linux/mm/readahead.c
<<
>>
Prefs
   1/*
   2 * mm/readahead.c - address_space-level file readahead.
   3 *
   4 * Copyright (C) 2002, Linus Torvalds
   5 *
   6 * 09Apr2002    Andrew Morton
   7 *              Initial version.
   8 */
   9
  10#include <linux/kernel.h>
  11#include <linux/dax.h>
  12#include <linux/gfp.h>
  13#include <linux/export.h>
  14#include <linux/blkdev.h>
  15#include <linux/backing-dev.h>
  16#include <linux/task_io_accounting_ops.h>
  17#include <linux/pagevec.h>
  18#include <linux/pagemap.h>
  19#include <linux/syscalls.h>
  20#include <linux/file.h>
  21#include <linux/mm_inline.h>
  22#include <linux/blk-cgroup.h>
  23#include <linux/fadvise.h>
  24
  25#include "internal.h"
  26
  27/*
  28 * Initialise a struct file's readahead state.  Assumes that the caller has
  29 * memset *ra to zero.
  30 */
  31void
  32file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
  33{
  34        ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
  35        ra->prev_pos = -1;
  36}
  37EXPORT_SYMBOL_GPL(file_ra_state_init);
  38
  39/*
  40 * see if a page needs releasing upon read_cache_pages() failure
  41 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
  42 *   before calling, such as the NFS fs marking pages that are cached locally
  43 *   on disk, thus we need to give the fs a chance to clean up in the event of
  44 *   an error
  45 */
  46static void read_cache_pages_invalidate_page(struct address_space *mapping,
  47                                             struct page *page)
  48{
  49        if (page_has_private(page)) {
  50                if (!trylock_page(page))
  51                        BUG();
  52                page->mapping = mapping;
  53                do_invalidatepage(page, 0, PAGE_SIZE);
  54                page->mapping = NULL;
  55                unlock_page(page);
  56        }
  57        put_page(page);
  58}
  59
  60/*
  61 * release a list of pages, invalidating them first if need be
  62 */
  63static void read_cache_pages_invalidate_pages(struct address_space *mapping,
  64                                              struct list_head *pages)
  65{
  66        struct page *victim;
  67
  68        while (!list_empty(pages)) {
  69                victim = lru_to_page(pages);
  70                list_del(&victim->lru);
  71                read_cache_pages_invalidate_page(mapping, victim);
  72        }
  73}
  74
  75/**
  76 * read_cache_pages - populate an address space with some pages & start reads against them
  77 * @mapping: the address_space
  78 * @pages: The address of a list_head which contains the target pages.  These
  79 *   pages have their ->index populated and are otherwise uninitialised.
  80 * @filler: callback routine for filling a single page.
  81 * @data: private data for the callback routine.
  82 *
  83 * Hides the details of the LRU cache etc from the filesystems.
  84 */
  85int read_cache_pages(struct address_space *mapping, struct list_head *pages,
  86                        int (*filler)(void *, struct page *), void *data)
  87{
  88        struct page *page;
  89        int ret = 0;
  90
  91        while (!list_empty(pages)) {
  92                page = lru_to_page(pages);
  93                list_del(&page->lru);
  94                if (add_to_page_cache_lru(page, mapping, page->index,
  95                                readahead_gfp_mask(mapping))) {
  96                        read_cache_pages_invalidate_page(mapping, page);
  97                        continue;
  98                }
  99                put_page(page);
 100
 101                ret = filler(data, page);
 102                if (unlikely(ret)) {
 103                        read_cache_pages_invalidate_pages(mapping, pages);
 104                        break;
 105                }
 106                task_io_account_read(PAGE_SIZE);
 107        }
 108        return ret;
 109}
 110
 111EXPORT_SYMBOL(read_cache_pages);
 112
 113static int read_pages(struct address_space *mapping, struct file *filp,
 114                struct list_head *pages, unsigned int nr_pages, gfp_t gfp)
 115{
 116        struct blk_plug plug;
 117        unsigned page_idx;
 118        int ret;
 119
 120        blk_start_plug(&plug);
 121
 122        if (mapping->a_ops->readpages) {
 123                ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
 124                /* Clean up the remaining pages */
 125                put_pages_list(pages);
 126                goto out;
 127        }
 128
 129        for (page_idx = 0; page_idx < nr_pages; page_idx++) {
 130                struct page *page = lru_to_page(pages);
 131                list_del(&page->lru);
 132                if (!add_to_page_cache_lru(page, mapping, page->index, gfp))
 133                        mapping->a_ops->readpage(filp, page);
 134                put_page(page);
 135        }
 136        ret = 0;
 137
 138out:
 139        blk_finish_plug(&plug);
 140
 141        return ret;
 142}
 143
 144/*
 145 * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates
 146 * the pages first, then submits them for I/O. This avoids the very bad
 147 * behaviour which would occur if page allocations are causing VM writeback.
