linux/include/linux/mm_types.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_MM_TYPES_H
   3#define _LINUX_MM_TYPES_H
   4
   5#include <linux/mm_types_task.h>
   6
   7#include <linux/auxvec.h>
   8#include <linux/list.h>
   9#include <linux/spinlock.h>
  10#include <linux/rbtree.h>
  11#include <linux/rwsem.h>
  12#include <linux/completion.h>
  13#include <linux/cpumask.h>
  14#include <linux/uprobes.h>
  15#include <linux/page-flags-layout.h>
  16#include <linux/workqueue.h>
  17#include <linux/rh_kabi.h>
  18
  19#include <asm/mmu.h>
  20
  21#ifndef AT_VECTOR_SIZE_ARCH
  22#define AT_VECTOR_SIZE_ARCH 0
  23#endif
  24#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
  25
  26
  27struct address_space;
  28struct mem_cgroup;
  29struct hmm;
  30struct dev_pagemap;
  31
  32/*
  33 * Each physical page in the system has a struct page associated with
  34 * it to keep track of whatever it is we are using the page for at the
  35 * moment. Note that we have no way to track which tasks are using
  36 * a page, though if it is a pagecache page, rmap structures can tell us
  37 * who is mapping it.
  38 *
  39 * If you allocate the page using alloc_pages(), you can use some of the
  40 * space in struct page for your own purposes.  The five words in the main
  41 * union are available, except for bit 0 of the first word which must be
  42 * kept clear.  Many users use this word to store a pointer to an object
  43 * which is guaranteed to be aligned.  If you use the same storage as
  44 * page->mapping, you must restore it to NULL before freeing the page.
  45 *
  46 * If your page will not be mapped to userspace, you can also use the four
  47 * bytes in the mapcount union, but you must call page_mapcount_reset()
  48 * before freeing it.
  49 *
  50 * If you want to use the refcount field, it must be used in such a way
  51 * that other CPUs temporarily incrementing and then decrementing the
  52 * refcount does not cause problems.  On receiving the page from
  53 * alloc_pages(), the refcount will be positive.
  54 *
  55 * If you allocate pages of order > 0, you can use some of the fields
  56 * in each subpage, but you may need to restore some of their values
  57 * afterwards.
  58 *
  59 * SLUB uses cmpxchg_double() to atomically update its freelist and
  60 * counters.  That requires that freelist & counters be adjacent and
  61 * double-word aligned.  We align all struct pages to double-word
  62 * boundaries, and ensure that 'freelist' is aligned within the
  63 * struct.
  64 */
  65#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
  66#define _struct_page_alignment  __aligned(2 * sizeof(unsigned long))
  67#else
  68#define _struct_page_alignment
  69#endif
  70
  71struct page {
  72        unsigned long flags;            /* Atomic flags, some possibly
  73                                         * updated asynchronously */
  74        /*
  75         * Five words (20/40 bytes) are available in this union.
  76         * WARNING: bit 0 of the first word is used for PageTail(). That
  77         * means the other users of this union MUST NOT use the bit to
  78         * avoid collision and false-positive PageTail().
  79         */
  80        union {
  81                struct {        /* Page cache and anonymous pages */
  82                        /**
  83                         * @lru: Pageout list, eg. active_list protected by
  84                         * zone_lru_lock.  Sometimes used as a generic list
  85                         * by the page owner.
  86                         */
  87                        struct list_head lru;
  88                        /* See page-flags.h for PAGE_MAPPING_FLAGS */
  89                        struct address_space *mapping;
  90                        pgoff_t index;          /* Our offset within mapping. */
  91                        /**
  92                         * @private: Mapping-private opaque data.
  93                         * Usually used for buffer_heads if PagePrivate.
  94                         * Used for swp_entry_t if PageSwapCache.
  95                         * Indicates order in the buddy system if PageBuddy.
  96                         */
  97                        unsigned long private;
  98                };
  99                RH_KABI_EXTEND(struct { /* page_pool used by netstack */
 100                        /**
 101                         * @dma_addr: might require a 64-bit value even on
 102                         * 32-bit architectures.
