linux/net/ipv4/tcp_bbr.c
<<
>>
Prefs
   1/* Bottleneck Bandwidth and RTT (BBR) congestion control
   2 *
   3 * BBR congestion control computes the sending rate based on the delivery
   4 * rate (throughput) estimated from ACKs. In a nutshell:
   5 *
   6 *   On each ACK, update our model of the network path:
   7 *      bottleneck_bandwidth = windowed_max(delivered / elapsed, 10 round trips)
   8 *      min_rtt = windowed_min(rtt, 10 seconds)
   9 *   pacing_rate = pacing_gain * bottleneck_bandwidth
  10 *   cwnd = max(cwnd_gain * bottleneck_bandwidth * min_rtt, 4)
  11 *
  12 * The core algorithm does not react directly to packet losses or delays,
  13 * although BBR may adjust the size of next send per ACK when loss is
  14 * observed, or adjust the sending rate if it estimates there is a
  15 * traffic policer, in order to keep the drop rate reasonable.
  16 *
  17 * Here is a state transition diagram for BBR:
  18 *
  19 *             |
  20 *             V
  21 *    +---> STARTUP  ----+
  22 *    |        |         |
  23 *    |        V         |
  24 *    |      DRAIN   ----+
  25 *    |        |         |
  26 *    |        V         |
  27 *    +---> PROBE_BW ----+
  28 *    |      ^    |      |
  29 *    |      |    |      |
  30 *    |      +----+      |
  31 *    |                  |
  32 *    +---- PROBE_RTT <--+
  33 *
  34 * A BBR flow starts in STARTUP, and ramps up its sending rate quickly.
  35 * When it estimates the pipe is full, it enters DRAIN to drain the queue.
  36 * In steady state a BBR flow only uses PROBE_BW and PROBE_RTT.
  37 * A long-lived BBR flow spends the vast majority of its time remaining
  38 * (repeatedly) in PROBE_BW, fully probing and utilizing the pipe's bandwidth
  39 * in a fair manner, with a small, bounded queue. *If* a flow has been
  40 * continuously sending for the entire min_rtt window, and hasn't seen an RTT
  41 * sample that matches or decreases its min_rtt estimate for 10 seconds, then
  42 * it briefly enters PROBE_RTT to cut inflight to a minimum value to re-probe
  43 * the path's two-way propagation delay (min_rtt). When exiting PROBE_RTT, if
  44 * we estimated that we reached the full bw of the pipe then we enter PROBE_BW;
  45 * otherwise we enter STARTUP to try to fill the pipe.
  46 *
  47 * BBR is described in detail in:
  48 *   "BBR: Congestion-Based Congestion Control",
  49 *   Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh,
  50 *   Van Jacobson. ACM Queue, Vol. 14 No. 5, September-October 2016.
  51 *
  52 * There is a public e-mail list for discussing BBR development and testing:
  53 *   https://groups.google.com/forum/#!forum/bbr-dev
  54 *
  55 * NOTE: BBR might be used with the fq qdisc ("man tc-fq") with pacing enabled,
  56 * otherwise TCP stack falls back to an internal pacing using one high
  57 * resolution timer per TCP socket and may use more resources.
  58 */
  59#include <linux/module.h>
  60#include <net/tcp.h>
  61#include <linux/inet_diag.h>
  62#include <linux/inet.h>
  63#include <linux/random.h>
  64#include <linux/win_minmax.h>
  65
  66/* Scale factor for rate in pkt/uSec unit to avoid truncation in bandwidth
  67 * estimation. The rate unit ~= (1500 bytes / 1 usec / 2^24) ~= 715 bps.
  68 * This handles bandwidths from 0.06pps (715bps) to 256Mpps (3Tbps) in a u32.
  69 * Since the minimum window is >=4 packets, the lower bound isn't
  70 * an issue. The upper bound isn't an issue with existing technologies.
  71 */
  72#define BW_SCALE 24
  73#define BW_UNIT (1 << BW_SCALE)
  74
  75#define BBR_SCALE 8     /* scaling factor for fractions in BBR (e.g. gains) */
  76#define BBR_UNIT (1 << BBR_SCALE)
  77
  78/* BBR has the following modes for deciding how fast to send: */
  79enum bbr_mode {
  80        BBR_STARTUP,    /* ramp up sending rate rapidly to fill pipe */
  81        BBR_DRAIN,      /* drain any queue created during startup */
  82        BBR_PROBE_BW,   /* discover, share bw: pace around estimated bw */
  83        BBR_PROBE_RTT,  /* cut inflight to min to probe min_rtt */
  84};
  85
  86/* BBR congestion control block */
  87struct bbr {
  88        u32     min_rtt_us;             /* min RTT in min_rtt_win_sec window */
  89        u32     min_rtt_stamp;          /* timestamp of min_rtt_us */
  90        u32     probe_rtt_done_stamp;   /* end time for BBR_PROBE_RTT mode */
  91        struct minmax bw;       /* Max recent delivery rate in pkts/uS << 24 */
  92        u32     rtt_cnt;            /* count of packet-timed rounds elapsed */
  93        u32     next_rtt_delivered; /* scb->tx.delivered at end of round */
  94        u64     cycle_mstamp;        /* time of this cycle phase start */
  95        u32     mode:3,              /* current bbr_mode in state machine */
  96                prev_ca_state:3,     /* CA state on previous ACK */
  97                packet_conservation:1,  /* use packet conservation? */
  98                round_start:1,       /* start of packet-timed tx->ack round? */
  99                idle_restart:1,      /* restarting after idle? */
 100                probe_rtt_round_done:1,  /* a BBR_PROBE_RTT round at 4 pkts? */
 101                unused:13,
 102                lt_is_sampling:1,    /* taking long-term ("LT") samples now? */
 103                lt_rtt_cnt:7,        /* round trips in long-term interval */
 104                lt_use_bw:1;         /* use lt_bw as our bw estimate? */
 105        u32     lt_bw;               /* LT est delivery rate in pkts/uS << 24 */
 106        u32     lt_last_delivered;   /* LT intvl start: tp->delivered */
 107        u32     lt_last_stamp;       /* LT intvl start: tp->delivered_mstamp */
 108        u32     lt_last_lost;        /* LT intvl start: tp->lost */
 109        u32     pacing_gain:10, /* current gain for setting pacing rate */
 110                cwnd_gain:10,   /* current gain for setting cwnd */
 111                full_bw_reached:1,   /* reached full bw in Startup? */
 112                full_bw_cnt:2,  /* number of rounds without large bw gains */
 113                cycle_idx:3,    /* current index in pacing_gain cycle array */
 114                has_seen_rtt:1, /* have we seen an RTT sample yet? */
