bh = bh->b_this_page;
 888        } while (bh != head);
 889        gfs2_log_unlock(sdp);
 890
 891        return try_to_free_buffers(page);
 892
 893cannot_release:
 894        spin_unlock(&sdp->sd_ail_lock);
 895        gfs2_log_unlock(sdp);
 896        return 0;
 897}
 898
 899static const struct address_space_operations gfs2_writeback_aops = {
 900        .writepage = gfs2_writepage,
 901        .writepages = gfs2_writepages,
 902        .readpage = gfs2_readpage,
 903        .readpages = gfs2_readpages,
 904        .bmap = gfs2_bmap,
 905        .invalidatepage = gfs2_invalidatepage,
 906        .releasepage = gfs2_releasepage,
 907        .direct_IO = noop_direct_IO,
 908        .migratepage = buffer_migrate_page,
 909        .is_partially_uptodate = block_is_partially_uptodate,
 910        .error_remove_page = generic_error_remove_page,
 911};
 912
 913static const struct address_space_operations gfs2_ordered_aops = {
 914        .writepage = gfs2_writepage,
 915        .writepages = gfs2_writepages,
 916        .readpage = gfs2_readpage,
 917        .readpages = gfs2_readpages,
 918        .set_page_dirty = __set_page_dirty_buffers,
 919        .bmap = gfs2_bmap,
 920        .invalidatepage = gfs2_invalidatepage,
 921        .releasepage = gfs2_releasepage,
 922        .direct_IO = noop_direct_IO,
 923        .migratepage = buffer_migrate_page,
 924        .is_partially_uptodate = block_is_partially_uptodate,
 925        .error_remove_page = generic_error_remove_page,
 926};
 927
 928static const struct address_space_operations gfs2_jdata_aops = {
 929        .writepage = gfs2_jdata_writepage,
 930        .writepages = gfs2_jdata_writepages,
 931        .readpage = gfs2_readpage,
 932        .readpages = gfs2_readpages,
 933        .set_page_dirty = jdata_set_page_dirty,
 934        .bmap = gfs2_bmap,
 935        .invalidatepage = gfs2_invalidatepage,
 936        .releasepage = gfs2_releasepage,
 937        .is_partially_uptodate = block_is_partially_uptodate,
 938        .error_remove_page = generic_error_remove_page,
 939};
 940
 941void gfs2_set_aops(struct inode *inode)
 942{
 943        struct gfs2_inode *ip = GFS2_I(inode);
 944
 945        if (gfs2_is_writeback(ip))
 946                inode->i_mapping->a_ops = &gfs2_writeback_aops;
 947        else if (gfs2_is_ordered(ip))
 948                inode->i_mapping->a_ops = &gfs2_ordered_aops;
 949        else if (gfs2_is_jdata(ip))
 950                inode->i_mapping->a_ops = &gfs2_jdata_aops;
 951        else
 952                BUG();
 953}
 954
 955