 103                         */
 104                        dma_addr_t dma_addr;
 105                })
 106                struct {        /* slab, slob and slub */
 107                        union {
 108                                struct list_head slab_list;
 109                                struct {        /* Partial pages */
 110                                        struct page *next;
 111#ifdef CONFIG_64BIT
 112                                        int pages;      /* Nr of pages left */
 113                                        int pobjects;   /* Approximate count */
 114#else
 115                                        short int pages;
 116                                        short int pobjects;
 117#endif
 118                                };
 119                        };
 120                        struct kmem_cache *slab_cache; /* not slob */
 121                        /* Double-word boundary */
 122                        void *freelist;         /* first free object */
 123                        union {
 124                                void *s_mem;    /* slab: first object */
 125                                unsigned long counters;         /* SLUB */
 126                                struct {                        /* SLUB */
 127                                        unsigned inuse:16;
 128                                        unsigned objects:15;
 129                                        unsigned frozen:1;
 130                                };
 131                        };
 132                };
 133                struct {        /* Tail pages of compound page */
 134                        unsigned long compound_head;    /* Bit zero is set */
 135
 136                        /* First tail page only */
 137                        unsigned char compound_dtor;
 138                        unsigned char compound_order;
 139                        atomic_t compound_mapcount;
 140                };
 141                struct {        /* Second tail page of compound page */
 142                        unsigned long _compound_pad_1;  /* compound_head */
 143                        unsigned long _compound_pad_2;
 144                        struct list_head deferred_list;
 145                };
 146                struct {        /* Page table pages */
 147                        unsigned long _pt_pad_1;        /* compound_head */
 148                        pgtable_t pmd_huge_pte; /* protected by page->ptl */
 149                        unsigned long _pt_pad_2;        /* mapping */
 150                        struct mm_struct *pt_mm;        /* x86 pgds only */
 151#if ALLOC_SPLIT_PTLOCKS
 152                        spinlock_t *ptl;
 153#else
 154                        spinlock_t ptl;
 155#endif
 156                };
 157                struct {        /* ZONE_DEVICE pages */
 158                        /** @pgmap: Points to the hosting device page map. */
 159                        struct dev_pagemap *pgmap;
 160                        RH_KABI_REPLACE(unsigned long hmm_data,
 161                                        void *zone_device_data)
 162                        unsigned long _zd_pad_1;        /* uses mapping */
 163                };
 164
 165                /** @rcu_head: You can use this to free a page by RCU. */
 166                struct rcu_head rcu_head;
 167        };
 168
 169        union {         /* This union is 4 bytes in size. */
 170                /*
 171                 * If the page can be mapped to userspace, encodes the number
 172                 * of times this page is referenced by a page table.
 173                 */
 174                atomic_t _mapcount;
 175
 176                /*
 177                 * If the page is neither PageSlab nor mappable to userspace,
 178                 * the value stored here may help determine what this page
 179                 * is used for.  See page-flags.h for a list of page types
 180                 * which are currently stored here.
 181                 */
 182                unsigned int page_type;
 183
 184                unsigned int active;            /* SLAB */
 185                int units;                      /* SLOB */
 186        };
 187
 188        /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
 189        atomic_t _refcount;
 190
 191#ifdef CONFIG_MEMCG
 192        struct mem_cgroup *mem_cgroup;
 193#endif
 194
 195        /*
 196         * On machines where all RAM is mapped into kernel address space,
 197         * we can simply calculate the virtual address. On machines with
 198         * highmem some memory is mapped into kernel virtual memory
 199         * dynamically, so we need a place to store that address.
