linux/security/integrity/ima/ima_crypto.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2005,2006,2007,2008 IBM Corporation
   3 *
   4 * Authors:
   5 * Mimi Zohar <zohar@us.ibm.com>
   6 * Kylene Hall <kjhall@us.ibm.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation, version 2 of the License.
  11 *
  12 * File: ima_crypto.c
  13 *      Calculates md5/sha1 file hash, template hash, boot-aggreate hash
  14 */
  15
  16#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  17
  18#include <linux/kernel.h>
  19#include <linux/moduleparam.h>
  20#include <linux/ratelimit.h>
  21#include <linux/file.h>
  22#include <linux/crypto.h>
  23#include <linux/scatterlist.h>
  24#include <linux/err.h>
  25#include <linux/slab.h>
  26#include <crypto/hash.h>
  27
  28#include "ima.h"
  29
  30/* minimum file size for ahash use */
  31static unsigned long ima_ahash_minsize;
  32module_param_named(ahash_minsize, ima_ahash_minsize, ulong, 0644);
  33MODULE_PARM_DESC(ahash_minsize, "Minimum file size for ahash use");
  34
  35/* default is 0 - 1 page. */
  36static int ima_maxorder;
  37static unsigned int ima_bufsize = PAGE_SIZE;
  38
  39static int param_set_bufsize(const char *val, const struct kernel_param *kp)
  40{
  41        unsigned long long size;
  42        int order;
  43
  44        size = memparse(val, NULL);
  45        order = get_order(size);
  46        if (order >= MAX_ORDER)
  47                return -EINVAL;
  48        ima_maxorder = order;
  49        ima_bufsize = PAGE_SIZE << order;
  50        return 0;
  51}
  52
  53static const struct kernel_param_ops param_ops_bufsize = {
  54        .set = param_set_bufsize,
  55        .get = param_get_uint,
  56};
  57#define param_check_bufsize(name, p) __param_check(name, p, unsigned int)
  58
  59module_param_named(ahash_bufsize, ima_bufsize, bufsize, 0644);
  60MODULE_PARM_DESC(ahash_bufsize, "Maximum ahash buffer size");
  61
  62static struct crypto_shash *ima_shash_tfm;
  63static struct crypto_ahash *ima_ahash_tfm;
  64
  65int __init ima_init_crypto(void)
  66{
  67        long rc;
  68
  69        ima_shash_tfm = crypto_alloc_shash(hash_algo_name[ima_hash_algo], 0, 0);
  70        if (IS_ERR(ima_shash_tfm)) {
  71                rc = PTR_ERR(ima_shash_tfm);
  72                pr_err("Can not allocate %s (reason: %ld)\n",
  73                       hash_algo_name[ima_hash_algo], rc);
  74                return rc;
  75        }
  76        pr_info("Allocated hash algorithm: %s\n",
  77                hash_algo_name[ima_hash_algo]);
  78        return 0;
  79}
  80
  81static struct crypto_shash *ima_alloc_tfm(enum hash_algo algo)
  82{
  83        struct crypto_shash *tfm = ima_shash_tfm;
  84        int rc;
  85
  86        if (algo < 0 || algo >= HASH_ALGO__LAST)
  87                algo = ima_hash_algo;
  88
  89        if (algo != ima_hash_algo) {
  90                tfm = crypto_alloc_shash(hash_algo_name[algo], 0, 0);
  91                if (IS_ERR(tfm)) {
  92                        rc = PTR_ERR(tfm);
  93                        pr_err("Can not allocate %s (reason: %d)\n",
  94                               hash_algo_name[algo], rc);
  95                }
  96        }
  97        return tfm;
  98}
  99
 100static void ima_free_tfm(struct crypto_shash *tfm)
 101{
 102        if (tfm != ima_shash_tfm)
 103                crypto_free_shash(tfm);
 104}
 105
 106/**
 107 * ima_alloc_pages() - Allocate contiguous pages.
 108 * @max_size:       Maximum amount of memory to allocate.
 109 * @allocated_size: Returned size of actual allocation.
 110 * @last_warn:      Should the min_size allocation warn or not.
 111 *
 112 * Tries to do opportunistic allocation for memory first trying to allocate
 113 * max_size amount of memory and then splitting that until zero order is
 114 * reached. Allocation is tried without generating allocation warnings unless
 115 * last_warn is set. Last_warn set affects only last allocation of zero order.
