linux/include/linux/list.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_LIST_H
   3#define _LINUX_LIST_H
   4
   5#include <linux/types.h>
   6#include <linux/stddef.h>
   7#include <linux/poison.h>
   8#include <linux/const.h>
   9#include <linux/kernel.h>
  10
  11/*
  12 * Simple doubly linked list implementation.
  13 *
  14 * Some of the internal functions ("__xxx") are useful when
  15 * manipulating whole lists rather than single entries, as
  16 * sometimes we already know the next/prev entries and we can
  17 * generate better code by using them directly rather than
  18 * using the generic single-entry routines.
  19 */
  20
  21#define LIST_HEAD_INIT(name) { &(name), &(name) }
  22
  23#define LIST_HEAD(name) \
  24        struct list_head name = LIST_HEAD_INIT(name)
  25
  26static inline void INIT_LIST_HEAD(struct list_head *list)
  27{
  28        WRITE_ONCE(list->next, list);
  29        list->prev = list;
  30}
  31
  32#ifdef CONFIG_DEBUG_LIST
  33extern bool __list_add_valid(struct list_head *new,
  34                              struct list_head *prev,
  35                              struct list_head *next);
  36extern bool __list_del_entry_valid(struct list_head *entry);
  37#else
  38static inline bool __list_add_valid(struct list_head *new,
  39                                struct list_head *prev,
  40                                struct list_head *next)
  41{
  42        return true;
  43}
  44static inline bool __list_del_entry_valid(struct list_head *entry)
  45{
  46        return true;
  47}
  48#endif
  49
  50/*
  51 * Insert a new entry between two known consecutive entries.
  52 *
  53 * This is only for internal list manipulation where we know
  54 * the prev/next entries already!
  55 */
  56static inline void __list_add(struct list_head *new,
  57                              struct list_head *prev,
  58                              struct list_head *next)
  59{
  60        if (!__list_add_valid(new, prev, next))
  61                return;
  62
  63        next->prev = new;
  64        new->next = next;
  65        new->prev = prev;
  66        WRITE_ONCE(prev->next, new);
  67}
  68
  69/**
  70 * list_add - add a new entry
  71 * @new: new entry to be added
  72 * @head: list head to add it after
  73 *
  74 * Insert a new entry after the specified head.
  75 * This is good for implementing stacks.
  76 */
  77static inline void list_add(struct list_head *new, struct list_head *head)
  78{
  79        __list_add(new, head, head->next);
  80}
  81
  82
  83/**
  84 * list_add_tail - add a new entry
  85 * @new: new entry to be added
  86 * @head: list head to add it before
  87 *
  88 * Insert a new entry before the specified head.
  89 * This is useful for implementing queues.
  90 */
  91static inline void list_add_tail(struct list_head *new, struct list_head *head)
  92{
  93        __list_add(new, head->prev, head);
  94}
  95
  96/*
  97 * Delete a list entry by making the prev/next entries
  98 * point to each other.
  99 *
 100 * This is only for internal list manipulation where we know
 101 * the prev/next entries already!
 102 */
 103static inline void __list_del(struct list_head * prev, struct list_head * next)
 104{
 105        next->prev = prev;
 106        WRITE_ONCE(prev->next, next);
 107}
 108
 109/*
 110 * Delete a list entry and clear the 'prev' pointer.
 111 *
 112 * This is a special-purpose list clearing method used in the networking code
 113 * for lists allocated as per-cpu, where we don't want to incur the extra
 114 * WRITE_ONCE() overhead of a regular list_del_init(). The code that uses this
 115 * needs to check the node 'prev' pointer instead of calling list_empty().
 116 */
 117static inline void __list_del_clearprev(struct list_head *entry)
 118{
 119        __list_del(entry->prev, entry->next);
 120        entry->prev = NULL;
 121}
 122
 123/**
 124 * list_del - deletes entry from list.
 125 * @entry: the element to delete from the list.
 126 * Note: list_empty() on entry does not return true after this, the entry is
 127 * in an undefined state.
 128 */
 129static inline void __list_del_entry(struct list_head *entry)
 130{
 131        if (!__list_del_entry_valid(entry))
 132                return;
 133
 134        __list_del(entry->prev, entry->next);
 135}
 136
 137static inline void list_del(struct list_head *entry)
 138{
 139        __list_del_entry(entry);
 140        entry->next = LIST_POISON1;
 141        entry->prev = LIST_POISON2;
 142}
 143
 144/**
 145 * list_replace - replace old entry by new one
 146 * @old : the element to be replaced
 147 * @new : the new element to insert
 148 *
 149 * If @old was empty, it will be overwritten.
