linux/fs/nilfs2/super.c
<<
>>
Prefs
   1/*
   2 * super.c - NILFS module and super block management.
   3 *
   4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * Written by Ryusuke Konishi.
  17 */
  18/*
  19 *  linux/fs/ext2/super.c
  20 *
  21 * Copyright (C) 1992, 1993, 1994, 1995
  22 * Remy Card (card@masi.ibp.fr)
  23 * Laboratoire MASI - Institut Blaise Pascal
  24 * Universite Pierre et Marie Curie (Paris VI)
  25 *
  26 *  from
  27 *
  28 *  linux/fs/minix/inode.c
  29 *
  30 *  Copyright (C) 1991, 1992  Linus Torvalds
  31 *
  32 *  Big-endian to little-endian byte-swapping/bitmaps by
  33 *        David S. Miller (davem@caip.rutgers.edu), 1995
  34 */
  35
  36#include <linux/module.h>
  37#include <linux/string.h>
  38#include <linux/slab.h>
  39#include <linux/init.h>
  40#include <linux/blkdev.h>
  41#include <linux/parser.h>
  42#include <linux/crc32.h>
  43#include <linux/vfs.h>
  44#include <linux/writeback.h>
  45#include <linux/seq_file.h>
  46#include <linux/mount.h>
  47#include "nilfs.h"
  48#include "export.h"
  49#include "mdt.h"
  50#include "alloc.h"
  51#include "btree.h"
  52#include "btnode.h"
  53#include "page.h"
  54#include "cpfile.h"
  55#include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
  56#include "ifile.h"
  57#include "dat.h"
  58#include "segment.h"
  59#include "segbuf.h"
  60
  61MODULE_AUTHOR("NTT Corp.");
  62MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
  63                   "(NILFS)");
  64MODULE_LICENSE("GPL");
  65
  66static struct kmem_cache *nilfs_inode_cachep;
  67struct kmem_cache *nilfs_transaction_cachep;
  68struct kmem_cache *nilfs_segbuf_cachep;
  69struct kmem_cache *nilfs_btree_path_cache;
  70
  71static int nilfs_setup_super(struct super_block *sb, int is_mount);
  72static int nilfs_remount(struct super_block *sb, int *flags, char *data);
  73
  74void __nilfs_msg(struct super_block *sb, const char *level, const char *fmt,
  75                 ...)
  76{
  77        struct va_format vaf;
  78        va_list args;
  79
  80        va_start(args, fmt);
  81        vaf.fmt = fmt;
  82        vaf.va = &args;
  83        if (sb)
  84                printk("%sNILFS (%s): %pV\n", level, sb->s_id, &vaf);
  85        else
  86                printk("%sNILFS: %pV\n", level, &vaf);
  87        va_end(args);
  88}
  89
  90static void nilfs_set_error(struct super_block *sb)
  91{
  92        struct the_nilfs *nilfs = sb->s_fs_info;
  93        struct nilfs_super_block **sbp;
  94
  95        down_write(&nilfs->ns_sem);
  96        if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
  97                nilfs->ns_mount_state |= NILFS_ERROR_FS;
  98                sbp = nilfs_prepare_super(sb, 0);
  99                if (likely(sbp)) {
 100                        sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
 101                        if (sbp[1])
 102                                sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
 103                        nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 104                }
 105        }
 106        up_write(&nilfs->ns_sem);
 107}
 108
 109/**
 110 * __nilfs_error() - report failure condition on a filesystem
 111 *
 112 * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
 113 * reporting an error message.  This function should be called when
 114 * NILFS detects incoherences or defects of meta data on disk.
 115 *
 116 * This implements the body of nilfs_error() macro.  Normally,
 117 * nilfs_error() should be used.  As for sustainable errors such as a
 118 * single-shot I/O error, nilfs_msg() should be used instead.
 119 *
 120 * Callers should not add a trailing newline since this will do it.
 121 */
 122void __nilfs_error(struct super_block *sb, const char *function,
 123                   const char *fmt, ...)
 124{
 125        struct the_nilfs *nilfs = sb->s_fs_info;
 126        struct va_format vaf;
 127        va_list args;
 128
 129        va_start(args, fmt);
 130
 131        vaf.fmt = fmt;
 132        vaf.va = &args;
 133
 134        printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
 135               sb->s_id, function, &vaf);
 136
 137        va_end(args);
 138
 139        if (!sb_rdonly(sb)) {
 140                nilfs_set_error(sb);
 141
 142                if (nilfs_test_opt(nilfs, ERRORS_RO)) {
 143                        printk(KERN_CRIT "Remounting filesystem read-only\n");
 144                        sb->s_flags |= SB_RDONLY;
 145                }
 146        }
 147
 148        if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 149                panic("NILFS (device %s): panic forced after error\n",
 150                      sb->s_id);
 151}
 152
 153struct inode *nilfs_alloc_inode(struct super_block *sb)
 154{
 155        struct nilfs_inode_info *ii;
 156
 157        ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
 158        if (!ii)
 159                return NULL;
 160        ii->i_bh = NULL;
 161        ii->i_state = 0;
 162        ii->i_cno = 0;
 163        nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode);
 164        return &ii->vfs_inode;
 165}
 166
 167static void nilfs_i_callback(struct rcu_head *head)
 168{
 169        struct inode *inode = container_of(head, struct inode, i_rcu);
 170
 171        if (nilfs_is_metadata_file_inode(inode))
 172                nilfs_mdt_destroy(inode);
 173
 174        kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
 175}
 176
 177void nilfs_destroy_inode(struct inode *inode)
 178{
 179        call_rcu(&inode->i_rcu, nilfs_i_callback);
 180}
 181
 182static int nilfs_sync_super(struct super_block *sb, int flag)
 183{
 184        struct the_nilfs *nilfs = sb->s_fs_info;
 185        int err;
 186
 187 retry:
 188        set_buffer_dirty(nilfs->ns_sbh[0]);
 189        if (nilfs_test_opt(nilfs, BARRIER)) {
 190                err = __sync_dirty_buffer(nilfs->ns_sbh[0],
 191                                          REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
 192        } else {
 193                err = sync_dirty_buffer(nilfs->ns_sbh[0]);
 194        }
 195
 196        if (unlikely(err)) {
 197                nilfs_msg(sb, KERN_ERR, "unable to write superblock: err=%d",
 198                          err);
 199                if (err == -EIO && nilfs->ns_sbh[1]) {
 200                        /*
 201                         * sbp[0] points to newer log than sbp[1],
 202                         * so copy sbp[0] to sbp[1] to take over sbp[0].