 116 *
 117 * By default, ima_maxorder is 0 and it is equivalent to kmalloc(GFP_KERNEL)
 118 *
 119 * Return pointer to allocated memory, or NULL on failure.
 120 */
 121static void *ima_alloc_pages(loff_t max_size, size_t *allocated_size,
 122                             int last_warn)
 123{
 124        void *ptr;
 125        int order = ima_maxorder;
 126        gfp_t gfp_mask = __GFP_RECLAIM | __GFP_NOWARN | __GFP_NORETRY;
 127
 128        if (order)
 129                order = min(get_order(max_size), order);
 130
 131        for (; order; order--) {
 132                ptr = (void *)__get_free_pages(gfp_mask, order);
 133                if (ptr) {
 134                        *allocated_size = PAGE_SIZE << order;
 135                        return ptr;
 136                }
 137        }
 138
 139        /* order is zero - one page */
 140
 141        gfp_mask = GFP_KERNEL;
 142
 143        if (!last_warn)
 144                gfp_mask |= __GFP_NOWARN;
 145
 146        ptr = (void *)__get_free_pages(gfp_mask, 0);
 147        if (ptr) {
 148                *allocated_size = PAGE_SIZE;
 149                return ptr;
 150        }
 151
 152        *allocated_size = 0;
 153        return NULL;
 154}
 155
 156/**
 157 * ima_free_pages() - Free pages allocated by ima_alloc_pages().
 158 * @ptr:  Pointer to allocated pages.
 159 * @size: Size of allocated buffer.
 160 */
 161static void ima_free_pages(void *ptr, size_t size)
 162{
 163        if (!ptr)
 164                return;
 165        free_pages((unsigned long)ptr, get_order(size));
 166}
 167
 168static struct crypto_ahash *ima_alloc_atfm(enum hash_algo algo)
 169{
 170        struct crypto_ahash *tfm = ima_ahash_tfm;
 171        int rc;
 172
 173        if (algo < 0 || algo >= HASH_ALGO__LAST)
 174                algo = ima_hash_algo;
 175
 176        if (algo != ima_hash_algo || !tfm) {
 177                tfm = crypto_alloc_ahash(hash_algo_name[algo], 0, 0);
 178                if (!IS_ERR(tfm)) {
 179                        if (algo == ima_hash_algo)
 180                                ima_ahash_tfm = tfm;
 181                } else {
 182                        rc = PTR_ERR(tfm);
 183                        pr_err("Can not allocate %s (reason: %d)\n",
 184                               hash_algo_name[algo], rc);
 185                }
 186        }
 187        return tfm;
 188}
 189
 190static void ima_free_atfm(struct crypto_ahash *tfm)
 191{
 192        if (tfm != ima_ahash_tfm)
 193                crypto_free_ahash(tfm);
 194}
 195
 196static inline int ahash_wait(int err, struct crypto_wait *wait)
 197{
 198
 199        err = crypto_wait_req(err, wait);
 200
 201        if (err)
 202                pr_crit_ratelimited("ahash calculation failed: err: %d\n", err);
 203
 204        return err;
 205}
 206
 207static int ima_calc_file_hash_atfm(struct file *file,
 208                                   struct ima_digest_data *hash,
 209                                   struct crypto_ahash *tfm)
 210{
 211        loff_t i_size, offset;
 212        char *rbuf[2] = { NULL, };
 213        int rc, rbuf_len, active = 0, ahash_rc = 0;
 214        struct ahash_request *req;
 215        struct scatterlist sg[1];
 216        struct crypto_wait wait;
 217        size_t rbuf_size[2];
 218
 219        hash->length = crypto_ahash_digestsize(tfm);
 220
 221        req = ahash_request_alloc(tfm, GFP_KERNEL);
 222        if (!req)
 223                return -ENOMEM;
 224
 225        crypto_init_wait(&wait);
 226        ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
 227                                   CRYPTO_TFM_REQ_MAY_SLEEP,
 228                                   crypto_req_done, &wait);
 229
 230        rc = ahash_wait(crypto_ahash_init(req), &wait);
 231        if (rc)
 232                goto out1;
 233
 234        i_size = i_size_read(file_inode(file));
 235
 236        if (i_size == 0)
 237                goto out2;
 238
 239        /*
 240         * Try to allocate maximum size of memory.
 241         * Fail if even a single page cannot be allocated.