 150 */
 151static inline void list_replace(struct list_head *old,
 152                                struct list_head *new)
 153{
 154        new->next = old->next;
 155        new->next->prev = new;
 156        new->prev = old->prev;
 157        new->prev->next = new;
 158}
 159
 160static inline void list_replace_init(struct list_head *old,
 161                                        struct list_head *new)
 162{
 163        list_replace(old, new);
 164        INIT_LIST_HEAD(old);
 165}
 166
 167/**
 168 * list_swap - replace entry1 with entry2 and re-add entry1 at entry2's position
 169 * @entry1: the location to place entry2
 170 * @entry2: the location to place entry1
 171 */
 172static inline void list_swap(struct list_head *entry1,
 173                             struct list_head *entry2)
 174{
 175        struct list_head *pos = entry2->prev;
 176
 177        list_del(entry2);
 178        list_replace(entry1, entry2);
 179        if (pos == entry1)
 180                pos = entry2;
 181        list_add(entry1, pos);
 182}
 183
 184/**
 185 * list_del_init - deletes entry from list and reinitialize it.
 186 * @entry: the element to delete from the list.
 187 */
 188static inline void list_del_init(struct list_head *entry)
 189{
 190        __list_del_entry(entry);
 191        INIT_LIST_HEAD(entry);
 192}
 193
 194/**
 195 * list_move - delete from one list and add as another's head
 196 * @list: the entry to move
 197 * @head: the head that will precede our entry
 198 */
 199static inline void list_move(struct list_head *list, struct list_head *head)
 200{
 201        __list_del_entry(list);
 202        list_add(list, head);
 203}
 204
 205/**
 206 * list_move_tail - delete from one list and add as another's tail
 207 * @list: the entry to move
 208 * @head: the head that will follow our entry
 209 */
 210static inline void list_move_tail(struct list_head *list,
 211                                  struct list_head *head)
 212{
 213        __list_del_entry(list);
 214        list_add_tail(list, head);
 215}
 216
 217/**
 218 * list_bulk_move_tail - move a subsection of a list to its tail
 219 * @head: the head that will follow our entry
 220 * @first: first entry to move
 221 * @last: last entry to move, can be the same as first
 222 *
 223 * Move all entries between @first and including @last before @head.
 224 * All three entries must belong to the same linked list.
 225 */
 226static inline void list_bulk_move_tail(struct list_head *head,
 227                                       struct list_head *first,
 228                                       struct list_head *last)
 229{
 230        first->prev->next = last->next;
 231        last->next->prev = first->prev;
 232
 233        head->prev->next = first;
 234        first->prev = head->prev;
 235
 236        last->next = head;
 237        head->prev = last;
 238}
 239
 240/**
 241 * list_is_first -- tests whether @ list is the first entry in list @head
 242 * @list: the entry to test
 243 * @head: the head of the list
 244 */
 245static inline int list_is_first(const struct list_head *list,
 246                                const struct list_head *head)
 247{
 248       return list->prev == head;
 249}
 250
 251/**
 252 * list_is_last - tests whether @list is the last entry in list @head
 253 * @list: the entry to test
 254 * @head: the head of the list
 255 */
 256static inline int list_is_last(const struct list_head *list,
 257                                const struct list_head *head)
 258{
 259        return list->next == head;
 260}
 261
 262/**
 263 * list_empty - tests whether a list is empty
 264 * @head: the list to test.
 265 */
 266static inline int list_empty(const struct list_head *head)
 267{
 268        return READ_ONCE(head->next) == head;
 269}
 270
 271/**
 272 * list_empty_careful - tests whether a list is empty and not being modified
 273 * @head: the list to test
 274 *
 275 * Description:
 276 * tests whether a list is empty _and_ checks that no other CPU might be
 277 * in the process of modifying either member (next or prev)
 278 *
 279 * NOTE: using list_empty_careful() without synchronization
 280 * can only be safe if the only activity that can happen
 281 * to the list entry is list_del_init(). Eg. it cannot be used
 282 * if another CPU could re-list_add() it.