 115                unused_b:5;
 116        u32     prior_cwnd;     /* prior cwnd upon entering loss recovery */
 117        u32     full_bw;        /* recent bw, to estimate if pipe is full */
 118};
 119
 120#define CYCLE_LEN       8       /* number of phases in a pacing gain cycle */
 121
 122/* Window length of bw filter (in rounds): */
 123static const int bbr_bw_rtts = CYCLE_LEN + 2;
 124/* Window length of min_rtt filter (in sec): */
 125static const u32 bbr_min_rtt_win_sec = 10;
 126/* Minimum time (in ms) spent at bbr_cwnd_min_target in BBR_PROBE_RTT mode: */
 127static const u32 bbr_probe_rtt_mode_ms = 200;
 128/* Skip TSO below the following bandwidth (bits/sec): */
 129static const int bbr_min_tso_rate = 1200000;
 130
 131/* We use a high_gain value of 2/ln(2) because it's the smallest pacing gain
 132 * that will allow a smoothly increasing pacing rate that will double each RTT
 133 * and send the same number of packets per RTT that an un-paced, slow-starting
 134 * Reno or CUBIC flow would:
 135 */
 136static const int bbr_high_gain  = BBR_UNIT * 2885 / 1000 + 1;
 137/* The pacing gain of 1/high_gain in BBR_DRAIN is calculated to typically drain
 138 * the queue created in BBR_STARTUP in a single round:
 139 */
 140static const int bbr_drain_gain = BBR_UNIT * 1000 / 2885;
 141/* The gain for deriving steady-state cwnd tolerates delayed/stretched ACKs: */
 142static const int bbr_cwnd_gain  = BBR_UNIT * 2;
 143/* The pacing_gain values for the PROBE_BW gain cycle, to discover/share bw: */
 144static const int bbr_pacing_gain[] = {
 145        BBR_UNIT * 5 / 4,       /* probe for more available bw */
 146        BBR_UNIT * 3 / 4,       /* drain queue and/or yield bw to other flows */
 147        BBR_UNIT, BBR_UNIT, BBR_UNIT,   /* cruise at 1.0*bw to utilize pipe, */
 148        BBR_UNIT, BBR_UNIT, BBR_UNIT    /* without creating excess queue... */
 149};
 150/* Randomize the starting gain cycling phase over N phases: */
 151static const u32 bbr_cycle_rand = 7;
 152
 153/* Try to keep at least this many packets in flight, if things go smoothly. For
 154 * smooth functioning, a sliding window protocol ACKing every other packet
 155 * needs at least 4 packets in flight:
 156 */
 157static const u32 bbr_cwnd_min_target = 4;
 158
 159/* To estimate if BBR_STARTUP mode (i.e. high_gain) has filled pipe... */
 160/* If bw has increased significantly (1.25x), there may be more bw available: */
 161static const u32 bbr_full_bw_thresh = BBR_UNIT * 5 / 4;
 162/* But after 3 rounds w/o significant bw growth, estimate pipe is full: */
 163static const u32 bbr_full_bw_cnt = 3;
 164
 165/* "long-term" ("LT") bandwidth estimator parameters... */
 166/* The minimum number of rounds in an LT bw sampling interval: */
 167static const u32 bbr_lt_intvl_min_rtts = 4;
 168/* If lost/delivered ratio > 20%, interval is "lossy" and we may be policed: */
 169static const u32 bbr_lt_loss_thresh = 50;
 170/* If 2 intervals have a bw ratio <= 1/8, their bw is "consistent": */
 171static const u32 bbr_lt_bw_ratio = BBR_UNIT / 8;
 172/* If 2 intervals have a bw diff <= 4 Kbit/sec their bw is "consistent": */
 173static const u32 bbr_lt_bw_diff = 4000 / 8;
 174/* If we estimate we're policed, use lt_bw for this many round trips: */
 175static const u32 bbr_lt_bw_max_rtts = 48;
 176
 177static void bbr_check_probe_rtt_done(struct sock *sk);
 178
 179/* Do we estimate that STARTUP filled the pipe? */
 180static bool bbr_full_bw_reached(const struct sock *sk)
 181{
 182        const struct bbr *bbr = inet_csk_ca(sk);
 183
 184        return bbr->full_bw_reached;
 185}
 186
 187/* Return the windowed max recent bandwidth sample, in pkts/uS << BW_SCALE. */
 188static u32 bbr_max_bw(const struct sock *sk)
 189{
 190        struct bbr *bbr = inet_csk_ca(sk);
 191
 192        return minmax_get(&bbr->bw);
 193}
 194
 195/* Return the estimated bandwidth of the path, in pkts/uS << BW_SCALE. */
 196static u32 bbr_bw(const struct sock *sk)
 197{
 198        struct bbr *bbr = inet_csk_ca(sk);
 199
 200        return bbr->lt_use_bw ? bbr->lt_bw : bbr_max_bw(sk);
 201}
 202
 203/* Return rate in bytes per second, optionally with a gain.
 204 * The order here is chosen carefully to avoid overflow of u64. This should
 205 * work for input rates of up to 2.9Tbit/sec and gain of 2.89x.
 206 */
 207static u64 bbr_rate_bytes_per_sec(struct sock *sk, u64 rate, int gain)
 208{
 209        rate *= tcp_mss_to_mtu(sk, tcp_sk(sk)->mss_cache);
 210        rate *= gain;
 211        rate >>= BBR_SCALE;
 212        rate *= USEC_PER_SEC;
 213        return rate >> BW_SCALE;
 214}
 215
 216/* Convert a BBR bw and gain factor to a pacing rate in bytes per second. */
 217static u32 bbr_bw_to_pacing_rate(struct sock *sk, u32 bw, int gain)
 218{
 219        u64 rate = bw;
 220
 221        rate = bbr_rate_bytes_per_sec(sk, rate, gain);
 222        rate = min_t(u64, rate, sk->sk_max_pacing_rate);
 223        return rate;
 224}
 225
 226/* Initialize pacing rate to: high_gain * init_cwnd / RTT. */
 227static void bbr_init_pacing_rate_from_rtt(struct sock *sk)
 228{
 229        struct tcp_sock *tp = tcp_sk(sk);
 230        struct bbr *bbr = inet_csk_ca(sk);
 231        u64 bw;
 232        u32 rtt_us;
 233
 234        if (tp->srtt_us) {              /* any RTT sample yet? */
 235                rtt_us = max(tp->srtt_us >> 3, 1U);
 236                bbr->has_seen_rtt = 1;
 237        } else {                         /* no RTT sample yet */
 238                rtt_us = USEC_PER_MSEC;  /* use nominal default RTT */
 239        }
 240        bw = (u64)tp->snd_cwnd * BW_UNIT;
 241        do_div(bw, rtt_us);
 242        sk->sk_pacing_rate = bbr_bw_to_pacing_rate(sk, bw, bbr_high_gain);
 243}
 244
 245/* Pace using current bw estimate and a gain factor. In order to help drive the
 246 * network toward lower queues while maintaining high utilization and low
 247 * latency, the average pacing rate aims to be slightly (~1%) lower than the
 248 * estimated bandwidth. This is an important aspect of the design. In this
 249 * implementation this slightly lower pacing rate is achieved implicitly by not
 250 * including link-layer headers in the packet size used for the pacing rate.