 242         */
 243        rbuf[0] = ima_alloc_pages(i_size, &rbuf_size[0], 1);
 244        if (!rbuf[0]) {
 245                rc = -ENOMEM;
 246                goto out1;
 247        }
 248
 249        /* Only allocate one buffer if that is enough. */
 250        if (i_size > rbuf_size[0]) {
 251                /*
 252                 * Try to allocate secondary buffer. If that fails fallback to
 253                 * using single buffering. Use previous memory allocation size
 254                 * as baseline for possible allocation size.
 255                 */
 256                rbuf[1] = ima_alloc_pages(i_size - rbuf_size[0],
 257                                          &rbuf_size[1], 0);
 258        }
 259
 260        for (offset = 0; offset < i_size; offset += rbuf_len) {
 261                if (!rbuf[1] && offset) {
 262                        /* Not using two buffers, and it is not the first
 263                         * read/request, wait for the completion of the
 264                         * previous ahash_update() request.
 265                         */
 266                        rc = ahash_wait(ahash_rc, &wait);
 267                        if (rc)
 268                                goto out3;
 269                }
 270                /* read buffer */
 271                rbuf_len = min_t(loff_t, i_size - offset, rbuf_size[active]);
 272                rc = integrity_kernel_read(file, offset, rbuf[active],
 273                                           rbuf_len);
 274                if (rc != rbuf_len) {
 275                        if (rc >= 0)
 276                                rc = -EINVAL;
 277                        /*
 278                         * Forward current rc, do not overwrite with return value
 279                         * from ahash_wait()
 280                         */
 281                        ahash_wait(ahash_rc, &wait);
 282                        goto out3;
 283                }
 284
 285                if (rbuf[1] && offset) {
 286                        /* Using two buffers, and it is not the first
 287                         * read/request, wait for the completion of the
 288                         * previous ahash_update() request.
 289                         */
 290                        rc = ahash_wait(ahash_rc, &wait);
 291                        if (rc)
 292                                goto out3;
 293                }
 294
 295                sg_init_one(&sg[0], rbuf[active], rbuf_len);
 296                ahash_request_set_crypt(req, sg, NULL, rbuf_len);
 297
 298                ahash_rc = crypto_ahash_update(req);
 299
 300                if (rbuf[1])
 301                        active = !active; /* swap buffers, if we use two */
 302        }
 303        /* wait for the last update request to complete */
 304        rc = ahash_wait(ahash_rc, &wait);
 305out3:
 306        ima_free_pages(rbuf[0], rbuf_size[0]);
 307        ima_free_pages(rbuf[1], rbuf_size[1]);
 308out2:
 309        if (!rc) {
 310                ahash_request_set_crypt(req, NULL, hash->digest, 0);
 311                rc = ahash_wait(crypto_ahash_final(req), &wait);
 312        }
 313out1:
 314        ahash_request_free(req);
 315        return rc;
 316}
 317
 318static int ima_calc_file_ahash(struct file *file, struct ima_digest_data *hash)
 319{
 320        struct crypto_ahash *tfm;
 321        int rc;
 322
 323        tfm = ima_alloc_atfm(hash->algo);
 324        if (IS_ERR(tfm))
 325                return PTR_ERR(tfm);
 326
 327        rc = ima_calc_file_hash_atfm(file, hash, tfm);
 328
 329        ima_free_atfm(tfm);
 330
 331        return rc;
 332}
 333
 334static int ima_calc_file_hash_tfm(struct file *file,
 335                                  struct ima_digest_data *hash,
 336                                  struct crypto_shash *tfm)
 337{
 338        loff_t i_size, offset = 0;
 339        char *rbuf;
 340        int rc;
 341        SHASH_DESC_ON_STACK(shash, tfm);
 342
 343        shash->tfm = tfm;
 344        shash->flags = 0;
 345
 346        hash->length = crypto_shash_digestsize(tfm);
 347
 348        rc = crypto_shash_init(shash);
 349        if (rc != 0)
 350                return rc;
 351
 352        i_size = i_size_read(file_inode(file));
 353
 354        if (i_size == 0)
 355                goto out;
 356
 357        rbuf = kzalloc(PAGE_SIZE, GFP_KERNEL);
 358        if (!rbuf)
 359                return -ENOMEM;
 360
 361        while (offset < i_size) {
 362                int rbuf_len;
 363
 364                rbuf_len = integrity_kernel_read(file, offset, rbuf, PAGE_SIZE);
 365                if (rbuf_len < 0) {
 366                        rc = rbuf_len;
 367                        break;
 368                }
 369                if (rbuf_len == 0)
 370                        break;
 371                offset += rbuf_len;
 372
 373                rc = crypto_shash_update(shash, rbuf, rbuf_len);
 374                if (rc)
 375                        break;
 376        }
 377        kfree(rbuf);
 378out:
 379        if (!rc)
 380                rc = crypto_shash_final(shash, hash->digest);
 381        return rc;
 382}
 383
 384static int ima_calc_file_shash(struct file *file, struct ima_digest_data *hash)
 385{
 386        struct crypto_shash *tfm;
 387        int rc;
 388
 389        tfm = ima_alloc_tfm(hash->algo);
 390        if (IS_ERR(tfm))
 391                return PTR_ERR(tfm);
 392
 393        rc = ima_calc_file_hash_tfm(file, hash, tfm);
 394
 395        ima_free_tfm(tfm);
 396
 397        return rc;
 398}
 399
 400/*
 401 * ima_calc_file_hash - calculate file hash
 402 *
 403 * Asynchronous hash (ahash) allows using HW acceleration for calculating
 404 * a hash. ahash performance varies for different data sizes on different
 405 * crypto accelerators. shash performance might be better for smaller files.