 283 */
 284static inline int list_empty_careful(const struct list_head *head)
 285{
 286        struct list_head *next = head->next;
 287        return (next == head) && (next == head->prev);
 288}
 289
 290/**
 291 * list_rotate_left - rotate the list to the left
 292 * @head: the head of the list
 293 */
 294static inline void list_rotate_left(struct list_head *head)
 295{
 296        struct list_head *first;
 297
 298        if (!list_empty(head)) {
 299                first = head->next;
 300                list_move_tail(first, head);
 301        }
 302}
 303
 304/**
 305 * list_rotate_to_front() - Rotate list to specific item.
 306 * @list: The desired new front of the list.
 307 * @head: The head of the list.
 308 *
 309 * Rotates list so that @list becomes the new front of the list.
 310 */
 311static inline void list_rotate_to_front(struct list_head *list,
 312                                        struct list_head *head)
 313{
 314        /*
 315         * Deletes the list head from the list denoted by @head and
 316         * places it as the tail of @list, this effectively rotates the
 317         * list so that @list is at the front.
 318         */
 319        list_move_tail(head, list);
 320}
 321
 322/**
 323 * list_is_singular - tests whether a list has just one entry.
 324 * @head: the list to test.
 325 */
 326static inline int list_is_singular(const struct list_head *head)
 327{
 328        return !list_empty(head) && (head->next == head->prev);
 329}
 330
 331static inline void __list_cut_position(struct list_head *list,
 332                struct list_head *head, struct list_head *entry)
 333{
 334        struct list_head *new_first = entry->next;
 335        list->next = head->next;
 336        list->next->prev = list;
 337        list->prev = entry;
 338        entry->next = list;
 339        head->next = new_first;
 340        new_first->prev = head;
 341}
 342
 343/**
 344 * list_cut_position - cut a list into two
 345 * @list: a new list to add all removed entries
 346 * @head: a list with entries
 347 * @entry: an entry within head, could be the head itself
 348 *      and if so we won't cut the list
 349 *
 350 * This helper moves the initial part of @head, up to and
 351 * including @entry, from @head to @list. You should
 352 * pass on @entry an element you know is on @head. @list
 353 * should be an empty list or a list you do not care about
 354 * losing its data.
 355 *
 356 */
 357static inline void list_cut_position(struct list_head *list,
 358                struct list_head *head, struct list_head *entry)
 359{
 360        if (list_empty(head))
 361                return;
 362        if (list_is_singular(head) &&
 363                (head->next != entry && head != entry))
 364                return;
 365        if (entry == head)
 366                INIT_LIST_HEAD(list);
 367        else
 368                __list_cut_position(list, head, entry);
 369}
 370
 371/**
 372 * list_cut_before - cut a list into two, before given entry
 373 * @list: a new list to add all removed entries
 374 * @head: a list with entries
 375 * @entry: an entry within head, could be the head itself
 376 *
 377 * This helper moves the initial part of @head, up to but
 378 * excluding @entry, from @head to @list.  You should pass
 379 * in @entry an element you know is on @head.  @list should
 380 * be an empty list or a list you do not care about losing
 381 * its data.
 382 * If @entry == @head, all entries on @head are moved to
 383 * @list.
 384 */
 385static inline void list_cut_before(struct list_head *list,
 386                                   struct list_head *head,
 387                                   struct list_head *entry)
 388{
 389        if (head->next == entry) {
 390                INIT_LIST_HEAD(list);
 391                return;
 392        }
 393        list->next = head->next;
 394        list->next->prev = list;
 395        list->prev = entry->prev;
 396        list->prev->next = list;
 397        head->next = entry;
 398        entry->prev = head;
 399}
 400
 401static inline void __list_splice(const struct list_head *list,
 402                                 struct list_head *prev,
 403                                 struct list_head *next)
 404{
 405        struct list_head *first = list->next;
 406        struct list_head *last = list->prev;
 407
 408        first->prev = prev;
 409        prev->next = first;
 410
 411        last->next = next;
 412        next->prev = last;
 413}
 414
 415/**
 416 * list_splice - join two lists, this is designed for stacks
 417 * @list: the new list to add.
 418 * @head: the place to add it in the first list.
 419 */
 420static inline void list_splice(const struct list_head *list,
 421                                struct list_head *head)
 422{
 423        if (!list_empty(list))
 424                __list_splice(list, head, head->next);
 425}
 426
 427/**
 428 * list_splice_tail - join two lists, each list being a queue
 429 * @list: the new list to add.
 430 * @head: the place to add it in the first list.
