linux/kernel/sched/psi.c
<<
>>
Prefs
   1/*
   2 * Pressure stall information for CPU, memory and IO
   3 *
   4 * Copyright (c) 2018 Facebook, Inc.
   5 * Author: Johannes Weiner <hannes@cmpxchg.org>
   6 *
   7 * Polling support by Suren Baghdasaryan <surenb@google.com>
   8 * Copyright (c) 2018 Google, Inc.
   9 *
  10 * When CPU, memory and IO are contended, tasks experience delays that
  11 * reduce throughput and introduce latencies into the workload. Memory
  12 * and IO contention, in addition, can cause a full loss of forward
  13 * progress in which the CPU goes idle.
  14 *
  15 * This code aggregates individual task delays into resource pressure
  16 * metrics that indicate problems with both workload health and
  17 * resource utilization.
  18 *
  19 *                      Model
  20 *
  21 * The time in which a task can execute on a CPU is our baseline for
  22 * productivity. Pressure expresses the amount of time in which this
  23 * potential cannot be realized due to resource contention.
  24 *
  25 * This concept of productivity has two components: the workload and
  26 * the CPU. To measure the impact of pressure on both, we define two
  27 * contention states for a resource: SOME and FULL.
  28 *
  29 * In the SOME state of a given resource, one or more tasks are
  30 * delayed on that resource. This affects the workload's ability to
  31 * perform work, but the CPU may still be executing other tasks.
  32 *
  33 * In the FULL state of a given resource, all non-idle tasks are
  34 * delayed on that resource such that nobody is advancing and the CPU
  35 * goes idle. This leaves both workload and CPU unproductive.
  36 *
  37 * (Naturally, the FULL state doesn't exist for the CPU resource.)
  38 *
  39 *      SOME = nr_delayed_tasks != 0
  40 *      FULL = nr_delayed_tasks != 0 && nr_running_tasks == 0
  41 *
  42 * The percentage of wallclock time spent in those compound stall
  43 * states gives pressure numbers between 0 and 100 for each resource,
  44 * where the SOME percentage indicates workload slowdowns and the FULL
  45 * percentage indicates reduced CPU utilization:
  46 *
  47 *      %SOME = time(SOME) / period
  48 *      %FULL = time(FULL) / period
  49 *
  50 *                      Multiple CPUs
  51 *
  52 * The more tasks and available CPUs there are, the more work can be
  53 * performed concurrently. This means that the potential that can go
  54 * unrealized due to resource contention *also* scales with non-idle
  55 * tasks and CPUs.
  56 *
  57 * Consider a scenario where 257 number crunching tasks are trying to
  58 * run concurrently on 256 CPUs. If we simply aggregated the task
  59 * states, we would have to conclude a CPU SOME pressure number of
  60 * 100%, since *somebody* is waiting on a runqueue at all
  61 * times. However, that is clearly not the amount of contention the
  62 * workload is experiencing: only one out of 256 possible exceution
  63 * threads will be contended at any given time, or about 0.4%.
  64 *
  65 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
  66 * given time *one* of the tasks is delayed due to a lack of memory.
  67 * Again, looking purely at the task state would yield a memory FULL
  68 * pressure number of 0%, since *somebody* is always making forward
  69 * progress. But again this wouldn't capture the amount of execution
  70 * potential lost, which is 1 out of 4 CPUs, or 25%.
  71 *
  72 * To calculate wasted potential (pressure) with multiple processors,
  73 * we have to base our calculation on the number of non-idle tasks in
  74 * conjunction with the number of available CPUs, which is the number
  75 * of potential execution threads. SOME becomes then the proportion of
  76 * delayed tasks to possibe threads, and FULL is the share of possible
  77 * threads that are unproductive due to delays:
  78 *
  79 *      threads = min(nr_nonidle_tasks, nr_cpus)
  80 *         SOME = min(nr_delayed_tasks / threads, 1)
  81 *         FULL = (threads - min(nr_running_tasks, threads)) / threads
  82 *
  83 * For the 257 number crunchers on 256 CPUs, this yields:
  84 *
  85 *      threads = min(257, 256)
  86 *         SOME = min(1 / 256, 1)             = 0.4%
  87 *         FULL = (256 - min(257, 256)) / 256 = 0%
  88 *
  89 * For the 1 out of 4 memory-delayed tasks, this yields:
  90 *
  91 *      threads = min(4, 4)
  92 *         SOME = min(1 / 4, 1)               = 25%
  93 *         FULL = (4 - min(3, 4)) / 4         = 25%
  94 *
  95 * [ Substitute nr_cpus with 1, and you can see that it's a natural
  96 *   extension of the single-CPU model. ]
  97 *
  98 *                      Implementation
  99 *
 100 * To assess the precise time spent in each such state, we would have
 101 * to freeze the system on task changes and start/stop the state
 102 * clocks accordingly. Obviously that doesn't scale in practice.
 103 *
 104 * Because the scheduler aims to distribute the compute load evenly
 105 * among the available CPUs, we can track task state locally to each
 106 * CPU and, at much lower frequency, extrapolate the global state for
 107 * the cumulative stall times and the running averages.
 108 *
 109 * For each runqueue, we track:
 110 *
 111 *         tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
 112 *         tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_running_tasks[cpu])
 113 *      tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
 114 *
 115 * and then periodically aggregate:
 116 *
 117 *      tNONIDLE = sum(tNONIDLE[i])
 118 *
 119 *         tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
 120 *         tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
 121 *
 122 *         %SOME = tSOME / period
 123 *         %FULL = tFULL / period
 124 *
 125 * This gives us an approximation of pressure that is practical
 126 * cost-wise, yet way more sensitive and accurate than periodic
 127 * sampling of the aggregate task states would be.