 200         * Note that this field could be 16 bits on x86 ... ;)
 201         *
 202         * Architectures with slow multiplication can define
 203         * WANT_PAGE_VIRTUAL in asm/page.h
 204         */
 205#if defined(WANT_PAGE_VIRTUAL)
 206        void *virtual;                  /* Kernel virtual address (NULL if
 207                                           not kmapped, ie. highmem) */
 208#endif /* WANT_PAGE_VIRTUAL */
 209
 210#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
 211        int _last_cpupid;
 212#endif
 213} _struct_page_alignment;
 214
 215static inline atomic_t *compound_mapcount_ptr(struct page *page)
 216{
 217        return &page[1].compound_mapcount;
 218}
 219
 220#define PAGE_FRAG_CACHE_MAX_SIZE        __ALIGN_MASK(32768, ~PAGE_MASK)
 221#define PAGE_FRAG_CACHE_MAX_ORDER       get_order(PAGE_FRAG_CACHE_MAX_SIZE)
 222
 223#define page_private(page)              ((page)->private)
 224#define set_page_private(page, v)       ((page)->private = (v))
 225
 226struct page_frag_cache {
 227        void * va;
 228#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
 229        __u16 offset;
 230        __u16 size;
 231#else
 232        __u32 offset;
 233#endif
 234        /* we maintain a pagecount bias, so that we dont dirty cache line
 235         * containing page->_refcount every time we allocate a fragment.
 236         */
 237        unsigned int            pagecnt_bias;
 238        bool pfmemalloc;
 239};
 240
 241typedef unsigned long vm_flags_t;
 242
 243/*
 244 * A region containing a mapping of a non-memory backed file under NOMMU
 245 * conditions.  These are held in a global tree and are pinned by the VMAs that
 246 * map parts of them.
 247 */
 248struct vm_region {
 249        struct rb_node  vm_rb;          /* link in global region tree */
 250        vm_flags_t      vm_flags;       /* VMA vm_flags */
 251        unsigned long   vm_start;       /* start address of region */
 252        unsigned long   vm_end;         /* region initialised to here */
 253        unsigned long   vm_top;         /* region allocated to here */
 254        unsigned long   vm_pgoff;       /* the offset in vm_file corresponding to vm_start */
 255        struct file     *vm_file;       /* the backing file or NULL */
 256
 257        int             vm_usage;       /* region usage count (access under nommu_region_sem) */
 258        bool            vm_icache_flushed : 1; /* true if the icache has been flushed for
 259                                                * this region */
 260};
 261
 262#ifdef CONFIG_USERFAULTFD
 263#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
 264struct vm_userfaultfd_ctx {
 265        struct userfaultfd_ctx *ctx;
 266};
 267#else /* CONFIG_USERFAULTFD */
 268#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
 269struct vm_userfaultfd_ctx {};
 270#endif /* CONFIG_USERFAULTFD */
 271
 272/*
 273 * This struct defines a memory VMM memory area. There is one of these
 274 * per VM-area/task.  A VM area is any part of the process virtual memory
 275 * space that has a special rule for the page-fault handlers (ie a shared
 276 * library, the executable area etc).
 277 */
 278struct vm_area_struct {
 279        /* The first cache line has the info for VMA tree walking. */
 280
 281        unsigned long vm_start;         /* Our start address within vm_mm. */
 282        unsigned long vm_end;           /* The first byte after our end address
 283                                           within vm_mm. */
 284
 285        /* linked list of VM areas per task, sorted by address */
 286        struct vm_area_struct *vm_next, *vm_prev;
 287
 288        struct rb_node vm_rb;
 289
 290        /*
 291         * Largest free memory gap in bytes to the left of this VMA.
 292         * Either between this VMA and vma->vm_prev, or between one of the
 293         * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
 294         * get_unmapped_area find a free area of the right size.
 295         */
 296        unsigned long rb_subtree_gap;
 297
 298        /* Second cache line starts here. */
 299
 300        struct mm_struct *vm_mm;        /* The address space we belong to. */
 301
 302        /*
 303         * Access permissions of this VMA.
 304         * See vmf_insert_mixed_prot() for discussion.
 305         */
 306        pgprot_t vm_page_prot;
 307        unsigned long vm_flags;         /* Flags, see mm.h. */
 308
 309        /*
 310         * For areas with an address space and backing store,
 311         * linkage into the address_space->i_mmap interval tree.