 431 */
 432static inline void list_splice_tail(struct list_head *list,
 433                                struct list_head *head)
 434{
 435        if (!list_empty(list))
 436                __list_splice(list, head->prev, head);
 437}
 438
 439/**
 440 * list_splice_init - join two lists and reinitialise the emptied list.
 441 * @list: the new list to add.
 442 * @head: the place to add it in the first list.
 443 *
 444 * The list at @list is reinitialised
 445 */
 446static inline void list_splice_init(struct list_head *list,
 447                                    struct list_head *head)
 448{
 449        if (!list_empty(list)) {
 450                __list_splice(list, head, head->next);
 451                INIT_LIST_HEAD(list);
 452        }
 453}
 454
 455/**
 456 * list_splice_tail_init - join two lists and reinitialise the emptied list
 457 * @list: the new list to add.
 458 * @head: the place to add it in the first list.
 459 *
 460 * Each of the lists is a queue.
 461 * The list at @list is reinitialised
 462 */
 463static inline void list_splice_tail_init(struct list_head *list,
 464                                         struct list_head *head)
 465{
 466        if (!list_empty(list)) {
 467                __list_splice(list, head->prev, head);
 468                INIT_LIST_HEAD(list);
 469        }
 470}
 471
 472/**
 473 * list_entry - get the struct for this entry
 474 * @ptr:        the &struct list_head pointer.
 475 * @type:       the type of the struct this is embedded in.
 476 * @member:     the name of the list_head within the struct.
 477 */
 478#define list_entry(ptr, type, member) \
 479        container_of(ptr, type, member)
 480
 481/**
 482 * list_first_entry - get the first element from a list
 483 * @ptr:        the list head to take the element from.
 484 * @type:       the type of the struct this is embedded in.
 485 * @member:     the name of the list_head within the struct.
 486 *
 487 * Note, that list is expected to be not empty.
 488 */
 489#define list_first_entry(ptr, type, member) \
 490        list_entry((ptr)->next, type, member)
 491
 492/**
 493 * list_last_entry - get the last element from a list
 494 * @ptr:        the list head to take the element from.
 495 * @type:       the type of the struct this is embedded in.
 496 * @member:     the name of the list_head within the struct.
 497 *
 498 * Note, that list is expected to be not empty.
 499 */
 500#define list_last_entry(ptr, type, member) \
 501        list_entry((ptr)->prev, type, member)
 502
 503/**
 504 * list_first_entry_or_null - get the first element from a list
 505 * @ptr:        the list head to take the element from.
 506 * @type:       the type of the struct this is embedded in.
 507 * @member:     the name of the list_head within the struct.
 508 *
 509 * Note that if the list is empty, it returns NULL.
 510 */
 511#define list_first_entry_or_null(ptr, type, member) ({ \
 512        struct list_head *head__ = (ptr); \
 513        struct list_head *pos__ = READ_ONCE(head__->next); \
 514        pos__ != head__ ? list_entry(pos__, type, member) : NULL; \
 515})
 516
 517/**
 518 * list_next_entry - get the next element in list
 519 * @pos:        the type * to cursor
 520 * @member:     the name of the list_head within the struct.
 521 */
 522#define list_next_entry(pos, member) \
 523        list_entry((pos)->member.next, typeof(*(pos)), member)
 524
 525/**
 526 * list_prev_entry - get the prev element in list
 527 * @pos:        the type * to cursor
 528 * @member:     the name of the list_head within the struct.
 529 */
 530#define list_prev_entry(pos, member) \
 531        list_entry((pos)->member.prev, typeof(*(pos)), member)
 532
 533/**
 534 * list_for_each        -       iterate over a list
 535 * @pos:        the &struct list_head to use as a loop cursor.
 536 * @head:       the head for your list.
 537 */
 538#define list_for_each(pos, head) \
 539        for (pos = (head)->next; pos != (head); pos = pos->next)
 540
 541/**
 542 * list_for_each_prev   -       iterate over a list backwards
 543 * @pos:        the &struct list_head to use as a loop cursor.
 544 * @head:       the head for your list.
 545 */
 546#define list_for_each_prev(pos, head) \
 547        for (pos = (head)->prev; pos != (head); pos = pos->prev)
 548
 549/**
 550 * list_for_each_safe - iterate over a list safe against removal of list entry
 551 * @pos:        the &struct list_head to use as a loop cursor.