 128 */
 129
 130#include "../workqueue_internal.h"
 131#include <linux/sched/loadavg.h>
 132#include <linux/seq_file.h>
 133#include <linux/proc_fs.h>
 134#include <linux/seqlock.h>
 135#include <linux/uaccess.h>
 136#include <linux/cgroup.h>
 137#include <linux/module.h>
 138#include <linux/sched.h>
 139#include <linux/ctype.h>
 140#include <linux/file.h>
 141#include <linux/poll.h>
 142#include <linux/psi.h>
 143#include "sched.h"
 144
 145static int psi_bug __read_mostly;
 146
 147DEFINE_STATIC_KEY_FALSE(psi_disabled);
 148
 149#ifdef CONFIG_PSI_DEFAULT_DISABLED
 150static bool psi_enable;
 151#else
 152static bool psi_enable = true;
 153#endif
 154static int __init setup_psi(char *str)
 155{
 156        return kstrtobool(str, &psi_enable) == 0;
 157}
 158__setup("psi=", setup_psi);
 159
 160/* Running averages - we need to be higher-res than loadavg */
 161#define PSI_FREQ        (2*HZ+1)        /* 2 sec intervals */
 162#define EXP_10s         1677            /* 1/exp(2s/10s) as fixed-point */
 163#define EXP_60s         1981            /* 1/exp(2s/60s) */
 164#define EXP_300s        2034            /* 1/exp(2s/300s) */
 165
 166/* PSI trigger definitions */
 167#define WINDOW_MIN_US 500000    /* Min window size is 500ms */
 168#define WINDOW_MAX_US 10000000  /* Max window size is 10s */
 169#define UPDATES_PER_WINDOW 10   /* 10 updates per window */
 170
 171/* Sampling frequency in nanoseconds */
 172static u64 psi_period __read_mostly;
 173
 174/* System-level pressure and stall tracking */
 175static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
 176struct psi_group psi_system = {
 177        .pcpu = &system_group_pcpu,
 178};
 179
 180static void psi_avgs_work(struct work_struct *work);
 181
 182static void group_init(struct psi_group *group)
 183{
 184        int cpu;
 185
 186        for_each_possible_cpu(cpu)
 187                seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
 188        group->avg_last_update = sched_clock();
 189        group->avg_next_update = group->avg_last_update + psi_period;
 190        INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work);
 191        mutex_init(&group->avgs_lock);
 192        /* Init trigger-related members */
 193        atomic_set(&group->poll_scheduled, 0);
 194        mutex_init(&group->trigger_lock);
 195        INIT_LIST_HEAD(&group->triggers);
 196        memset(group->nr_triggers, 0, sizeof(group->nr_triggers));
 197        group->poll_states = 0;
 198        group->poll_min_period = U32_MAX;
 199        memset(group->polling_total, 0, sizeof(group->polling_total));
 200        group->polling_next_update = ULLONG_MAX;
 201        group->polling_until = 0;
 202        rcu_assign_pointer(group->poll_kworker, NULL);
 203}
 204
 205void __init psi_init(void)
 206{
 207        if (!psi_enable) {
 208                static_branch_enable(&psi_disabled);
 209                return;
 210        }
 211
 212        psi_period = jiffies_to_nsecs(PSI_FREQ);
 213        group_init(&psi_system);
 214}
 215
 216static bool test_state(unsigned int *tasks, enum psi_states state)
 217{
 218        switch (state) {
 219        case PSI_IO_SOME:
 220                return tasks[NR_IOWAIT];
 221        case PSI_IO_FULL:
 222                return tasks[NR_IOWAIT] && !tasks[NR_RUNNING];
 223        case PSI_MEM_SOME:
 224                return tasks[NR_MEMSTALL];
 225        case PSI_MEM_FULL:
 226                return tasks[NR_MEMSTALL] && !tasks[NR_RUNNING];
 227        case PSI_CPU_SOME:
 228                return tasks[NR_RUNNING] > 1;
 229        case PSI_NONIDLE:
 230                return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] ||
 231                        tasks[NR_RUNNING];
 232        default:
 233                return false;
 234        }
 235}
 236
 237static void get_recent_times(struct psi_group *group, int cpu,
 238                             enum psi_aggregators aggregator, u32 *times,
 239                             u32 *pchanged_states)
 240{
 241        struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
 242        u64 now, state_start;
 243        enum psi_states s;
 244        unsigned int seq;
 245        u32 state_mask;
 246
 247        *pchanged_states = 0;
 248
 249        /* Snapshot a coherent view of the CPU state */
 250        do {
 251                seq = read_seqcount_begin(&groupc->seq);
 252                now = cpu_clock(cpu);
 253                memcpy(times, groupc->times, sizeof(groupc->times));
 254                state_mask = groupc->state_mask;
 255                state_start = groupc->state_start;
 256        } while (read_seqcount_retry(&groupc->seq, seq));
 257
 258        /* Calculate state time deltas against the previous snapshot */
 259        for (s = 0; s < NR_PSI_STATES; s++) {
 260                u32 delta;
 261                /*
 262                 * In addition to already concluded states, we also
 263                 * incorporate currently active states on the CPU,
 264                 * since states may last for many sampling periods.
 265                 *
 266                 * This way we keep our delta sampling buckets small
 267                 * (u32) and our reported pressure close to what's
 268                 * actually happening.