 312         */
 313        struct {
 314                struct rb_node rb;
 315                unsigned long rb_subtree_last;
 316        } shared;
 317
 318        /*
 319         * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
 320         * list, after a COW of one of the file pages.  A MAP_SHARED vma
 321         * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
 322         * or brk vma (with NULL file) can only be in an anon_vma list.
 323         */
 324        struct list_head anon_vma_chain; /* Serialized by mmap_sem &
 325                                          * page_table_lock */
 326        struct anon_vma *anon_vma;      /* Serialized by page_table_lock */
 327
 328        /* Function pointers to deal with this struct. */
 329        const struct vm_operations_struct *vm_ops;
 330
 331        /* Information about our backing store: */
 332        unsigned long vm_pgoff;         /* Offset (within vm_file) in PAGE_SIZE
 333                                           units */
 334        struct file * vm_file;          /* File we map to (can be NULL). */
 335        void * vm_private_data;         /* was vm_pte (shared mem) */
 336
 337        atomic_long_t swap_readahead_info;
 338#ifndef CONFIG_MMU
 339        struct vm_region *vm_region;    /* NOMMU mapping region */
 340#endif
 341#ifdef CONFIG_NUMA
 342        struct mempolicy *vm_policy;    /* NUMA policy for the VMA */
 343#endif
 344        struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
 345
 346        RH_KABI_RESERVE(1)
 347        RH_KABI_RESERVE(2)
 348        RH_KABI_RESERVE(3)
 349        RH_KABI_RESERVE(4)
 350} __randomize_layout;
 351
 352struct core_thread {
 353        struct task_struct *task;
 354        struct core_thread *next;
 355};
 356
 357struct core_state {
 358        atomic_t nr_threads;
 359        struct core_thread dumper;
 360        struct completion startup;
 361};
 362
 363struct kioctx_table;
 364struct mm_struct {
 365        struct {
 366                struct vm_area_struct *mmap;            /* list of VMAs */
 367                struct rb_root mm_rb;
 368                u64 vmacache_seqnum;                   /* per-thread vmacache */
 369#ifdef CONFIG_MMU
 370                unsigned long (*get_unmapped_area) (struct file *filp,
 371                                unsigned long addr, unsigned long len,
 372                                unsigned long pgoff, unsigned long flags);
 373#endif
 374                unsigned long mmap_base;        /* base of mmap area */
 375                unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */
 376#ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
 377                /* Base adresses for compatible mmap() */
 378                unsigned long mmap_compat_base;
 379                unsigned long mmap_compat_legacy_base;
 380#endif
 381                unsigned long task_size;        /* size of task vm space */
 382                unsigned long highest_vm_end;   /* highest vma end address */
 383                pgd_t * pgd;
 384
 385                /**
 386                 * @mm_users: The number of users including userspace.
 387                 *
 388                 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
 389                 * drops to 0 (i.e. when the task exits and there are no other
 390                 * temporary reference holders), we also release a reference on
 391                 * @mm_count (which may then free the &struct mm_struct if
 392                 * @mm_count also drops to 0).
 393                 */
 394                atomic_t mm_users;
 395
 396                /**
 397                 * @mm_count: The number of references to &struct mm_struct
 398                 * (@mm_users count as 1).
 399                 *
 400                 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the
 401                 * &struct mm_struct is freed.