 251 */
 252static void bbr_set_pacing_rate(struct sock *sk, u32 bw, int gain)
 253{
 254        struct tcp_sock *tp = tcp_sk(sk);
 255        struct bbr *bbr = inet_csk_ca(sk);
 256        u32 rate = bbr_bw_to_pacing_rate(sk, bw, gain);
 257
 258        if (unlikely(!bbr->has_seen_rtt && tp->srtt_us))
 259                bbr_init_pacing_rate_from_rtt(sk);
 260        if (bbr_full_bw_reached(sk) || rate > sk->sk_pacing_rate)
 261                sk->sk_pacing_rate = rate;
 262}
 263
 264/* override sysctl_tcp_min_tso_segs */
 265static u32 bbr_min_tso_segs(struct sock *sk)
 266{
 267        return sk->sk_pacing_rate < (bbr_min_tso_rate >> 3) ? 1 : 2;
 268}
 269
 270static u32 bbr_tso_segs_goal(struct sock *sk)
 271{
 272        struct tcp_sock *tp = tcp_sk(sk);
 273        u32 segs, bytes;
 274
 275        /* Sort of tcp_tso_autosize() but ignoring
 276         * driver provided sk_gso_max_size.
 277         */
 278        bytes = min_t(u32, sk->sk_pacing_rate >> sk->sk_pacing_shift,
 279                      GSO_MAX_SIZE - 1 - MAX_TCP_HEADER);
 280        segs = max_t(u32, bytes / tp->mss_cache, bbr_min_tso_segs(sk));
 281
 282        return min(segs, 0x7FU);
 283}
 284
 285/* Save "last known good" cwnd so we can restore it after losses or PROBE_RTT */
 286static void bbr_save_cwnd(struct sock *sk)
 287{
 288        struct tcp_sock *tp = tcp_sk(sk);
 289        struct bbr *bbr = inet_csk_ca(sk);
 290
 291        if (bbr->prev_ca_state < TCP_CA_Recovery && bbr->mode != BBR_PROBE_RTT)
 292                bbr->prior_cwnd = tp->snd_cwnd;  /* this cwnd is good enough */
 293        else  /* loss recovery or BBR_PROBE_RTT have temporarily cut cwnd */
 294                bbr->prior_cwnd = max(bbr->prior_cwnd, tp->snd_cwnd);
 295}
 296
 297static void bbr_cwnd_event(struct sock *sk, enum tcp_ca_event event)
 298{
 299        struct tcp_sock *tp = tcp_sk(sk);
 300        struct bbr *bbr = inet_csk_ca(sk);
 301
 302        if (event == CA_EVENT_TX_START && tp->app_limited) {
 303                bbr->idle_restart = 1;
 304                /* Avoid pointless buffer overflows: pace at est. bw if we don't
 305                 * need more speed (we're restarting from idle and app-limited).
 306                 */
 307                if (bbr->mode == BBR_PROBE_BW)
 308                        bbr_set_pacing_rate(sk, bbr_bw(sk), BBR_UNIT);
 309                else if (bbr->mode == BBR_PROBE_RTT)
 310                        bbr_check_probe_rtt_done(sk);
 311        }
 312}
 313
 314/* Calculate bdp based on min RTT and the estimated bottleneck bandwidth:
 315 *
 316 * bdp = bw * min_rtt * gain
 317 *
 318 * The key factor, gain, controls the amount of queue. While a small gain
 319 * builds a smaller queue, it becomes more vulnerable to noise in RTT
 320 * measurements (e.g., delayed ACKs or other ACK compression effects). This
 321 * noise may cause BBR to under-estimate the rate.
 322 */
 323static u32 bbr_bdp(struct sock *sk, u32 bw, int gain)
 324{
 325        struct bbr *bbr = inet_csk_ca(sk);
 326        u32 bdp;
 327        u64 w;
 328
 329        /* If we've never had a valid RTT sample, cap cwnd at the initial
 330         * default. This should only happen when the connection is not using TCP
 331         * timestamps and has retransmitted all of the SYN/SYNACK/data packets
 332         * ACKed so far. In this case, an RTO can cut cwnd to 1, in which
 333         * case we need to slow-start up toward something safe: TCP_INIT_CWND.
 334         */
 335        if (unlikely(bbr->min_rtt_us == ~0U))    /* no valid RTT samples yet? */
 336                return TCP_INIT_CWND;  /* be safe: cap at default initial cwnd*/
 337
 338        w = (u64)bw * bbr->min_rtt_us;
 339
 340        /* Apply a gain to the given value, then remove the BW_SCALE shift. */
 341        bdp = (((w * gain) >> BBR_SCALE) + BW_UNIT - 1) / BW_UNIT;
 342
 343        return bdp;
 344}
 345
 346/* To achieve full performance in high-speed paths, we budget enough cwnd to
 347 * fit full-sized skbs in-flight on both end hosts to fully utilize the path:
 348 *   - one skb in sending host Qdisc,
 349 *   - one skb in sending host TSO/GSO engine
 350 *   - one skb being received by receiver host LRO/GRO/delayed-ACK engine
 351 * Don't worry, at low rates (bbr_min_tso_rate) this won't bloat cwnd because
 352 * in such cases tso_segs_goal is 1. The minimum cwnd is 4 packets,
 353 * which allows 2 outstanding 2-packet sequences, to try to keep pipe
 354 * full even with ACK-every-other-packet delayed ACKs.