 148 * We really don't want to intermingle reads and writes like that.
 149 *
 150 * Returns the number of pages requested, or the maximum amount of I/O allowed.
 151 */
 152unsigned int __do_page_cache_readahead(struct address_space *mapping,
 153                struct file *filp, pgoff_t offset, unsigned long nr_to_read,
 154                unsigned long lookahead_size)
 155{
 156        struct inode *inode = mapping->host;
 157        struct page *page;
 158        unsigned long end_index;        /* The last page we want to read */
 159        LIST_HEAD(page_pool);
 160        int page_idx;
 161        unsigned int nr_pages = 0;
 162        loff_t isize = i_size_read(inode);
 163        gfp_t gfp_mask = readahead_gfp_mask(mapping);
 164
 165        if (isize == 0)
 166                goto out;
 167
 168        end_index = ((isize - 1) >> PAGE_SHIFT);
 169
 170        /*
 171         * Preallocate as many pages as we will need.
 172         */
 173        for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
 174                pgoff_t page_offset = offset + page_idx;
 175
 176                if (page_offset > end_index)
 177                        break;
 178
 179                page = xa_load(&mapping->i_pages, page_offset);
 180                if (page && !xa_is_value(page)) {
 181                        /*
 182                         * Page already present?  Kick off the current batch of
 183                         * contiguous pages before continuing with the next
 184                         * batch.
 185                         */
 186                        if (nr_pages)
 187                                read_pages(mapping, filp, &page_pool, nr_pages,
 188                                                gfp_mask);
 189                        nr_pages = 0;
 190                        continue;
 191                }
 192
 193                page = __page_cache_alloc(gfp_mask);
 194                if (!page)
 195                        break;
 196                page->index = page_offset;
 197                list_add(&page->lru, &page_pool);
 198                if (page_idx == nr_to_read - lookahead_size)
 199                        SetPageReadahead(page);
 200                nr_pages++;
 201        }
 202
 203        /*
 204         * Now start the IO.  We ignore I/O errors - if the page is not
 205         * uptodate then the caller will launch readpage again, and
 206         * will then handle the error.
 207         */
 208        if (nr_pages)
 209                read_pages(mapping, filp, &page_pool, nr_pages, gfp_mask);
 210        BUG_ON(!list_empty(&page_pool));
 211out:
 212        return nr_pages;
 213}
 214
 215/*
 216 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
 217 * memory at once.
 218 */
 219int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
 220                               pgoff_t offset, unsigned long nr_to_read)
 221{
 222        struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
 223        struct file_ra_state *ra = &filp->f_ra;
 224        unsigned long max_pages;
 225
 226        if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
 227                return -EINVAL;
 228
 229        /*
 230         * If the request exceeds the readahead window, allow the read to
 231         * be up to the optimal hardware IO size
 232         */
 233        max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
 234        nr_to_read = min(nr_to_read, max_pages);
 235        while (nr_to_read) {
 236                unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
 237
 238                if (this_chunk > nr_to_read)
 239                        this_chunk = nr_to_read;
 240                __do_page_cache_readahead(mapping, filp, offset, this_chunk, 0);
 241
 242                offset += this_chunk;
 243                nr_to_read -= this_chunk;
 244        }
 245        return 0;
 246}
 247
 248/*
 249 * Set the initial window size, round to next power of 2 and square
 250 * for small size, x 4 for medium, and x 2 for large
 251 * for 128k (32 page) max ra
 252 * 1-8 page = 32k initial, > 8 page = 128k initial
 253 */
 254static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
 255{
 256        unsigned long newsize = roundup_pow_of_two(size);
 257
 258        if (newsize <= max / 32)
 259                newsize = newsize * 4;
 260        else if (newsize <= max / 4)
 261                newsize = newsize * 2;
 262        else
 263                newsize = max;
 264
 265        return newsize;
 266}
 267
 268/*
 269 *  Get the previous window size, ramp it up, and
 270 *  return it as the new window size.