 552 * @n:          another &struct list_head to use as temporary storage
 553 * @head:       the head for your list.
 554 */
 555#define list_for_each_safe(pos, n, head) \
 556        for (pos = (head)->next, n = pos->next; pos != (head); \
 557                pos = n, n = pos->next)
 558
 559/**
 560 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
 561 * @pos:        the &struct list_head to use as a loop cursor.
 562 * @n:          another &struct list_head to use as temporary storage
 563 * @head:       the head for your list.
 564 */
 565#define list_for_each_prev_safe(pos, n, head) \
 566        for (pos = (head)->prev, n = pos->prev; \
 567             pos != (head); \
 568             pos = n, n = pos->prev)
 569
 570/**
 571 * list_for_each_entry  -       iterate over list of given type
 572 * @pos:        the type * to use as a loop cursor.
 573 * @head:       the head for your list.
 574 * @member:     the name of the list_head within the struct.
 575 */
 576#define list_for_each_entry(pos, head, member)                          \
 577        for (pos = list_first_entry(head, typeof(*pos), member);        \
 578             &pos->member != (head);                                    \
 579             pos = list_next_entry(pos, member))
 580
 581/**
 582 * list_for_each_entry_reverse - iterate backwards over list of given type.
 583 * @pos:        the type * to use as a loop cursor.
 584 * @head:       the head for your list.
 585 * @member:     the name of the list_head within the struct.
 586 */
 587#define list_for_each_entry_reverse(pos, head, member)                  \
 588        for (pos = list_last_entry(head, typeof(*pos), member);         \
 589             &pos->member != (head);                                    \
 590             pos = list_prev_entry(pos, member))
 591
 592/**
 593 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
 594 * @pos:        the type * to use as a start point
 595 * @head:       the head of the list
 596 * @member:     the name of the list_head within the struct.
 597 *
 598 * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
 599 */
 600#define list_prepare_entry(pos, head, member) \
 601        ((pos) ? : list_entry(head, typeof(*pos), member))
 602
 603/**
 604 * list_for_each_entry_continue - continue iteration over list of given type
 605 * @pos:        the type * to use as a loop cursor.
 606 * @head:       the head for your list.
 607 * @member:     the name of the list_head within the struct.
 608 *
 609 * Continue to iterate over list of given type, continuing after
 610 * the current position.
 611 */
 612#define list_for_each_entry_continue(pos, head, member)                 \
 613        for (pos = list_next_entry(pos, member);                        \
 614             &pos->member != (head);                                    \
 615             pos = list_next_entry(pos, member))
 616
 617/**
 618 * list_for_each_entry_continue_reverse - iterate backwards from the given point
 619 * @pos:        the type * to use as a loop cursor.
 620 * @head:       the head for your list.
 621 * @member:     the name of the list_head within the struct.
 622 *
 623 * Start to iterate over list of given type backwards, continuing after
 624 * the current position.
 625 */
 626#define list_for_each_entry_continue_reverse(pos, head, member)         \
 627        for (pos = list_prev_entry(pos, member);                        \
 628             &pos->member != (head);                                    \
 629             pos = list_prev_entry(pos, member))
 630
 631/**
 632 * list_for_each_entry_from - iterate over list of given type from the current point
 633 * @pos:        the type * to use as a loop cursor.
 634 * @head:       the head for your list.
 635 * @member:     the name of the list_head within the struct.
 636 *
 637 * Iterate over list of given type, continuing from current position.
 638 */
 639#define list_for_each_entry_from(pos, head, member)                     \
 640        for (; &pos->member != (head);                                  \
 641             pos = list_next_entry(pos, member))
 642
 643/**
 644 * list_for_each_entry_from_reverse - iterate backwards over list of given type
 645 *                                    from the current point
 646 * @pos:        the type * to use as a loop cursor.
 647 * @head:       the head for your list.
 648 * @member:     the name of the list_head within the struct.
 649 *
 650 * Iterate backwards over list of given type, continuing from current position.
 651 */
 652#define list_for_each_entry_from_reverse(pos, head, member)             \
 653        for (; &pos->member != (head);                                  \
 654             pos = list_prev_entry(pos, member))
 655
 656/**
 657 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
 658 * @pos:        the type * to use as a loop cursor.
 659 * @n:          another type * to use as temporary storage
 660 * @head:       the head for your list.
 661 * @member:     the name of the list_head within the struct.