 269                 */
 270                if (state_mask & (1 << s))
 271                        times[s] += now - state_start;
 272
 273                delta = times[s] - groupc->times_prev[aggregator][s];
 274                groupc->times_prev[aggregator][s] = times[s];
 275
 276                times[s] = delta;
 277                if (delta)
 278                        *pchanged_states |= (1 << s);
 279        }
 280}
 281
 282static void calc_avgs(unsigned long avg[3], int missed_periods,
 283                      u64 time, u64 period)
 284{
 285        unsigned long pct;
 286
 287        /* Fill in zeroes for periods of no activity */
 288        if (missed_periods) {
 289                avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
 290                avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
 291                avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
 292        }
 293
 294        /* Sample the most recent active period */
 295        pct = div_u64(time * 100, period);
 296        pct *= FIXED_1;
 297        avg[0] = calc_load(avg[0], EXP_10s, pct);
 298        avg[1] = calc_load(avg[1], EXP_60s, pct);
 299        avg[2] = calc_load(avg[2], EXP_300s, pct);
 300}
 301
 302static void collect_percpu_times(struct psi_group *group,
 303                                 enum psi_aggregators aggregator,
 304                                 u32 *pchanged_states)
 305{
 306        u64 deltas[NR_PSI_STATES - 1] = { 0, };
 307        unsigned long nonidle_total = 0;
 308        u32 changed_states = 0;
 309        int cpu;
 310        int s;
 311
 312        /*
 313         * Collect the per-cpu time buckets and average them into a
 314         * single time sample that is normalized to wallclock time.
 315         *
 316         * For averaging, each CPU is weighted by its non-idle time in
 317         * the sampling period. This eliminates artifacts from uneven
 318         * loading, or even entirely idle CPUs.
 319         */
 320        for_each_possible_cpu(cpu) {
 321                u32 times[NR_PSI_STATES];
 322                u32 nonidle;
 323                u32 cpu_changed_states;
 324
 325                get_recent_times(group, cpu, aggregator, times,
 326                                &cpu_changed_states);
 327                changed_states |= cpu_changed_states;
 328
 329                nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
 330                nonidle_total += nonidle;
 331
 332                for (s = 0; s < PSI_NONIDLE; s++)
 333                        deltas[s] += (u64)times[s] * nonidle;
 334        }
 335
 336        /*
 337         * Integrate the sample into the running statistics that are
 338         * reported to userspace: the cumulative stall times and the
 339         * decaying averages.
 340         *
 341         * Pressure percentages are sampled at PSI_FREQ. We might be
 342         * called more often when the user polls more frequently than
 343         * that; we might be called less often when there is no task
 344         * activity, thus no data, and clock ticks are sporadic. The
 345         * below handles both.
 346         */
 347
 348        /* total= */
 349        for (s = 0; s < NR_PSI_STATES - 1; s++)
 350                group->total[aggregator][s] +=
 351                                div_u64(deltas[s], max(nonidle_total, 1UL));
 352
 353        if (pchanged_states)
 354                *pchanged_states = changed_states;
 355}
 356
 357static u64 update_averages(struct psi_group *group, u64 now)
 358{
 359        unsigned long missed_periods = 0;
 360        u64 expires, period;
 361        u64 avg_next_update;
 362        int s;
 363
 364        /* avgX= */
 365        expires = group->avg_next_update;
 366        if (now - expires >= psi_period)
 367                missed_periods = div_u64(now - expires, psi_period);
 368
 369        /*
 370         * The periodic clock tick can get delayed for various
 371         * reasons, especially on loaded systems. To avoid clock
 372         * drift, we schedule the clock in fixed psi_period intervals.
 373         * But the deltas we sample out of the per-cpu buckets above
 374         * are based on the actual time elapsing between clock ticks.
 375         */
 376        avg_next_update = expires + ((1 + missed_periods) * psi_period);
 377        period = now - (group->avg_last_update + (missed_periods * psi_period));
 378        group->avg_last_update = now;
 379
 380        for (s = 0; s < NR_PSI_STATES - 1; s++) {
 381                u32 sample;
 382
 383                sample = group->total[PSI_AVGS][s] - group->avg_total[s];
 384                /*
 385                 * Due to the lockless sampling of the time buckets,
 386                 * recorded time deltas can slip into the next period,
 387                 * which under full pressure can result in samples in
 388                 * excess of the period length.
 389                 *
 390                 * We don't want to report non-sensical pressures in
 391                 * excess of 100%, nor do we want to drop such events
 392                 * on the floor. Instead we punt any overage into the
 393                 * future until pressure subsides. By doing this we
 394                 * don't underreport the occurring pressure curve, we
 395                 * just report it delayed by one period length.
 396                 *
 397                 * The error isn't cumulative. As soon as another
 398                 * delta slips from a period P to P+1, by definition
 399                 * it frees up its time T in P.
 400                 */
 401                if (sample > period)
 402                        sample = period;
 403                group->avg_total[s] += sample;
 404                calc_avgs(group->avg[s], missed_periods, sample, period);
 405        }
 406
 407        return avg_next_update;
 408}
 409
 410static void psi_avgs_work(struct work_struct *work)
 411{
 412        struct delayed_work *dwork;
 413        struct psi_group *group;
 414        u32 changed_states;
 415        bool nonidle;
 416        u64 now;
 417
 418        dwork = to_delayed_work(work);
 419        group = container_of(dwork, struct psi_group, avgs_work);
 420
 421        mutex_lock(&group->avgs_lock);
 422
 423        now = sched_clock();
 424
 425        collect_percpu_times(group, PSI_AVGS, &changed_states);
 426        nonidle = changed_states & (1 << PSI_NONIDLE);
 427        /*
 428         * If there is task activity, periodically fold the per-cpu
 429         * times and feed samples into the running averages. If things
 430         * are idle and there is no data to process, stop the clock.
 431         * Once restarted, we'll catch up the running averages in one
 432         * go - see calc_avgs() and missed_periods.
 433         */
 434        if (now >= group->avg_next_update)
 435                group->avg_next_update = update_averages(group, now);
 436
 437        if (nonidle) {
 438                schedule_delayed_work(dwork, nsecs_to_jiffies(
 439                                group->avg_next_update - now) + 1);
 440        }
 441
 442        mutex_unlock(&group->avgs_lock);
 443}
 444
 445/* Trigger tracking window manupulations */
 446static void window_reset(struct psi_window *win, u64 now, u64 value,
 447                         u64 prev_growth)
 448{
 449        win->start_time = now;
 450        win->start_value = value;
 451        win->prev_growth = prev_growth;
 452}
 453
 454/*
 455 * PSI growth tracking window update and growth calculation routine.
