linux/arch/arm64/kernel/process.c
<<
>>
Prefs
   1/*
   2 * Based on arch/arm/kernel/process.c
   3 *
   4 * Original Copyright (C) 1995  Linus Torvalds
   5 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
   6 * Copyright (C) 2012 ARM Ltd.
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
  19 */
  20
  21#include <stdarg.h>
  22
  23#include <linux/compat.h>
  24#include <linux/efi.h>
  25#include <linux/export.h>
  26#include <linux/sched.h>
  27#include <linux/sched/debug.h>
  28#include <linux/sched/task.h>
  29#include <linux/sched/task_stack.h>
  30#include <linux/kernel.h>
  31#include <linux/mm.h>
  32#include <linux/stddef.h>
  33#include <linux/unistd.h>
  34#include <linux/user.h>
  35#include <linux/delay.h>
  36#include <linux/reboot.h>
  37#include <linux/interrupt.h>
  38#include <linux/init.h>
  39#include <linux/cpu.h>
  40#include <linux/elfcore.h>
  41#include <linux/pm.h>
  42#include <linux/tick.h>
  43#include <linux/utsname.h>
  44#include <linux/uaccess.h>
  45#include <linux/random.h>
  46#include <linux/hw_breakpoint.h>
  47#include <linux/personality.h>
  48#include <linux/notifier.h>
  49#include <trace/events/power.h>
  50#include <linux/percpu.h>
  51#include <linux/thread_info.h>
  52
  53#include <asm/alternative.h>
  54#include <asm/arch_gicv3.h>
  55#include <asm/compat.h>
  56#include <asm/cacheflush.h>
  57#include <asm/exec.h>
  58#include <asm/fpsimd.h>
  59#include <asm/mmu_context.h>
  60#include <asm/processor.h>
  61#include <asm/pointer_auth.h>
  62#include <asm/stacktrace.h>
  63
  64#if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
  65#include <linux/stackprotector.h>
  66unsigned long __stack_chk_guard __read_mostly;
  67EXPORT_SYMBOL(__stack_chk_guard);
  68#endif
  69
  70/*
  71 * Function pointers to optional machine specific functions
  72 */
  73void (*pm_power_off)(void);
  74EXPORT_SYMBOL_GPL(pm_power_off);
  75
  76void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
  77
  78static void __cpu_do_idle(void)
  79{
  80        dsb(sy);
  81        wfi();
  82}
  83
  84static void __cpu_do_idle_irqprio(void)
  85{
  86        unsigned long pmr;
  87        unsigned long daif_bits;
  88
  89        daif_bits = read_sysreg(daif);
  90        write_sysreg(daif_bits | PSR_I_BIT, daif);
  91
  92        /*
  93         * Unmask PMR before going idle to make sure interrupts can
  94         * be raised.
  95         */
  96        pmr = gic_read_pmr();
  97        gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
  98
  99        __cpu_do_idle();
 100
 101        gic_write_pmr(pmr);
 102        write_sysreg(daif_bits, daif);
 103}
 104
 105/*
 106 *      cpu_do_idle()
 107 *
 108 *      Idle the processor (wait for interrupt).
 109 *
 110 *      If the CPU supports priority masking we must do additional work to
 111 *      ensure that interrupts are not masked at the PMR (because the core will
 112 *      not wake up if we block the wake up signal in the interrupt controller).
 113 */
 114void cpu_do_idle(void)
 115{
 116        if (system_uses_irq_prio_masking())
 117                __cpu_do_idle_irqprio();
 118        else
 119                __cpu_do_idle();
 120}
 121
 122/*
 123 * This is our default idle handler.
 124 */
 125void arch_cpu_idle(void)
 126{
 127        /*
 128         * This should do all the clock switching and wait for interrupt
 129         * tricks
 130         */
 131        cpu_do_idle();
 132        local_irq_enable();
 133}
 134
 135#ifdef CONFIG_HOTPLUG_CPU
 136void arch_cpu_idle_dead(void)
 137{
 138       cpu_die();
 139}
 140#endif
 141
 142/*
 143 * Called by kexec, immediately prior to machine_kexec().
 144 *
 145 * This must completely disable all secondary CPUs; simply causing those CPUs
 146 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
 147 * kexec'd kernel to use any and all RAM as it sees fit, without having to
 148 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
 149 * functionality embodied in disable_nonboot_cpus() to achieve this.
