linux/net/vmw_vsock/af_vsock.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * VMware vSockets Driver
   4 *
   5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
   6 */
   7
   8/* Implementation notes:
   9 *
  10 * - There are two kinds of sockets: those created by user action (such as
  11 * calling socket(2)) and those created by incoming connection request packets.
  12 *
  13 * - There are two "global" tables, one for bound sockets (sockets that have
  14 * specified an address that they are responsible for) and one for connected
  15 * sockets (sockets that have established a connection with another socket).
  16 * These tables are "global" in that all sockets on the system are placed
  17 * within them. - Note, though, that the bound table contains an extra entry
  18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
  19 * that list. The bound table is used solely for lookup of sockets when packets
  20 * are received and that's not necessary for SOCK_DGRAM sockets since we create
  21 * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
  22 * sockets out of the bound hash buckets will reduce the chance of collisions
  23 * when looking for SOCK_STREAM sockets and prevents us from having to check the
  24 * socket type in the hash table lookups.
  25 *
  26 * - Sockets created by user action will either be "client" sockets that
  27 * initiate a connection or "server" sockets that listen for connections; we do
  28 * not support simultaneous connects (two "client" sockets connecting).
  29 *
  30 * - "Server" sockets are referred to as listener sockets throughout this
  31 * implementation because they are in the TCP_LISTEN state.  When a
  32 * connection request is received (the second kind of socket mentioned above),
  33 * we create a new socket and refer to it as a pending socket.  These pending
  34 * sockets are placed on the pending connection list of the listener socket.
  35 * When future packets are received for the address the listener socket is
  36 * bound to, we check if the source of the packet is from one that has an
  37 * existing pending connection.  If it does, we process the packet for the
  38 * pending socket.  When that socket reaches the connected state, it is removed
  39 * from the listener socket's pending list and enqueued in the listener
  40 * socket's accept queue.  Callers of accept(2) will accept connected sockets
  41 * from the listener socket's accept queue.  If the socket cannot be accepted
  42 * for some reason then it is marked rejected.  Once the connection is
  43 * accepted, it is owned by the user process and the responsibility for cleanup
  44 * falls with that user process.
  45 *
  46 * - It is possible that these pending sockets will never reach the connected
  47 * state; in fact, we may never receive another packet after the connection
  48 * request.  Because of this, we must schedule a cleanup function to run in the
  49 * future, after some amount of time passes where a connection should have been
  50 * established.  This function ensures that the socket is off all lists so it
  51 * cannot be retrieved, then drops all references to the socket so it is cleaned
  52 * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
  53 * function will also cleanup rejected sockets, those that reach the connected
  54 * state but leave it before they have been accepted.
  55 *
  56 * - Lock ordering for pending or accept queue sockets is:
  57 *
  58 *     lock_sock(listener);
  59 *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
  60 *
  61 * Using explicit nested locking keeps lockdep happy since normally only one
  62 * lock of a given class may be taken at a time.
  63 *
  64 * - Sockets created by user action will be cleaned up when the user process
  65 * calls close(2), causing our release implementation to be called. Our release
  66 * implementation will perform some cleanup then drop the last reference so our
  67 * sk_destruct implementation is invoked.  Our sk_destruct implementation will
  68 * perform additional cleanup that's common for both types of sockets.
  69 *
  70 * - A socket's reference count is what ensures that the structure won't be
  71 * freed.  Each entry in a list (such as the "global" bound and connected tables
  72 * and the listener socket's pending list and connected queue) ensures a
  73 * reference.  When we defer work until process context and pass a socket as our
  74 * argument, we must ensure the reference count is increased to ensure the
  75 * socket isn't freed before the function is run; the deferred function will
  76 * then drop the reference.
  77 *
  78 * - sk->sk_state uses the TCP state constants because they are widely used by
  79 * other address families and exposed to userspace tools like ss(8):
  80 *
  81 *   TCP_CLOSE - unconnected
  82 *   TCP_SYN_SENT - connecting
  83 *   TCP_ESTABLISHED - connected
  84 *   TCP_CLOSING - disconnecting
  85 *   TCP_LISTEN - listening
  86 */
  87
  88#include <linux/types.h>
  89#include <linux/bitops.h>
  90#include <linux/cred.h>
  91#include <linux/init.h>
  92#include <linux/io.h>
  93#include <linux/kernel.h>
  94#include <linux/sched/signal.h>
  95#include <linux/kmod.h>
  96#include <linux/list.h>
  97#include <linux/miscdevice.h>
  98#include <linux/module.h>
  99#include <linux/mutex.h>
 100#include <linux/net.h>
 101#include <linux/poll.h>
 102#include <linux/random.h>
 103#include <linux/skbuff.h>
 104#include <linux/smp.h>
 105#include <linux/socket.h>
 106#include <linux/stddef.h>
 107#include <linux/unistd.h>
 108#include <linux/wait.h>
 109#include <linux/workqueue.h>
 110#include <net/sock.h>
 111#include <net/af_vsock.h>
 112
 113static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
 114static void vsock_sk_destruct(struct sock *sk);
 115static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
 116
 117/* Protocol family. */
 118static struct proto vsock_proto = {
 119        .name = "AF_VSOCK",
 120        .owner = THIS_MODULE,
 121        .obj_size = sizeof(struct vsock_sock),
 122};
 123
 124/* The default peer timeout indicates how long we will wait for a peer response
 125 * to a control message.
 126 */
 127#define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
 128
 129#define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
 130#define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
 131#define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
 132
 133/* Transport used for host->guest communication */
 134static const struct vsock_transport *transport_h2g;
 135/* Transport used for guest->host communication */
 136static const struct vsock_transport *transport_g2h;
 137/* Transport used for DGRAM communication */
 138static const struct vsock_transport *transport_dgram;
 139/* Transport used for local communication */
 140static const struct vsock_transport *transport_local;
 141static DEFINE_MUTEX(vsock_register_mutex);
 142
 143/**** UTILS ****/
 144
 145/* Each bound VSocket is stored in the bind hash table and each connected
 146 * VSocket is stored in the connected hash table.
 147 *
 148 * Unbound sockets are all put on the same list attached to the end of the hash
 149 * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
 150 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
 151 * represents the list that addr hashes to).
 152 *
 153 * Specifically, we initialize the vsock_bind_table array to a size of
 154 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
 155 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
 156 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
 157 * mods with VSOCK_HASH_SIZE to ensure this.