 456 *
 457 * This approximates a sliding tracking window by interpolating
 458 * partially elapsed windows using historical growth data from the
 459 * previous intervals. This minimizes memory requirements (by not storing
 460 * all the intermediate values in the previous window) and simplifies
 461 * the calculations. It works well because PSI signal changes only in
 462 * positive direction and over relatively small window sizes the growth
 463 * is close to linear.
 464 */
 465static u64 window_update(struct psi_window *win, u64 now, u64 value)
 466{
 467        u64 elapsed;
 468        u64 growth;
 469
 470        elapsed = now - win->start_time;
 471        growth = value - win->start_value;
 472        /*
 473         * After each tracking window passes win->start_value and
 474         * win->start_time get reset and win->prev_growth stores
 475         * the average per-window growth of the previous window.
 476         * win->prev_growth is then used to interpolate additional
 477         * growth from the previous window assuming it was linear.
 478         */
 479        if (elapsed > win->size)
 480                window_reset(win, now, value, growth);
 481        else {
 482                u32 remaining;
 483
 484                remaining = win->size - elapsed;
 485                growth += div64_u64(win->prev_growth * remaining, win->size);
 486        }
 487
 488        return growth;
 489}
 490
 491static void init_triggers(struct psi_group *group, u64 now)
 492{
 493        struct psi_trigger *t;
 494
 495        list_for_each_entry(t, &group->triggers, node)
 496                window_reset(&t->win, now,
 497                                group->total[PSI_POLL][t->state], 0);
 498        memcpy(group->polling_total, group->total[PSI_POLL],
 499                   sizeof(group->polling_total));
 500        group->polling_next_update = now + group->poll_min_period;
 501}
 502
 503static u64 update_triggers(struct psi_group *group, u64 now)
 504{
 505        struct psi_trigger *t;
 506        bool new_stall = false;
 507        u64 *total = group->total[PSI_POLL];
 508
 509        /*
 510         * On subsequent updates, calculate growth deltas and let
 511         * watchers know when their specified thresholds are exceeded.
 512         */
 513        list_for_each_entry(t, &group->triggers, node) {
 514                u64 growth;
 515
 516                /* Check for stall activity */
 517                if (group->polling_total[t->state] == total[t->state])
 518                        continue;
 519
 520                /*
 521                 * Multiple triggers might be looking at the same state,
 522                 * remember to update group->polling_total[] once we've
 523                 * been through all of them. Also remember to extend the
 524                 * polling time if we see new stall activity.
 525                 */
 526                new_stall = true;
 527
 528                /* Calculate growth since last update */
 529                growth = window_update(&t->win, now, total[t->state]);
 530                if (growth < t->threshold)
 531                        continue;
 532
 533                /* Limit event signaling to once per window */
 534                if (now < t->last_event_time + t->win.size)
 535                        continue;
 536
 537                /* Generate an event */
 538                if (cmpxchg(&t->event, 0, 1) == 0)
 539                        wake_up_interruptible(&t->event_wait);
 540                t->last_event_time = now;
 541        }
 542
 543        if (new_stall)
 544                memcpy(group->polling_total, total,
 545                                sizeof(group->polling_total));
 546
 547        return now + group->poll_min_period;
 548}
 549
 550/*
 551 * Schedule polling if it's not already scheduled. It's safe to call even from
 552 * hotpath because even though kthread_queue_delayed_work takes worker->lock
 553 * spinlock that spinlock is never contended due to poll_scheduled atomic
 554 * preventing such competition.
 555 */
 556static void psi_schedule_poll_work(struct psi_group *group, unsigned long delay)
 557{
 558        struct kthread_worker *kworker;
 559
 560        /* Do not reschedule if already scheduled */
 561        if (atomic_cmpxchg(&group->poll_scheduled, 0, 1) != 0)
 562                return;
 563
 564        rcu_read_lock();
 565
 566        kworker = rcu_dereference(group->poll_kworker);
 567        /*
 568         * kworker might be NULL in case psi_trigger_destroy races with
 569         * psi_task_change (hotpath) which can't use locks
 570         */
 571        if (likely(kworker))
 572                kthread_queue_delayed_work(kworker, &group->poll_work, delay);
 573        else
 574                atomic_set(&group->poll_scheduled, 0);
 575
 576        rcu_read_unlock();
 577}
 578
 579static void psi_poll_work(struct kthread_work *work)
 580{
 581        struct kthread_delayed_work *dwork;
 582        struct psi_group *group;
 583        u32 changed_states;
 584        u64 now;
 585
 586        dwork = container_of(work, struct kthread_delayed_work, work);
 587        group = container_of(dwork, struct psi_group, poll_work);
 588
 589        atomic_set(&group->poll_scheduled, 0);
 590
 591        mutex_lock(&group->trigger_lock);
 592
 593        now = sched_clock();
 594
 595        collect_percpu_times(group, PSI_POLL, &changed_states);
 596
 597        if (changed_states & group->poll_states) {
 598                /* Initialize trigger windows when entering polling mode */
 599                if (now > group->polling_until)
 600                        init_triggers(group, now);
 601
 602                /*
 603                 * Keep the monitor active for at least the duration of the
 604                 * minimum tracking window as long as monitor states are
 605                 * changing.