 355 */
 356static u32 bbr_quantization_budget(struct sock *sk, u32 cwnd)
 357{
 358        struct bbr *bbr = inet_csk_ca(sk);
 359
 360        /* Allow enough full-sized skbs in flight to utilize end systems. */
 361        cwnd += 3 * bbr_tso_segs_goal(sk);
 362
 363        /* Reduce delayed ACKs by rounding up cwnd to the next even number. */
 364        cwnd = (cwnd + 1) & ~1U;
 365
 366        /* Ensure gain cycling gets inflight above BDP even for small BDPs. */
 367        if (bbr->mode == BBR_PROBE_BW && bbr->cycle_idx == 0)
 368                cwnd += 2;
 369
 370        return cwnd;
 371}
 372
 373/* An optimization in BBR to reduce losses: On the first round of recovery, we
 374 * follow the packet conservation principle: send P packets per P packets acked.
 375 * After that, we slow-start and send at most 2*P packets per P packets acked.
 376 * After recovery finishes, or upon undo, we restore the cwnd we had when
 377 * recovery started (capped by the target cwnd based on estimated BDP).
 378 *
 379 * TODO(ycheng/ncardwell): implement a rate-based approach.
 380 */
 381static bool bbr_set_cwnd_to_recover_or_restore(
 382        struct sock *sk, const struct rate_sample *rs, u32 acked, u32 *new_cwnd)
 383{
 384        struct tcp_sock *tp = tcp_sk(sk);
 385        struct bbr *bbr = inet_csk_ca(sk);
 386        u8 prev_state = bbr->prev_ca_state, state = inet_csk(sk)->icsk_ca_state;
 387        u32 cwnd = tp->snd_cwnd;
 388
 389        /* An ACK for P pkts should release at most 2*P packets. We do this
 390         * in two steps. First, here we deduct the number of lost packets.
 391         * Then, in bbr_set_cwnd() we slow start up toward the target cwnd.
 392         */
 393        if (rs->losses > 0)
 394                cwnd = max_t(s32, cwnd - rs->losses, 1);
 395
 396        if (state == TCP_CA_Recovery && prev_state != TCP_CA_Recovery) {
 397                /* Starting 1st round of Recovery, so do packet conservation. */
 398                bbr->packet_conservation = 1;
 399                bbr->next_rtt_delivered = tp->delivered;  /* start round now */
 400                /* Cut unused cwnd from app behavior, TSQ, or TSO deferral: */
 401                cwnd = tcp_packets_in_flight(tp) + acked;
 402        } else if (prev_state >= TCP_CA_Recovery && state < TCP_CA_Recovery) {
 403                /* Exiting loss recovery; restore cwnd saved before recovery. */
 404                cwnd = max(cwnd, bbr->prior_cwnd);
 405                bbr->packet_conservation = 0;
 406        }
 407        bbr->prev_ca_state = state;
 408
 409        if (bbr->packet_conservation) {
 410                *new_cwnd = max(cwnd, tcp_packets_in_flight(tp) + acked);
 411                return true;    /* yes, using packet conservation */
 412        }
 413        *new_cwnd = cwnd;
 414        return false;
 415}
 416
 417/* Find inflight based on min RTT and the estimated bottleneck bandwidth. */
 418static u32 bbr_inflight(struct sock *sk, u32 bw, int gain)
 419{
 420        u32 inflight;
 421
 422        inflight = bbr_bdp(sk, bw, gain);
 423        inflight = bbr_quantization_budget(sk, inflight);
 424
 425        return inflight;
 426}
 427
 428/* Slow-start up toward target cwnd (if bw estimate is growing, or packet loss
 429 * has drawn us down below target), or snap down to target if we're above it.
 430 */
 431static void bbr_set_cwnd(struct sock *sk, const struct rate_sample *rs,
 432                         u32 acked, u32 bw, int gain)
 433{
 434        struct tcp_sock *tp = tcp_sk(sk);
 435        struct bbr *bbr = inet_csk_ca(sk);
 436        u32 cwnd = tp->snd_cwnd, target_cwnd = 0;
 437
 438        if (!acked)
 439                goto done;  /* no packet fully ACKed; just apply caps */
 440
 441        if (bbr_set_cwnd_to_recover_or_restore(sk, rs, acked, &cwnd))
 442                goto done;
 443
 444        /* If we're below target cwnd, slow start cwnd toward target cwnd. */
 445        target_cwnd = bbr_bdp(sk, bw, gain);
 446        target_cwnd = bbr_quantization_budget(sk, target_cwnd);
 447        if (bbr_full_bw_reached(sk))  /* only cut cwnd if we filled the pipe */
 448                cwnd = min(cwnd + acked, target_cwnd);
 449        else if (cwnd < target_cwnd || tp->delivered < TCP_INIT_CWND)
 450                cwnd = cwnd + acked;
 451        cwnd = max(cwnd, bbr_cwnd_min_target);
 452
 453done:
 454        tp->snd_cwnd = min(cwnd, tp->snd_cwnd_clamp);   /* apply global cap */
 455        if (bbr->mode == BBR_PROBE_RTT)  /* drain queue, refresh min_rtt */
 456                tp->snd_cwnd = min(tp->snd_cwnd, bbr_cwnd_min_target);
 457}
 458
 459/* End cycle phase if it's time and/or we hit the phase's in-flight target. */
 460static bool bbr_is_next_cycle_phase(struct sock *sk,
 461                                    const struct rate_sample *rs)
 462{
 463        struct tcp_sock *tp = tcp_sk(sk);
 464        struct bbr *bbr = inet_csk_ca(sk);
 465        bool is_full_length =
 466                tcp_stamp_us_delta(tp->delivered_mstamp, bbr->cycle_mstamp) >
 467                bbr->min_rtt_us;
 468        u32 inflight, bw;
 469
 470        /* The pacing_gain of 1.0 paces at the estimated bw to try to fully
 471         * use the pipe without increasing the queue.
 472         */
 473        if (bbr->pacing_gain == BBR_UNIT)
 474                return is_full_length;          /* just use wall clock time */
 475
 476        inflight = rs->prior_in_flight;  /* what was in-flight before ACK? */
 477        bw = bbr_max_bw(sk);
 478
 479        /* A pacing_gain > 1.0 probes for bw by trying to raise inflight to at
 480         * least pacing_gain*BDP; this may take more than min_rtt if min_rtt is
 481         * small (e.g. on a LAN). We do not persist if packets are lost, since
 482         * a path with small buffers may not hold that much.
