linux/fs/pstore/ram_core.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2012 Google, Inc.
   3 *
   4 * This software is licensed under the terms of the GNU General Public
   5 * License version 2, as published by the Free Software Foundation, and
   6 * may be copied, distributed, and modified under those terms.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  11 * GNU General Public License for more details.
  12 *
  13 */
  14
  15#define pr_fmt(fmt) "persistent_ram: " fmt
  16
  17#include <linux/device.h>
  18#include <linux/err.h>
  19#include <linux/errno.h>
  20#include <linux/init.h>
  21#include <linux/io.h>
  22#include <linux/kernel.h>
  23#include <linux/list.h>
  24#include <linux/memblock.h>
  25#include <linux/pstore_ram.h>
  26#include <linux/rslib.h>
  27#include <linux/slab.h>
  28#include <linux/uaccess.h>
  29#include <linux/vmalloc.h>
  30#include <asm/page.h>
  31
  32struct persistent_ram_buffer {
  33        uint32_t    sig;
  34        atomic_t    start;
  35        atomic_t    size;
  36        uint8_t     data[0];
  37};
  38
  39#define PERSISTENT_RAM_SIG (0x43474244) /* DBGC */
  40
  41static inline size_t buffer_size(struct persistent_ram_zone *prz)
  42{
  43        return atomic_read(&prz->buffer->size);
  44}
  45
  46static inline size_t buffer_start(struct persistent_ram_zone *prz)
  47{
  48        return atomic_read(&prz->buffer->start);
  49}
  50
  51/* increase and wrap the start pointer, returning the old value */
  52static size_t buffer_start_add(struct persistent_ram_zone *prz, size_t a)
  53{
  54        int old;
  55        int new;
  56        unsigned long flags = 0;
  57
  58        if (!(prz->flags & PRZ_FLAG_NO_LOCK))
  59                raw_spin_lock_irqsave(&prz->buffer_lock, flags);
  60
  61        old = atomic_read(&prz->buffer->start);
  62        new = old + a;
  63        while (unlikely(new >= prz->buffer_size))
  64                new -= prz->buffer_size;
  65        atomic_set(&prz->buffer->start, new);
  66
  67        if (!(prz->flags & PRZ_FLAG_NO_LOCK))
  68                raw_spin_unlock_irqrestore(&prz->buffer_lock, flags);
  69
  70        return old;
  71}
  72
  73/* increase the size counter until it hits the max size */
  74static void buffer_size_add(struct persistent_ram_zone *prz, size_t a)
  75{
  76        size_t old;
  77        size_t new;
  78        unsigned long flags = 0;
  79
  80        if (!(prz->flags & PRZ_FLAG_NO_LOCK))
  81                raw_spin_lock_irqsave(&prz->buffer_lock, flags);
  82
  83        old = atomic_read(&prz->buffer->size);
  84        if (old == prz->buffer_size)
  85                goto exit;
  86
  87        new = old + a;
  88        if (new > prz->buffer_size)
  89                new = prz->buffer_size;
  90        atomic_set(&prz->buffer->size, new);
  91
  92exit:
  93        if (!(prz->flags & PRZ_FLAG_NO_LOCK))
  94                raw_spin_unlock_irqrestore(&prz->buffer_lock, flags);
  95}
  96
  97static void notrace persistent_ram_encode_rs8(struct persistent_ram_zone *prz,
  98        uint8_t *data, size_t len, uint8_t *ecc)
  99{
 100        int i;
 101
 102        /* Initialize the parity buffer */
 103        memset(prz->ecc_info.par, 0,
 104               prz->ecc_info.ecc_size * sizeof(prz->ecc_info.par[0]));
 105        encode_rs8(prz->rs_decoder, data, len, prz->ecc_info.par, 0);
 106        for (i = 0; i < prz->ecc_info.ecc_size; i++)
 107                ecc[i] = prz->ecc_info.par[i];
 108}
 109
 110static int persistent_ram_decode_rs8(struct persistent_ram_zone *prz,