 606                 */
 607                group->polling_until = now +
 608                        group->poll_min_period * UPDATES_PER_WINDOW;
 609        }
 610
 611        if (now > group->polling_until) {
 612                group->polling_next_update = ULLONG_MAX;
 613                goto out;
 614        }
 615
 616        if (now >= group->polling_next_update)
 617                group->polling_next_update = update_triggers(group, now);
 618
 619        psi_schedule_poll_work(group,
 620                nsecs_to_jiffies(group->polling_next_update - now) + 1);
 621
 622out:
 623        mutex_unlock(&group->trigger_lock);
 624}
 625
 626static void record_times(struct psi_group_cpu *groupc, int cpu,
 627                         bool memstall_tick)
 628{
 629        u32 delta;
 630        u64 now;
 631
 632        now = cpu_clock(cpu);
 633        delta = now - groupc->state_start;
 634        groupc->state_start = now;
 635
 636        if (groupc->state_mask & (1 << PSI_IO_SOME)) {
 637                groupc->times[PSI_IO_SOME] += delta;
 638                if (groupc->state_mask & (1 << PSI_IO_FULL))
 639                        groupc->times[PSI_IO_FULL] += delta;
 640        }
 641
 642        if (groupc->state_mask & (1 << PSI_MEM_SOME)) {
 643                groupc->times[PSI_MEM_SOME] += delta;
 644                if (groupc->state_mask & (1 << PSI_MEM_FULL))
 645                        groupc->times[PSI_MEM_FULL] += delta;
 646                else if (memstall_tick) {
 647                        u32 sample;
 648                        /*
 649                         * Since we care about lost potential, a
 650                         * memstall is FULL when there are no other
 651                         * working tasks, but also when the CPU is
 652                         * actively reclaiming and nothing productive
 653                         * could run even if it were runnable.
 654                         *
 655                         * When the timer tick sees a reclaiming CPU,
 656                         * regardless of runnable tasks, sample a FULL
 657                         * tick (or less if it hasn't been a full tick
 658                         * since the last state change).
 659                         */
 660                        sample = min(delta, (u32)jiffies_to_nsecs(1));
 661                        groupc->times[PSI_MEM_FULL] += sample;
 662                }
 663        }
 664
 665        if (groupc->state_mask & (1 << PSI_CPU_SOME))
 666                groupc->times[PSI_CPU_SOME] += delta;
 667
 668        if (groupc->state_mask & (1 << PSI_NONIDLE))
 669                groupc->times[PSI_NONIDLE] += delta;
 670}
 671
 672static u32 psi_group_change(struct psi_group *group, int cpu,
 673                            unsigned int clear, unsigned int set)
 674{
 675        struct psi_group_cpu *groupc;
 676        unsigned int t, m;
 677        enum psi_states s;
 678        u32 state_mask = 0;
 679
 680        groupc = per_cpu_ptr(group->pcpu, cpu);
 681
 682        /*
 683         * First we assess the aggregate resource states this CPU's
 684         * tasks have been in since the last change, and account any
 685         * SOME and FULL time these may have resulted in.
 686         *
 687         * Then we update the task counts according to the state
 688         * change requested through the @clear and @set bits.
 689         */
 690        write_seqcount_begin(&groupc->seq);
 691
 692        record_times(groupc, cpu, false);
 693
 694        for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
 695                if (!(m & (1 << t)))
 696                        continue;
 697                if (groupc->tasks[t] == 0 && !psi_bug) {
 698                        printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u] clear=%x set=%x\n",
 699                                        cpu, t, groupc->tasks[0],
 700                                        groupc->tasks[1], groupc->tasks[2],
 701                                        clear, set);
 702                        psi_bug = 1;
 703                }
 704                groupc->tasks[t]--;
 705        }
 706
 707        for (t = 0; set; set &= ~(1 << t), t++)
 708                if (set & (1 << t))
 709                        groupc->tasks[t]++;
 710
 711        /* Calculate state mask representing active states */
 712        for (s = 0; s < NR_PSI_STATES; s++) {
 713                if (test_state(groupc->tasks, s))
 714                        state_mask |= (1 << s);
 715        }
 716        groupc->state_mask = state_mask;
 717
 718        write_seqcount_end(&groupc->seq);
 719
 720        return state_mask;
 721}
 722
 723static struct psi_group *iterate_groups(struct task_struct *task, void **iter)
 724{
 725#ifdef CONFIG_CGROUPS
 726        struct cgroup *cgroup = NULL;
 727
 728        if (!*iter)
 729                cgroup = task->cgroups->dfl_cgrp;
 730        else if (*iter == &psi_system)
 731                return NULL;
 732        else
 733                cgroup = cgroup_parent(*iter);
 734
 735        if (cgroup && cgroup_parent(cgroup)) {
 736                *iter = cgroup;
 737                return cgroup_psi(cgroup);
 738        }
 739#else
 740        if (*iter)
 741                return NULL;
 742#endif
 743        *iter = &psi_system;
 744        return &psi_system;
 745}
 746
 747void psi_task_change(struct task_struct *task, int clear, int set)
 748{
 749        int cpu = task_cpu(task);
 750        struct psi_group *group;
 751        bool wake_clock = true;
 752        void *iter = NULL;
 753
 754        if (!task->pid)
 755                return;
 756
 757        if (((task->psi_flags & set) ||
 758             (task->psi_flags & clear) != clear) &&
 759            !psi_bug) {
 760                printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
 761                                task->pid, task->comm, cpu,
 762                                task->psi_flags, clear, set);
 763                psi_bug = 1;
 764        }
 765
 766        task->psi_flags &= ~clear;
 767        task->psi_flags |= set;
 768
 769        /*
 770         * Periodic aggregation shuts off if there is a period of no
 771         * task changes, so we wake it back up if necessary. However,
 772         * don't do this if the task change is the aggregation worker
 773         * itself going to sleep, or we'll ping-pong forever.