 158 */
 159#define MAX_PORT_RETRIES        24
 160
 161#define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
 162#define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
 163#define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
 164
 165/* XXX This can probably be implemented in a better way. */
 166#define VSOCK_CONN_HASH(src, dst)                               \
 167        (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
 168#define vsock_connected_sockets(src, dst)               \
 169        (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
 170#define vsock_connected_sockets_vsk(vsk)                                \
 171        vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
 172
 173struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
 174EXPORT_SYMBOL_GPL(vsock_bind_table);
 175struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
 176EXPORT_SYMBOL_GPL(vsock_connected_table);
 177DEFINE_SPINLOCK(vsock_table_lock);
 178EXPORT_SYMBOL_GPL(vsock_table_lock);
 179
 180/* Autobind this socket to the local address if necessary. */
 181static int vsock_auto_bind(struct vsock_sock *vsk)
 182{
 183        struct sock *sk = sk_vsock(vsk);
 184        struct sockaddr_vm local_addr;
 185
 186        if (vsock_addr_bound(&vsk->local_addr))
 187                return 0;
 188        vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 189        return __vsock_bind(sk, &local_addr);
 190}
 191
 192static void vsock_init_tables(void)
 193{
 194        int i;
 195
 196        for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
 197                INIT_LIST_HEAD(&vsock_bind_table[i]);
 198
 199        for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
 200                INIT_LIST_HEAD(&vsock_connected_table[i]);
 201}
 202
 203static void __vsock_insert_bound(struct list_head *list,
 204                                 struct vsock_sock *vsk)
 205{
 206        sock_hold(&vsk->sk);
 207        list_add(&vsk->bound_table, list);
 208}
 209
 210static void __vsock_insert_connected(struct list_head *list,
 211                                     struct vsock_sock *vsk)
 212{
 213        sock_hold(&vsk->sk);
 214        list_add(&vsk->connected_table, list);
 215}
 216
 217static void __vsock_remove_bound(struct vsock_sock *vsk)
 218{
 219        list_del_init(&vsk->bound_table);
 220        sock_put(&vsk->sk);
 221}
 222
 223static void __vsock_remove_connected(struct vsock_sock *vsk)
 224{
 225        list_del_init(&vsk->connected_table);
 226        sock_put(&vsk->sk);
 227}
 228
 229static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
 230{
 231        struct vsock_sock *vsk;
 232
 233        list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
 234                if (vsock_addr_equals_addr(addr, &vsk->local_addr))
 235                        return sk_vsock(vsk);
 236
 237                if (addr->svm_port == vsk->local_addr.svm_port &&
 238                    (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
 239                     addr->svm_cid == VMADDR_CID_ANY))
 240                        return sk_vsock(vsk);
 241        }
 242
 243        return NULL;
 244}
 245
 246static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
 247                                                  struct sockaddr_vm *dst)
 248{
 249        struct vsock_sock *vsk;
 250
 251        list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
 252                            connected_table) {
 253                if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
 254                    dst->svm_port == vsk->local_addr.svm_port) {
 255                        return sk_vsock(vsk);
 256                }
 257        }
 258
 259        return NULL;
 260}
 261
 262static void vsock_insert_unbound(struct vsock_sock *vsk)
 263{
 264        spin_lock_bh(&vsock_table_lock);
 265        __vsock_insert_bound(vsock_unbound_sockets, vsk);
 266        spin_unlock_bh(&vsock_table_lock);
 267}
 268
 269void vsock_insert_connected(struct vsock_sock *vsk)
 270{
 271        struct list_head *list = vsock_connected_sockets(
 272                &vsk->remote_addr, &vsk->local_addr);
 273
 274        spin_lock_bh(&vsock_table_lock);
 275        __vsock_insert_connected(list, vsk);
 276        spin_unlock_bh(&vsock_table_lock);
 277}
 278EXPORT_SYMBOL_GPL(vsock_insert_connected);
 279
 280void vsock_remove_bound(struct vsock_sock *vsk)
 281{
 282        spin_lock_bh(&vsock_table_lock);
 283        if (__vsock_in_bound_table(vsk))
 284                __vsock_remove_bound(vsk);
 285        spin_unlock_bh(&vsock_table_lock);
 286}
 287EXPORT_SYMBOL_GPL(vsock_remove_bound);
 288
 289void vsock_remove_connected(struct vsock_sock *vsk)
 290{
 291        spin_lock_bh(&vsock_table_lock);
 292        if (__vsock_in_connected_table(vsk))
 293                __vsock_remove_connected(vsk);
 294        spin_unlock_bh(&vsock_table_lock);
 295}
 296EXPORT_SYMBOL_GPL(vsock_remove_connected);
 297
 298struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
 299{
 300        struct sock *sk;
 301
 302        spin_lock_bh(&vsock_table_lock);
 303        sk = __vsock_find_bound_socket(addr);
 304        if (sk)
 305                sock_hold(sk);
 306
 307        spin_unlock_bh(&vsock_table_lock);
 308
 309        return sk;
 310}
 311EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
 312
 313struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
 314                                         struct sockaddr_vm *dst)
 315{
 316        struct sock *sk;
 317
 318        spin_lock_bh(&vsock_table_lock);
 319        sk = __vsock_find_connected_socket(src, dst);
 320        if (sk)
 321                sock_hold(sk);
 322
 323        spin_unlock_bh(&vsock_table_lock);
 324
 325        return sk;
 326}
 327EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
 328
 329void vsock_remove_sock(struct vsock_sock *vsk)
 330{
 331        vsock_remove_bound(vsk);
 332        vsock_remove_connected(vsk);
 333}
 334EXPORT_SYMBOL_GPL(vsock_remove_sock);
 335
 336void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
 337{
 338        int i;
 339
 340        spin_lock_bh(&vsock_table_lock);
 341
 342        for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
 343                struct vsock_sock *vsk;
 344                list_for_each_entry(vsk, &vsock_connected_table[i],
 345                                    connected_table)
 346                        fn(sk_vsock(vsk));
 347        }
 348
 349        spin_unlock_bh(&vsock_table_lock);
 350}
 351EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
 352
 353void vsock_add_pending(struct sock *listener, struct sock *pending)
 354{
 355        struct vsock_sock *vlistener;
 356        struct vsock_sock *vpending;
 357
 358        vlistener = vsock_sk(listener);
 359        vpending = vsock_sk(pending);
 360
 361        sock_hold(pending);
 362        sock_hold(listener);
 363        list_add_tail(&vpending->pending_links, &vlistener->pending_links);
 364}
 365EXPORT_SYMBOL_GPL(vsock_add_pending);
 366
 367void vsock_remove_pending(struct sock *listener, struct sock *pending)
 368{
 369        struct vsock_sock *vpending = vsock_sk(pending);
 370
 371        list_del_init(&vpending->pending_links);
 372        sock_put(listener);
 373        sock_put(pending);
 374}
 375EXPORT_SYMBOL_GPL(vsock_remove_pending);
 376
 377void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
 378{
 379        struct vsock_sock *vlistener;
 380        struct vsock_sock *vconnected;
 381
 382        vlistener = vsock_sk(listener);
 383        vconnected = vsock_sk(connected);
 384
 385        sock_hold(connected);
 386        sock_hold(listener);
 387        list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
 388}
 389EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
 390
 391static bool vsock_use_local_transport(unsigned int remote_cid)
 392{
 393        if (!transport_local)
 394                return false;
 395
 396        if (remote_cid == VMADDR_CID_LOCAL)
 397                return true;
 398
 399        if (transport_g2h) {
 400                return remote_cid == transport_g2h->get_local_cid();
 401        } else {
 402                return remote_cid == VMADDR_CID_HOST;
 403        }
 404}
 405
 406static void vsock_deassign_transport(struct vsock_sock *vsk)
 407{
 408        if (!vsk->transport)
 409                return;
 410
 411        vsk->transport->destruct(vsk);
 412        module_put(vsk->transport->module);
 413        vsk->transport = NULL;
 414}
 415
 416/* Assign a transport to a socket and call the .init transport callback.
 417 *
 418 * Note: for stream socket this must be called when vsk->remote_addr is set
 419 * (e.g. during the connect() or when a connection request on a listener
 420 * socket is received).
 421 * The vsk->remote_addr is used to decide which transport to use:
 422 *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
 423 *    g2h is not loaded, will use local transport;
 424 *  - remote CID <= VMADDR_CID_HOST will use guest->host transport;
 425 *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
 426 */
 427int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
 428{
 429        const struct vsock_transport *new_transport;
 430        struct sock *sk = sk_vsock(vsk);
 431        unsigned int remote_cid = vsk->remote_addr.svm_cid;
 432        int ret;
 433
 434        switch (sk->sk_type) {
 435        case SOCK_DGRAM:
 436                new_transport = transport_dgram;
 437                break;
 438        case SOCK_STREAM:
 439                if (vsock_use_local_transport(remote_cid))
 440                        new_transport = transport_local;
 441                else if (remote_cid <= VMADDR_CID_HOST)
 442                        new_transport = transport_g2h;
 443                else
 444                        new_transport = transport_h2g;
 445                break;
 446        default:
 447                return -ESOCKTNOSUPPORT;
 448        }
 449
 450        if (vsk->transport) {
 451                if (vsk->transport == new_transport)
 452                        return 0;
 453
 454                /* transport->release() must be called with sock lock acquired.
 455                 * This path can only be taken during vsock_stream_connect(),
 456                 * where we have already held the sock lock.
 457                 * In the other cases, this function is called on a new socket
 458                 * which is not assigned to any transport.
 459                 */
 460                vsk->transport->release(vsk);
 461                vsock_deassign_transport(vsk);
 462        }
 463
 464        /* We increase the module refcnt to prevent the transport unloading
 465         * while there are open sockets assigned to it.
 466         */
 467        if (!new_transport || !try_module_get(new_transport->module))
 468                return -ENODEV;
 469
 470        ret = new_transport->init(vsk, psk);
 471        if (ret) {
 472                module_put(new_transport->module);
 473                return ret;
 474        }
 475
 476        vsk->transport = new_transport;
 477
 478        return 0;
 479}
 480EXPORT_SYMBOL_GPL(vsock_assign_transport);
 481
 482bool vsock_find_cid(unsigned int cid)
 483{
 484        if (transport_g2h && cid == transport_g2h->get_local_cid())
 485                return true;
 486
 487        if (transport_h2g && cid == VMADDR_CID_HOST)
 488                return true;
 489
 490        if (transport_local && cid == VMADDR_CID_LOCAL)
 491                return true;
 492
 493        return false;
 494}
 495EXPORT_SYMBOL_GPL(vsock_find_cid);
 496
 497static struct sock *vsock_dequeue_accept(struct sock *listener)
 498{
 499        struct vsock_sock *vlistener;
 500        struct vsock_sock *vconnected;
 501
 502        vlistener = vsock_sk(listener);
 503
 504        if (list_empty(&vlistener->accept_queue))
 505                return NULL;
 506
 507        vconnected = list_entry(vlistener->accept_queue.next,
 508                                struct vsock_sock, accept_queue);
 509
 510        list_del_init(&vconnected->accept_queue);
 511        sock_put(listener);
 512        /* The caller will need a reference on the connected socket so we let
 513         * it call sock_put().