 402                 */
 403                atomic_t mm_count;
 404
 405#ifdef CONFIG_MMU
 406                atomic_long_t pgtables_bytes;   /* PTE page table pages */
 407#endif
 408                int map_count;                  /* number of VMAs */
 409
 410                spinlock_t page_table_lock; /* Protects page tables and some
 411                                             * counters
 412                                             */
 413                struct rw_semaphore mmap_sem;
 414
 415                struct list_head mmlist; /* List of maybe swapped mm's. These
 416                                          * are globally strung together off
 417                                          * init_mm.mmlist, and are protected
 418                                          * by mmlist_lock
 419                                          */
 420
 421
 422                unsigned long hiwater_rss; /* High-watermark of RSS usage */
 423                unsigned long hiwater_vm;  /* High-water virtual memory usage */
 424
 425                unsigned long total_vm;    /* Total pages mapped */
 426                unsigned long locked_vm;   /* Pages that have PG_mlocked set */
 427                /*
 428                 * RHEL KABI NOTE: due to changes for BZ#1620349 mm_types.h is
 429                 * being exposed to the vdso32 object build, thus we need the
 430                 * _BROKEN variant of RH_KABI_REPLACE in order to placate the
 431                 * static assertion check embedded into the safe macro.
 432                 * Although unsigned long and atomic64_t do not have a type size
 433                 * match in the vdso32 object build case, it is, actually, safe
 434                 * to keep the inline type replacement here as there are no
 435                 * dependencies, direct or indirect, between the vdso32 code and
 436                 * struct mm_struct fields. On every other compilation unit that
 437                 * struct mm_struct is required, the type sizes and aligment are
 438                 * a perfect match, as expected.
 439                 */
 440                RH_KABI_BROKEN_REPLACE(
 441                unsigned long pinned_vm,
 442                atomic64_t    pinned_vm
 443                )                          /* Refcount permanently increased */
 444                unsigned long data_vm;     /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
 445                unsigned long exec_vm;     /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
 446                unsigned long stack_vm;    /* VM_STACK */
 447                unsigned long def_flags;
 448
 449                spinlock_t arg_lock; /* protect the below fields */
 450                unsigned long start_code, end_code, start_data, end_data;
 451                unsigned long start_brk, brk, start_stack;
 452                unsigned long arg_start, arg_end, env_start, env_end;
 453
 454                unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
 455
 456                /*
 457                 * Special counters, in some configurations protected by the
 458                 * page_table_lock, in other configurations by being atomic.
 459                 */
 460                struct mm_rss_stat rss_stat;
 461
 462                struct linux_binfmt *binfmt;
 463
 464                /* Architecture-specific MM context */
 465                mm_context_t context;
 466
 467                unsigned long flags; /* Must use atomic bitops to access */
 468
 469                struct core_state *core_state; /* coredumping support */
 470#ifdef CONFIG_MEMBARRIER
 471                atomic_t membarrier_state;
 472#endif
 473#ifdef CONFIG_AIO
 474                spinlock_t                      ioctx_lock;
 475                struct kioctx_table __rcu       *ioctx_table;
 476#endif
 477#ifdef CONFIG_MEMCG
 478                /*
 479                 * "owner" points to a task that is regarded as the canonical
 480                 * user/owner of this mm. All of the following must be true in
 481                 * order for it to be changed:
 482                 *
 483                 * current == mm->owner
 484                 * current->mm != mm
 485                 * new_owner->mm == mm
 486                 * new_owner->alloc_lock is held
 487                 */
 488                struct task_struct __rcu *owner;
 489#endif
 490                struct user_namespace *user_ns;
 491
 492                /* store ref to file /proc/<pid>/exe symlink points to */
 493                struct file __rcu *exe_file;
 494#ifdef CONFIG_MMU_NOTIFIER
 495                struct mmu_notifier_mm *mmu_notifier_mm;
 496#endif
 497#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 498                pgtable_t pmd_huge_pte; /* protected by page_table_lock */
 499#endif
 500#ifdef CONFIG_NUMA_BALANCING
 501                /*
 502                 * numa_next_scan is the next time that the PTEs will be marked
 503                 * pte_numa. NUMA hinting faults will gather statistics and
 504                 * migrate pages to new nodes if necessary.
 505                 */
 506                unsigned long numa_next_scan;
 507
 508                /* Restart point for scanning and setting pte_numa */
 509                unsigned long numa_scan_offset;
 510
 511                /* numa_scan_seq prevents two threads setting pte_numa */
 512                int numa_scan_seq;
 513#endif
 514                /*
 515                 * An operation with batched TLB flushing is going on. Anything
 516                 * that can move process memory needs to flush the TLB when
 517                 * moving a PROT_NONE or PROT_NUMA mapped page.