 774         */
 775        if (unlikely((clear & TSK_RUNNING) &&
 776                     (task->flags & PF_WQ_WORKER) &&
 777                     wq_worker_last_func(task) == psi_avgs_work))
 778                wake_clock = false;
 779
 780        while ((group = iterate_groups(task, &iter))) {
 781                u32 state_mask = psi_group_change(group, cpu, clear, set);
 782
 783                if (state_mask & group->poll_states)
 784                        psi_schedule_poll_work(group, 1);
 785
 786                if (wake_clock && !delayed_work_pending(&group->avgs_work))
 787                        schedule_delayed_work(&group->avgs_work, PSI_FREQ);
 788        }
 789}
 790
 791void psi_memstall_tick(struct task_struct *task, int cpu)
 792{
 793        struct psi_group *group;
 794        void *iter = NULL;
 795
 796        while ((group = iterate_groups(task, &iter))) {
 797                struct psi_group_cpu *groupc;
 798
 799                groupc = per_cpu_ptr(group->pcpu, cpu);
 800                write_seqcount_begin(&groupc->seq);
 801                record_times(groupc, cpu, true);
 802                write_seqcount_end(&groupc->seq);
 803        }
 804}
 805
 806/**
 807 * psi_memstall_enter - mark the beginning of a memory stall section
 808 * @flags: flags to handle nested sections
 809 *
 810 * Marks the calling task as being stalled due to a lack of memory,
 811 * such as waiting for a refault or performing reclaim.
 812 */
 813void psi_memstall_enter(unsigned long *flags)
 814{
 815        struct rq_flags rf;
 816        struct rq *rq;
 817
 818        if (static_branch_likely(&psi_disabled))
 819                return;
 820
 821        *flags = current->flags & PF_MEMSTALL;
 822        if (*flags)
 823                return;
 824        /*
 825         * PF_MEMSTALL setting & accounting needs to be atomic wrt
 826         * changes to the task's scheduling state, otherwise we can
 827         * race with CPU migration.
 828         */
 829        rq = this_rq_lock_irq(&rf);
 830
 831        current->flags |= PF_MEMSTALL;
 832        psi_task_change(current, 0, TSK_MEMSTALL);
 833
 834        rq_unlock_irq(rq, &rf);
 835}
 836
 837/**
 838 * psi_memstall_leave - mark the end of an memory stall section
 839 * @flags: flags to handle nested memdelay sections
 840 *
 841 * Marks the calling task as no longer stalled due to lack of memory.
 842 */
 843void psi_memstall_leave(unsigned long *flags)
 844{
 845        struct rq_flags rf;
 846        struct rq *rq;
 847
 848        if (static_branch_likely(&psi_disabled))
 849                return;
 850
 851        if (*flags)
 852                return;
 853        /*
 854         * PF_MEMSTALL clearing & accounting needs to be atomic wrt
 855         * changes to the task's scheduling state, otherwise we could
 856         * race with CPU migration.
 857         */
 858        rq = this_rq_lock_irq(&rf);
 859
 860        current->flags &= ~PF_MEMSTALL;
 861        psi_task_change(current, TSK_MEMSTALL, 0);
 862
 863        rq_unlock_irq(rq, &rf);
 864}
 865
 866#ifdef CONFIG_CGROUPS
 867int psi_cgroup_alloc(struct cgroup *cgroup)
 868{
 869        if (static_branch_likely(&psi_disabled))
 870                return 0;
 871
 872        cgroup->psi.pcpu = alloc_percpu(struct psi_group_cpu);
 873        if (!cgroup->psi.pcpu)
 874                return -ENOMEM;
 875        group_init(&cgroup->psi);
 876        return 0;
 877}
 878
 879void psi_cgroup_free(struct cgroup *cgroup)
 880{
 881        if (static_branch_likely(&psi_disabled))
 882                return;
 883
 884        cancel_delayed_work_sync(&cgroup->psi.avgs_work);
 885        free_percpu(cgroup->psi.pcpu);
 886        /* All triggers must be removed by now */
 887        WARN_ONCE(cgroup->psi.poll_states, "psi: trigger leak\n");
 888}
 889
 890/**
 891 * cgroup_move_task - move task to a different cgroup
 892 * @task: the task
 893 * @to: the target css_set
 894 *
 895 * Move task to a new cgroup and safely migrate its associated stall
 896 * state between the different groups.
 897 *
 898 * This function acquires the task's rq lock to lock out concurrent
 899 * changes to the task's scheduling state and - in case the task is
 900 * running - concurrent changes to its stall state.
 901 */
 902void cgroup_move_task(struct task_struct *task, struct css_set *to)
 903{
 904        unsigned int task_flags = 0;
 905        struct rq_flags rf;
 906        struct rq *rq;
 907
 908        if (static_branch_likely(&psi_disabled)) {
 909                /*
 910                 * Lame to do this here, but the scheduler cannot be locked
 911                 * from the outside, so we move cgroups from inside sched/.