 514         */
 515
 516        return sk_vsock(vconnected);
 517}
 518
 519static bool vsock_is_accept_queue_empty(struct sock *sk)
 520{
 521        struct vsock_sock *vsk = vsock_sk(sk);
 522        return list_empty(&vsk->accept_queue);
 523}
 524
 525static bool vsock_is_pending(struct sock *sk)
 526{
 527        struct vsock_sock *vsk = vsock_sk(sk);
 528        return !list_empty(&vsk->pending_links);
 529}
 530
 531static int vsock_send_shutdown(struct sock *sk, int mode)
 532{
 533        struct vsock_sock *vsk = vsock_sk(sk);
 534
 535        if (!vsk->transport)
 536                return -ENODEV;
 537
 538        return vsk->transport->shutdown(vsk, mode);
 539}
 540
 541static void vsock_pending_work(struct work_struct *work)
 542{
 543        struct sock *sk;
 544        struct sock *listener;
 545        struct vsock_sock *vsk;
 546        bool cleanup;
 547
 548        vsk = container_of(work, struct vsock_sock, pending_work.work);
 549        sk = sk_vsock(vsk);
 550        listener = vsk->listener;
 551        cleanup = true;
 552
 553        lock_sock(listener);
 554        lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
 555
 556        if (vsock_is_pending(sk)) {
 557                vsock_remove_pending(listener, sk);
 558
 559                sk_acceptq_removed(listener);
 560        } else if (!vsk->rejected) {
 561                /* We are not on the pending list and accept() did not reject
 562                 * us, so we must have been accepted by our user process.  We
 563                 * just need to drop our references to the sockets and be on
 564                 * our way.
 565                 */
 566                cleanup = false;
 567                goto out;
 568        }
 569
 570        /* We need to remove ourself from the global connected sockets list so
 571         * incoming packets can't find this socket, and to reduce the reference
 572         * count.
 573         */
 574        vsock_remove_connected(vsk);
 575
 576        sk->sk_state = TCP_CLOSE;
 577
 578out:
 579        release_sock(sk);
 580        release_sock(listener);
 581        if (cleanup)
 582                sock_put(sk);
 583
 584        sock_put(sk);
 585        sock_put(listener);
 586}
 587
 588/**** SOCKET OPERATIONS ****/
 589
 590static int __vsock_bind_stream(struct vsock_sock *vsk,
 591                               struct sockaddr_vm *addr)
 592{
 593        static u32 port;
 594        struct sockaddr_vm new_addr;
 595
 596        if (!port)
 597                port = LAST_RESERVED_PORT + 1 +
 598                        prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
 599
 600        vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
 601
 602        if (addr->svm_port == VMADDR_PORT_ANY) {
 603                bool found = false;
 604                unsigned int i;
 605
 606                for (i = 0; i < MAX_PORT_RETRIES; i++) {
 607                        if (port <= LAST_RESERVED_PORT)
 608                                port = LAST_RESERVED_PORT + 1;
 609
 610                        new_addr.svm_port = port++;
 611
 612                        if (!__vsock_find_bound_socket(&new_addr)) {
 613                                found = true;
 614                                break;
 615                        }
 616                }
 617
 618                if (!found)
 619                        return -EADDRNOTAVAIL;
 620        } else {
 621                /* If port is in reserved range, ensure caller
 622                 * has necessary privileges.
 623                 */
 624                if (addr->svm_port <= LAST_RESERVED_PORT &&
 625                    !capable(CAP_NET_BIND_SERVICE)) {
 626                        return -EACCES;
 627                }
 628
 629                if (__vsock_find_bound_socket(&new_addr))
 630                        return -EADDRINUSE;
 631        }
 632
 633        vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
 634
 635        /* Remove stream sockets from the unbound list and add them to the hash
 636         * table for easy lookup by its address.  The unbound list is simply an
 637         * extra entry at the end of the hash table, a trick used by AF_UNIX.
 638         */
 639        __vsock_remove_bound(vsk);
 640        __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
 641
 642        return 0;
 643}
 644
 645static int __vsock_bind_dgram(struct vsock_sock *vsk,
 646                              struct sockaddr_vm *addr)
 647{
 648        return vsk->transport->dgram_bind(vsk, addr);
 649}
 650
 651static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
 652{
 653        struct vsock_sock *vsk = vsock_sk(sk);
 654        int retval;
 655
 656        /* First ensure this socket isn't already bound. */
 657        if (vsock_addr_bound(&vsk->local_addr))
 658                return -EINVAL;
 659
 660        /* Now bind to the provided address or select appropriate values if
 661         * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
 662         * like AF_INET prevents binding to a non-local IP address (in most
 663         * cases), we only allow binding to a local CID.
 664         */
 665        if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
 666                return -EADDRNOTAVAIL;
 667
 668        switch (sk->sk_socket->type) {
 669        case SOCK_STREAM:
 670                spin_lock_bh(&vsock_table_lock);
 671                retval = __vsock_bind_stream(vsk, addr);
 672                spin_unlock_bh(&vsock_table_lock);
 673                break;
 674
 675        case SOCK_DGRAM:
 676                retval = __vsock_bind_dgram(vsk, addr);
 677                break;
 678
 679        default:
 680                retval = -EINVAL;
 681                break;
 682        }
 683
 684        return retval;
 685}
 686
 687static void vsock_connect_timeout(struct work_struct *work);
 688
 689static struct sock *__vsock_create(struct net *net,
 690                                   struct socket *sock,
 691                                   struct sock *parent,
 692                                   gfp_t priority,
 693                                   unsigned short type,
 694                                   int kern)
 695{
 696        struct sock *sk;
 697        struct vsock_sock *psk;
 698        struct vsock_sock *vsk;
 699
 700        sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
 701        if (!sk)
 702                return NULL;
 703
 704        sock_init_data(sock, sk);
 705
 706        /* sk->sk_type is normally set in sock_init_data, but only if sock is
 707         * non-NULL. We make sure that our sockets always have a type by
 708         * setting it here if needed.
 709         */
 710        if (!sock)
 711                sk->sk_type = type;
 712
 713        vsk = vsock_sk(sk);
 714        vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 715        vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 716
 717        sk->sk_destruct = vsock_sk_destruct;
 718        sk->sk_backlog_rcv = vsock_queue_rcv_skb;
 719        sock_reset_flag(sk, SOCK_DONE);
 720
 721        INIT_LIST_HEAD(&vsk->bound_table);
 722        INIT_LIST_HEAD(&vsk->connected_table);
 723        vsk->listener = NULL;
 724        INIT_LIST_HEAD(&vsk->pending_links);
 725        INIT_LIST_HEAD(&vsk->accept_queue);
 726        vsk->rejected = false;
 727        vsk->sent_request = false;
 728        vsk->ignore_connecting_rst = false;
 729        vsk->peer_shutdown = 0;
 730        INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
 731        INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
 732
 733        psk = parent ? vsock_sk(parent) : NULL;
 734        if (parent) {
 735                vsk->trusted = psk->trusted;
 736                vsk->owner = get_cred(psk->owner);
 737                vsk->connect_timeout = psk->connect_timeout;
 738                vsk->buffer_size = psk->buffer_size;
 739                vsk->buffer_min_size = psk->buffer_min_size;
 740                vsk->buffer_max_size = psk->buffer_max_size;
 741        } else {
 742                vsk->trusted = capable(CAP_NET_ADMIN);
 743                vsk->owner = get_current_cred();
 744                vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
 745                vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
 746                vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
 747                vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
 748        }
 749
 750        return sk;
 751}
 752
 753static void __vsock_release(struct sock *sk, int level)
 754{
 755        if (sk) {
 756                struct sock *pending;
 757                struct vsock_sock *vsk;
 758
 759                vsk = vsock_sk(sk);
 760                pending = NULL; /* Compiler warning. */
 761
 762                /* When "level" is SINGLE_DEPTH_NESTING, use the nested
 763                 * version to avoid the warning "possible recursive locking
 764                 * detected". When "level" is 0, lock_sock_nested(sk, level)
 765                 * is the same as lock_sock(sk).
 766                 */
 767                lock_sock_nested(sk, level);
 768
 769                if (vsk->transport)
 770                        vsk->transport->release(vsk);
 771                else if (sk->sk_type == SOCK_STREAM)
 772                        vsock_remove_sock(vsk);
 773
 774                sock_orphan(sk);
 775                sk->sk_shutdown = SHUTDOWN_MASK;
 776
 777                skb_queue_purge(&sk->sk_receive_queue);
 778
 779                /* Clean up any sockets that never were accepted. */
 780                while ((pending = vsock_dequeue_accept(sk)) != NULL) {
 781                        __vsock_release(pending, SINGLE_DEPTH_NESTING);
 782                        sock_put(pending);
 783                }
 784
 785                release_sock(sk);
 786                sock_put(sk);
 787        }
 788}
 789
 790static void vsock_sk_destruct(struct sock *sk)
 791{
 792        struct vsock_sock *vsk = vsock_sk(sk);
 793
 794        vsock_deassign_transport(vsk);
 795
 796        /* When clearing these addresses, there's no need to set the family and
 797         * possibly register the address family with the kernel.