 483         */
 484        if (bbr->pacing_gain > BBR_UNIT)
 485                return is_full_length &&
 486                        (rs->losses ||  /* perhaps pacing_gain*BDP won't fit */
 487                         inflight >= bbr_inflight(sk, bw, bbr->pacing_gain));
 488
 489        /* A pacing_gain < 1.0 tries to drain extra queue we added if bw
 490         * probing didn't find more bw. If inflight falls to match BDP then we
 491         * estimate queue is drained; persisting would underutilize the pipe.
 492         */
 493        return is_full_length ||
 494                inflight <= bbr_inflight(sk, bw, BBR_UNIT);
 495}
 496
 497static void bbr_advance_cycle_phase(struct sock *sk)
 498{
 499        struct tcp_sock *tp = tcp_sk(sk);
 500        struct bbr *bbr = inet_csk_ca(sk);
 501
 502        bbr->cycle_idx = (bbr->cycle_idx + 1) & (CYCLE_LEN - 1);
 503        bbr->cycle_mstamp = tp->delivered_mstamp;
 504}
 505
 506/* Gain cycling: cycle pacing gain to converge to fair share of available bw. */
 507static void bbr_update_cycle_phase(struct sock *sk,
 508                                   const struct rate_sample *rs)
 509{
 510        struct bbr *bbr = inet_csk_ca(sk);
 511
 512        if (bbr->mode == BBR_PROBE_BW && bbr_is_next_cycle_phase(sk, rs))
 513                bbr_advance_cycle_phase(sk);
 514}
 515
 516static void bbr_reset_startup_mode(struct sock *sk)
 517{
 518        struct bbr *bbr = inet_csk_ca(sk);
 519
 520        bbr->mode = BBR_STARTUP;
 521}
 522
 523static void bbr_reset_probe_bw_mode(struct sock *sk)
 524{
 525        struct bbr *bbr = inet_csk_ca(sk);
 526
 527        bbr->mode = BBR_PROBE_BW;
 528        bbr->cycle_idx = CYCLE_LEN - 1 - prandom_u32_max(bbr_cycle_rand);
 529        bbr_advance_cycle_phase(sk);    /* flip to next phase of gain cycle */
 530}
 531
 532static void bbr_reset_mode(struct sock *sk)
 533{
 534        if (!bbr_full_bw_reached(sk))
 535                bbr_reset_startup_mode(sk);
 536        else
 537                bbr_reset_probe_bw_mode(sk);
 538}
 539
 540/* Start a new long-term sampling interval. */
 541static void bbr_reset_lt_bw_sampling_interval(struct sock *sk)
 542{
 543        struct tcp_sock *tp = tcp_sk(sk);
 544        struct bbr *bbr = inet_csk_ca(sk);
 545
 546        bbr->lt_last_stamp = div_u64(tp->delivered_mstamp, USEC_PER_MSEC);
 547        bbr->lt_last_delivered = tp->delivered;
 548        bbr->lt_last_lost = tp->lost;
 549        bbr->lt_rtt_cnt = 0;
 550}
 551
 552/* Completely reset long-term bandwidth sampling. */
 553static void bbr_reset_lt_bw_sampling(struct sock *sk)
 554{
 555        struct bbr *bbr = inet_csk_ca(sk);
 556
 557        bbr->lt_bw = 0;
 558        bbr->lt_use_bw = 0;
 559        bbr->lt_is_sampling = false;
 560        bbr_reset_lt_bw_sampling_interval(sk);
 561}
 562
 563/* Long-term bw sampling interval is done. Estimate whether we're policed. */
 564static void bbr_lt_bw_interval_done(struct sock *sk, u32 bw)
 565{
 566        struct bbr *bbr = inet_csk_ca(sk);
 567        u32 diff;
 568
 569        if (bbr->lt_bw) {  /* do we have bw from a previous interval? */
 570                /* Is new bw close to the lt_bw from the previous interval? */
 571                diff = abs(bw - bbr->lt_bw);
 572                if ((diff * BBR_UNIT <= bbr_lt_bw_ratio * bbr->lt_bw) ||
 573                    (bbr_rate_bytes_per_sec(sk, diff, BBR_UNIT) <=
 574                     bbr_lt_bw_diff)) {
 575                        /* All criteria are met; estimate we're policed. */
 576                        bbr->lt_bw = (bw + bbr->lt_bw) >> 1;  /* avg 2 intvls */
 577                        bbr->lt_use_bw = 1;
 578                        bbr->pacing_gain = BBR_UNIT;  /* try to avoid drops */
 579                        bbr->lt_rtt_cnt = 0;
 580                        return;
 581                }
 582        }
 583        bbr->lt_bw = bw;
 584        bbr_reset_lt_bw_sampling_interval(sk);
 585}
 586
 587/* Token-bucket traffic policers are common (see "An Internet-Wide Analysis of
 588 * Traffic Policing", SIGCOMM 2016). BBR detects token-bucket policers and
 589 * explicitly models their policed rate, to reduce unnecessary losses. We
 590 * estimate that we're policed if we see 2 consecutive sampling intervals with
 591 * consistent throughput and high packet loss. If we think we're being policed,
 592 * set lt_bw to the "long-term" average delivery rate from those 2 intervals.
 593 */
 594static void bbr_lt_bw_sampling(struct sock *sk, const struct rate_sample *rs)
 595{
 596        struct tcp_sock *tp = tcp_sk(sk);
 597        struct bbr *bbr = inet_csk_ca(sk);
 598        u32 lost, delivered;
 599        u64 bw;
 600        u32 t;
 601
 602        if (bbr->lt_use_bw) {   /* already using long-term rate, lt_bw? */
 603                if (bbr->mode == BBR_PROBE_BW && bbr->round_start &&
 604                    ++bbr->lt_rtt_cnt >= bbr_lt_bw_max_rtts) {
 605                        bbr_reset_lt_bw_sampling(sk);    /* stop using lt_bw */
 606                        bbr_reset_probe_bw_mode(sk);  /* restart gain cycling */
 607                }
 608                return;
 609        }
 610
 611        /* Wait for the first loss before sampling, to let the policer exhaust
 612         * its tokens and estimate the steady-state rate allowed by the policer.
 613         * Starting samples earlier includes bursts that over-estimate the bw.