 406 * The 'ima.ahash_minsize' module parameter allows specifying the best
 407 * minimum file size for using ahash on the system.
 408 *
 409 * If the ima.ahash_minsize parameter is not specified, this function uses
 410 * shash for the hash calculation.  If ahash fails, it falls back to using
 411 * shash.
 412 */
 413int ima_calc_file_hash(struct file *file, struct ima_digest_data *hash)
 414{
 415        loff_t i_size;
 416        int rc;
 417        struct file *f = file;
 418        bool new_file_instance = false, modified_mode = false;
 419
 420        /*
 421         * For consistency, fail file's opened with the O_DIRECT flag on
 422         * filesystems mounted with/without DAX option.
 423         */
 424        if (file->f_flags & O_DIRECT) {
 425                hash->length = hash_digest_size[ima_hash_algo];
 426                hash->algo = ima_hash_algo;
 427                return -EINVAL;
 428        }
 429
 430        /* Open a new file instance in O_RDONLY if we cannot read */
 431        if (!(file->f_mode & FMODE_READ)) {
 432                int flags = file->f_flags & ~(O_WRONLY | O_APPEND |
 433                                O_TRUNC | O_CREAT | O_NOCTTY | O_EXCL);
 434                flags |= O_RDONLY;
 435                f = dentry_open(&file->f_path, flags, file->f_cred);
 436                if (IS_ERR(f)) {
 437                        /*
 438                         * Cannot open the file again, lets modify f_mode
 439                         * of original and continue
 440                         */
 441                        pr_info_ratelimited("Unable to reopen file for reading.\n");
 442                        f = file;
 443                        f->f_mode |= FMODE_READ;
 444                        modified_mode = true;
 445                } else {
 446                        new_file_instance = true;
 447                }
 448        }
 449
 450        i_size = i_size_read(file_inode(f));
 451
 452        if (ima_ahash_minsize && i_size >= ima_ahash_minsize) {
 453                rc = ima_calc_file_ahash(f, hash);
 454                if (!rc)
 455                        goto out;
 456        }
 457
 458        rc = ima_calc_file_shash(f, hash);
 459out:
 460        if (new_file_instance)
 461                fput(f);
 462        else if (modified_mode)
 463                f->f_mode &= ~FMODE_READ;
 464        return rc;
 465}
 466
 467/*
 468 * Calculate the hash of template data
 469 */
 470static int ima_calc_field_array_hash_tfm(struct ima_field_data *field_data,
 471                                         struct ima_template_desc *td,
 472                                         int num_fields,
 473                                         struct ima_digest_data *hash,
 474                                         struct crypto_shash *tfm)
 475{
 476        SHASH_DESC_ON_STACK(shash, tfm);
 477        int rc, i;
 478
 479        shash->tfm = tfm;
 480        shash->flags = 0;
 481
 482        hash->length = crypto_shash_digestsize(tfm);
 483
 484        rc = crypto_shash_init(shash);
 485        if (rc != 0)
 486                return rc;
 487
 488        for (i = 0; i < num_fields; i++) {
 489                u8 buffer[IMA_EVENT_NAME_LEN_MAX + 1] = { 0 };
 490                u8 *data_to_hash = field_data[i].data;
 491                u32 datalen = field_data[i].len;
 492                u32 datalen_to_hash =
 493                    !ima_canonical_fmt ? datalen : cpu_to_le32(datalen);
 494
 495                if (strcmp(td->name, IMA_TEMPLATE_IMA_NAME) != 0) {
 496                        rc = crypto_shash_update(shash,
 497                                                (const u8 *) &datalen_to_hash,
 498                                                sizeof(datalen_to_hash));
 499                        if (rc)
 500                                break;
 501                } else if (strcmp(td->fields[i]->field_id, "n") == 0) {
 502                        memcpy(buffer, data_to_hash, datalen);