 111        void *data, size_t len, uint8_t *ecc)
 112{
 113        int i;
 114
 115        for (i = 0; i < prz->ecc_info.ecc_size; i++)
 116                prz->ecc_info.par[i] = ecc[i];
 117        return decode_rs8(prz->rs_decoder, data, prz->ecc_info.par, len,
 118                                NULL, 0, NULL, 0, NULL);
 119}
 120
 121static void notrace persistent_ram_update_ecc(struct persistent_ram_zone *prz,
 122        unsigned int start, unsigned int count)
 123{
 124        struct persistent_ram_buffer *buffer = prz->buffer;
 125        uint8_t *buffer_end = buffer->data + prz->buffer_size;
 126        uint8_t *block;
 127        uint8_t *par;
 128        int ecc_block_size = prz->ecc_info.block_size;
 129        int ecc_size = prz->ecc_info.ecc_size;
 130        int size = ecc_block_size;
 131
 132        if (!ecc_size)
 133                return;
 134
 135        block = buffer->data + (start & ~(ecc_block_size - 1));
 136        par = prz->par_buffer + (start / ecc_block_size) * ecc_size;
 137
 138        do {
 139                if (block + ecc_block_size > buffer_end)
 140                        size = buffer_end - block;
 141                persistent_ram_encode_rs8(prz, block, size, par);
 142                block += ecc_block_size;
 143                par += ecc_size;
 144        } while (block < buffer->data + start + count);
 145}
 146
 147static void persistent_ram_update_header_ecc(struct persistent_ram_zone *prz)
 148{
 149        struct persistent_ram_buffer *buffer = prz->buffer;
 150
 151        if (!prz->ecc_info.ecc_size)
 152                return;
 153
 154        persistent_ram_encode_rs8(prz, (uint8_t *)buffer, sizeof(*buffer),
 155                                  prz->par_header);
 156}
 157
 158static void persistent_ram_ecc_old(struct persistent_ram_zone *prz)
 159{
 160        struct persistent_ram_buffer *buffer = prz->buffer;
 161        uint8_t *block;
 162        uint8_t *par;
 163
 164        if (!prz->ecc_info.ecc_size)
 165                return;
 166
 167        block = buffer->data;
 168        par = prz->par_buffer;
 169        while (block < buffer->data + buffer_size(prz)) {
 170                int numerr;
 171                int size = prz->ecc_info.block_size;
 172                if (block + size > buffer->data + prz->buffer_size)
 173                        size = buffer->data + prz->buffer_size - block;
 174                numerr = persistent_ram_decode_rs8(prz, block, size, par);
 175                if (numerr > 0) {
 176                        pr_devel("error in block %p, %d\n", block, numerr);
 177                        prz->corrected_bytes += numerr;
 178                } else if (numerr < 0) {
 179                        pr_devel("uncorrectable error in block %p\n", block);
 180                        prz->bad_blocks++;
 181                }
 182                block += prz->ecc_info.block_size;
 183                par += prz->ecc_info.ecc_size;
 184        }
 185}
 186
 187static int persistent_ram_init_ecc(struct persistent_ram_zone *prz,
 188                                   struct persistent_ram_ecc_info *ecc_info)
 189{
 190        int numerr;
 191        struct persistent_ram_buffer *buffer = prz->buffer;
 192        int ecc_blocks;
 193        size_t ecc_total;
 194
 195        if (!ecc_info || !ecc_info->ecc_size)
 196                return 0;
 197
 198        prz->ecc_info.block_size = ecc_info->block_size ?: 128;
 199        prz->ecc_info.ecc_size = ecc_info->ecc_size ?: 16;
 200        prz->ecc_info.symsize = ecc_info->symsize ?: 8;