 614         */
 615        if (!bbr->lt_is_sampling) {
 616                if (!rs->losses)
 617                        return;
 618                bbr_reset_lt_bw_sampling_interval(sk);
 619                bbr->lt_is_sampling = true;
 620        }
 621
 622        /* To avoid underestimates, reset sampling if we run out of data. */
 623        if (rs->is_app_limited) {
 624                bbr_reset_lt_bw_sampling(sk);
 625                return;
 626        }
 627
 628        if (bbr->round_start)
 629                bbr->lt_rtt_cnt++;      /* count round trips in this interval */
 630        if (bbr->lt_rtt_cnt < bbr_lt_intvl_min_rtts)
 631                return;         /* sampling interval needs to be longer */
 632        if (bbr->lt_rtt_cnt > 4 * bbr_lt_intvl_min_rtts) {
 633                bbr_reset_lt_bw_sampling(sk);  /* interval is too long */
 634                return;
 635        }
 636
 637        /* End sampling interval when a packet is lost, so we estimate the
 638         * policer tokens were exhausted. Stopping the sampling before the
 639         * tokens are exhausted under-estimates the policed rate.
 640         */
 641        if (!rs->losses)
 642                return;
 643
 644        /* Calculate packets lost and delivered in sampling interval. */
 645        lost = tp->lost - bbr->lt_last_lost;
 646        delivered = tp->delivered - bbr->lt_last_delivered;
 647        /* Is loss rate (lost/delivered) >= lt_loss_thresh? If not, wait. */
 648        if (!delivered || (lost << BBR_SCALE) < bbr_lt_loss_thresh * delivered)
 649                return;
 650
 651        /* Find average delivery rate in this sampling interval. */
 652        t = div_u64(tp->delivered_mstamp, USEC_PER_MSEC) - bbr->lt_last_stamp;
 653        if ((s32)t < 1)
 654                return;         /* interval is less than one ms, so wait */
 655        /* Check if can multiply without overflow */
 656        if (t >= ~0U / USEC_PER_MSEC) {
 657                bbr_reset_lt_bw_sampling(sk);  /* interval too long; reset */
 658                return;
 659        }
 660        t *= USEC_PER_MSEC;
 661        bw = (u64)delivered * BW_UNIT;
 662        do_div(bw, t);
 663        bbr_lt_bw_interval_done(sk, bw);
 664}
 665
 666/* Estimate the bandwidth based on how fast packets are delivered */
 667static void bbr_update_bw(struct sock *sk, const struct rate_sample *rs)
 668{
 669        struct tcp_sock *tp = tcp_sk(sk);
 670        struct bbr *bbr = inet_csk_ca(sk);
 671        u64 bw;
 672
 673        bbr->round_start = 0;
 674        if (rs->delivered < 0 || rs->interval_us <= 0)
 675                return; /* Not a valid observation */
 676
 677        /* See if we've reached the next RTT */
 678        if (!before(rs->prior_delivered, bbr->next_rtt_delivered)) {
 679                bbr->next_rtt_delivered = tp->delivered;
 680                bbr->rtt_cnt++;
 681                bbr->round_start = 1;
 682                bbr->packet_conservation = 0;
 683        }
 684
 685        bbr_lt_bw_sampling(sk, rs);
 686
 687        /* Divide delivered by the interval to find a (lower bound) bottleneck
 688         * bandwidth sample. Delivered is in packets and interval_us in uS and
 689         * ratio will be <<1 for most connections. So delivered is first scaled.
 690         */
 691        bw = (u64)rs->delivered * BW_UNIT;
 692        do_div(bw, rs->interval_us);
 693
 694        /* If this sample is application-limited, it is likely to have a very
 695         * low delivered count that represents application behavior rather than
 696         * the available network rate. Such a sample could drag down estimated
 697         * bw, causing needless slow-down. Thus, to continue to send at the
 698         * last measured network rate, we filter out app-limited samples unless
 699         * they describe the path bw at least as well as our bw model.
 700         *
 701         * So the goal during app-limited phase is to proceed with the best
 702         * network rate no matter how long. We automatically leave this
 703         * phase when app writes faster than the network can deliver :)
 704         */
 705        if (!rs->is_app_limited || bw >= bbr_max_bw(sk)) {
 706                /* Incorporate new sample into our max bw filter. */
 707                minmax_running_max(&bbr->bw, bbr_bw_rtts, bbr->rtt_cnt, bw);
 708        }
 709}
 710
 711/* Estimate when the pipe is full, using the change in delivery rate: BBR
 712 * estimates that STARTUP filled the pipe if the estimated bw hasn't changed by
 713 * at least bbr_full_bw_thresh (25%) after bbr_full_bw_cnt (3) non-app-limited
 714 * rounds. Why 3 rounds: 1: rwin autotuning grows the rwin, 2: we fill the
 715 * higher rwin, 3: we get higher delivery rate samples. Or transient
 716 * cross-traffic or radio noise can go away. CUBIC Hystart shares a similar
 717 * design goal, but uses delay and inter-ACK spacing instead of bandwidth.
 718 */
 719static void bbr_check_full_bw_reached(struct sock *sk,
 720                                      const struct rate_sample *rs)
 721{
 722        struct bbr *bbr = inet_csk_ca(sk);
 723        u32 bw_thresh;
 724
 725        if (bbr_full_bw_reached(sk) || !bbr->round_start || rs->is_app_limited)
 726                return;
 727
 728        bw_thresh = (u64)bbr->full_bw * bbr_full_bw_thresh >> BBR_SCALE;
 729        if (bbr_max_bw(sk) >= bw_thresh) {
 730                bbr->full_bw = bbr_max_bw(sk);
 731                bbr->full_bw_cnt = 0;
 732                return;
 733        }
 734        ++bbr->full_bw_cnt;
 735        bbr->full_bw_reached = bbr->full_bw_cnt >= bbr_full_bw_cnt;
 736}
 737
 738/* If pipe is probably full, drain the queue and then enter steady-state. */
 739static void bbr_check_drain(struct sock *sk, const struct rate_sample *rs)
 740{
 741        struct bbr *bbr = inet_csk_ca(sk);
 742
 743        if (bbr->mode == BBR_STARTUP && bbr_full_bw_reached(sk)) {
 744                bbr->mode = BBR_DRAIN;  /* drain queue we created */
 745                tcp_sk(sk)->snd_ssthresh =
 746                                bbr_inflight(sk, bbr_max_bw(sk), BBR_UNIT);
 747        }       /* fall through to check if in-flight is already small: */
 748        if (bbr->mode == BBR_DRAIN &&
 749            tcp_packets_in_flight(tcp_sk(sk)) <=
 750            bbr_inflight(sk, bbr_max_bw(sk), BBR_UNIT))
 751                bbr_reset_probe_bw_mode(sk);  /* we estimate queue is drained */
 752}
 753
 754static void bbr_check_probe_rtt_done(struct sock *sk)
 755{
 756        struct tcp_sock *tp = tcp_sk(sk);
 757        struct bbr *bbr = inet_csk_ca(sk);
 758
 759        if (!(bbr->probe_rtt_done_stamp &&
 760              after(tcp_jiffies32, bbr->probe_rtt_done_stamp)))
 761                return;
 762
 763        bbr->min_rtt_stamp = tcp_jiffies32;  /* wait a while until PROBE_RTT */
 764        tp->snd_cwnd = max(tp->snd_cwnd, bbr->prior_cwnd);
 765        bbr_reset_mode(sk);
 766}
 767
 768/* The goal of PROBE_RTT mode is to have BBR flows cooperatively and
 769 * periodically drain the bottleneck queue, to converge to measure the true
 770 * min_rtt (unloaded propagation delay). This allows the flows to keep queues
 771 * small (reducing queuing delay and packet loss) and achieve fairness among
 772 * BBR flows.