 503                        data_to_hash = buffer;
 504                        datalen = IMA_EVENT_NAME_LEN_MAX + 1;
 505                }
 506                rc = crypto_shash_update(shash, data_to_hash, datalen);
 507                if (rc)
 508                        break;
 509        }
 510
 511        if (!rc)
 512                rc = crypto_shash_final(shash, hash->digest);
 513
 514        return rc;
 515}
 516
 517int ima_calc_field_array_hash(struct ima_field_data *field_data,
 518                              struct ima_template_desc *desc, int num_fields,
 519                              struct ima_digest_data *hash)
 520{
 521        struct crypto_shash *tfm;
 522        int rc;
 523
 524        tfm = ima_alloc_tfm(hash->algo);
 525        if (IS_ERR(tfm))
 526                return PTR_ERR(tfm);
 527
 528        rc = ima_calc_field_array_hash_tfm(field_data, desc, num_fields,
 529                                           hash, tfm);
 530
 531        ima_free_tfm(tfm);
 532
 533        return rc;
 534}
 535
 536static int calc_buffer_ahash_atfm(const void *buf, loff_t len,
 537                                  struct ima_digest_data *hash,
 538                                  struct crypto_ahash *tfm)
 539{
 540        struct ahash_request *req;
 541        struct scatterlist sg;
 542        struct crypto_wait wait;
 543        int rc, ahash_rc = 0;
 544
 545        hash->length = crypto_ahash_digestsize(tfm);
 546
 547        req = ahash_request_alloc(tfm, GFP_KERNEL);
 548        if (!req)
 549                return -ENOMEM;
 550
 551        crypto_init_wait(&wait);
 552        ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
 553                                   CRYPTO_TFM_REQ_MAY_SLEEP,
 554                                   crypto_req_done, &wait);
 555
 556        rc = ahash_wait(crypto_ahash_init(req), &wait);
 557        if (rc)
 558                goto out;
 559
 560        sg_init_one(&sg, buf, len);
 561        ahash_request_set_crypt(req, &sg, NULL, len);
 562
 563        ahash_rc = crypto_ahash_update(req);
 564
 565        /* wait for the update request to complete */
 566        rc = ahash_wait(ahash_rc, &wait);
 567        if (!rc) {
 568                ahash_request_set_crypt(req, NULL, hash->digest, 0);
 569                rc = ahash_wait(crypto_ahash_final(req), &wait);
 570        }
 571out:
 572        ahash_request_free(req);
 573        return rc;
 574}
 575
 576static int calc_buffer_ahash(const void *buf, loff_t len,
 577                             struct ima_digest_data *hash)
 578{
 579        struct crypto_ahash *tfm;
 580        int rc;
 581
 582        tfm = ima_alloc_atfm(hash->algo);
 583        if (IS_ERR(tfm))
 584                return PTR_ERR(tfm);
 585
 586        rc = calc_buffer_ahash_atfm(buf, len, hash, tfm);
 587
 588        ima_free_atfm(tfm);
 589
 590        return rc;
 591}
 592
 593static int calc_buffer_shash_tfm(const void *buf, loff_t size,
 594                                struct ima_digest_data *hash,
 595                                struct crypto_shash *tfm)
 596{
 597        SHASH_DESC_ON_STACK(shash, tfm);
 598        unsigned int len;
 599        int rc;
 600
 601        shash->tfm = tfm;
 602        shash->flags = 0;
 603
 604        hash->length = crypto_shash_digestsize(tfm);
 605
 606        rc = crypto_shash_init(shash);
 607        if (rc != 0)
 608                return rc;
 609
 610        while (size) {
 611                len = size < PAGE_SIZE ? size : PAGE_SIZE;
 612                rc = crypto_shash_update(shash, buf, len);
 613                if (rc)
 614                        break;
 615                buf += len;
 616                size -= len;
 617        }
 618
 619        if (!rc)
 620                rc = crypto_shash_final(shash, hash->digest);
 621        return rc;
 622}
 623
 624static int calc_buffer_shash(const void *buf, loff_t len,
 625                             struct ima_digest_data *hash)
 626{
 627        struct crypto_shash *tfm;