 201        prz->ecc_info.poly = ecc_info->poly ?: 0x11d;
 202
 203        ecc_blocks = DIV_ROUND_UP(prz->buffer_size - prz->ecc_info.ecc_size,
 204                                  prz->ecc_info.block_size +
 205                                  prz->ecc_info.ecc_size);
 206        ecc_total = (ecc_blocks + 1) * prz->ecc_info.ecc_size;
 207        if (ecc_total >= prz->buffer_size) {
 208                pr_err("%s: invalid ecc_size %u (total %zu, buffer size %zu)\n",
 209                       __func__, prz->ecc_info.ecc_size,
 210                       ecc_total, prz->buffer_size);
 211                return -EINVAL;
 212        }
 213
 214        prz->buffer_size -= ecc_total;
 215        prz->par_buffer = buffer->data + prz->buffer_size;
 216        prz->par_header = prz->par_buffer +
 217                          ecc_blocks * prz->ecc_info.ecc_size;
 218
 219        /*
 220         * first consecutive root is 0
 221         * primitive element to generate roots = 1
 222         */
 223        prz->rs_decoder = init_rs(prz->ecc_info.symsize, prz->ecc_info.poly,
 224                                  0, 1, prz->ecc_info.ecc_size);
 225        if (prz->rs_decoder == NULL) {
 226                pr_info("init_rs failed\n");
 227                return -EINVAL;
 228        }
 229
 230        /* allocate workspace instead of using stack VLA */
 231        prz->ecc_info.par = kmalloc_array(prz->ecc_info.ecc_size,
 232                                          sizeof(*prz->ecc_info.par),
 233                                          GFP_KERNEL);
 234        if (!prz->ecc_info.par) {
 235                pr_err("cannot allocate ECC parity workspace\n");
 236                return -ENOMEM;
 237        }
 238
 239        prz->corrected_bytes = 0;
 240        prz->bad_blocks = 0;
 241
 242        numerr = persistent_ram_decode_rs8(prz, buffer, sizeof(*buffer),
 243                                           prz->par_header);
 244        if (numerr > 0) {
 245                pr_info("error in header, %d\n", numerr);
 246                prz->corrected_bytes += numerr;
 247        } else if (numerr < 0) {
 248                pr_info("uncorrectable error in header\n");
 249                prz->bad_blocks++;
 250        }
 251
 252        return 0;
 253}
 254
 255ssize_t persistent_ram_ecc_string(struct persistent_ram_zone *prz,
 256        char *str, size_t len)
 257{
 258        ssize_t ret;
 259
 260        if (!prz->ecc_info.ecc_size)
 261                return 0;
 262
 263        if (prz->corrected_bytes || prz->bad_blocks)
 264                ret = snprintf(str, len, ""
 265                        "\n%d Corrected bytes, %d unrecoverable blocks\n",
 266                        prz->corrected_bytes, prz->bad_blocks);
 267        else
 268                ret = snprintf(str, len, "\nNo errors detected\n");
 269
 270        return ret;
 271}
 272
 273static void notrace persistent_ram_update(struct persistent_ram_zone *prz,
 274        const void *s, unsigned int start, unsigned int count)
 275{
 276        struct persistent_ram_buffer *buffer = prz->buffer;
 277        memcpy_toio(buffer->data + start, s, count);
 278        persistent_ram_update_ecc(prz, start, count);
 279}
 280
 281static int notrace persistent_ram_update_user(struct persistent_ram_zone *prz,
 282        const void __user *s, unsigned int start, unsigned int count)
 283{
 284        struct persistent_ram_buffer *buffer = prz->buffer;
 285        int ret = unlikely(__copy_from_user(buffer->data + start, s, count)) ?