 203                         */
 204                        memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
 205                               nilfs->ns_sbsize);
 206                        nilfs_fall_back_super_block(nilfs);
 207                        goto retry;
 208                }
 209        } else {
 210                struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
 211
 212                nilfs->ns_sbwcount++;
 213
 214                /*
 215                 * The latest segment becomes trailable from the position
 216                 * written in superblock.
 217                 */
 218                clear_nilfs_discontinued(nilfs);
 219
 220                /* update GC protection for recent segments */
 221                if (nilfs->ns_sbh[1]) {
 222                        if (flag == NILFS_SB_COMMIT_ALL) {
 223                                set_buffer_dirty(nilfs->ns_sbh[1]);
 224                                if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
 225                                        goto out;
 226                        }
 227                        if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
 228                            le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
 229                                sbp = nilfs->ns_sbp[1];
 230                }
 231
 232                spin_lock(&nilfs->ns_last_segment_lock);
 233                nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
 234                spin_unlock(&nilfs->ns_last_segment_lock);
 235        }
 236 out:
 237        return err;
 238}
 239
 240void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
 241                          struct the_nilfs *nilfs)
 242{
 243        sector_t nfreeblocks;
 244
 245        /* nilfs->ns_sem must be locked by the caller. */
 246        nilfs_count_free_blocks(nilfs, &nfreeblocks);
 247        sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
 248
 249        spin_lock(&nilfs->ns_last_segment_lock);
 250        sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
 251        sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
 252        sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
 253        spin_unlock(&nilfs->ns_last_segment_lock);
 254}
 255
 256struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
 257                                               int flip)
 258{
 259        struct the_nilfs *nilfs = sb->s_fs_info;
 260        struct nilfs_super_block **sbp = nilfs->ns_sbp;
 261
 262        /* nilfs->ns_sem must be locked by the caller. */
 263        if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 264                if (sbp[1] &&
 265                    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
 266                        memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
 267                } else {
 268                        nilfs_msg(sb, KERN_CRIT, "superblock broke");
 269                        return NULL;
 270                }
 271        } else if (sbp[1] &&
 272                   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 273                memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 274        }
 275
 276        if (flip && sbp[1])
 277                nilfs_swap_super_block(nilfs);
 278
 279        return sbp;
 280}
 281
 282int nilfs_commit_super(struct super_block *sb, int flag)
 283{
 284        struct the_nilfs *nilfs = sb->s_fs_info;
 285        struct nilfs_super_block **sbp = nilfs->ns_sbp;
 286        time64_t t;
 287
 288        /* nilfs->ns_sem must be locked by the caller. */
 289        t = ktime_get_real_seconds();
 290        nilfs->ns_sbwtime = t;
 291        sbp[0]->s_wtime = cpu_to_le64(t);
 292        sbp[0]->s_sum = 0;
 293        sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 294                                             (unsigned char *)sbp[0],
 295                                             nilfs->ns_sbsize));
 296        if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
 297                sbp[1]->s_wtime = sbp[0]->s_wtime;
 298                sbp[1]->s_sum = 0;
 299                sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 300                                            (unsigned char *)sbp[1],
 301                                            nilfs->ns_sbsize));
 302        }
 303        clear_nilfs_sb_dirty(nilfs);
 304        nilfs->ns_flushed_device = 1;
 305        /* make sure store to ns_flushed_device cannot be reordered */
 306        smp_wmb();
 307        return nilfs_sync_super(sb, flag);
 308}
 309
 310/**
 311 * nilfs_cleanup_super() - write filesystem state for cleanup
 312 * @sb: super block instance to be unmounted or degraded to read-only
 313 *
 314 * This function restores state flags in the on-disk super block.
 315 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
 316 * filesystem was not clean previously.
 317 */
 318int nilfs_cleanup_super(struct super_block *sb)
 319{
 320        struct the_nilfs *nilfs = sb->s_fs_info;
 321        struct nilfs_super_block **sbp;
 322        int flag = NILFS_SB_COMMIT;
 323        int ret = -EIO;
 324
 325        sbp = nilfs_prepare_super(sb, 0);
 326        if (sbp) {
 327                sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
 328                nilfs_set_log_cursor(sbp[0], nilfs);
 329                if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
 330                        /*
 331                         * make the "clean" flag also to the opposite
 332                         * super block if both super blocks point to
 333                         * the same checkpoint.