 150 */
 151void machine_shutdown(void)
 152{
 153        disable_nonboot_cpus();
 154}
 155
 156/*
 157 * Halting simply requires that the secondary CPUs stop performing any
 158 * activity (executing tasks, handling interrupts). smp_send_stop()
 159 * achieves this.
 160 */
 161void machine_halt(void)
 162{
 163        local_irq_disable();
 164        smp_send_stop();
 165        while (1);
 166}
 167
 168/*
 169 * Power-off simply requires that the secondary CPUs stop performing any
 170 * activity (executing tasks, handling interrupts). smp_send_stop()
 171 * achieves this. When the system power is turned off, it will take all CPUs
 172 * with it.
 173 */
 174void machine_power_off(void)
 175{
 176        local_irq_disable();
 177        smp_send_stop();
 178        if (pm_power_off)
 179                pm_power_off();
 180}
 181
 182/*
 183 * Restart requires that the secondary CPUs stop performing any activity
 184 * while the primary CPU resets the system. Systems with multiple CPUs must
 185 * provide a HW restart implementation, to ensure that all CPUs reset at once.
 186 * This is required so that any code running after reset on the primary CPU
 187 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
 188 * executing pre-reset code, and using RAM that the primary CPU's code wishes
 189 * to use. Implementing such co-ordination would be essentially impossible.
 190 */
 191void machine_restart(char *cmd)
 192{
 193        /* Disable interrupts first */
 194        local_irq_disable();
 195        smp_send_stop();
 196
 197        /*
 198         * UpdateCapsule() depends on the system being reset via
 199         * ResetSystem().
 200         */
 201        if (efi_enabled(EFI_RUNTIME_SERVICES))
 202                efi_reboot(reboot_mode, NULL);
 203
 204        /* Now call the architecture specific reboot code. */
 205        if (arm_pm_restart)
 206                arm_pm_restart(reboot_mode, cmd);
 207        else
 208                do_kernel_restart(cmd);
 209
 210        /*
 211         * Whoops - the architecture was unable to reboot.
 212         */
 213        printk("Reboot failed -- System halted\n");
 214        while (1);
 215}
 216
 217static void print_pstate(struct pt_regs *regs)
 218{
 219        u64 pstate = regs->pstate;
 220
 221        if (compat_user_mode(regs)) {
 222                printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
 223                        pstate,
 224                        pstate & COMPAT_PSR_N_BIT ? 'N' : 'n',
 225                        pstate & COMPAT_PSR_Z_BIT ? 'Z' : 'z',
 226                        pstate & COMPAT_PSR_C_BIT ? 'C' : 'c',
 227                        pstate & COMPAT_PSR_V_BIT ? 'V' : 'v',
 228                        pstate & COMPAT_PSR_Q_BIT ? 'Q' : 'q',
 229                        pstate & COMPAT_PSR_T_BIT ? "T32" : "A32",
 230                        pstate & COMPAT_PSR_E_BIT ? "BE" : "LE",
 231                        pstate & COMPAT_PSR_A_BIT ? 'A' : 'a',
 232                        pstate & COMPAT_PSR_I_BIT ? 'I' : 'i',
 233                        pstate & COMPAT_PSR_F_BIT ? 'F' : 'f');
 234        } else {
 235                printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO)\n",
 236                        pstate,
 237                        pstate & PSR_N_BIT ? 'N' : 'n',
 238                        pstate & PSR_Z_BIT ? 'Z' : 'z',
 239                        pstate & PSR_C_BIT ? 'C' : 'c',
 240                        pstate & PSR_V_BIT ? 'V' : 'v',
 241                        pstate & PSR_D_BIT ? 'D' : 'd',
 242                        pstate & PSR_A_BIT ? 'A' : 'a',
 243                        pstate & PSR_I_BIT ? 'I' : 'i',
 244                        pstate & PSR_F_BIT ? 'F' : 'f',
 245                        pstate & PSR_PAN_BIT ? '+' : '-',
 246                        pstate & PSR_UAO_BIT ? '+' : '-');
 247        }
 248}
 249
 250void __show_regs(struct pt_regs *regs)
 251{
 252        int i, top_reg;
 253        u64 lr, sp;
 254
 255        if (compat_user_mode(regs)) {
 256                lr = regs->compat_lr;
 257                sp = regs->compat_sp;
 258                top_reg = 12;
 259        } else {