 798         */
 799        vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 800        vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 801
 802        put_cred(vsk->owner);
 803}
 804
 805static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 806{
 807        int err;
 808
 809        err = sock_queue_rcv_skb(sk, skb);
 810        if (err)
 811                kfree_skb(skb);
 812
 813        return err;
 814}
 815
 816struct sock *vsock_create_connected(struct sock *parent)
 817{
 818        return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
 819                              parent->sk_type, 0);
 820}
 821EXPORT_SYMBOL_GPL(vsock_create_connected);
 822
 823s64 vsock_stream_has_data(struct vsock_sock *vsk)
 824{
 825        return vsk->transport->stream_has_data(vsk);
 826}
 827EXPORT_SYMBOL_GPL(vsock_stream_has_data);
 828
 829s64 vsock_stream_has_space(struct vsock_sock *vsk)
 830{
 831        return vsk->transport->stream_has_space(vsk);
 832}
 833EXPORT_SYMBOL_GPL(vsock_stream_has_space);
 834
 835static int vsock_release(struct socket *sock)
 836{
 837        __vsock_release(sock->sk, 0);
 838        sock->sk = NULL;
 839        sock->state = SS_FREE;
 840
 841        return 0;
 842}
 843
 844static int
 845vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
 846{
 847        int err;
 848        struct sock *sk;
 849        struct sockaddr_vm *vm_addr;
 850
 851        sk = sock->sk;
 852
 853        if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
 854                return -EINVAL;
 855
 856        lock_sock(sk);
 857        err = __vsock_bind(sk, vm_addr);
 858        release_sock(sk);
 859
 860        return err;
 861}
 862
 863static int vsock_getname(struct socket *sock,
 864                         struct sockaddr *addr, int peer)
 865{
 866        int err;
 867        struct sock *sk;
 868        struct vsock_sock *vsk;
 869        struct sockaddr_vm *vm_addr;
 870
 871        sk = sock->sk;
 872        vsk = vsock_sk(sk);
 873        err = 0;
 874
 875        lock_sock(sk);
 876
 877        if (peer) {
 878                if (sock->state != SS_CONNECTED) {
 879                        err = -ENOTCONN;
 880                        goto out;
 881                }
 882                vm_addr = &vsk->remote_addr;
 883        } else {
 884                vm_addr = &vsk->local_addr;
 885        }
 886
 887        if (!vm_addr) {
 888                err = -EINVAL;
 889                goto out;
 890        }
 891
 892        /* sys_getsockname() and sys_getpeername() pass us a
 893         * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
 894         * that macro is defined in socket.c instead of .h, so we hardcode its
 895         * value here.
 896         */
 897        BUILD_BUG_ON(sizeof(*vm_addr) > 128);
 898        memcpy(addr, vm_addr, sizeof(*vm_addr));
 899        err = sizeof(*vm_addr);
 900
 901out:
 902        release_sock(sk);
 903        return err;
 904}
 905
 906static int vsock_shutdown(struct socket *sock, int mode)
 907{
 908        int err;
 909        struct sock *sk;
 910
 911        /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
 912         * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
 913         * here like the other address families do.  Note also that the
 914         * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
 915         * which is what we want.
 916         */
 917        mode++;
 918
 919        if ((mode & ~SHUTDOWN_MASK) || !mode)
 920                return -EINVAL;
 921
 922        /* If this is a STREAM socket and it is not connected then bail out
 923         * immediately.  If it is a DGRAM socket then we must first kick the
 924         * socket so that it wakes up from any sleeping calls, for example
 925         * recv(), and then afterwards return the error.
 926         */
 927
 928        sk = sock->sk;
 929        if (sock->state == SS_UNCONNECTED) {
 930                err = -ENOTCONN;
 931                if (sk->sk_type == SOCK_STREAM)
 932                        return err;
 933        } else {
 934                sock->state = SS_DISCONNECTING;
 935                err = 0;
 936        }
 937
 938        /* Receive and send shutdowns are treated alike. */
 939        mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
 940        if (mode) {
 941                lock_sock(sk);
 942                sk->sk_shutdown |= mode;
 943                sk->sk_state_change(sk);
 944                release_sock(sk);
 945
 946                if (sk->sk_type == SOCK_STREAM) {
 947                        sock_reset_flag(sk, SOCK_DONE);
 948                        vsock_send_shutdown(sk, mode);
 949                }
 950        }
 951
 952        return err;
 953}
 954
 955static __poll_t vsock_poll(struct file *file, struct socket *sock,
 956                               poll_table *wait)
 957{
 958        struct sock *sk;
 959        __poll_t mask;
 960        struct vsock_sock *vsk;
 961
 962        sk = sock->sk;
 963        vsk = vsock_sk(sk);
 964
 965        poll_wait(file, sk_sleep(sk), wait);
 966        mask = 0;
 967
 968        if (sk->sk_err)
 969                /* Signify that there has been an error on this socket. */
 970                mask |= EPOLLERR;
 971
 972        /* INET sockets treat local write shutdown and peer write shutdown as a
 973         * case of EPOLLHUP set.
 974         */
 975        if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
 976            ((sk->sk_shutdown & SEND_SHUTDOWN) &&
 977             (vsk->peer_shutdown & SEND_SHUTDOWN))) {
 978                mask |= EPOLLHUP;
 979        }
 980
 981        if (sk->sk_shutdown & RCV_SHUTDOWN ||
 982            vsk->peer_shutdown & SEND_SHUTDOWN) {
 983                mask |= EPOLLRDHUP;
 984        }
 985
 986        if (sock->type == SOCK_DGRAM) {
 987                /* For datagram sockets we can read if there is something in
 988                 * the queue and write as long as the socket isn't shutdown for
 989                 * sending.
 990                 */
 991                if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
 992                    (sk->sk_shutdown & RCV_SHUTDOWN)) {
 993                        mask |= EPOLLIN | EPOLLRDNORM;
 994                }
 995
 996                if (!(sk->sk_shutdown & SEND_SHUTDOWN))
 997                        mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
 998
 999        } else if (sock->type == SOCK_STREAM) {
1000                const struct vsock_transport *transport = vsk->transport;
1001                lock_sock(sk);
1002
1003                /* Listening sockets that have connections in their accept
1004                 * queue can be read.
1005                 */
1006                if (sk->sk_state == TCP_LISTEN
1007                    && !vsock_is_accept_queue_empty(sk))
1008                        mask |= EPOLLIN | EPOLLRDNORM;
1009
1010                /* If there is something in the queue then we can read. */
1011                if (transport && transport->stream_is_active(vsk) &&
1012                    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1013                        bool data_ready_now = false;
1014                        int ret = transport->notify_poll_in(
1015                                        vsk, 1, &data_ready_now);
1016                        if (ret < 0) {
1017                                mask |= EPOLLERR;
1018                        } else {
1019                                if (data_ready_now)
1020                                        mask |= EPOLLIN | EPOLLRDNORM;
1021
1022                        }
1023                }
1024
1025                /* Sockets whose connections have been closed, reset, or
1026                 * terminated should also be considered read, and we check the
1027                 * shutdown flag for that.
1028                 */
1029                if (sk->sk_shutdown & RCV_SHUTDOWN ||
1030                    vsk->peer_shutdown & SEND_SHUTDOWN) {
1031                        mask |= EPOLLIN | EPOLLRDNORM;
1032                }
1033
1034                /* Connected sockets that can produce data can be written. */
1035                if (sk->sk_state == TCP_ESTABLISHED) {
1036                        if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1037                                bool space_avail_now = false;
1038                                int ret = transport->notify_poll_out(
1039                                                vsk, 1, &space_avail_now);
1040                                if (ret < 0) {
1041                                        mask |= EPOLLERR;
1042                                } else {
1043                                        if (space_avail_now)
1044                                                /* Remove EPOLLWRBAND since INET
1045                                                 * sockets are not setting it.
1046                                                 */
1047                                                mask |= EPOLLOUT | EPOLLWRNORM;
1048
1049                                }
1050                        }
1051                }
1052
1053                /* Simulate INET socket poll behaviors, which sets
1054                 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1055                 * but local send is not shutdown.