 334                         */
 335                        sbp[1]->s_state = sbp[0]->s_state;
 336                        flag = NILFS_SB_COMMIT_ALL;
 337                }
 338                ret = nilfs_commit_super(sb, flag);
 339        }
 340        return ret;
 341}
 342
 343/**
 344 * nilfs_move_2nd_super - relocate secondary super block
 345 * @sb: super block instance
 346 * @sb2off: new offset of the secondary super block (in bytes)
 347 */
 348static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
 349{
 350        struct the_nilfs *nilfs = sb->s_fs_info;
 351        struct buffer_head *nsbh;
 352        struct nilfs_super_block *nsbp;
 353        sector_t blocknr, newblocknr;
 354        unsigned long offset;
 355        int sb2i;  /* array index of the secondary superblock */
 356        int ret = 0;
 357
 358        /* nilfs->ns_sem must be locked by the caller. */
 359        if (nilfs->ns_sbh[1] &&
 360            nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
 361                sb2i = 1;
 362                blocknr = nilfs->ns_sbh[1]->b_blocknr;
 363        } else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
 364                sb2i = 0;
 365                blocknr = nilfs->ns_sbh[0]->b_blocknr;
 366        } else {
 367                sb2i = -1;
 368                blocknr = 0;
 369        }
 370        if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
 371                goto out;  /* super block location is unchanged */
 372
 373        /* Get new super block buffer */
 374        newblocknr = sb2off >> nilfs->ns_blocksize_bits;
 375        offset = sb2off & (nilfs->ns_blocksize - 1);
 376        nsbh = sb_getblk(sb, newblocknr);
 377        if (!nsbh) {
 378                nilfs_msg(sb, KERN_WARNING,
 379                          "unable to move secondary superblock to block %llu",
 380                          (unsigned long long)newblocknr);
 381                ret = -EIO;
 382                goto out;
 383        }
 384        nsbp = (void *)nsbh->b_data + offset;
 385        memset(nsbp, 0, nilfs->ns_blocksize);
 386
 387        if (sb2i >= 0) {
 388                memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
 389                brelse(nilfs->ns_sbh[sb2i]);
 390                nilfs->ns_sbh[sb2i] = nsbh;
 391                nilfs->ns_sbp[sb2i] = nsbp;
 392        } else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
 393                /* secondary super block will be restored to index 1 */
 394                nilfs->ns_sbh[1] = nsbh;
 395                nilfs->ns_sbp[1] = nsbp;
 396        } else {
 397                brelse(nsbh);
 398        }
 399out:
 400        return ret;
 401}
 402
 403/**
 404 * nilfs_resize_fs - resize the filesystem
 405 * @sb: super block instance
 406 * @newsize: new size of the filesystem (in bytes)
 407 */
 408int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
 409{
 410        struct the_nilfs *nilfs = sb->s_fs_info;
 411        struct nilfs_super_block **sbp;
 412        __u64 devsize, newnsegs;
 413        loff_t sb2off;
 414        int ret;
 415
 416        ret = -ERANGE;
 417        devsize = i_size_read(sb->s_bdev->bd_inode);
 418        if (newsize > devsize)
 419                goto out;
 420
 421        /*
 422         * Write lock is required to protect some functions depending
 423         * on the number of segments, the number of reserved segments,
 424         * and so forth.
 425         */
 426        down_write(&nilfs->ns_segctor_sem);
 427
 428        sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
 429        newnsegs = sb2off >> nilfs->ns_blocksize_bits;
 430        do_div(newnsegs, nilfs->ns_blocks_per_segment);
 431
 432        ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
 433        up_write(&nilfs->ns_segctor_sem);
 434        if (ret < 0)
 435                goto out;
 436
 437        ret = nilfs_construct_segment(sb);
 438        if (ret < 0)
 439                goto out;
 440
 441        down_write(&nilfs->ns_sem);
 442        nilfs_move_2nd_super(sb, sb2off);
 443        ret = -EIO;
 444        sbp = nilfs_prepare_super(sb, 0);
 445        if (likely(sbp)) {
 446                nilfs_set_log_cursor(sbp[0], nilfs);
 447                /*
 448                 * Drop NILFS_RESIZE_FS flag for compatibility with
 449                 * mount-time resize which may be implemented in a
 450                 * future release.
 451                 */
 452                sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
 453                                              ~NILFS_RESIZE_FS);
 454                sbp[0]->s_dev_size = cpu_to_le64(newsize);
 455                sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
 456                if (sbp[1])
 457                        memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 458                ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 459        }
 460        up_write(&nilfs->ns_sem);
 461
 462        /*
 463         * Reset the range of allocatable segments last.  This order
 464         * is important in the case of expansion because the secondary
 465         * superblock must be protected from log write until migration
 466         * completes.
 467         */
 468        if (!ret)
 469                nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
 470out:
 471        return ret;
 472}
 473
 474static void nilfs_put_super(struct super_block *sb)
 475{
 476        struct the_nilfs *nilfs = sb->s_fs_info;
 477
 478        nilfs_detach_log_writer(sb);
 479
 480        if (!sb_rdonly(sb)) {
 481                down_write(&nilfs->ns_sem);
 482                nilfs_cleanup_super(sb);
 483                up_write(&nilfs->ns_sem);
 484        }
 485
 486        iput(nilfs->ns_sufile);
 487        iput(nilfs->ns_cpfile);
 488        iput(nilfs->ns_dat);
 489
 490        destroy_nilfs(nilfs);
 491        sb->s_fs_info = NULL;
 492}
 493
 494static int nilfs_sync_fs(struct super_block *sb, int wait)
 495{
 496        struct the_nilfs *nilfs = sb->s_fs_info;
 497        struct nilfs_super_block **sbp;
 498        int err = 0;
 499
 500        /* This function is called when super block should be written back */
 501        if (wait)
 502                err = nilfs_construct_segment(sb);
 503
 504        down_write(&nilfs->ns_sem);
 505        if (nilfs_sb_dirty(nilfs)) {
 506                sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
 507                if (likely(sbp)) {
 508                        nilfs_set_log_cursor(sbp[0], nilfs);
 509                        nilfs_commit_super(sb, NILFS_SB_COMMIT);
 510                }