 260                lr = regs->regs[30];
 261                sp = regs->sp;
 262                top_reg = 29;
 263        }
 264
 265        show_regs_print_info(KERN_DEFAULT);
 266        print_pstate(regs);
 267
 268        if (!user_mode(regs)) {
 269                printk("pc : %pS\n", (void *)regs->pc);
 270                printk("lr : %pS\n", (void *)lr);
 271        } else {
 272                printk("pc : %016llx\n", regs->pc);
 273                printk("lr : %016llx\n", lr);
 274        }
 275
 276        printk("sp : %016llx\n", sp);
 277
 278        if (system_uses_irq_prio_masking())
 279                printk("pmr_save: %08llx\n", regs->pmr_save);
 280
 281        i = top_reg;
 282
 283        while (i >= 0) {
 284                printk("x%-2d: %016llx ", i, regs->regs[i]);
 285                i--;
 286
 287                if (i % 2 == 0) {
 288                        pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
 289                        i--;
 290                }
 291
 292                pr_cont("\n");
 293        }
 294}
 295
 296void show_regs(struct pt_regs * regs)
 297{
 298        __show_regs(regs);
 299        dump_backtrace(regs, NULL);
 300}
 301
 302static void tls_thread_flush(void)
 303{
 304        write_sysreg(0, tpidr_el0);
 305
 306        if (is_compat_task()) {
 307                current->thread.uw.tp_value = 0;
 308
 309                /*
 310                 * We need to ensure ordering between the shadow state and the
 311                 * hardware state, so that we don't corrupt the hardware state
 312                 * with a stale shadow state during context switch.
 313                 */
 314                barrier();
 315                write_sysreg(0, tpidrro_el0);
 316        }
 317}
 318
 319void flush_thread(void)
 320{
 321        fpsimd_flush_thread();
 322        tls_thread_flush();
 323        flush_ptrace_hw_breakpoint(current);
 324}
 325
 326void release_thread(struct task_struct *dead_task)
 327{
 328}
 329
 330void arch_release_task_struct(struct task_struct *tsk)
 331{
 332        fpsimd_release_task(tsk);
 333}
 334
 335int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 336{
 337        if (current->mm)
 338                fpsimd_preserve_current_state();
 339        *dst = *src;
 340
 341        /* We rely on the above assignment to initialize dst's thread_flags: */
 342        BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
 343
 344        /*
 345         * Detach src's sve_state (if any) from dst so that it does not
 346         * get erroneously used or freed prematurely.  dst's sve_state
 347         * will be allocated on demand later on if dst uses SVE.
 348         * For consistency, also clear TIF_SVE here: this could be done
 349         * later in copy_process(), but to avoid tripping up future
 350         * maintainers it is best not to leave TIF_SVE and sve_state in
 351         * an inconsistent state, even temporarily.
 352         */
 353        dst->thread.sve_state = NULL;
 354        clear_tsk_thread_flag(dst, TIF_SVE);
 355
 356        return 0;
 357}
 358
 359asmlinkage void ret_from_fork(void) asm("ret_from_fork");
 360
 361int copy_thread(unsigned long clone_flags, unsigned long stack_start,
 362                unsigned long stk_sz, struct task_struct *p)
 363{
 364        struct pt_regs *childregs = task_pt_regs(p);
 365
 366        memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
 367
 368        /*
 369         * In case p was allocated the same task_struct pointer as some
 370         * other recently-exited task, make sure p is disassociated from
 371         * any cpu that may have run that now-exited task recently.
 372         * Otherwise we could erroneously skip reloading the FPSIMD
 373         * registers for p.
 374         */
 375        fpsimd_flush_task_state(p);
 376
 377        if (likely(!(p->flags & PF_KTHREAD))) {
 378                *childregs = *current_pt_regs();
 379                childregs->regs[0] = 0;
 380
 381                /*
 382                 * Read the current TLS pointer from tpidr_el0 as it may be
 383                 * out-of-sync with the saved value.