1056                 */
1057                if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1058                        if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1059                                mask |= EPOLLOUT | EPOLLWRNORM;
1060
1061                }
1062
1063                release_sock(sk);
1064        }
1065
1066        return mask;
1067}
1068
1069static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1070                               size_t len)
1071{
1072        int err;
1073        struct sock *sk;
1074        struct vsock_sock *vsk;
1075        struct sockaddr_vm *remote_addr;
1076        const struct vsock_transport *transport;
1077
1078        if (msg->msg_flags & MSG_OOB)
1079                return -EOPNOTSUPP;
1080
1081        /* For now, MSG_DONTWAIT is always assumed... */
1082        err = 0;
1083        sk = sock->sk;
1084        vsk = vsock_sk(sk);
1085        transport = vsk->transport;
1086
1087        lock_sock(sk);
1088
1089        err = vsock_auto_bind(vsk);
1090        if (err)
1091                goto out;
1092
1093
1094        /* If the provided message contains an address, use that.  Otherwise
1095         * fall back on the socket's remote handle (if it has been connected).
1096         */
1097        if (msg->msg_name &&
1098            vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1099                            &remote_addr) == 0) {
1100                /* Ensure this address is of the right type and is a valid
1101                 * destination.
1102                 */
1103
1104                if (remote_addr->svm_cid == VMADDR_CID_ANY)
1105                        remote_addr->svm_cid = transport->get_local_cid();
1106
1107                if (!vsock_addr_bound(remote_addr)) {
1108                        err = -EINVAL;
1109                        goto out;
1110                }
1111        } else if (sock->state == SS_CONNECTED) {
1112                remote_addr = &vsk->remote_addr;
1113
1114                if (remote_addr->svm_cid == VMADDR_CID_ANY)
1115                        remote_addr->svm_cid = transport->get_local_cid();
1116
1117                /* XXX Should connect() or this function ensure remote_addr is
1118                 * bound?
1119                 */
1120                if (!vsock_addr_bound(&vsk->remote_addr)) {
1121                        err = -EINVAL;
1122                        goto out;
1123                }
1124        } else {
1125                err = -EINVAL;
1126                goto out;
1127        }
1128
1129        if (!transport->dgram_allow(remote_addr->svm_cid,
1130                                    remote_addr->svm_port)) {
1131                err = -EINVAL;
1132                goto out;
1133        }
1134
1135        err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1136
1137out:
1138        release_sock(sk);
1139        return err;
1140}
1141
1142static int vsock_dgram_connect(struct socket *sock,
1143                               struct sockaddr *addr, int addr_len, int flags)
1144{
1145        int err;
1146        struct sock *sk;
1147        struct vsock_sock *vsk;
1148        struct sockaddr_vm *remote_addr;
1149
1150        sk = sock->sk;
1151        vsk = vsock_sk(sk);
1152
1153        err = vsock_addr_cast(addr, addr_len, &remote_addr);
1154        if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1155                lock_sock(sk);
1156                vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1157                                VMADDR_PORT_ANY);
1158                sock->state = SS_UNCONNECTED;
1159                release_sock(sk);
1160                return 0;
1161        } else if (err != 0)
1162                return -EINVAL;
1163
1164        lock_sock(sk);
1165
1166        err = vsock_auto_bind(vsk);
1167        if (err)
1168                goto out;
1169
1170        if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1171                                         remote_addr->svm_port)) {
1172                err = -EINVAL;
1173                goto out;
1174        }
1175
1176        memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1177        sock->state = SS_CONNECTED;
1178
1179out:
1180        release_sock(sk);
1181        return err;
1182}
1183
1184static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1185                               size_t len, int flags)
1186{
1187        struct vsock_sock *vsk = vsock_sk(sock->sk);
1188
1189        return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1190}
1191
1192static const struct proto_ops vsock_dgram_ops = {
1193        .family = PF_VSOCK,
1194        .owner = THIS_MODULE,
1195        .release = vsock_release,
1196        .bind = vsock_bind,
1197        .connect = vsock_dgram_connect,
1198        .socketpair = sock_no_socketpair,
1199        .accept = sock_no_accept,
1200        .getname = vsock_getname,
1201        .poll = vsock_poll,
1202        .ioctl = sock_no_ioctl,
1203        .listen = sock_no_listen,
1204        .shutdown = vsock_shutdown,
1205        .setsockopt = sock_no_setsockopt,
1206        .getsockopt = sock_no_getsockopt,
1207        .sendmsg = vsock_dgram_sendmsg,
1208        .recvmsg = vsock_dgram_recvmsg,
1209        .mmap = sock_no_mmap,
1210        .sendpage = sock_no_sendpage,
1211};
1212
1213static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1214{
1215        const struct vsock_transport *transport = vsk->transport;
1216
1217        if (!transport->cancel_pkt)
1218                return -EOPNOTSUPP;
1219
1220        return transport->cancel_pkt(vsk);
1221}
1222
1223static void vsock_connect_timeout(struct work_struct *work)
1224{
1225        struct sock *sk;
1226        struct vsock_sock *vsk;
1227        int cancel = 0;
1228
1229        vsk = container_of(work, struct vsock_sock, connect_work.work);
1230        sk = sk_vsock(vsk);
1231
1232        lock_sock(sk);
1233        if (sk->sk_state == TCP_SYN_SENT &&
1234            (sk->sk_shutdown != SHUTDOWN_MASK)) {
1235                sk->sk_state = TCP_CLOSE;
1236                sk->sk_err = ETIMEDOUT;
1237                sk->sk_error_report(sk);
1238                cancel = 1;
1239        }
1240        release_sock(sk);
1241        if (cancel)
1242                vsock_transport_cancel_pkt(vsk);
1243
1244        sock_put(sk);
1245}
1246
1247static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1248                                int addr_len, int flags)
1249{
1250        int err;
1251        struct sock *sk;
1252        struct vsock_sock *vsk;
1253        const struct vsock_transport *transport;
1254        struct sockaddr_vm *remote_addr;
1255        long timeout;
1256        DEFINE_WAIT(wait);
1257
1258        err = 0;
1259        sk = sock->sk;
1260        vsk = vsock_sk(sk);
1261
1262        lock_sock(sk);
1263
1264        /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1265        switch (sock->state) {
1266        case SS_CONNECTED:
1267                err = -EISCONN;
1268                goto out;
1269        case SS_DISCONNECTING:
1270                err = -EINVAL;
1271                goto out;
1272        case SS_CONNECTING:
1273                /* This continues on so we can move sock into the SS_CONNECTED
1274                 * state once the connection has completed (at which point err
1275                 * will be set to zero also).  Otherwise, we will either wait
1276                 * for the connection or return -EALREADY should this be a
1277                 * non-blocking call.
1278                 */
1279                err = -EALREADY;
1280                break;
1281        default:
1282                if ((sk->sk_state == TCP_LISTEN) ||
1283                    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1284                        err = -EINVAL;
1285                        goto out;
1286                }
1287
1288                /* Set the remote address that we are connecting to. */
1289                memcpy(&vsk->remote_addr, remote_addr,
1290                       sizeof(vsk->remote_addr));
1291
1292                err = vsock_assign_transport(vsk, NULL);
1293                if (err)
1294                        goto out;
1295
1296                transport = vsk->transport;
1297
1298                /* The hypervisor and well-known contexts do not have socket
1299                 * endpoints.
1300                 */
1301                if (!transport ||
1302                    !transport->stream_allow(remote_addr->svm_cid,
1303                                             remote_addr->svm_port)) {
1304                        err = -ENETUNREACH;
1305                        goto out;
1306                }
1307
1308                err = vsock_auto_bind(vsk);
1309                if (err)
1310                        goto out;
1311
1312                sk->sk_state = TCP_SYN_SENT;
1313
1314                err = transport->connect(vsk);
1315                if (err < 0)
1316                        goto out;
1317
1318                /* Mark sock as connecting and set the error code to in
1319                 * progress in case this is a non-blocking connect.
1320                 */
1321                sock->state = SS_CONNECTING;
1322                err = -EINPROGRESS;
1323        }
1324
1325        /* The receive path will handle all communication until we are able to
1326         * enter the connected state.  Here we wait for the connection to be
1327         * completed or a notification of an error.
1328         */
1329        timeout = vsk->connect_timeout;
1330        prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1331
1332        while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1333                if (flags & O_NONBLOCK) {
1334                        /* If we're not going to block, we schedule a timeout
1335                         * function to generate a timeout on the connection
1336                         * attempt, in case the peer doesn't respond in a
1337                         * timely manner. We hold on to the socket until the
1338                         * timeout fires.