 271 */
 272static unsigned long get_next_ra_size(struct file_ra_state *ra,
 273                                                unsigned long max)
 274{
 275        unsigned long cur = ra->size;
 276        unsigned long newsize;
 277
 278        if (cur < max / 16)
 279                newsize = 4 * cur;
 280        else
 281                newsize = 2 * cur;
 282
 283        return min(newsize, max);
 284}
 285
 286/*
 287 * On-demand readahead design.
 288 *
 289 * The fields in struct file_ra_state represent the most-recently-executed
 290 * readahead attempt:
 291 *
 292 *                        |<----- async_size ---------|
 293 *     |------------------- size -------------------->|
 294 *     |==================#===========================|
 295 *     ^start             ^page marked with PG_readahead
 296 *
 297 * To overlap application thinking time and disk I/O time, we do
 298 * `readahead pipelining': Do not wait until the application consumed all
 299 * readahead pages and stalled on the missing page at readahead_index;
 300 * Instead, submit an asynchronous readahead I/O as soon as there are
 301 * only async_size pages left in the readahead window. Normally async_size
 302 * will be equal to size, for maximum pipelining.
 303 *
 304 * In interleaved sequential reads, concurrent streams on the same fd can
 305 * be invalidating each other's readahead state. So we flag the new readahead
 306 * page at (start+size-async_size) with PG_readahead, and use it as readahead
 307 * indicator. The flag won't be set on already cached pages, to avoid the
 308 * readahead-for-nothing fuss, saving pointless page cache lookups.
 309 *
 310 * prev_pos tracks the last visited byte in the _previous_ read request.
 311 * It should be maintained by the caller, and will be used for detecting
 312 * small random reads. Note that the readahead algorithm checks loosely
 313 * for sequential patterns. Hence interleaved reads might be served as
 314 * sequential ones.
 315 *
 316 * There is a special-case: if the first page which the application tries to
 317 * read happens to be the first page of the file, it is assumed that a linear
 318 * read is about to happen and the window is immediately set to the initial size
 319 * based on I/O request size and the max_readahead.
 320 *
 321 * The code ramps up the readahead size aggressively at first, but slow down as
 322 * it approaches max_readhead.
 323 */
 324
 325/*
 326 * Count contiguously cached pages from @offset-1 to @offset-@max,
 327 * this count is a conservative estimation of
 328 *      - length of the sequential read sequence, or
 329 *      - thrashing threshold in memory tight systems
 330 */
 331static pgoff_t count_history_pages(struct address_space *mapping,
 332                                   pgoff_t offset, unsigned long max)
 333{
 334        pgoff_t head;
 335
 336        rcu_read_lock();
 337        head = page_cache_prev_miss(mapping, offset - 1, max);
 338        rcu_read_unlock();
 339
 340        return offset - 1 - head;
 341}
 342
 343/*
 344 * page cache context based read-ahead
 345 */
 346static int try_context_readahead(struct address_space *mapping,
 347                                 struct file_ra_state *ra,
 348                                 pgoff_t offset,
 349                                 unsigned long req_size,
 350                                 unsigned long max)
 351{
 352        pgoff_t size;
 353
 354        size = count_history_pages(mapping, offset, max);
 355
 356        /*
 357         * not enough history pages:
 358         * it could be a random read
 359         */
 360        if (size <= req_size)
 361                return 0;
 362
 363        /*
 364         * starts from beginning of file:
 365         * it is a strong indication of long-run stream (or whole-file-read)
 366         */
 367        if (size >= offset)
 368                size *= 2;
 369
 370        ra->start = offset;
 371        ra->size = min(size + req_size, max);
 372        ra->async_size = 1;
 373
 374        return 1;
 375}
 376
 377/*
 378 * A minimal readahead algorithm for trivial sequential/random reads.