 773 *
 774 * The min_rtt filter window is 10 seconds. When the min_rtt estimate expires,
 775 * we enter PROBE_RTT mode and cap the cwnd at bbr_cwnd_min_target=4 packets.
 776 * After at least bbr_probe_rtt_mode_ms=200ms and at least one packet-timed
 777 * round trip elapsed with that flight size <= 4, we leave PROBE_RTT mode and
 778 * re-enter the previous mode. BBR uses 200ms to approximately bound the
 779 * performance penalty of PROBE_RTT's cwnd capping to roughly 2% (200ms/10s).
 780 *
 781 * Note that flows need only pay 2% if they are busy sending over the last 10
 782 * seconds. Interactive applications (e.g., Web, RPCs, video chunks) often have
 783 * natural silences or low-rate periods within 10 seconds where the rate is low
 784 * enough for long enough to drain its queue in the bottleneck. We pick up
 785 * these min RTT measurements opportunistically with our min_rtt filter. :-)
 786 */
 787static void bbr_update_min_rtt(struct sock *sk, const struct rate_sample *rs)
 788{
 789        struct tcp_sock *tp = tcp_sk(sk);
 790        struct bbr *bbr = inet_csk_ca(sk);
 791        bool filter_expired;
 792
 793        /* Track min RTT seen in the min_rtt_win_sec filter window: */
 794        filter_expired = after(tcp_jiffies32,
 795                               bbr->min_rtt_stamp + bbr_min_rtt_win_sec * HZ);
 796        if (rs->rtt_us >= 0 &&
 797            (rs->rtt_us <= bbr->min_rtt_us ||
 798             (filter_expired && !rs->is_ack_delayed))) {
 799                bbr->min_rtt_us = rs->rtt_us;
 800                bbr->min_rtt_stamp = tcp_jiffies32;
 801        }
 802
 803        if (bbr_probe_rtt_mode_ms > 0 && filter_expired &&
 804            !bbr->idle_restart && bbr->mode != BBR_PROBE_RTT) {
 805                bbr->mode = BBR_PROBE_RTT;  /* dip, drain queue */
 806                bbr_save_cwnd(sk);  /* note cwnd so we can restore it */
 807                bbr->probe_rtt_done_stamp = 0;
 808        }
 809
 810        if (bbr->mode == BBR_PROBE_RTT) {
 811                /* Ignore low rate samples during this mode. */
 812                tp->app_limited =
 813                        (tp->delivered + tcp_packets_in_flight(tp)) ? : 1;
 814                /* Maintain min packets in flight for max(200 ms, 1 round). */
 815                if (!bbr->probe_rtt_done_stamp &&
 816                    tcp_packets_in_flight(tp) <= bbr_cwnd_min_target) {
 817                        bbr->probe_rtt_done_stamp = tcp_jiffies32 +
 818                                msecs_to_jiffies(bbr_probe_rtt_mode_ms);
 819                        bbr->probe_rtt_round_done = 0;
 820                        bbr->next_rtt_delivered = tp->delivered;
 821                } else if (bbr->probe_rtt_done_stamp) {
 822                        if (bbr->round_start)
 823                                bbr->probe_rtt_round_done = 1;
 824                        if (bbr->probe_rtt_round_done)
 825                                bbr_check_probe_rtt_done(sk);
 826                }
 827        }
 828        /* Restart after idle ends only once we process a new S/ACK for data */
 829        if (rs->delivered > 0)
 830                bbr->idle_restart = 0;
 831}
 832
 833static void bbr_update_gains(struct sock *sk)
 834{
 835        struct bbr *bbr = inet_csk_ca(sk);
 836
 837        switch (bbr->mode) {
 838        case BBR_STARTUP:
 839                bbr->pacing_gain = bbr_high_gain;
 840                bbr->cwnd_gain   = bbr_high_gain;
 841                break;
 842        case BBR_DRAIN:
 843                bbr->pacing_gain = bbr_drain_gain;      /* slow, to drain */
 844                bbr->cwnd_gain   = bbr_high_gain;       /* keep cwnd */
 845                break;
 846        case BBR_PROBE_BW:
 847                bbr->pacing_gain = (bbr->lt_use_bw ?