1339                         */
1340                        sock_hold(sk);
1341                        schedule_delayed_work(&vsk->connect_work, timeout);
1342
1343                        /* Skip ahead to preserve error code set above. */
1344                        goto out_wait;
1345                }
1346
1347                release_sock(sk);
1348                timeout = schedule_timeout(timeout);
1349                lock_sock(sk);
1350
1351                if (signal_pending(current)) {
1352                        err = sock_intr_errno(timeout);
1353                        sk->sk_state = TCP_CLOSE;
1354                        sock->state = SS_UNCONNECTED;
1355                        vsock_transport_cancel_pkt(vsk);
1356                        goto out_wait;
1357                } else if (timeout == 0) {
1358                        err = -ETIMEDOUT;
1359                        sk->sk_state = TCP_CLOSE;
1360                        sock->state = SS_UNCONNECTED;
1361                        vsock_transport_cancel_pkt(vsk);
1362                        goto out_wait;
1363                }
1364
1365                prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1366        }
1367
1368        if (sk->sk_err) {
1369                err = -sk->sk_err;
1370                sk->sk_state = TCP_CLOSE;
1371                sock->state = SS_UNCONNECTED;
1372        } else {
1373                err = 0;
1374        }
1375
1376out_wait:
1377        finish_wait(sk_sleep(sk), &wait);
1378out:
1379        release_sock(sk);
1380        return err;
1381}
1382
1383static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1384                        bool kern)
1385{
1386        struct sock *listener;
1387        int err;
1388        struct sock *connected;
1389        struct vsock_sock *vconnected;
1390        long timeout;
1391        DEFINE_WAIT(wait);
1392
1393        err = 0;
1394        listener = sock->sk;
1395
1396        lock_sock(listener);
1397
1398        if (sock->type != SOCK_STREAM) {
1399                err = -EOPNOTSUPP;
1400                goto out;
1401        }
1402
1403        if (listener->sk_state != TCP_LISTEN) {
1404                err = -EINVAL;
1405                goto out;
1406        }
1407
1408        /* Wait for children sockets to appear; these are the new sockets
1409         * created upon connection establishment.
1410         */
1411        timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1412        prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1413
1414        while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1415               listener->sk_err == 0) {
1416                release_sock(listener);
1417                timeout = schedule_timeout(timeout);
1418                finish_wait(sk_sleep(listener), &wait);
1419                lock_sock(listener);
1420
1421                if (signal_pending(current)) {
1422                        err = sock_intr_errno(timeout);
1423                        goto out;
1424                } else if (timeout == 0) {
1425                        err = -EAGAIN;
1426                        goto out;
1427                }
1428
1429                prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1430        }
1431        finish_wait(sk_sleep(listener), &wait);
1432
1433        if (listener->sk_err)
1434                err = -listener->sk_err;
1435
1436        if (connected) {
1437                sk_acceptq_removed(listener);
1438
1439                lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1440                vconnected = vsock_sk(connected);
1441
1442                /* If the listener socket has received an error, then we should
1443                 * reject this socket and return.  Note that we simply mark the
1444                 * socket rejected, drop our reference, and let the cleanup
1445                 * function handle the cleanup; the fact that we found it in
1446                 * the listener's accept queue guarantees that the cleanup
1447                 * function hasn't run yet.
1448                 */
1449                if (err) {
1450                        vconnected->rejected = true;
1451                } else {
1452                        newsock->state = SS_CONNECTED;
1453                        sock_graft(connected, newsock);
1454                }
1455
1456                release_sock(connected);
1457                sock_put(connected);
1458        }
1459
1460out:
1461        release_sock(listener);
1462        return err;
1463}
1464
1465static int vsock_listen(struct socket *sock, int backlog)
1466{
1467        int err;
1468        struct sock *sk;
1469        struct vsock_sock *vsk;
1470
1471        sk = sock->sk;
1472
1473        lock_sock(sk);
1474
1475        if (sock->type != SOCK_STREAM) {
1476                err = -EOPNOTSUPP;
1477                goto out;
1478        }
1479
1480        if (sock->state != SS_UNCONNECTED) {
1481                err = -EINVAL;
1482                goto out;
1483        }
1484
1485        vsk = vsock_sk(sk);
1486
1487        if (!vsock_addr_bound(&vsk->local_addr)) {
1488                err = -EINVAL;
1489                goto out;
1490        }
1491
1492        sk->sk_max_ack_backlog = backlog;
1493        sk->sk_state = TCP_LISTEN;
1494
1495        err = 0;
1496
1497out:
1498        release_sock(sk);
1499        return err;
1500}
1501
1502static void vsock_update_buffer_size(struct vsock_sock *vsk,
1503                                     const struct vsock_transport *transport,
1504                                     u64 val)
1505{
1506        if (val > vsk->buffer_max_size)
1507                val = vsk->buffer_max_size;
1508
1509        if (val < vsk->buffer_min_size)
1510                val = vsk->buffer_min_size;
1511
1512        if (val != vsk->buffer_size &&
1513            transport && transport->notify_buffer_size)
1514                transport->notify_buffer_size(vsk, &val);
1515
1516        vsk->buffer_size = val;
1517}
1518
1519static int vsock_stream_setsockopt(struct socket *sock,
1520                                   int level,
1521                                   int optname,
1522                                   char __user *optval,
1523                                   unsigned int optlen)
1524{
1525        int err;
1526        struct sock *sk;
1527        struct vsock_sock *vsk;
1528        const struct vsock_transport *transport;
1529        u64 val;
1530
1531        if (level != AF_VSOCK)
1532                return -ENOPROTOOPT;
1533
1534#define COPY_IN(_v)                                       \
1535        do {                                              \
1536                if (optlen < sizeof(_v)) {                \
1537                        err = -EINVAL;                    \
1538                        goto exit;                        \
1539                }                                         \
1540                if (copy_from_user(&_v, optval, sizeof(_v)) != 0) {     \
1541                        err = -EFAULT;                                  \
1542                        goto exit;                                      \
1543                }                                                       \
1544        } while (0)
1545
1546        err = 0;
1547        sk = sock->sk;
1548        vsk = vsock_sk(sk);
1549        transport = vsk->transport;
1550
1551        lock_sock(sk);
1552
1553        switch (optname) {
1554        case SO_VM_SOCKETS_BUFFER_SIZE:
1555                COPY_IN(val);
1556                vsock_update_buffer_size(vsk, transport, val);
1557                break;
1558
1559        case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1560                COPY_IN(val);
1561                vsk->buffer_max_size = val;
1562                vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1563                break;
1564
1565        case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1566                COPY_IN(val);
1567                vsk->buffer_min_size = val;
1568                vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1569                break;
1570
1571        case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1572                struct timeval tv;
1573                COPY_IN(tv);
1574                if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1575                    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1576                        vsk->connect_timeout = tv.tv_sec * HZ +
1577                            DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1578                        if (vsk->connect_timeout == 0)
1579                                vsk->connect_timeout =
1580                                    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1581
1582                } else {
1583                        err = -ERANGE;
1584                }
1585                break;
1586        }
1587
1588        default:
1589                err = -ENOPROTOOPT;
1590                break;
1591        }
1592
1593#undef COPY_IN
1594
1595exit:
1596        release_sock(sk);
1597        return err;
1598}
1599
1600static int vsock_stream_getsockopt(struct socket *sock,
1601                                   int level, int optname,
1602                                   char __user *optval,
1603                                   int __user *optlen)
1604{
1605        int err;
1606        int len;
1607        struct sock *sk;
1608        struct vsock_sock *vsk;
1609        u64 val;
1610
1611        if (level != AF_VSOCK)
1612                return -ENOPROTOOPT;
1613
1614        err = get_user(len, optlen);
1615        if (err != 0)
1616                return err;
1617
1618#define COPY_OUT(_v)                            \
1619        do {                                    \
1620                if (len < sizeof(_v))           \
1621                        return -EINVAL;         \
1622                                                \
1623                len = sizeof(_v);               \
1624                if (copy_to_user(optval, &_v, len) != 0)        \
1625                        return -EFAULT;                         \
1626                                                                \
1627        } while (0)
1628
1629        err = 0;
1630        sk = sock->sk;
1631        vsk = vsock_sk(sk);
1632
1633        switch (optname) {
1634        case SO_VM_SOCKETS_BUFFER_SIZE:
1635                val = vsk->buffer_size;
1636                COPY_OUT(val);
1637                break;
1638
1639        case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1640                val = vsk->buffer_max_size;
1641                COPY_OUT(val);
1642                break;
1643
1644        case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1645                val = vsk->buffer_min_size;
1646                COPY_OUT(val);
1647                break;
1648
1649        case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1650                struct timeval tv;