 379 */
 380static unsigned long
 381ondemand_readahead(struct address_space *mapping,
 382                   struct file_ra_state *ra, struct file *filp,
 383                   bool hit_readahead_marker, pgoff_t offset,
 384                   unsigned long req_size)
 385{
 386        struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
 387        unsigned long max_pages = ra->ra_pages;
 388        unsigned long add_pages;
 389        pgoff_t prev_offset;
 390
 391        /*
 392         * If the request exceeds the readahead window, allow the read to
 393         * be up to the optimal hardware IO size
 394         */
 395        if (req_size > max_pages && bdi->io_pages > max_pages)
 396                max_pages = min(req_size, bdi->io_pages);
 397
 398        /*
 399         * start of file
 400         */
 401        if (!offset)
 402                goto initial_readahead;
 403
 404        /*
 405         * It's the expected callback offset, assume sequential access.
 406         * Ramp up sizes, and push forward the readahead window.
 407         */
 408        if ((offset == (ra->start + ra->size - ra->async_size) ||
 409             offset == (ra->start + ra->size))) {
 410                ra->start += ra->size;
 411                ra->size = get_next_ra_size(ra, max_pages);
 412                ra->async_size = ra->size;
 413                goto readit;
 414        }
 415
 416        /*
 417         * Hit a marked page without valid readahead state.
 418         * E.g. interleaved reads.
 419         * Query the pagecache for async_size, which normally equals to
 420         * readahead size. Ramp it up and use it as the new readahead size.
 421         */
 422        if (hit_readahead_marker) {
 423                pgoff_t start;
 424
 425                rcu_read_lock();
 426                start = page_cache_next_miss(mapping, offset + 1, max_pages);
 427                rcu_read_unlock();
 428
 429                if (!start || start - offset > max_pages)
 430                        return 0;
 431
 432                ra->start = start;
 433                ra->size = start - offset;      /* old async_size */
 434                ra->size += req_size;
 435                ra->size = get_next_ra_size(ra, max_pages);
 436                ra->async_size = ra->size;
 437                goto readit;
 438        }
 439
 440        /*
 441         * oversize read
 442         */
 443        if (req_size > max_pages)
 444                goto initial_readahead;
 445
 446        /*
 447         * sequential cache miss
 448         * trivial case: (offset - prev_offset) == 1
 449         * unaligned reads: (offset - prev_offset) == 0
 450         */
 451        prev_offset = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
 452        if (offset - prev_offset <= 1UL)
 453                goto initial_readahead;
 454
 455        /*
 456         * Query the page cache and look for the traces(cached history pages)
 457         * that a sequential stream would leave behind.
 458         */
 459        if (try_context_readahead(mapping, ra, offset, req_size, max_pages))
 460                goto readit;
 461
 462        /*
 463         * standalone, small random read
 464         * Read as is, and do not pollute the readahead state.
 465         */
 466        return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
 467
 468initial_readahead:
 469        ra->start = offset;
 470        ra->size = get_init_ra_size(req_size, max_pages);
 471        ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
 472
 473readit:
 474        /*
 475         * Will this read hit the readahead marker made by itself?
 476         * If so, trigger the readahead marker hit now, and merge
 477         * the resulted next readahead window into the current one.
 478         * Take care of maximum IO pages as above.