 518                 */
 519                atomic_t tlb_flush_pending;
 520#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
 521                /* See flush_tlb_batched_pending() */
 522                bool tlb_flush_batched;
 523#endif
 524                struct uprobes_state uprobes_state;
 525#ifdef CONFIG_HUGETLB_PAGE
 526                atomic_long_t hugetlb_usage;
 527#endif
 528                struct work_struct async_put_work;
 529
 530#if IS_ENABLED(CONFIG_HMM)
 531                /* HMM needs to track a few things per mm */
 532                struct hmm *hmm;
 533#endif
 534        } __randomize_layout;
 535
 536        RH_KABI_RESERVE(1)
 537        RH_KABI_RESERVE(2)
 538        RH_KABI_RESERVE(3)
 539        RH_KABI_RESERVE(4)
 540        RH_KABI_RESERVE(5)
 541        RH_KABI_RESERVE(6)
 542        RH_KABI_RESERVE(7)
 543
 544#if defined(CONFIG_PPC64) && defined (CONFIG_PPC_VAS)
 545        /*
 546         * In upstream vas_windows is defined in arch specific mm_context struct
 547         * (arch/powerpc/include/asm/mmu.h).
 548         * To fix kABI breakage, adding here but will be defined only for powerpc.
 549         * Though used only on powerNV and P9 (or later) right now, will be needed
 550         * in future when we add NX-GZIP support on powerVM.
 551         * Leaving first 7 reserves for arch independent elements if needed in future
 552         * so that will be placed in same location for all archs.
 553         */
 554        RH_KABI_USE(8, atomic_t vas_windows)
 555#else
 556        RH_KABI_RESERVE(8)
 557#endif
 558
 559        /*
 560         * The mm_cpumask needs to be at the end of mm_struct, because it
 561         * is dynamically sized based on nr_cpu_ids.
 562         */
 563        unsigned long cpu_bitmap[];
 564};
 565
 566extern struct mm_struct init_mm;
 567
 568/* Pointer magic because the dynamic array size confuses some compilers. */
 569static inline void mm_init_cpumask(struct mm_struct *mm)
 570{
 571        unsigned long cpu_bitmap = (unsigned long)mm;
 572
 573        cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
 574        cpumask_clear((struct cpumask *)cpu_bitmap);
 575}
 576
 577/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
 578static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
 579{
 580        return (struct cpumask *)&mm->cpu_bitmap;
 581}
 582
 583struct mmu_gather;
 584extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
 585                                unsigned long start, unsigned long end);
 586extern void tlb_finish_mmu(struct mmu_gather *tlb,
 587                                unsigned long start, unsigned long end);
 588
 589static inline void init_tlb_flush_pending(struct mm_struct *mm)
 590{
 591        atomic_set(&mm->tlb_flush_pending, 0);
 592}
 593
 594static inline void inc_tlb_flush_pending(struct mm_struct *mm)
 595{
 596        atomic_inc(&mm->tlb_flush_pending);
 597        /*
 598         * The only time this value is relevant is when there are indeed pages
 599         * to flush. And we'll only flush pages after changing them, which
 600         * requires the PTL.
 601         *
 602         * So the ordering here is:
 603         *
 604         *      atomic_inc(&mm->tlb_flush_pending);
 605         *      spin_lock(&ptl);
 606         *      ...
 607         *      set_pte_at();
 608         *      spin_unlock(&ptl);
 609         *
 610         *                              spin_lock(&ptl)
 611         *                              mm_tlb_flush_pending();
 612         *                              ....
 613         *                              spin_unlock(&ptl);
 614         *
 615         *      flush_tlb_range();
 616         *      atomic_dec(&mm->tlb_flush_pending);
 617         *
 618         * Where the increment if constrained by the PTL unlock, it thus
 619         * ensures that the increment is visible if the PTE modification is
 620         * visible. After all, if there is no PTE modification, nobody cares
 621         * about TLB flushes either.