 511        }
 512        up_write(&nilfs->ns_sem);
 513
 514        if (!err)
 515                err = nilfs_flush_device(nilfs);
 516
 517        return err;
 518}
 519
 520int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
 521                            struct nilfs_root **rootp)
 522{
 523        struct the_nilfs *nilfs = sb->s_fs_info;
 524        struct nilfs_root *root;
 525        struct nilfs_checkpoint *raw_cp;
 526        struct buffer_head *bh_cp;
 527        int err = -ENOMEM;
 528
 529        root = nilfs_find_or_create_root(
 530                nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
 531        if (!root)
 532                return err;
 533
 534        if (root->ifile)
 535                goto reuse; /* already attached checkpoint */
 536
 537        down_read(&nilfs->ns_segctor_sem);
 538        err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
 539                                          &bh_cp);
 540        up_read(&nilfs->ns_segctor_sem);
 541        if (unlikely(err)) {
 542                if (err == -ENOENT || err == -EINVAL) {
 543                        nilfs_msg(sb, KERN_ERR,
 544                                  "Invalid checkpoint (checkpoint number=%llu)",
 545                                  (unsigned long long)cno);
 546                        err = -EINVAL;
 547                }
 548                goto failed;
 549        }
 550
 551        err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
 552                               &raw_cp->cp_ifile_inode, &root->ifile);
 553        if (err)
 554                goto failed_bh;
 555
 556        atomic64_set(&root->inodes_count,
 557                        le64_to_cpu(raw_cp->cp_inodes_count));
 558        atomic64_set(&root->blocks_count,
 559                        le64_to_cpu(raw_cp->cp_blocks_count));
 560
 561        nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 562
 563 reuse:
 564        *rootp = root;
 565        return 0;
 566
 567 failed_bh:
 568        nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 569 failed:
 570        nilfs_put_root(root);
 571
 572        return err;
 573}
 574
 575static int nilfs_freeze(struct super_block *sb)
 576{
 577        struct the_nilfs *nilfs = sb->s_fs_info;
 578        int err;
 579
 580        if (sb_rdonly(sb))
 581                return 0;
 582
 583        /* Mark super block clean */
 584        down_write(&nilfs->ns_sem);
 585        err = nilfs_cleanup_super(sb);
 586        up_write(&nilfs->ns_sem);
 587        return err;
 588}
 589
 590static int nilfs_unfreeze(struct super_block *sb)
 591{
 592        struct the_nilfs *nilfs = sb->s_fs_info;
 593
 594        if (sb_rdonly(sb))
 595                return 0;
 596
 597        down_write(&nilfs->ns_sem);
 598        nilfs_setup_super(sb, false);
 599        up_write(&nilfs->ns_sem);
 600        return 0;
 601}
 602
 603static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 604{
 605        struct super_block *sb = dentry->d_sb;
 606        struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 607        struct the_nilfs *nilfs = root->nilfs;
 608        u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
 609        unsigned long long blocks;
 610        unsigned long overhead;
 611        unsigned long nrsvblocks;
 612        sector_t nfreeblocks;
 613        u64 nmaxinodes, nfreeinodes;
 614        int err;
 615
 616        /*
 617         * Compute all of the segment blocks
 618         *
 619         * The blocks before first segment and after last segment
 620         * are excluded.
 621         */
 622        blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
 623                - nilfs->ns_first_data_block;
 624        nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
 625
 626        /*
 627         * Compute the overhead
 628         *
 629         * When distributing meta data blocks outside segment structure,
 630         * We must count them as the overhead.
 631         */
 632        overhead = 0;
 633
 634        err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
 635        if (unlikely(err))
 636                return err;
 637
 638        err = nilfs_ifile_count_free_inodes(root->ifile,
 639                                            &nmaxinodes, &nfreeinodes);
 640        if (unlikely(err)) {
 641                nilfs_msg(sb, KERN_WARNING,
 642                          "failed to count free inodes: err=%d", err);
 643                if (err == -ERANGE) {
 644                        /*
 645                         * If nilfs_palloc_count_max_entries() returns
 646                         * -ERANGE error code then we simply treat
 647                         * curent inodes count as maximum possible and
 648                         * zero as free inodes value.
 649                         */
 650                        nmaxinodes = atomic64_read(&root->inodes_count);
 651                        nfreeinodes = 0;
 652                        err = 0;
 653                } else
 654                        return err;
 655        }
 656
 657        buf->f_type = NILFS_SUPER_MAGIC;
 658        buf->f_bsize = sb->s_blocksize;
 659        buf->f_blocks = blocks - overhead;
 660        buf->f_bfree = nfreeblocks;
 661        buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
 662                (buf->f_bfree - nrsvblocks) : 0;
 663        buf->f_files = nmaxinodes;
 664        buf->f_ffree = nfreeinodes;
 665        buf->f_namelen = NILFS_NAME_LEN;
 666        buf->f_fsid.val[0] = (u32)id;
 667        buf->f_fsid.val[1] = (u32)(id >> 32);
 668
 669        return 0;
 670}
 671
 672static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
 673{
 674        struct super_block *sb = dentry->d_sb;
 675        struct the_nilfs *nilfs = sb->s_fs_info;
 676        struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 677
 678        if (!nilfs_test_opt(nilfs, BARRIER))
 679                seq_puts(seq, ",nobarrier");
 680        if (root->cno != NILFS_CPTREE_CURRENT_CNO)
 681                seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
 682        if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 683                seq_puts(seq, ",errors=panic");
 684        if (nilfs_test_opt(nilfs, ERRORS_CONT))
 685                seq_puts(seq, ",errors=continue");
 686        if (nilfs_test_opt(nilfs, STRICT_ORDER))
 687                seq_puts(seq, ",order=strict");
 688        if (nilfs_test_opt(nilfs, NORECOVERY))
 689                seq_puts(seq, ",norecovery");
 690        if (nilfs_test_opt(nilfs, DISCARD))
 691                seq_puts(seq, ",discard");
 692
 693        return 0;