 912                 */
 913                rcu_assign_pointer(task->cgroups, to);
 914                return;
 915        }
 916
 917        rq = task_rq_lock(task, &rf);
 918
 919        if (task_on_rq_queued(task))
 920                task_flags = TSK_RUNNING;
 921        else if (task->in_iowait)
 922                task_flags = TSK_IOWAIT;
 923
 924        if (task->flags & PF_MEMSTALL)
 925                task_flags |= TSK_MEMSTALL;
 926
 927        if (task_flags)
 928                psi_task_change(task, task_flags, 0);
 929
 930        /* See comment above */
 931        rcu_assign_pointer(task->cgroups, to);
 932
 933        if (task_flags)
 934                psi_task_change(task, 0, task_flags);
 935
 936        task_rq_unlock(rq, task, &rf);
 937}
 938#endif /* CONFIG_CGROUPS */
 939
 940int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
 941{
 942        int full;
 943        u64 now;
 944
 945        if (static_branch_likely(&psi_disabled))
 946                return -EOPNOTSUPP;
 947
 948        /* Update averages before reporting them */
 949        mutex_lock(&group->avgs_lock);
 950        now = sched_clock();
 951        collect_percpu_times(group, PSI_AVGS, NULL);
 952        if (now >= group->avg_next_update)
 953                group->avg_next_update = update_averages(group, now);
 954        mutex_unlock(&group->avgs_lock);
 955
 956        for (full = 0; full < 2 - (res == PSI_CPU); full++) {
 957                unsigned long avg[3];
 958                u64 total;
 959                int w;
 960
 961                for (w = 0; w < 3; w++)
 962                        avg[w] = group->avg[res * 2 + full][w];
 963                total = div_u64(group->total[PSI_AVGS][res * 2 + full],
 964                                NSEC_PER_USEC);
 965
 966                seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
 967                           full ? "full" : "some",
 968                           LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
 969                           LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
 970                           LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
 971                           total);
 972        }
 973
 974        return 0;
 975}
 976
 977static int psi_io_show(struct seq_file *m, void *v)
 978{
 979        return psi_show(m, &psi_system, PSI_IO);
 980}
 981
 982static int psi_memory_show(struct seq_file *m, void *v)
 983{
 984        return psi_show(m, &psi_system, PSI_MEM);
 985}
 986
 987static int psi_cpu_show(struct seq_file *m, void *v)
 988{
 989        return psi_show(m, &psi_system, PSI_CPU);
 990}
 991
 992static int psi_io_open(struct inode *inode, struct file *file)
 993{
 994        return single_open(file, psi_io_show, NULL);
 995}
 996
 997static int psi_memory_open(struct inode *inode, struct file *file)
 998{
 999        return single_open(file, psi_memory_show, NULL);
1000}
1001
1002static int psi_cpu_open(struct inode *inode, struct file *file)
1003{
1004        return single_open(file, psi_cpu_show, NULL);
1005}
1006
1007struct psi_trigger *psi_trigger_create(struct psi_group *group,
1008                        char *buf, size_t nbytes, enum psi_res res)
1009{
1010        struct psi_trigger *t;
1011        enum psi_states state;
1012        u32 threshold_us;
1013        u32 window_us;
1014
1015        if (static_branch_likely(&psi_disabled))
1016                return ERR_PTR(-EOPNOTSUPP);
1017
1018        if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2)
1019                state = PSI_IO_SOME + res * 2;
1020        else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2)
1021                state = PSI_IO_FULL + res * 2;
1022        else
1023                return ERR_PTR(-EINVAL);
1024
1025        if (state >= PSI_NONIDLE)
1026                return ERR_PTR(-EINVAL);
1027
1028        if (window_us < WINDOW_MIN_US ||
1029                window_us > WINDOW_MAX_US)
1030                return ERR_PTR(-EINVAL);
1031
1032        /* Check threshold */
1033        if (threshold_us == 0 || threshold_us > window_us)
1034                return ERR_PTR(-EINVAL);
1035
1036        t = kmalloc(sizeof(*t), GFP_KERNEL);
1037        if (!t)
1038                return ERR_PTR(-ENOMEM);
1039
1040        t->group = group;
1041        t->state = state;
1042        t->threshold = threshold_us * NSEC_PER_USEC;
1043        t->win.size = window_us * NSEC_PER_USEC;
1044        window_reset(&t->win, 0, 0, 0);
1045
1046        t->event = 0;
1047        t->last_event_time = 0;
1048        init_waitqueue_head(&t->event_wait);
1049        kref_init(&t->refcount);
1050
1051        mutex_lock(&group->trigger_lock);
1052
1053        if (!rcu_access_pointer(group->poll_kworker)) {
1054                struct sched_param param = {
1055                        .sched_priority = 1,
1056                };
1057                struct kthread_worker *kworker;
1058
1059                kworker = kthread_create_worker(0, "psimon");
1060                if (IS_ERR(kworker)) {
1061                        kfree(t);
1062                        mutex_unlock(&group->trigger_lock);
1063                        return ERR_CAST(kworker);
1064                }
1065                sched_setscheduler_nocheck(kworker->task, SCHED_FIFO, &param);
1066                kthread_init_delayed_work(&group->poll_work,
1067                                psi_poll_work);
1068                rcu_assign_pointer(group->poll_kworker, kworker);
1069        }
1070
1071        list_add(&t->node, &group->triggers);
1072        group->poll_min_period = min(group->poll_min_period,
1073                div_u64(t->win.size, UPDATES_PER_WINDOW));
1074        group->nr_triggers[t->state]++;
1075        group->poll_states |= (1 << t->state);
1076
1077        mutex_unlock(&group->trigger_lock);
1078
1079        return t;
1080}
1081
1082static void psi_trigger_destroy(struct kref *ref)
1083{
1084        struct psi_trigger *t = container_of(ref, struct psi_trigger, refcount);
1085        struct psi_group *group = t->group;
1086        struct kthread_worker *kworker_to_destroy = NULL;
1087
1088        if (static_branch_likely(&psi_disabled))
1089                return;
1090
1091        /*
1092         * Wakeup waiters to stop polling. Can happen if cgroup is deleted
1093         * from under a polling process.