1651                tv.tv_sec = vsk->connect_timeout / HZ;
1652                tv.tv_usec =
1653                    (vsk->connect_timeout -
1654                     tv.tv_sec * HZ) * (1000000 / HZ);
1655                COPY_OUT(tv);
1656                break;
1657        }
1658        default:
1659                return -ENOPROTOOPT;
1660        }
1661
1662        err = put_user(len, optlen);
1663        if (err != 0)
1664                return -EFAULT;
1665
1666#undef COPY_OUT
1667
1668        return 0;
1669}
1670
1671static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1672                                size_t len)
1673{
1674        struct sock *sk;
1675        struct vsock_sock *vsk;
1676        const struct vsock_transport *transport;
1677        ssize_t total_written;
1678        long timeout;
1679        int err;
1680        struct vsock_transport_send_notify_data send_data;
1681        DEFINE_WAIT_FUNC(wait, woken_wake_function);
1682
1683        sk = sock->sk;
1684        vsk = vsock_sk(sk);
1685        transport = vsk->transport;
1686        total_written = 0;
1687        err = 0;
1688
1689        if (msg->msg_flags & MSG_OOB)
1690                return -EOPNOTSUPP;
1691
1692        lock_sock(sk);
1693
1694        /* Callers should not provide a destination with stream sockets. */
1695        if (msg->msg_namelen) {
1696                err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1697                goto out;
1698        }
1699
1700        /* Send data only if both sides are not shutdown in the direction. */
1701        if (sk->sk_shutdown & SEND_SHUTDOWN ||
1702            vsk->peer_shutdown & RCV_SHUTDOWN) {
1703                err = -EPIPE;
1704                goto out;
1705        }
1706
1707        if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1708            !vsock_addr_bound(&vsk->local_addr)) {
1709                err = -ENOTCONN;
1710                goto out;
1711        }
1712
1713        if (!vsock_addr_bound(&vsk->remote_addr)) {
1714                err = -EDESTADDRREQ;
1715                goto out;
1716        }
1717
1718        /* Wait for room in the produce queue to enqueue our user's data. */
1719        timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1720
1721        err = transport->notify_send_init(vsk, &send_data);
1722        if (err < 0)
1723                goto out;
1724
1725        while (total_written < len) {
1726                ssize_t written;
1727
1728                add_wait_queue(sk_sleep(sk), &wait);
1729                while (vsock_stream_has_space(vsk) == 0 &&
1730                       sk->sk_err == 0 &&
1731                       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1732                       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1733
1734                        /* Don't wait for non-blocking sockets. */
1735                        if (timeout == 0) {
1736                                err = -EAGAIN;
1737                                remove_wait_queue(sk_sleep(sk), &wait);
1738                                goto out_err;
1739                        }
1740
1741                        err = transport->notify_send_pre_block(vsk, &send_data);
1742                        if (err < 0) {
1743                                remove_wait_queue(sk_sleep(sk), &wait);
1744                                goto out_err;
1745                        }
1746
1747                        release_sock(sk);
1748                        timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1749                        lock_sock(sk);
1750                        if (signal_pending(current)) {
1751                                err = sock_intr_errno(timeout);
1752                                remove_wait_queue(sk_sleep(sk), &wait);
1753                                goto out_err;
1754                        } else if (timeout == 0) {
1755                                err = -EAGAIN;
1756                                remove_wait_queue(sk_sleep(sk), &wait);
1757                                goto out_err;
1758                        }
1759                }
1760                remove_wait_queue(sk_sleep(sk), &wait);
1761
1762                /* These checks occur both as part of and after the loop
1763                 * conditional since we need to check before and after
1764                 * sleeping.
1765                 */
1766                if (sk->sk_err) {
1767                        err = -sk->sk_err;
1768                        goto out_err;
1769                } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1770                           (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1771                        err = -EPIPE;
1772                        goto out_err;
1773                }
1774
1775                err = transport->notify_send_pre_enqueue(vsk, &send_data);
1776                if (err < 0)
1777                        goto out_err;
1778
1779                /* Note that enqueue will only write as many bytes as are free
1780                 * in the produce queue, so we don't need to ensure len is
1781                 * smaller than the queue size.  It is the caller's
1782                 * responsibility to check how many bytes we were able to send.
1783                 */
1784
1785                written = transport->stream_enqueue(
1786                                vsk, msg,
1787                                len - total_written);
1788                if (written < 0) {
1789                        err = -ENOMEM;
1790                        goto out_err;
1791                }
1792
1793                total_written += written;
1794
1795                err = transport->notify_send_post_enqueue(
1796                                vsk, written, &send_data);
1797                if (err < 0)
1798                        goto out_err;
1799
1800        }
1801
1802out_err:
1803        if (total_written > 0)
1804                err = total_written;
1805out:
1806        release_sock(sk);
1807        return err;
1808}
1809
1810
1811static int
1812vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1813                     int flags)
1814{
1815        struct sock *sk;
1816        struct vsock_sock *vsk;
1817        const struct vsock_transport *transport;
1818        int err;
1819        size_t target;
1820        ssize_t copied;
1821        long timeout;
1822        struct vsock_transport_recv_notify_data recv_data;
1823
1824        DEFINE_WAIT(wait);
1825
1826        sk = sock->sk;
1827        vsk = vsock_sk(sk);
1828        transport = vsk->transport;
1829        err = 0;
1830
1831        lock_sock(sk);
1832
1833        if (!transport || sk->sk_state != TCP_ESTABLISHED) {
1834                /* Recvmsg is supposed to return 0 if a peer performs an
1835                 * orderly shutdown. Differentiate between that case and when a
1836                 * peer has not connected or a local shutdown occured with the
1837                 * SOCK_DONE flag.
1838                 */
1839                if (sock_flag(sk, SOCK_DONE))
1840                        err = 0;
1841                else
1842                        err = -ENOTCONN;
1843
1844                goto out;
1845        }
1846
1847        if (flags & MSG_OOB) {
1848                err = -EOPNOTSUPP;
1849                goto out;
1850        }
1851
1852        /* We don't check peer_shutdown flag here since peer may actually shut
1853         * down, but there can be data in the queue that a local socket can
1854         * receive.
1855         */
1856        if (sk->sk_shutdown & RCV_SHUTDOWN) {
1857                err = 0;
1858                goto out;
1859        }
1860
1861        /* It is valid on Linux to pass in a zero-length receive buffer.  This
1862         * is not an error.  We may as well bail out now.
1863         */
1864        if (!len) {
1865                err = 0;
1866                goto out;
1867        }
1868
1869        /* We must not copy less than target bytes into the user's buffer
1870         * before returning successfully, so we wait for the consume queue to
1871         * have that much data to consume before dequeueing.  Note that this
1872         * makes it impossible to handle cases where target is greater than the
1873         * queue size.
1874         */
1875        target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1876        if (target >= transport->stream_rcvhiwat(vsk)) {
1877                err = -ENOMEM;
1878                goto out;
1879        }
1880        timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1881        copied = 0;
1882
1883        err = transport->notify_recv_init(vsk, target, &recv_data);
1884        if (err < 0)
1885                goto out;
1886
1887
1888        while (1) {
1889                s64 ready;
1890
1891                prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1892                ready = vsock_stream_has_data(vsk);
1893
1894                if (ready == 0) {
1895                        if (sk->sk_err != 0 ||
1896                            (sk->sk_shutdown & RCV_SHUTDOWN) ||
1897                            (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1898                                finish_wait(sk_sleep(sk), &wait);
1899                                break;
1900                        }
1901                        /* Don't wait for non-blocking sockets. */
1902                        if (timeout == 0) {
1903                                err = -EAGAIN;
1904                                finish_wait(sk_sleep(sk), &wait);
1905                                break;
1906                        }
1907
1908                        err = transport->notify_recv_pre_block(
1909                                        vsk, target, &recv_data);
1910                        if (err < 0) {
1911                                finish_wait(sk_sleep(sk), &wait);
1912                                break;
1913                        }
1914                        release_sock(sk);
1915                        timeout = schedule_timeout(timeout);
1916                        lock_sock(sk);
1917
1918                        if (signal_pending(current)) {
1919                                err = sock_intr_errno(timeout);
1920                                finish_wait(sk_sleep(sk), &wait);
1921                                break;
1922                        } else if (timeout == 0) {
1923                                err = -EAGAIN;
1924                                finish_wait(sk_sleep(sk), &wait);
1925                                break;
1926                        }
1927                } else {
1928                        ssize_t read;
1929
1930                        finish_wait(sk_sleep(sk), &wait);
1931
1932                        if (ready < 0) {
1933                                /* Invalid queue pair content. XXX This should
1934                                * be changed to a connection reset in a later
1935                                * change.