 694}
 695
 696static const struct super_operations nilfs_sops = {
 697        .alloc_inode    = nilfs_alloc_inode,
 698        .destroy_inode  = nilfs_destroy_inode,
 699        .dirty_inode    = nilfs_dirty_inode,
 700        .evict_inode    = nilfs_evict_inode,
 701        .put_super      = nilfs_put_super,
 702        .sync_fs        = nilfs_sync_fs,
 703        .freeze_fs      = nilfs_freeze,
 704        .unfreeze_fs    = nilfs_unfreeze,
 705        .statfs         = nilfs_statfs,
 706        .remount_fs     = nilfs_remount,
 707        .show_options = nilfs_show_options
 708};
 709
 710enum {
 711        Opt_err_cont, Opt_err_panic, Opt_err_ro,
 712        Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
 713        Opt_discard, Opt_nodiscard, Opt_err,
 714};
 715
 716static match_table_t tokens = {
 717        {Opt_err_cont, "errors=continue"},
 718        {Opt_err_panic, "errors=panic"},
 719        {Opt_err_ro, "errors=remount-ro"},
 720        {Opt_barrier, "barrier"},
 721        {Opt_nobarrier, "nobarrier"},
 722        {Opt_snapshot, "cp=%u"},
 723        {Opt_order, "order=%s"},
 724        {Opt_norecovery, "norecovery"},
 725        {Opt_discard, "discard"},
 726        {Opt_nodiscard, "nodiscard"},
 727        {Opt_err, NULL}
 728};
 729
 730static int parse_options(char *options, struct super_block *sb, int is_remount)
 731{
 732        struct the_nilfs *nilfs = sb->s_fs_info;
 733        char *p;
 734        substring_t args[MAX_OPT_ARGS];
 735
 736        if (!options)
 737                return 1;
 738
 739        while ((p = strsep(&options, ",")) != NULL) {
 740                int token;
 741
 742                if (!*p)
 743                        continue;
 744
 745                token = match_token(p, tokens, args);
 746                switch (token) {
 747                case Opt_barrier:
 748                        nilfs_set_opt(nilfs, BARRIER);
 749                        break;
 750                case Opt_nobarrier:
 751                        nilfs_clear_opt(nilfs, BARRIER);
 752                        break;
 753                case Opt_order:
 754                        if (strcmp(args[0].from, "relaxed") == 0)
 755                                /* Ordered data semantics */
 756                                nilfs_clear_opt(nilfs, STRICT_ORDER);
 757                        else if (strcmp(args[0].from, "strict") == 0)
 758                                /* Strict in-order semantics */
 759                                nilfs_set_opt(nilfs, STRICT_ORDER);
 760                        else
 761                                return 0;
 762                        break;
 763                case Opt_err_panic:
 764                        nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
 765                        break;
 766                case Opt_err_ro:
 767                        nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
 768                        break;
 769                case Opt_err_cont:
 770                        nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
 771                        break;
 772                case Opt_snapshot:
 773                        if (is_remount) {
 774                                nilfs_msg(sb, KERN_ERR,
 775                                          "\"%s\" option is invalid for remount",
 776                                          p);
 777                                return 0;
 778                        }
 779                        break;
 780                case Opt_norecovery:
 781                        nilfs_set_opt(nilfs, NORECOVERY);
 782                        break;
 783                case Opt_discard:
 784                        nilfs_set_opt(nilfs, DISCARD);
 785                        break;
 786                case Opt_nodiscard:
 787                        nilfs_clear_opt(nilfs, DISCARD);
 788                        break;
 789                default:
 790                        nilfs_msg(sb, KERN_ERR,
 791                                  "unrecognized mount option \"%s\"", p);
 792                        return 0;
 793                }
 794        }
 795        return 1;
 796}
 797
 798static inline void
 799nilfs_set_default_options(struct super_block *sb,
 800                          struct nilfs_super_block *sbp)
 801{
 802        struct the_nilfs *nilfs = sb->s_fs_info;
 803
 804        nilfs->ns_mount_opt =
 805                NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
 806}
 807
 808static int nilfs_setup_super(struct super_block *sb, int is_mount)
 809{
 810        struct the_nilfs *nilfs = sb->s_fs_info;
 811        struct nilfs_super_block **sbp;
 812        int max_mnt_count;
 813        int mnt_count;
 814
 815        /* nilfs->ns_sem must be locked by the caller. */
 816        sbp = nilfs_prepare_super(sb, 0);
 817        if (!sbp)
 818                return -EIO;
 819
 820        if (!is_mount)
 821                goto skip_mount_setup;
 822
 823        max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
 824        mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
 825
 826        if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
 827                nilfs_msg(sb, KERN_WARNING, "mounting fs with errors");
 828#if 0
 829        } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
 830                nilfs_msg(sb, KERN_WARNING, "maximal mount count reached");
 831#endif
 832        }
 833        if (!max_mnt_count)
 834                sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
 835
 836        sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
 837        sbp[0]->s_mtime = cpu_to_le64(get_seconds());
 838
 839skip_mount_setup:
 840        sbp[0]->s_state =
 841                cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
 842        /* synchronize sbp[1] with sbp[0] */
 843        if (sbp[1])
 844                memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 845        return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 846}
 847
 848struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
 849                                                 u64 pos, int blocksize,
 850                                                 struct buffer_head **pbh)
 851{
 852        unsigned long long sb_index = pos;
 853        unsigned long offset;
 854
 855        offset = do_div(sb_index, blocksize);
 856        *pbh = sb_bread(sb, sb_index);
 857        if (!*pbh)
 858                return NULL;
 859        return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
 860}
 861
 862int nilfs_store_magic_and_option(struct super_block *sb,