 286                -EFAULT : 0;
 287        persistent_ram_update_ecc(prz, start, count);
 288        return ret;
 289}
 290
 291void persistent_ram_save_old(struct persistent_ram_zone *prz)
 292{
 293        struct persistent_ram_buffer *buffer = prz->buffer;
 294        size_t size = buffer_size(prz);
 295        size_t start = buffer_start(prz);
 296
 297        if (!size)
 298                return;
 299
 300        if (!prz->old_log) {
 301                persistent_ram_ecc_old(prz);
 302                prz->old_log = kmalloc(size, GFP_KERNEL);
 303        }
 304        if (!prz->old_log) {
 305                pr_err("failed to allocate buffer\n");
 306                return;
 307        }
 308
 309        prz->old_log_size = size;
 310        memcpy_fromio(prz->old_log, &buffer->data[start], size - start);
 311        memcpy_fromio(prz->old_log + size - start, &buffer->data[0], start);
 312}
 313
 314int notrace persistent_ram_write(struct persistent_ram_zone *prz,
 315        const void *s, unsigned int count)
 316{
 317        int rem;
 318        int c = count;
 319        size_t start;
 320
 321        if (unlikely(c > prz->buffer_size)) {
 322                s += c - prz->buffer_size;
 323                c = prz->buffer_size;
 324        }
 325
 326        buffer_size_add(prz, c);
 327
 328        start = buffer_start_add(prz, c);
 329
 330        rem = prz->buffer_size - start;
 331        if (unlikely(rem < c)) {
 332                persistent_ram_update(prz, s, start, rem);
 333                s += rem;
 334                c -= rem;
 335                start = 0;
 336        }
 337        persistent_ram_update(prz, s, start, c);
 338
 339        persistent_ram_update_header_ecc(prz);
 340
 341        return count;
 342}
 343
 344int notrace persistent_ram_write_user(struct persistent_ram_zone *prz,
 345        const void __user *s, unsigned int count)
 346{
 347        int rem, ret = 0, c = count;
 348        size_t start;
 349
 350        if (unlikely(!access_ok(s, count)))
 351                return -EFAULT;
 352        if (unlikely(c > prz->buffer_size)) {
 353                s += c - prz->buffer_size;
 354                c = prz->buffer_size;
 355        }
 356
 357        buffer_size_add(prz, c);
 358
 359        start = buffer_start_add(prz, c);
 360
 361        rem = prz->buffer_size - start;
 362        if (unlikely(rem < c)) {
 363                ret = persistent_ram_update_user(prz, s, start, rem);
 364                s += rem;
 365                c -= rem;
 366                start = 0;
 367        }
 368        if (likely(!ret))
 369                ret = persistent_ram_update_user(prz, s, start, c);
 370
 371        persistent_ram_update_header_ecc(prz);
 372
 373        return unlikely(ret) ? ret : count;
 374}
 375
 376size_t persistent_ram_old_size(struct persistent_ram_zone *prz)
 377{
 378        return prz->old_log_size;
 379}
 380
 381void *persistent_ram_old(struct persistent_ram_zone *prz)
 382{
 383        return prz->old_log;
 384}
 385
 386void persistent_ram_free_old(struct persistent_ram_zone *prz)
 387{
 388        kfree(prz->old_log);
 389        prz->old_log = NULL;
 390        prz->old_log_size = 0;
 391}
 392
 393void persistent_ram_zap(struct persistent_ram_zone *prz)
 394{
 395        atomic_set(&prz->buffer->start, 0);
 396        atomic_set(&prz->buffer->size, 0);
 397        persistent_ram_update_header_ecc(prz);
 398}
 399
 400static void *persistent_ram_vmap(phys_addr_t start, size_t size,
 401                unsigned int memtype)
 402{
 403        struct page **pages;
 404        phys_addr_t page_start;
 405        unsigned int page_count;
 406        pgprot_t prot;
 407        unsigned int i;
 408        void *vaddr;
 409
 410        page_start = start - offset_in_page(start);
 411        page_count = DIV_ROUND_UP(size + offset_in_page(start), PAGE_SIZE);
 412
 413        if (memtype)
 414                prot = pgprot_noncached(PAGE_KERNEL);
 415        else
 416                prot = pgprot_writecombine(PAGE_KERNEL);
 417
 418        pages = kmalloc_array(page_count, sizeof(struct page *), GFP_KERNEL);
 419        if (!pages) {
 420                pr_err("%s: Failed to allocate array for %u pages\n",
 421                       __func__, page_count);
 422                return NULL;
 423        }
 424
 425        for (i = 0; i < page_count; i++) {
 426                phys_addr_t addr = page_start + i * PAGE_SIZE;
 427                pages[i] = pfn_to_page(addr >> PAGE_SHIFT);
 428        }
 429        vaddr = vmap(pages, page_count, VM_MAP, prot);
 430        kfree(pages);
 431