 622         *
 623         * This very much relies on users (mm_tlb_flush_pending() and
 624         * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and
 625         * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc
 626         * locks (PPC) the unlock of one doesn't order against the lock of
 627         * another PTL.
 628         *
 629         * The decrement is ordered by the flush_tlb_range(), such that
 630         * mm_tlb_flush_pending() will not return false unless all flushes have
 631         * completed.
 632         */
 633}
 634
 635static inline void dec_tlb_flush_pending(struct mm_struct *mm)
 636{
 637        /*
 638         * See inc_tlb_flush_pending().
 639         *
 640         * This cannot be smp_mb__before_atomic() because smp_mb() simply does
 641         * not order against TLB invalidate completion, which is what we need.
 642         *
 643         * Therefore we must rely on tlb_flush_*() to guarantee order.
 644         */
 645        atomic_dec(&mm->tlb_flush_pending);
 646}
 647
 648static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
 649{
 650        /*
 651         * Must be called after having acquired the PTL; orders against that
 652         * PTLs release and therefore ensures that if we observe the modified
 653         * PTE we must also observe the increment from inc_tlb_flush_pending().
 654         *
 655         * That is, it only guarantees to return true if there is a flush
 656         * pending for _this_ PTL.
 657         */
 658        return atomic_read(&mm->tlb_flush_pending);
 659}
 660
 661static inline bool mm_tlb_flush_nested(struct mm_struct *mm)
 662{
 663        /*
 664         * Similar to mm_tlb_flush_pending(), we must have acquired the PTL
 665         * for which there is a TLB flush pending in order to guarantee
 666         * we've seen both that PTE modification and the increment.
 667         *
 668         * (no requirement on actually still holding the PTL, that is irrelevant)
 669         */
 670        return atomic_read(&mm->tlb_flush_pending) > 1;
 671}
 672
 673struct vm_fault;
 674
 675/**
 676 * typedef vm_fault_t - Return type for page fault handlers.
 677 *
 678 * Page fault handlers return a bitmask of %VM_FAULT values.
 679 */
 680typedef RH_KABI_ADD_MODIFIER(__bitwise unsigned) int vm_fault_t;
 681
 682/**
 683 * enum vm_fault_reason - Page fault handlers return a bitmask of
 684 * these values to tell the core VM what happened when handling the
 685 * fault. Used to decide whether a process gets delivered SIGBUS or
 686 * just gets major/minor fault counters bumped up.
 687 *
 688 * @VM_FAULT_OOM:               Out Of Memory
 689 * @VM_FAULT_SIGBUS:            Bad access
 690 * @VM_FAULT_MAJOR:             Page read from storage
 691 * @VM_FAULT_WRITE:             Special case for get_user_pages
 692 * @VM_FAULT_HWPOISON:          Hit poisoned small page
 693 * @VM_FAULT_HWPOISON_LARGE:    Hit poisoned large page. Index encoded
 694 *                              in upper bits
 695 * @VM_FAULT_SIGSEGV:           segmentation fault
 696 * @VM_FAULT_NOPAGE:            ->fault installed the pte, not return page
 697 * @VM_FAULT_LOCKED:            ->fault locked the returned page
 698 * @VM_FAULT_RETRY:             ->fault blocked, must retry
 699 * @VM_FAULT_FALLBACK:          huge page fault failed, fall back to small
 700 * @VM_FAULT_DONE_COW:          ->fault has fully handled COW
 701 * @VM_FAULT_NEEDDSYNC:         ->fault did not modify page tables and needs
 702 *                              fsync() to complete (for synchronous page faults
 703 *                              in DAX)
 704 * @VM_FAULT_HINDEX_MASK:       mask HINDEX value