 863                                 struct nilfs_super_block *sbp,
 864                                 char *data)
 865{
 866        struct the_nilfs *nilfs = sb->s_fs_info;
 867
 868        sb->s_magic = le16_to_cpu(sbp->s_magic);
 869
 870        /* FS independent flags */
 871#ifdef NILFS_ATIME_DISABLE
 872        sb->s_flags |= SB_NOATIME;
 873#endif
 874
 875        nilfs_set_default_options(sb, sbp);
 876
 877        nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
 878        nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
 879        nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
 880        nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
 881
 882        return !parse_options(data, sb, 0) ? -EINVAL : 0;
 883}
 884
 885int nilfs_check_feature_compatibility(struct super_block *sb,
 886                                      struct nilfs_super_block *sbp)
 887{
 888        __u64 features;
 889
 890        features = le64_to_cpu(sbp->s_feature_incompat) &
 891                ~NILFS_FEATURE_INCOMPAT_SUPP;
 892        if (features) {
 893                nilfs_msg(sb, KERN_ERR,
 894                          "couldn't mount because of unsupported optional features (%llx)",
 895                          (unsigned long long)features);
 896                return -EINVAL;
 897        }
 898        features = le64_to_cpu(sbp->s_feature_compat_ro) &
 899                ~NILFS_FEATURE_COMPAT_RO_SUPP;
 900        if (!sb_rdonly(sb) && features) {
 901                nilfs_msg(sb, KERN_ERR,
 902                          "couldn't mount RDWR because of unsupported optional features (%llx)",
 903                          (unsigned long long)features);
 904                return -EINVAL;
 905        }
 906        return 0;
 907}
 908
 909static int nilfs_get_root_dentry(struct super_block *sb,
 910                                 struct nilfs_root *root,
 911                                 struct dentry **root_dentry)
 912{
 913        struct inode *inode;
 914        struct dentry *dentry;
 915        int ret = 0;
 916
 917        inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
 918        if (IS_ERR(inode)) {
 919                ret = PTR_ERR(inode);
 920                nilfs_msg(sb, KERN_ERR, "error %d getting root inode", ret);
 921                goto out;
 922        }
 923        if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
 924                iput(inode);
 925                nilfs_msg(sb, KERN_ERR, "corrupt root inode");
 926                ret = -EINVAL;
 927                goto out;
 928        }
 929
 930        if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
 931                dentry = d_find_alias(inode);
 932                if (!dentry) {
 933                        dentry = d_make_root(inode);
 934                        if (!dentry) {
 935                                ret = -ENOMEM;
 936                                goto failed_dentry;
 937                        }
 938                } else {
 939                        iput(inode);
 940                }
 941        } else {
 942                dentry = d_obtain_root(inode);
 943                if (IS_ERR(dentry)) {
 944                        ret = PTR_ERR(dentry);
 945                        goto failed_dentry;
 946                }
 947        }
 948        *root_dentry = dentry;
 949 out:
 950        return ret;
 951
 952 failed_dentry:
 953        nilfs_msg(sb, KERN_ERR, "error %d getting root dentry", ret);
 954        goto out;
 955}
 956
 957static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
 958                                 struct dentry **root_dentry)
 959{
 960        struct the_nilfs *nilfs = s->s_fs_info;
 961        struct nilfs_root *root;
 962        int ret;
 963
 964        mutex_lock(&nilfs->ns_snapshot_mount_mutex);
 965
 966        down_read(&nilfs->ns_segctor_sem);
 967        ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
 968        up_read(&nilfs->ns_segctor_sem);
 969        if (ret < 0) {
 970                ret = (ret == -ENOENT) ? -EINVAL : ret;
 971                goto out;
 972        } else if (!ret) {
 973                nilfs_msg(s, KERN_ERR,
 974                          "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
 975                          (unsigned long long)cno);
 976                ret = -EINVAL;
 977                goto out;
 978        }
 979
 980        ret = nilfs_attach_checkpoint(s, cno, false, &root);
 981        if (ret) {
 982                nilfs_msg(s, KERN_ERR,
 983                          "error %d while loading snapshot (checkpoint number=%llu)",
 984                          ret, (unsigned long long)cno);
 985                goto out;
 986        }
 987        ret = nilfs_get_root_dentry(s, root, root_dentry);
 988        nilfs_put_root(root);
 989 out:
 990        mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
 991        return ret;
 992}
 993
 994/**
 995 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
 996 * @root_dentry: root dentry of the tree to be shrunk
 997 *
 998 * This function returns true if the tree was in-use.
 999 */
1000static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1001{
1002        shrink_dcache_parent(root_dentry);
1003        return d_count(root_dentry) > 1;
1004}
1005
1006int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1007{
1008        struct the_nilfs *nilfs = sb->s_fs_info;
1009        struct nilfs_root *root;
1010        struct inode *inode;
1011        struct dentry *dentry;
1012        int ret;
1013
1014        if (cno > nilfs->ns_cno)
1015                return false;
1016
1017        if (cno >= nilfs_last_cno(nilfs))
1018                return true;    /* protect recent checkpoints */
1019
1020        ret = false;
1021        root = nilfs_lookup_root(nilfs, cno);
1022        if (root) {
1023                inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1024                if (inode) {
1025                        dentry = d_find_alias(inode);
1026                        if (dentry) {
1027                                ret = nilfs_tree_is_busy(dentry);
1028                                dput(dentry);
1029                        }
1030                        iput(inode);
1031                }
1032                nilfs_put_root(root);
1033        }
1034        return ret;
1035}
1036
1037/**
1038 * nilfs_fill_super() - initialize a super block instance
1039 * @sb: super_block
1040 * @data: mount options
1041 * @silent: silent mode flag
1042 *
1043 * This function is called exclusively by nilfs->ns_mount_mutex.
1044 * So, the recovery process is protected from other simultaneous mounts.