 662 */
 663#define list_for_each_entry_safe(pos, n, head, member)                  \
 664        for (pos = list_first_entry(head, typeof(*pos), member),        \
 665                n = list_next_entry(pos, member);                       \
 666             &pos->member != (head);                                    \
 667             pos = n, n = list_next_entry(n, member))
 668
 669/**
 670 * list_for_each_entry_safe_continue - continue list iteration safe against removal
 671 * @pos:        the type * to use as a loop cursor.
 672 * @n:          another type * to use as temporary storage
 673 * @head:       the head for your list.
 674 * @member:     the name of the list_head within the struct.
 675 *
 676 * Iterate over list of given type, continuing after current point,
 677 * safe against removal of list entry.
 678 */
 679#define list_for_each_entry_safe_continue(pos, n, head, member)                 \
 680        for (pos = list_next_entry(pos, member),                                \
 681                n = list_next_entry(pos, member);                               \
 682             &pos->member != (head);                                            \
 683             pos = n, n = list_next_entry(n, member))
 684
 685/**
 686 * list_for_each_entry_safe_from - iterate over list from current point safe against removal
 687 * @pos:        the type * to use as a loop cursor.
 688 * @n:          another type * to use as temporary storage
 689 * @head:       the head for your list.
 690 * @member:     the name of the list_head within the struct.
 691 *
 692 * Iterate over list of given type from current point, safe against
 693 * removal of list entry.
 694 */
 695#define list_for_each_entry_safe_from(pos, n, head, member)                     \
 696        for (n = list_next_entry(pos, member);                                  \
 697             &pos->member != (head);                                            \
 698             pos = n, n = list_next_entry(n, member))
 699
 700/**
 701 * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
 702 * @pos:        the type * to use as a loop cursor.
 703 * @n:          another type * to use as temporary storage
 704 * @head:       the head for your list.
 705 * @member:     the name of the list_head within the struct.
 706 *
 707 * Iterate backwards over list of given type, safe against removal
 708 * of list entry.
 709 */
 710#define list_for_each_entry_safe_reverse(pos, n, head, member)          \
 711        for (pos = list_last_entry(head, typeof(*pos), member),         \
 712                n = list_prev_entry(pos, member);                       \
 713             &pos->member != (head);                                    \
 714             pos = n, n = list_prev_entry(n, member))
 715
 716/**
 717 * list_safe_reset_next - reset a stale list_for_each_entry_safe loop
 718 * @pos:        the loop cursor used in the list_for_each_entry_safe loop
 719 * @n:          temporary storage used in list_for_each_entry_safe
 720 * @member:     the name of the list_head within the struct.
 721 *
 722 * list_safe_reset_next is not safe to use in general if the list may be
 723 * modified concurrently (eg. the lock is dropped in the loop body). An
 724 * exception to this is if the cursor element (pos) is pinned in the list,
 725 * and list_safe_reset_next is called after re-taking the lock and before
 726 * completing the current iteration of the loop body.
 727 */
 728#define list_safe_reset_next(pos, n, member)                            \
 729        n = list_next_entry(pos, member)
 730
 731/*
 732 * Double linked lists with a single pointer list head.
 733 * Mostly useful for hash tables where the two pointer list head is
 734 * too wasteful.
 735 * You lose the ability to access the tail in O(1).