1094         */
1095        wake_up_interruptible(&t->event_wait);
1096
1097        mutex_lock(&group->trigger_lock);
1098
1099        if (!list_empty(&t->node)) {
1100                struct psi_trigger *tmp;
1101                u64 period = ULLONG_MAX;
1102
1103                list_del(&t->node);
1104                group->nr_triggers[t->state]--;
1105                if (!group->nr_triggers[t->state])
1106                        group->poll_states &= ~(1 << t->state);
1107                /* reset min update period for the remaining triggers */
1108                list_for_each_entry(tmp, &group->triggers, node)
1109                        period = min(period, div_u64(tmp->win.size,
1110                                        UPDATES_PER_WINDOW));
1111                group->poll_min_period = period;
1112                /* Destroy poll_kworker when the last trigger is destroyed */
1113                if (group->poll_states == 0) {
1114                        group->polling_until = 0;
1115                        kworker_to_destroy = rcu_dereference_protected(
1116                                        group->poll_kworker,
1117                                        lockdep_is_held(&group->trigger_lock));
1118                        rcu_assign_pointer(group->poll_kworker, NULL);
1119                }
1120        }
1121
1122        mutex_unlock(&group->trigger_lock);
1123
1124        /*
1125         * Wait for both *trigger_ptr from psi_trigger_replace and
1126         * poll_kworker RCUs to complete their read-side critical sections
1127         * before destroying the trigger and optionally the poll_kworker
1128         */
1129        synchronize_rcu();
1130        /*
1131         * Destroy the kworker after releasing trigger_lock to prevent a
1132         * deadlock while waiting for psi_poll_work to acquire trigger_lock
1133         */
1134        if (kworker_to_destroy) {
1135                kthread_cancel_delayed_work_sync(&group->poll_work);
1136                kthread_destroy_worker(kworker_to_destroy);
1137        }
1138        kfree(t);
1139}
1140
1141void psi_trigger_replace(void **trigger_ptr, struct psi_trigger *new)
1142{
1143        struct psi_trigger *old = *trigger_ptr;
1144
1145        if (static_branch_likely(&psi_disabled))
1146                return;
1147
1148        rcu_assign_pointer(*trigger_ptr, new);
1149        if (old)
1150                kref_put(&old->refcount, psi_trigger_destroy);
1151}
1152
1153__poll_t psi_trigger_poll(void **trigger_ptr,
1154                                struct file *file, poll_table *wait)
1155{
1156        __poll_t ret = DEFAULT_POLLMASK;
1157        struct psi_trigger *t;
1158
1159        if (static_branch_likely(&psi_disabled))
1160                return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1161
1162        rcu_read_lock();
1163
1164        t = rcu_dereference(*(void __rcu __force **)trigger_ptr);
1165        if (!t) {
1166                rcu_read_unlock();
1167                return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1168        }
1169        kref_get(&t->refcount);
1170
1171        rcu_read_unlock();
1172
1173        poll_wait(file, &t->event_wait, wait);
1174
1175        if (cmpxchg(&t->event, 1, 0) == 1)
1176                ret |= EPOLLPRI;
1177
1178        kref_put(&t->refcount, psi_trigger_destroy);
1179
1180        return ret;
1181}
1182
1183static ssize_t psi_write(struct file *file, const char __user *user_buf,
1184                         size_t nbytes, enum psi_res res)
1185{
1186        char buf[32];
1187        size_t buf_size;
1188        struct seq_file *seq;
1189        struct psi_trigger *new;
1190
1191        if (static_branch_likely(&psi_disabled))
1192                return -EOPNOTSUPP;
1193
1194        if (!nbytes)
1195                return -EINVAL;
1196
1197        buf_size = min(nbytes, sizeof(buf));
1198        if (copy_from_user(buf, user_buf, buf_size))
1199                return -EFAULT;
1200
1201        buf[buf_size - 1] = '\0';
1202
1203        new = psi_trigger_create(&psi_system, buf, nbytes, res);
1204        if (IS_ERR(new))
1205                return PTR_ERR(new);
1206
1207        seq = file->private_data;
1208        /* Take seq->lock to protect seq->private from concurrent writes */
1209        mutex_lock(&seq->lock);
1210        psi_trigger_replace(&seq->private, new);
1211        mutex_unlock(&seq->lock);
1212
1213        return nbytes;
1214}
1215
1216static ssize_t psi_io_write(struct file *file, const char __user *user_buf,
1217                            size_t nbytes, loff_t *ppos)
1218{
1219        return psi_write(file, user_buf, nbytes, PSI_IO);
1220}
1221
1222static ssize_t psi_memory_write(struct file *file, const char __user *user_buf,
1223                                size_t nbytes, loff_t *ppos)
1224{
1225        return psi_write(file, user_buf, nbytes, PSI_MEM);
1226}
1227
1228static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf,
1229                             size_t nbytes, loff_t *ppos)
1230{
1231        return psi_write(file, user_buf, nbytes, PSI_CPU);
1232}
1233
1234static __poll_t psi_fop_poll(struct file *file, poll_table *wait)
1235{
1236        struct seq_file *seq = file->private_data;
1237
1238        return psi_trigger_poll(&seq->private, file, wait);
1239}
1240
1241static int psi_fop_release(struct inode *inode, struct file *file)
1242{
1243        struct seq_file *seq = file->private_data;
1244
1245        psi_trigger_replace(&seq->private, NULL);
1246        return single_release(inode, file);
1247}
1248
1249static const struct file_operations psi_io_fops = {
1250        .open           = psi_io_open,
1251        .read           = seq_read,
1252        .llseek         = seq_lseek,
1253        .write          = psi_io_write,
1254        .poll           = psi_fop_poll,
1255        .release        = psi_fop_release,
1256};
1257
1258static const struct file_operations psi_memory_fops = {
1259        .open           = psi_memory_open,
1260        .read           = seq_read,
1261        .llseek         = seq_lseek,
1262        .write          = psi_memory_write,
1263        .poll           = psi_fop_poll,
1264        .release        = psi_fop_release,
1265};
1266
1267static const struct file_operations psi_cpu_fops = {
1268        .open           = psi_cpu_open,
1269        .read           = seq_read,
1270        .llseek         = seq_lseek,
1271        .write          = psi_cpu_write,
1272        .poll           = psi_fop_poll,
1273        .release        = psi_fop_release,
1274};
1275
1276static int __init psi_proc_init(void)
1277{
1278        if (psi_enable) {
1279                proc_mkdir("pressure", NULL);
1280                proc_create("pressure/io", 0, NULL, &psi_io_fops);
1281                proc_create("pressure/memory", 0, NULL, &psi_memory_fops);
1282                proc_create("pressure/cpu", 0, NULL, &psi_cpu_fops);
1283        }
1284        return 0;
1285}
1286module_init(psi_proc_init);
1287