1045 */
1046static int
1047nilfs_fill_super(struct super_block *sb, void *data, int silent)
1048{
1049        struct the_nilfs *nilfs;
1050        struct nilfs_root *fsroot;
1051        __u64 cno;
1052        int err;
1053
1054        nilfs = alloc_nilfs(sb);
1055        if (!nilfs)
1056                return -ENOMEM;
1057
1058        sb->s_fs_info = nilfs;
1059
1060        err = init_nilfs(nilfs, sb, (char *)data);
1061        if (err)
1062                goto failed_nilfs;
1063
1064        sb->s_op = &nilfs_sops;
1065        sb->s_export_op = &nilfs_export_ops;
1066        sb->s_root = NULL;
1067        sb->s_time_gran = 1;
1068        sb->s_max_links = NILFS_LINK_MAX;
1069
1070        sb->s_bdi = bdi_get(sb->s_bdev->bd_bdi);
1071
1072        err = load_nilfs(nilfs, sb);
1073        if (err)
1074                goto failed_nilfs;
1075
1076        cno = nilfs_last_cno(nilfs);
1077        err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1078        if (err) {
1079                nilfs_msg(sb, KERN_ERR,
1080                          "error %d while loading last checkpoint (checkpoint number=%llu)",
1081                          err, (unsigned long long)cno);
1082                goto failed_unload;
1083        }
1084
1085        if (!sb_rdonly(sb)) {
1086                err = nilfs_attach_log_writer(sb, fsroot);
1087                if (err)
1088                        goto failed_checkpoint;
1089        }
1090
1091        err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1092        if (err)
1093                goto failed_segctor;
1094
1095        nilfs_put_root(fsroot);
1096
1097        if (!sb_rdonly(sb)) {
1098                down_write(&nilfs->ns_sem);
1099                nilfs_setup_super(sb, true);
1100                up_write(&nilfs->ns_sem);
1101        }
1102
1103        return 0;
1104
1105 failed_segctor:
1106        nilfs_detach_log_writer(sb);
1107
1108 failed_checkpoint:
1109        nilfs_put_root(fsroot);
1110
1111 failed_unload:
1112        iput(nilfs->ns_sufile);
1113        iput(nilfs->ns_cpfile);
1114        iput(nilfs->ns_dat);
1115
1116 failed_nilfs:
1117        destroy_nilfs(nilfs);
1118        return err;
1119}
1120
1121static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1122{
1123        struct the_nilfs *nilfs = sb->s_fs_info;
1124        unsigned long old_sb_flags;
1125        unsigned long old_mount_opt;
1126        int err;
1127
1128        sync_filesystem(sb);
1129        old_sb_flags = sb->s_flags;
1130        old_mount_opt = nilfs->ns_mount_opt;
1131
1132        if (!parse_options(data, sb, 1)) {
1133                err = -EINVAL;
1134                goto restore_opts;
1135        }
1136        sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1137
1138        err = -EINVAL;
1139
1140        if (!nilfs_valid_fs(nilfs)) {
1141                nilfs_msg(sb, KERN_WARNING,
1142                          "couldn't remount because the filesystem is in an incomplete recovery state");
1143                goto restore_opts;
1144        }
1145
1146        if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1147                goto out;
1148        if (*flags & SB_RDONLY) {
1149                /* Shutting down log writer */
1150                nilfs_detach_log_writer(sb);
1151                sb->s_flags |= SB_RDONLY;
1152
1153                /*
1154                 * Remounting a valid RW partition RDONLY, so set
1155                 * the RDONLY flag and then mark the partition as valid again.
1156                 */
1157                down_write(&nilfs->ns_sem);
1158                nilfs_cleanup_super(sb);
1159                up_write(&nilfs->ns_sem);
1160        } else {
1161                __u64 features;
1162                struct nilfs_root *root;
1163
1164                /*
1165                 * Mounting a RDONLY partition read-write, so reread and
1166                 * store the current valid flag.  (It may have been changed
1167                 * by fsck since we originally mounted the partition.)
1168                 */
1169                down_read(&nilfs->ns_sem);
1170                features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1171                        ~NILFS_FEATURE_COMPAT_RO_SUPP;
1172                up_read(&nilfs->ns_sem);
1173                if (features) {
1174                        nilfs_msg(sb, KERN_WARNING,
1175                                  "couldn't remount RDWR because of unsupported optional features (%llx)",
1176                                  (unsigned long long)features);
1177                        err = -EROFS;
1178                        goto restore_opts;
1179                }
1180
1181                sb->s_flags &= ~SB_RDONLY;
1182
1183                root = NILFS_I(d_inode(sb->s_root))->i_root;
1184                err = nilfs_attach_log_writer(sb, root);
1185                if (err)
1186                        goto restore_opts;
1187
1188                down_write(&nilfs->ns_sem);
1189                nilfs_setup_super(sb, true);
1190                up_write(&nilfs->ns_sem);
1191        }
1192 out:
1193        return 0;
1194
1195 restore_opts:
1196        sb->s_flags = old_sb_flags;
1197        nilfs->ns_mount_opt = old_mount_opt;
1198        return err;
1199}
1200
1201struct nilfs_super_data {
1202        struct block_device *bdev;
1203        __u64 cno;
1204        int flags;
1205};
1206
1207static int nilfs_parse_snapshot_option(const char *option,
1208                                       const substring_t *arg,
1209                                       struct nilfs_super_data *sd)
1210{
1211        unsigned long long val;
1212        const char *msg = NULL;
1213        int err;
1214
1215        if (!(sd->flags & SB_RDONLY)) {
1216                msg = "read-only option is not specified";
1217                goto parse_error;
1218        }
1219
1220        err = kstrtoull(arg->from, 0, &val);
1221        if (err) {
1222                if (err == -ERANGE)
1223                        msg = "too large checkpoint number";
1224                else
1225                        msg = "malformed argument";
1226                goto parse_error;
1227        } else if (val == 0) {
1228                msg = "invalid checkpoint number 0";
1229                goto parse_error;
1230        }
1231        sd->cno = val;
1232        return 0;
1233
1234parse_error:
1235        nilfs_msg(NULL, KERN_ERR, "invalid option \"%s\": %s", option, msg);
1236        return 1;
1237}
1238
1239/**
1240 * nilfs_identify - pre-read mount options needed to identify mount instance
1241 * @data: mount options
1242 * @sd: nilfs_super_data
1243 */
1244static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1245{
1246        char *p, *options = data;
1247        substring_t args[MAX_OPT_ARGS];
1248        int token;
1249        int ret = 0;
1250
1251        do {
1252                p = strsep(&options, ",");
1253                if (p != NULL && *p) {
1254                        token = match_token(p, tokens, args);
1255                        if (token == Opt_snapshot)
1256                                ret = nilfs_parse_snapshot_option(p, &args[0],
1257                                                                  sd);
1258                }
1259                if (!options)
1260                        break;
1261                BUG_ON(options == data);
1262                *(options - 1) = ',';
1263        } while (!ret);