 705 *
 706 */
 707enum vm_fault_reason {
 708        VM_FAULT_OOM            = (__force vm_fault_t)0x000001,
 709        VM_FAULT_SIGBUS         = (__force vm_fault_t)0x000002,
 710        VM_FAULT_MAJOR          = (__force vm_fault_t)0x000004,
 711        VM_FAULT_WRITE          = (__force vm_fault_t)0x000008,
 712        VM_FAULT_HWPOISON       = (__force vm_fault_t)0x000010,
 713        VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
 714        VM_FAULT_SIGSEGV        = (__force vm_fault_t)0x000040,
 715        VM_FAULT_NOPAGE         = (__force vm_fault_t)0x000100,
 716        VM_FAULT_LOCKED         = (__force vm_fault_t)0x000200,
 717        VM_FAULT_RETRY          = (__force vm_fault_t)0x000400,
 718        VM_FAULT_FALLBACK       = (__force vm_fault_t)0x000800,
 719        VM_FAULT_DONE_COW       = (__force vm_fault_t)0x001000,
 720        VM_FAULT_NEEDDSYNC      = (__force vm_fault_t)0x002000,
 721        VM_FAULT_HINDEX_MASK    = (__force vm_fault_t)0x0f0000,
 722};
 723
 724/* Encode hstate index for a hwpoisoned large page */
 725#define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
 726#define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)
 727
 728#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS |        \
 729                        VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON |  \
 730                        VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)
 731
 732#define VM_FAULT_RESULT_TRACE \
 733        { VM_FAULT_OOM,                 "OOM" },        \
 734        { VM_FAULT_SIGBUS,              "SIGBUS" },     \
 735        { VM_FAULT_MAJOR,               "MAJOR" },      \
 736        { VM_FAULT_WRITE,               "WRITE" },      \
 737        { VM_FAULT_HWPOISON,            "HWPOISON" },   \
 738        { VM_FAULT_HWPOISON_LARGE,      "HWPOISON_LARGE" },     \
 739        { VM_FAULT_SIGSEGV,             "SIGSEGV" },    \
 740        { VM_FAULT_NOPAGE,              "NOPAGE" },     \
 741        { VM_FAULT_LOCKED,              "LOCKED" },     \
 742        { VM_FAULT_RETRY,               "RETRY" },      \
 743        { VM_FAULT_FALLBACK,            "FALLBACK" },   \
 744        { VM_FAULT_DONE_COW,            "DONE_COW" },   \
 745        { VM_FAULT_NEEDDSYNC,           "NEEDDSYNC" }
 746
 747struct vm_special_mapping {
 748        const char *name;       /* The name, e.g. "[vdso]". */
 749
 750        /*
 751         * If .fault is not provided, this points to a
 752         * NULL-terminated array of pages that back the special mapping.
 753         *
 754         * This must not be NULL unless .fault is provided.
 755         */
 756        struct page **pages;
 757
 758        /*
 759         * If non-NULL, then this is called to resolve page faults
 760         * on the special mapping.  If used, .pages is not checked.
 761         */
 762        vm_fault_t (*fault)(const struct vm_special_mapping *sm,
 763                                struct vm_area_struct *vma,
 764                                struct vm_fault *vmf);
 765
 766        int (*mremap)(const struct vm_special_mapping *sm,
 767                     struct vm_area_struct *new_vma);
 768};
 769
 770enum tlb_flush_reason {
 771        TLB_FLUSH_ON_TASK_SWITCH,
 772        TLB_REMOTE_SHOOTDOWN,
 773        TLB_LOCAL_SHOOTDOWN,
 774        TLB_LOCAL_MM_SHOOTDOWN,
 775        TLB_REMOTE_SEND_IPI,
 776        NR_TLB_FLUSH_REASONS,
 777};
 778
 779 /*
 780  * A swap entry has to fit into a "unsigned long", as the entry is hidden
 781  * in the "index" field of the swapper address space.
 782  */
 783typedef struct {
 784        unsigned long val;
 785} swp_entry_t;
 786
 787#endif /* _LINUX_MM_TYPES_H */
 788