 848                                    BBR_UNIT :
 849                                    bbr_pacing_gain[bbr->cycle_idx]);
 850                bbr->cwnd_gain   = bbr_cwnd_gain;
 851                break;
 852        case BBR_PROBE_RTT:
 853                bbr->pacing_gain = BBR_UNIT;
 854                bbr->cwnd_gain   = BBR_UNIT;
 855                break;
 856        default:
 857                WARN_ONCE(1, "BBR bad mode: %u\n", bbr->mode);
 858                break;
 859        }
 860}
 861
 862static void bbr_update_model(struct sock *sk, const struct rate_sample *rs)
 863{
 864        bbr_update_bw(sk, rs);
 865        bbr_update_cycle_phase(sk, rs);
 866        bbr_check_full_bw_reached(sk, rs);
 867        bbr_check_drain(sk, rs);
 868        bbr_update_min_rtt(sk, rs);
 869        bbr_update_gains(sk);
 870}
 871
 872static void bbr_main(struct sock *sk, const struct rate_sample *rs)
 873{
 874        struct bbr *bbr = inet_csk_ca(sk);
 875        u32 bw;
 876
 877        bbr_update_model(sk, rs);
 878
 879        bw = bbr_bw(sk);
 880        bbr_set_pacing_rate(sk, bw, bbr->pacing_gain);
 881        bbr_set_cwnd(sk, rs, rs->acked_sacked, bw, bbr->cwnd_gain);
 882}
 883
 884static void bbr_init(struct sock *sk)
 885{
 886        struct tcp_sock *tp = tcp_sk(sk);
 887        struct bbr *bbr = inet_csk_ca(sk);
 888
 889        bbr->prior_cwnd = 0;
 890        tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
 891        bbr->rtt_cnt = 0;
 892        bbr->next_rtt_delivered = 0;
 893        bbr->prev_ca_state = TCP_CA_Open;
 894        bbr->packet_conservation = 0;
 895
 896        bbr->probe_rtt_done_stamp = 0;
 897        bbr->probe_rtt_round_done = 0;
 898        bbr->min_rtt_us = tcp_min_rtt(tp);
 899        bbr->min_rtt_stamp = tcp_jiffies32;
 900
 901        minmax_reset(&bbr->bw, bbr->rtt_cnt, 0);  /* init max bw to 0 */
 902
 903        bbr->has_seen_rtt = 0;
 904        bbr_init_pacing_rate_from_rtt(sk);
 905
 906        bbr->round_start = 0;
 907        bbr->idle_restart = 0;
 908        bbr->full_bw_reached = 0;
 909        bbr->full_bw = 0;
 910        bbr->full_bw_cnt = 0;
 911        bbr->cycle_mstamp = 0;
 912        bbr->cycle_idx = 0;
 913        bbr_reset_lt_bw_sampling(sk);
 914        bbr_reset_startup_mode(sk);
 915
 916        cmpxchg(&sk->sk_pacing_status, SK_PACING_NONE, SK_PACING_NEEDED);
 917}
 918
 919static u32 bbr_sndbuf_expand(struct sock *sk)
 920{
 921        /* Provision 3 * cwnd since BBR may slow-start even during recovery. */
 922        return 3;
 923}
 924
 925/* In theory BBR does not need to undo the cwnd since it does not
 926 * always reduce cwnd on losses (see bbr_main()). Keep it for now.
 927 */
 928static u32 bbr_undo_cwnd(struct sock *sk)
 929{
 930        struct bbr *bbr = inet_csk_ca(sk);
 931
 932        bbr->full_bw = 0;   /* spurious slow-down; reset full pipe detection */
 933        bbr->full_bw_cnt = 0;
 934        bbr_reset_lt_bw_sampling(sk);
 935        return tcp_sk(sk)->snd_cwnd;
 936}
 937
 938/* Entering loss recovery, so save cwnd for when we exit or undo recovery. */
 939static u32 bbr_ssthresh(struct sock *sk)
 940{
 941        bbr_save_cwnd(sk);
 942        return tcp_sk(sk)->snd_ssthresh;
 943}
 944
 945static size_t bbr_get_info(struct sock *sk, u32 ext, int *attr,
 946                           union tcp_cc_info *info)
 947{
 948        if (ext & (1 << (INET_DIAG_BBRINFO - 1)) ||
 949            ext & (1 << (INET_DIAG_VEGASINFO - 1))) {
 950                struct tcp_sock *tp = tcp_sk(sk);
 951                struct bbr *bbr = inet_csk_ca(sk);
 952                u64 bw = bbr_bw(sk);
 953
 954                bw = bw * tp->mss_cache * USEC_PER_SEC >> BW_SCALE;
 955                memset(&info->bbr, 0, sizeof(info->bbr));
 956                info->bbr.bbr_bw_lo             = (u32)bw;
 957                info->bbr.bbr_bw_hi             = (u32)(bw >> 32);
 958                info->bbr.bbr_min_rtt           = bbr->min_rtt_us;
 959                info->bbr.bbr_pacing_gain       = bbr->pacing_gain;
 960                info->bbr.bbr_cwnd_gain         = bbr->cwnd_gain;
 961                *attr = INET_DIAG_BBRINFO;
 962                return sizeof(info->bbr);
 963        }
 964        return 0;
 965}
 966
 967static void bbr_set_state(struct sock *sk, u8 new_state)
 968{
 969        struct bbr *bbr = inet_csk_ca(sk);
 970
 971        if (new_state == TCP_CA_Loss) {
 972                struct rate_sample rs = { .losses = 1 };
 973
 974                bbr->prev_ca_state = TCP_CA_Loss;
 975                bbr->full_bw = 0;
 976                bbr->round_start = 1;   /* treat RTO like end of a round */
 977                bbr_lt_bw_sampling(sk, &rs);
 978        }
 979}
 980
 981static struct tcp_congestion_ops tcp_bbr_cong_ops __read_mostly = {
 982        .flags          = TCP_CONG_NON_RESTRICTED,
 983        .name           = "bbr",
 984        .owner          = THIS_MODULE,
 985        .init           = bbr_init,
 986        .cong_control   = bbr_main,
 987        .sndbuf_expand  = bbr_sndbuf_expand,
 988        .undo_cwnd      = bbr_undo_cwnd,
 989        .cwnd_event     = bbr_cwnd_event,
 990        .ssthresh       = bbr_ssthresh,
 991        .min_tso_segs   = bbr_min_tso_segs,
 992        .get_info       = bbr_get_info,
 993        .set_state      = bbr_set_state,
 994};
 995
 996static int __init bbr_register(void)
 997{
 998        BUILD_BUG_ON(sizeof(struct bbr) > ICSK_CA_PRIV_SIZE);
 999        return tcp_register_congestion_control(&tcp_bbr_cong_ops);
1000}
1001
1002static void __exit bbr_unregister(void)
1003{
1004        tcp_unregister_congestion_control(&tcp_bbr_cong_ops);
1005}
1006
1007module_init(bbr_register);
1008module_exit(bbr_unregister);
1009
1010MODULE_AUTHOR("Van Jacobson <vanj@google.com>");
1011MODULE_AUTHOR("Neal Cardwell <ncardwell@google.com>");
1012MODULE_AUTHOR("Yuchung Cheng <ycheng@google.com>");
1013MODULE_AUTHOR("Soheil Hassas Yeganeh <soheil@google.com>");
1014MODULE_LICENSE("Dual BSD/GPL");
1015MODULE_DESCRIPTION("TCP BBR (Bottleneck Bandwidth and RTT)");
1016