1264        return ret;
1265}
1266
1267static int nilfs_set_bdev_super(struct super_block *s, void *data)
1268{
1269        s->s_bdev = data;
1270        s->s_dev = s->s_bdev->bd_dev;
1271        return 0;
1272}
1273
1274static int nilfs_test_bdev_super(struct super_block *s, void *data)
1275{
1276        return (void *)s->s_bdev == data;
1277}
1278
1279static struct dentry *
1280nilfs_mount(struct file_system_type *fs_type, int flags,
1281             const char *dev_name, void *data)
1282{
1283        struct nilfs_super_data sd;
1284        struct super_block *s;
1285        fmode_t mode = FMODE_READ | FMODE_EXCL;
1286        struct dentry *root_dentry;
1287        int err, s_new = false;
1288
1289        if (!(flags & SB_RDONLY))
1290                mode |= FMODE_WRITE;
1291
1292        sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1293        if (IS_ERR(sd.bdev))
1294                return ERR_CAST(sd.bdev);
1295
1296        sd.cno = 0;
1297        sd.flags = flags;
1298        if (nilfs_identify((char *)data, &sd)) {
1299                err = -EINVAL;
1300                goto failed;
1301        }
1302
1303        /*
1304         * once the super is inserted into the list by sget, s_umount
1305         * will protect the lockfs code from trying to start a snapshot
1306         * while we are mounting
1307         */
1308        mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1309        if (sd.bdev->bd_fsfreeze_count > 0) {
1310                mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1311                err = -EBUSY;
1312                goto failed;
1313        }
1314        s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1315                 sd.bdev);
1316        mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1317        if (IS_ERR(s)) {
1318                err = PTR_ERR(s);
1319                goto failed;
1320        }
1321
1322        if (!s->s_root) {
1323                s_new = true;
1324
1325                /* New superblock instance created */
1326                s->s_mode = mode;
1327                snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1328                sb_set_blocksize(s, block_size(sd.bdev));
1329
1330                err = nilfs_fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1331                if (err)
1332                        goto failed_super;
1333
1334                s->s_flags |= SB_ACTIVE;
1335        } else if (!sd.cno) {
1336                if (nilfs_tree_is_busy(s->s_root)) {
1337                        if ((flags ^ s->s_flags) & SB_RDONLY) {
1338                                nilfs_msg(s, KERN_ERR,
1339                                          "the device already has a %s mount.",
1340                                          sb_rdonly(s) ? "read-only" : "read/write");
1341                                err = -EBUSY;
1342                                goto failed_super;
1343                        }
1344                } else {
1345                        /*
1346                         * Try remount to setup mount states if the current
1347                         * tree is not mounted and only snapshots use this sb.
1348                         */
1349                        err = nilfs_remount(s, &flags, data);
1350                        if (err)
1351                                goto failed_super;
1352                }
1353        }
1354
1355        if (sd.cno) {
1356                err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1357                if (err)
1358                        goto failed_super;
1359        } else {
1360                root_dentry = dget(s->s_root);
1361        }
1362
1363        if (!s_new)
1364                blkdev_put(sd.bdev, mode);
1365
1366        return root_dentry;
1367
1368 failed_super:
1369        deactivate_locked_super(s);
1370
1371 failed:
1372        if (!s_new)
1373                blkdev_put(sd.bdev, mode);
1374        return ERR_PTR(err);
1375}
1376
1377struct file_system_type nilfs_fs_type = {
1378        .owner    = THIS_MODULE,
1379        .name     = "nilfs2",
1380        .mount    = nilfs_mount,
1381        .kill_sb  = kill_block_super,
1382        .fs_flags = FS_REQUIRES_DEV,
1383};
1384MODULE_ALIAS_FS("nilfs2");
1385
1386static void nilfs_inode_init_once(void *obj)
1387{
1388        struct nilfs_inode_info *ii = obj;
1389
1390        INIT_LIST_HEAD(&ii->i_dirty);
1391#ifdef CONFIG_NILFS_XATTR
1392        init_rwsem(&ii->xattr_sem);
1393#endif
1394        address_space_init_once(&ii->i_btnode_cache);
1395        ii->i_bmap = &ii->i_bmap_data;
1396        inode_init_once(&ii->vfs_inode);
1397}
1398
1399static void nilfs_segbuf_init_once(void *obj)
1400{
1401        memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1402}
1403
1404static void nilfs_destroy_cachep(void)
1405{
1406        /*
1407         * Make sure all delayed rcu free inodes are flushed before we
1408         * destroy cache.
1409         */
1410        rcu_barrier();
1411
1412        kmem_cache_destroy(nilfs_inode_cachep);
1413        kmem_cache_destroy(nilfs_transaction_cachep);
1414        kmem_cache_destroy(nilfs_segbuf_cachep);
1415        kmem_cache_destroy(nilfs_btree_path_cache);
1416}
1417
1418static int __init nilfs_init_cachep(void)
1419{
1420        nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1421                        sizeof(struct nilfs_inode_info), 0,
1422                        SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1423                        nilfs_inode_init_once);
1424        if (!nilfs_inode_cachep)
1425                goto fail;
1426
1427        nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1428                        sizeof(struct nilfs_transaction_info), 0,
1429                        SLAB_RECLAIM_ACCOUNT, NULL);
1430        if (!nilfs_transaction_cachep)
1431                goto fail;
1432
1433        nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1434                        sizeof(struct nilfs_segment_buffer), 0,
1435                        SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1436        if (!nilfs_segbuf_cachep)
1437                goto fail;
1438
1439        nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1440                        sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1441                        0, 0, NULL);
1442        if (!nilfs_btree_path_cache)
1443                goto fail;
1444
1445        return 0;
1446
1447fail:
1448        nilfs_destroy_cachep();
1449        return -ENOMEM;
1450}
1451
1452static int __init init_nilfs_fs(void)
1453{
1454        int err;
1455
1456        err = nilfs_init_cachep();
1457        if (err)
1458                goto fail;
1459
1460        err = nilfs_sysfs_init();
1461        if (err)
1462                goto free_cachep;
1463
1464        err = register_filesystem(&nilfs_fs_type);
1465        if (err)
1466                goto deinit_sysfs_entry;
1467
1468        printk(KERN_INFO "NILFS version 2 loaded\n");
1469        return 0;
1470
1471deinit_sysfs_entry:
1472        nilfs_sysfs_exit();
1473free_cachep:
1474        nilfs_destroy_cachep();
1475fail:
1476        return err;
1477}
1478
1479static void __exit exit_nilfs_fs(void)
1480{
1481        nilfs_destroy_cachep();
1482        nilfs_sysfs_exit();
1483        unregister_filesystem(&nilfs_fs_type);
1484}
1485
1486module_init(init_nilfs_fs)
1487module_exit(exit_nilfs_fs)
1488