1936                                */
1937
1938                                err = -ENOMEM;
1939                                goto out;
1940                        }
1941
1942                        err = transport->notify_recv_pre_dequeue(
1943                                        vsk, target, &recv_data);
1944                        if (err < 0)
1945                                break;
1946
1947                        read = transport->stream_dequeue(
1948                                        vsk, msg,
1949                                        len - copied, flags);
1950                        if (read < 0) {
1951                                err = -ENOMEM;
1952                                break;
1953                        }
1954
1955                        copied += read;
1956
1957                        err = transport->notify_recv_post_dequeue(
1958                                        vsk, target, read,
1959                                        !(flags & MSG_PEEK), &recv_data);
1960                        if (err < 0)
1961                                goto out;
1962
1963                        if (read >= target || flags & MSG_PEEK)
1964                                break;
1965
1966                        target -= read;
1967                }
1968        }
1969
1970        if (sk->sk_err)
1971                err = -sk->sk_err;
1972        else if (sk->sk_shutdown & RCV_SHUTDOWN)
1973                err = 0;
1974
1975        if (copied > 0)
1976                err = copied;
1977
1978out:
1979        release_sock(sk);
1980        return err;
1981}
1982
1983static const struct proto_ops vsock_stream_ops = {
1984        .family = PF_VSOCK,
1985        .owner = THIS_MODULE,
1986        .release = vsock_release,
1987        .bind = vsock_bind,
1988        .connect = vsock_stream_connect,
1989        .socketpair = sock_no_socketpair,
1990        .accept = vsock_accept,
1991        .getname = vsock_getname,
1992        .poll = vsock_poll,
1993        .ioctl = sock_no_ioctl,
1994        .listen = vsock_listen,
1995        .shutdown = vsock_shutdown,
1996        .setsockopt = vsock_stream_setsockopt,
1997        .getsockopt = vsock_stream_getsockopt,
1998        .sendmsg = vsock_stream_sendmsg,
1999        .recvmsg = vsock_stream_recvmsg,
2000        .mmap = sock_no_mmap,
2001        .sendpage = sock_no_sendpage,
2002};
2003
2004static int vsock_create(struct net *net, struct socket *sock,
2005                        int protocol, int kern)
2006{
2007        struct vsock_sock *vsk;
2008        struct sock *sk;
2009        int ret;
2010
2011        if (!sock)
2012                return -EINVAL;
2013
2014        if (protocol && protocol != PF_VSOCK)
2015                return -EPROTONOSUPPORT;
2016
2017        switch (sock->type) {
2018        case SOCK_DGRAM:
2019                sock->ops = &vsock_dgram_ops;
2020                break;
2021        case SOCK_STREAM:
2022                sock->ops = &vsock_stream_ops;
2023                break;
2024        default:
2025                return -ESOCKTNOSUPPORT;
2026        }
2027
2028        sock->state = SS_UNCONNECTED;
2029
2030        sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2031        if (!sk)
2032                return -ENOMEM;
2033
2034        vsk = vsock_sk(sk);
2035
2036        if (sock->type == SOCK_DGRAM) {
2037                ret = vsock_assign_transport(vsk, NULL);
2038                if (ret < 0) {
2039                        sock_put(sk);
2040                        return ret;
2041                }
2042        }
2043
2044        vsock_insert_unbound(vsk);
2045
2046        return 0;
2047}
2048
2049static const struct net_proto_family vsock_family_ops = {
2050        .family = AF_VSOCK,
2051        .create = vsock_create,
2052        .owner = THIS_MODULE,
2053};
2054
2055static long vsock_dev_do_ioctl(struct file *filp,
2056                               unsigned int cmd, void __user *ptr)
2057{
2058        u32 __user *p = ptr;
2059        u32 cid = VMADDR_CID_ANY;
2060        int retval = 0;
2061
2062        switch (cmd) {
2063        case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2064                /* To be compatible with the VMCI behavior, we prioritize the
2065                 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2066                 */
2067                if (transport_g2h)
2068                        cid = transport_g2h->get_local_cid();
2069                else if (transport_h2g)
2070                        cid = transport_h2g->get_local_cid();
2071
2072                if (put_user(cid, p) != 0)
2073                        retval = -EFAULT;
2074                break;
2075
2076        default:
2077                pr_err("Unknown ioctl %d\n", cmd);
2078                retval = -EINVAL;
2079        }
2080
2081        return retval;
2082}
2083
2084static long vsock_dev_ioctl(struct file *filp,
2085                            unsigned int cmd, unsigned long arg)
2086{
2087        return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2088}
2089
2090#ifdef CONFIG_COMPAT
2091static long vsock_dev_compat_ioctl(struct file *filp,
2092                                   unsigned int cmd, unsigned long arg)
2093{
2094        return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2095}
2096#endif
2097
2098static const struct file_operations vsock_device_ops = {
2099        .owner          = THIS_MODULE,
2100        .unlocked_ioctl = vsock_dev_ioctl,
2101#ifdef CONFIG_COMPAT
2102        .compat_ioctl   = vsock_dev_compat_ioctl,
2103#endif
2104        .open           = nonseekable_open,
2105};
2106
2107static struct miscdevice vsock_device = {
2108        .name           = "vsock",
2109        .fops           = &vsock_device_ops,
2110};
2111
2112static int __init vsock_init(void)
2113{
2114        int err = 0;
2115
2116        vsock_init_tables();
2117
2118        vsock_proto.owner = THIS_MODULE;
2119        vsock_device.minor = MISC_DYNAMIC_MINOR;
2120        err = misc_register(&vsock_device);
2121        if (err) {
2122                pr_err("Failed to register misc device\n");
2123                goto err_reset_transport;
2124        }
2125
2126        err = proto_register(&vsock_proto, 1);  /* we want our slab */
2127        if (err) {
2128                pr_err("Cannot register vsock protocol\n");
2129                goto err_deregister_misc;
2130        }
2131
2132        err = sock_register(&vsock_family_ops);
2133        if (err) {
2134                pr_err("could not register af_vsock (%d) address family: %d\n",
2135                       AF_VSOCK, err);
2136                goto err_unregister_proto;
2137        }
2138
2139        return 0;
2140
2141err_unregister_proto:
2142        proto_unregister(&vsock_proto);
2143err_deregister_misc:
2144        misc_deregister(&vsock_device);
2145err_reset_transport:
2146        return err;
2147}
2148
2149static void __exit vsock_exit(void)
2150{
2151        misc_deregister(&vsock_device);
2152        sock_unregister(AF_VSOCK);
2153        proto_unregister(&vsock_proto);
2154}
2155
2156const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2157{
2158        return vsk->transport;
2159}
2160EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2161
2162int vsock_core_register(const struct vsock_transport *t, int features)
2163{
2164        const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2165        int err = mutex_lock_interruptible(&vsock_register_mutex);
2166
2167        if (err)
2168                return err;
2169
2170        t_h2g = transport_h2g;
2171        t_g2h = transport_g2h;
2172        t_dgram = transport_dgram;
2173        t_local = transport_local;
2174
2175        if (features & VSOCK_TRANSPORT_F_H2G) {
2176                if (t_h2g) {
2177                        err = -EBUSY;
2178                        goto err_busy;
2179                }
2180                t_h2g = t;
2181        }
2182
2183        if (features & VSOCK_TRANSPORT_F_G2H) {
2184                if (t_g2h) {
2185                        err = -EBUSY;
2186                        goto err_busy;
2187                }
2188                t_g2h = t;
2189        }
2190
2191        if (features & VSOCK_TRANSPORT_F_DGRAM) {
2192                if (t_dgram) {
2193                        err = -EBUSY;
2194                        goto err_busy;
2195                }
2196                t_dgram = t;
2197        }
2198
2199        if (features & VSOCK_TRANSPORT_F_LOCAL) {
2200                if (t_local) {
2201                        err = -EBUSY;
2202                        goto err_busy;
2203                }
2204                t_local = t;
2205        }
2206
2207        transport_h2g = t_h2g;
2208        transport_g2h = t_g2h;
2209        transport_dgram = t_dgram;
2210        transport_local = t_local;
2211
2212err_busy:
2213        mutex_unlock(&vsock_register_mutex);
2214        return err;
2215}
2216EXPORT_SYMBOL_GPL(vsock_core_register);
2217
2218void vsock_core_unregister(const struct vsock_transport *t)
2219{
2220        mutex_lock(&vsock_register_mutex);
2221
2222        if (transport_h2g == t)
2223                transport_h2g = NULL;
2224
2225        if (transport_g2h == t)
2226                transport_g2h = NULL;
2227
2228        if (transport_dgram == t)
2229                transport_dgram = NULL;
2230
2231        if (transport_local == t)
2232                transport_local = NULL;
2233
2234        mutex_unlock(&vsock_register_mutex);
2235}
2236EXPORT_SYMBOL_GPL(vsock_core_unregister);
2237
2238module_init(vsock_init);
2239module_exit(vsock_exit);
2240
2241MODULE_AUTHOR("VMware, Inc.");
2242MODULE_DESCRIPTION("VMware Virtual Socket Family");
2243MODULE_VERSION("1.0.2.0-k");
2244MODULE_LICENSE("GPL v2");
2245