 628        int rc;
 629
 630        tfm = ima_alloc_tfm(hash->algo);
 631        if (IS_ERR(tfm))
 632                return PTR_ERR(tfm);
 633
 634        rc = calc_buffer_shash_tfm(buf, len, hash, tfm);
 635
 636        ima_free_tfm(tfm);
 637        return rc;
 638}
 639
 640int ima_calc_buffer_hash(const void *buf, loff_t len,
 641                         struct ima_digest_data *hash)
 642{
 643        int rc;
 644
 645        if (ima_ahash_minsize && len >= ima_ahash_minsize) {
 646                rc = calc_buffer_ahash(buf, len, hash);
 647                if (!rc)
 648                        return 0;
 649        }
 650
 651        return calc_buffer_shash(buf, len, hash);
 652}
 653
 654static void ima_pcrread(u32 idx, struct tpm_digest *d)
 655{
 656        if (!ima_tpm_chip)
 657                return;
 658
 659        if (tpm_pcr_read(ima_tpm_chip, idx, d) != 0)
 660                pr_err("Error Communicating to TPM chip\n");
 661}
 662
 663/*
 664 * The boot_aggregate is a cumulative hash over TPM registers 0 - 7.  With
 665 * TPM 1.2 the boot_aggregate was based on reading the SHA1 PCRs, but with
 666 * TPM 2.0 hash agility, TPM chips could support multiple TPM PCR banks,
 667 * allowing firmware to configure and enable different banks.
 668 *
 669 * Knowing which TPM bank is read to calculate the boot_aggregate digest
 670 * needs to be conveyed to a verifier.  For this reason, use the same
 671 * hash algorithm for reading the TPM PCRs as for calculating the boot
 672 * aggregate digest as stored in the measurement list.
 673 */
 674static int ima_calc_boot_aggregate_tfm(char *digest, u16 alg_id,
 675                                       struct crypto_shash *tfm)
 676{
 677        struct tpm_digest d = { .alg_id = alg_id, .digest = {0} };
 678        int rc;
 679        u32 i;
 680        SHASH_DESC_ON_STACK(shash, tfm);
 681
 682        shash->tfm = tfm;
 683        shash->flags = 0;
 684
 685        pr_devel("calculating the boot-aggregate based on TPM bank: %04x\n",
 686                 d.alg_id);
 687
 688        rc = crypto_shash_init(shash);
 689        if (rc != 0)
 690                return rc;
 691
 692        /* cumulative sha1 over tpm registers 0-7 */
 693        for (i = TPM_PCR0; i < TPM_PCR8; i++) {
 694                ima_pcrread(i, &d);
 695                /* now accumulate with current aggregate */
 696                rc = crypto_shash_update(shash, d.digest,
 697                                         crypto_shash_digestsize(tfm));
 698        }
 699        if (!rc)
 700                crypto_shash_final(shash, digest);
 701        return rc;
 702}
 703
 704int ima_calc_boot_aggregate(struct ima_digest_data *hash)
 705{
 706        struct crypto_shash *tfm;
 707        u16 crypto_id, alg_id;
 708        int rc, i, bank_idx = -1;
 709
 710        for (i = 0; i < ima_tpm_chip->nr_allocated_banks; i++) {
 711                crypto_id = ima_tpm_chip->allocated_banks[i].crypto_id;
 712                if (crypto_id == hash->algo) {
 713                        bank_idx = i;
 714                        break;
 715                }
 716
 717                if (crypto_id == HASH_ALGO_SHA256)
 718                        bank_idx = i;
 719
 720                if (bank_idx == -1 && crypto_id == HASH_ALGO_SHA1)
 721                        bank_idx = i;
 722        }
 723
 724        if (bank_idx == -1) {
 725                pr_err("No suitable TPM algorithm for boot aggregate\n");
 726                return 0;
 727        }
 728
 729        hash->algo = ima_tpm_chip->allocated_banks[bank_idx].crypto_id;
 730
 731        tfm = ima_alloc_tfm(hash->algo);
 732        if (IS_ERR(tfm))
 733                return PTR_ERR(tfm);
 734
 735        hash->length = crypto_shash_digestsize(tfm);
 736        alg_id = ima_tpm_chip->allocated_banks[bank_idx].alg_id;
 737        rc = ima_calc_boot_aggregate_tfm(hash->digest, alg_id, tfm);
 738
 739        ima_free_tfm(tfm);
 740
 741        return rc;
 742}
 743