 432        return vaddr;
 433}
 434
 435static void *persistent_ram_iomap(phys_addr_t start, size_t size,
 436                unsigned int memtype)
 437{
 438        void *va;
 439
 440        if (!request_mem_region(start, size, "persistent_ram")) {
 441                pr_err("request mem region (0x%llx@0x%llx) failed\n",
 442                        (unsigned long long)size, (unsigned long long)start);
 443                return NULL;
 444        }
 445
 446        if (memtype)
 447                va = ioremap(start, size);
 448        else
 449                va = ioremap_wc(start, size);
 450
 451        return va;
 452}
 453
 454static int persistent_ram_buffer_map(phys_addr_t start, phys_addr_t size,
 455                struct persistent_ram_zone *prz, int memtype)
 456{
 457        prz->paddr = start;
 458        prz->size = size;
 459
 460        if (pfn_valid(start >> PAGE_SHIFT))
 461                prz->vaddr = persistent_ram_vmap(start, size, memtype);
 462        else
 463                prz->vaddr = persistent_ram_iomap(start, size, memtype);
 464
 465        if (!prz->vaddr) {
 466                pr_err("%s: Failed to map 0x%llx pages at 0x%llx\n", __func__,
 467                        (unsigned long long)size, (unsigned long long)start);
 468                return -ENOMEM;
 469        }
 470
 471        prz->buffer = prz->vaddr + offset_in_page(start);
 472        prz->buffer_size = size - sizeof(struct persistent_ram_buffer);
 473
 474        return 0;
 475}
 476
 477static int persistent_ram_post_init(struct persistent_ram_zone *prz, u32 sig,
 478                                    struct persistent_ram_ecc_info *ecc_info)
 479{
 480        int ret;
 481
 482        ret = persistent_ram_init_ecc(prz, ecc_info);
 483        if (ret)
 484                return ret;
 485
 486        sig ^= PERSISTENT_RAM_SIG;
 487
 488        if (prz->buffer->sig == sig) {
 489                if (buffer_size(prz) > prz->buffer_size ||
 490                    buffer_start(prz) > buffer_size(prz))
 491                        pr_info("found existing invalid buffer, size %zu, start %zu\n",
 492                                buffer_size(prz), buffer_start(prz));
 493                else {
 494                        pr_debug("found existing buffer, size %zu, start %zu\n",
 495                                 buffer_size(prz), buffer_start(prz));
 496                        persistent_ram_save_old(prz);
 497                        return 0;
 498                }
 499        } else {
 500                pr_debug("no valid data in buffer (sig = 0x%08x)\n",
 501                         prz->buffer->sig);
 502        }
 503
 504        /* Rewind missing or invalid memory area. */
 505        prz->buffer->sig = sig;
 506        persistent_ram_zap(prz);
 507
 508        return 0;
 509}
 510
 511void persistent_ram_free(struct persistent_ram_zone *prz)
 512{
 513        if (!prz)
 514                return;
 515
 516        if (prz->vaddr) {
 517                if (pfn_valid(prz->paddr >> PAGE_SHIFT)) {
 518                        vunmap(prz->vaddr);
 519                } else {
 520                        iounmap(prz->vaddr);
 521                        release_mem_region(prz->paddr, prz->size);
 522                }
 523                prz->vaddr = NULL;
 524        }
 525        if (prz->rs_decoder) {
 526                free_rs(prz->rs_decoder);
 527                prz->rs_decoder = NULL;
 528        }
 529        kfree(prz->ecc_info.par);
 530        prz->ecc_info.par = NULL;
 531
 532        persistent_ram_free_old(prz);
 533        kfree(prz);
 534}
 535
 536struct persistent_ram_zone *persistent_ram_new(phys_addr_t start, size_t size,
 537                        u32 sig, struct persistent_ram_ecc_info *ecc_info,
 538                        unsigned int memtype, u32 flags)
 539{
 540        struct persistent_ram_zone *prz;
 541        int ret = -ENOMEM;
 542
 543        prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL);
 544        if (!prz) {
 545                pr_err("failed to allocate persistent ram zone\n");
 546                goto err;
 547        }
 548
 549        /* Initialize general buffer state. */
 550        raw_spin_lock_init(&prz->buffer_lock);
 551        prz->flags = flags;
 552
 553        ret = persistent_ram_buffer_map(start, size, prz, memtype);
 554        if (ret)
 555                goto err;
 556
 557        ret = persistent_ram_post_init(prz, sig, ecc_info);
 558        if (ret)
 559                goto err;
 560
 561        return prz;
 562err:
 563        persistent_ram_free(prz);
 564        return ERR_PTR(ret);
 565}
 566