 479         */
 480        if (offset == ra->start && ra->size == ra->async_size) {
 481                add_pages = get_next_ra_size(ra, max_pages);
 482                if (ra->size + add_pages <= max_pages) {
 483                        ra->async_size = add_pages;
 484                        ra->size += add_pages;
 485                } else {
 486                        ra->size = max_pages;
 487                        ra->async_size = max_pages >> 1;
 488                }
 489        }
 490
 491        return ra_submit(ra, mapping, filp);
 492}
 493
 494/**
 495 * page_cache_sync_readahead - generic file readahead
 496 * @mapping: address_space which holds the pagecache and I/O vectors
 497 * @ra: file_ra_state which holds the readahead state
 498 * @filp: passed on to ->readpage() and ->readpages()
 499 * @offset: start offset into @mapping, in pagecache page-sized units
 500 * @req_size: hint: total size of the read which the caller is performing in
 501 *            pagecache pages
 502 *
 503 * page_cache_sync_readahead() should be called when a cache miss happened:
 504 * it will submit the read.  The readahead logic may decide to piggyback more
 505 * pages onto the read request if access patterns suggest it will improve
 506 * performance.
 507 */
 508void page_cache_sync_readahead(struct address_space *mapping,
 509                               struct file_ra_state *ra, struct file *filp,
 510                               pgoff_t offset, unsigned long req_size)
 511{
 512        /* no read-ahead */
 513        if (!ra->ra_pages)
 514                return;
 515
 516        if (blk_cgroup_congested())
 517                return;
 518
 519        /* be dumb */
 520        if (filp && (filp->f_mode & FMODE_RANDOM)) {
 521                force_page_cache_readahead(mapping, filp, offset, req_size);
 522                return;
 523        }
 524
 525        /* do read-ahead */
 526        ondemand_readahead(mapping, ra, filp, false, offset, req_size);
 527}
 528EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
 529
 530/**
 531 * page_cache_async_readahead - file readahead for marked pages
 532 * @mapping: address_space which holds the pagecache and I/O vectors
 533 * @ra: file_ra_state which holds the readahead state
 534 * @filp: passed on to ->readpage() and ->readpages()
 535 * @page: the page at @offset which has the PG_readahead flag set
 536 * @offset: start offset into @mapping, in pagecache page-sized units
 537 * @req_size: hint: total size of the read which the caller is performing in
 538 *            pagecache pages
 539 *
 540 * page_cache_async_readahead() should be called when a page is used which
 541 * has the PG_readahead flag; this is a marker to suggest that the application
 542 * has used up enough of the readahead window that we should start pulling in
 543 * more pages.
 544 */
 545void
 546page_cache_async_readahead(struct address_space *mapping,
 547                           struct file_ra_state *ra, struct file *filp,
 548                           struct page *page, pgoff_t offset,
 549                           unsigned long req_size)
 550{
 551        /* no read-ahead */
 552        if (!ra->ra_pages)
 553                return;
 554
 555        /*
 556         * Same bit is used for PG_readahead and PG_reclaim.
 557         */
 558        if (PageWriteback(page))
 559                return;
 560
 561        ClearPageReadahead(page);
 562
 563        /*
 564         * Defer asynchronous read-ahead on IO congestion.
 565         */
 566        if (inode_read_congested(mapping->host))
 567                return;
 568
 569        if (blk_cgroup_congested())
 570                return;
 571
 572        /* do read-ahead */
 573        ondemand_readahead(mapping, ra, filp, true, offset, req_size);
 574}
 575EXPORT_SYMBOL_GPL(page_cache_async_readahead);
 576
 577ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
 578{
 579        ssize_t ret;
 580        struct fd f;
 581
 582        ret = -EBADF;
 583        f = fdget(fd);
 584        if (!f.file || !(f.file->f_mode & FMODE_READ))
 585                goto out;
 586
 587        /*
 588         * The readahead() syscall is intended to run only on files
 589         * that can execute readahead. If readahead is not possible
 590         * on this file, then we must return -EINVAL.
 591         */
 592        ret = -EINVAL;
 593        if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
 594            !S_ISREG(file_inode(f.file)->i_mode))
 595                goto out;
 596
 597        ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
 598out:
 599        fdput(f);
 600        return ret;
 601}
 602
 603SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
 604{
 605        return ksys_readahead(fd, offset, count);
 606}
 607