 736 */
 737
 738#define HLIST_HEAD_INIT { .first = NULL }
 739#define HLIST_HEAD(name) struct hlist_head name = {  .first = NULL }
 740#define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
 741static inline void INIT_HLIST_NODE(struct hlist_node *h)
 742{
 743        h->next = NULL;
 744        h->pprev = NULL;
 745}
 746
 747static inline int hlist_unhashed(const struct hlist_node *h)
 748{
 749        return !h->pprev;
 750}
 751
 752static inline int hlist_empty(const struct hlist_head *h)
 753{
 754        return !READ_ONCE(h->first);
 755}
 756
 757static inline void __hlist_del(struct hlist_node *n)
 758{
 759        struct hlist_node *next = n->next;
 760        struct hlist_node **pprev = n->pprev;
 761
 762        WRITE_ONCE(*pprev, next);
 763        if (next)
 764                next->pprev = pprev;
 765}
 766
 767static inline void hlist_del(struct hlist_node *n)
 768{
 769        __hlist_del(n);
 770        n->next = LIST_POISON1;
 771        n->pprev = LIST_POISON2;
 772}
 773
 774static inline void hlist_del_init(struct hlist_node *n)
 775{
 776        if (!hlist_unhashed(n)) {
 777                __hlist_del(n);
 778                INIT_HLIST_NODE(n);
 779        }
 780}
 781
 782static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
 783{
 784        struct hlist_node *first = h->first;
 785        n->next = first;
 786        if (first)
 787                first->pprev = &n->next;
 788        WRITE_ONCE(h->first, n);
 789        n->pprev = &h->first;
 790}
 791
 792/* next must be != NULL */
 793static inline void hlist_add_before(struct hlist_node *n,
 794                                        struct hlist_node *next)
 795{
 796        n->pprev = next->pprev;
 797        n->next = next;
 798        next->pprev = &n->next;
 799        WRITE_ONCE(*(n->pprev), n);
 800}
 801
 802static inline void hlist_add_behind(struct hlist_node *n,
 803                                    struct hlist_node *prev)
 804{
 805        n->next = prev->next;
 806        WRITE_ONCE(prev->next, n);
 807        n->pprev = &prev->next;
 808
 809        if (n->next)
 810                n->next->pprev  = &n->next;
 811}
 812
 813/* after that we'll appear to be on some hlist and hlist_del will work */
 814static inline void hlist_add_fake(struct hlist_node *n)
 815{
 816        n->pprev = &n->next;
 817}
 818
 819static inline bool hlist_fake(struct hlist_node *h)
 820{
 821        return h->pprev == &h->next;
 822}
 823
 824/*
 825 * Check whether the node is the only node of the head without
 826 * accessing head:
 827 */
 828static inline bool
 829hlist_is_singular_node(struct hlist_node *n, struct hlist_head *h)
 830{
 831        return !n->next && n->pprev == &h->first;
 832}
 833
 834/*
 835 * Move a list from one list head to another. Fixup the pprev
 836 * reference of the first entry if it exists.
 837 */
 838static inline void hlist_move_list(struct hlist_head *old,
 839                                   struct hlist_head *new)
 840{
 841        new->first = old->first;
 842        if (new->first)
 843                new->first->pprev = &new->first;
 844        old->first = NULL;
 845}
 846
 847#define hlist_entry(ptr, type, member) container_of(ptr,type,member)
 848
 849#define hlist_for_each(pos, head) \
 850        for (pos = (head)->first; pos ; pos = pos->next)
 851
 852#define hlist_for_each_safe(pos, n, head) \
 853        for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
 854             pos = n)
 855
 856#define hlist_entry_safe(ptr, type, member) \
 857        ({ typeof(ptr) ____ptr = (ptr); \
 858           ____ptr ? hlist_entry(____ptr, type, member) : NULL; \
 859        })
 860
 861/**
 862 * hlist_for_each_entry - iterate over list of given type
 863 * @pos:        the type * to use as a loop cursor.
 864 * @head:       the head for your list.
 865 * @member:     the name of the hlist_node within the struct.
 866 */
 867#define hlist_for_each_entry(pos, head, member)                         \
 868        for (pos = hlist_entry_safe((head)->first, typeof(*(pos)), member);\
 869             pos;                                                       \
 870             pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
 871
 872/**
 873 * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
 874 * @pos:        the type * to use as a loop cursor.
 875 * @member:     the name of the hlist_node within the struct.
 876 */
 877#define hlist_for_each_entry_continue(pos, member)                      \
 878        for (pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member);\
 879             pos;                                                       \
 880             pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
 881
 882/**
 883 * hlist_for_each_entry_from - iterate over a hlist continuing from current point
 884 * @pos:        the type * to use as a loop cursor.
 885 * @member:     the name of the hlist_node within the struct.
 886 */
 887#define hlist_for_each_entry_from(pos, member)                          \
 888        for (; pos;                                                     \
 889             pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
 890
 891/**
 892 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
 893 * @pos:        the type * to use as a loop cursor.
 894 * @n:          another &struct hlist_node to use as temporary storage
 895 * @head:       the head for your list.
 896 * @member:     the name of the hlist_node within the struct.
 897 */
 898#define hlist_for_each_entry_safe(pos, n, head, member)                 \
 899        for (pos = hlist_entry_safe((head)->first, typeof(*pos), member);\
 900             pos && ({ n = pos->member.next; 1; });                     \
 901             pos = hlist_entry_safe(n, typeof(*pos), member))
 902
 903#endif
 904