 384                 */
 385                *task_user_tls(p) = read_sysreg(tpidr_el0);
 386
 387                if (stack_start) {
 388                        if (is_compat_thread(task_thread_info(p)))
 389                                childregs->compat_sp = stack_start;
 390                        else
 391                                childregs->sp = stack_start;
 392                }
 393
 394                /*
 395                 * If a TLS pointer was passed to clone (4th argument), use it
 396                 * for the new thread.
 397                 */
 398                if (clone_flags & CLONE_SETTLS)
 399                        p->thread.uw.tp_value = childregs->regs[3];
 400        } else {
 401                memset(childregs, 0, sizeof(struct pt_regs));
 402                childregs->pstate = PSR_MODE_EL1h;
 403                if (IS_ENABLED(CONFIG_ARM64_UAO) &&
 404                    cpus_have_const_cap(ARM64_HAS_UAO))
 405                        childregs->pstate |= PSR_UAO_BIT;
 406
 407                if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE)
 408                        set_ssbs_bit(childregs);
 409
 410                if (system_uses_irq_prio_masking())
 411                        childregs->pmr_save = GIC_PRIO_IRQON;
 412
 413                p->thread.cpu_context.x19 = stack_start;
 414                p->thread.cpu_context.x20 = stk_sz;
 415        }
 416        p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
 417        p->thread.cpu_context.sp = (unsigned long)childregs;
 418
 419        ptrace_hw_copy_thread(p);
 420
 421        return 0;
 422}
 423
 424void tls_preserve_current_state(void)
 425{
 426        *task_user_tls(current) = read_sysreg(tpidr_el0);
 427}
 428
 429static void tls_thread_switch(struct task_struct *next)
 430{
 431        tls_preserve_current_state();
 432
 433        if (is_compat_thread(task_thread_info(next)))
 434                write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
 435        else if (!arm64_kernel_unmapped_at_el0())
 436                write_sysreg(0, tpidrro_el0);
 437
 438        write_sysreg(*task_user_tls(next), tpidr_el0);
 439}
 440
 441/* Restore the UAO state depending on next's addr_limit */
 442void uao_thread_switch(struct task_struct *next)
 443{
 444        if (IS_ENABLED(CONFIG_ARM64_UAO)) {
 445                if (task_thread_info(next)->addr_limit == KERNEL_DS)
 446                        asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
 447                else
 448                        asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
 449        }
 450}
 451
 452/*
 453 * Force SSBS state on context-switch, since it may be lost after migrating
 454 * from a CPU which treats the bit as RES0 in a heterogeneous system.
 455 */
 456static void ssbs_thread_switch(struct task_struct *next)
 457{
 458        struct pt_regs *regs = task_pt_regs(next);
 459
 460        /*
 461         * Nothing to do for kernel threads, but 'regs' may be junk
 462         * (e.g. idle task) so check the flags and bail early.
 463         */
 464        if (unlikely(next->flags & PF_KTHREAD))
 465                return;
 466
 467        /* If the mitigation is enabled, then we leave SSBS clear. */
 468        if ((arm64_get_ssbd_state() == ARM64_SSBD_FORCE_ENABLE) ||
 469            test_tsk_thread_flag(next, TIF_SSBD))
 470                return;
 471
 472        if (compat_user_mode(regs))
 473                set_compat_ssbs_bit(regs);
 474        else if (user_mode(regs))
 475                set_ssbs_bit(regs);
 476}
 477
 478/*
 479 * We store our current task in sp_el0, which is clobbered by userspace. Keep a
 480 * shadow copy so that we can restore this upon entry from userspace.
 481 *
 482 * This is *only* for exception entry from EL0, and is not valid until we
 483 * __switch_to() a user task.
 484 */
 485DEFINE_PER_CPU(struct task_struct *, __entry_task);
 486
 487static void entry_task_switch(struct task_struct *next)
 488{
 489        __this_cpu_write(__entry_task, next);
 490}
 491
 492/*
 493 * Thread switching.
 494 */
 495__notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
 496                                struct task_struct *next)
 497{
 498        struct task_struct *last;
 499
 500        fpsimd_thread_switch(next);
 501        tls_thread_switch(next);
 502        hw_breakpoint_thread_switch(next);
 503        contextidr_thread_switch(next);
 504        entry_task_switch(next);
 505        uao_thread_switch(next);
 506        ptrauth_thread_switch(next);
 507        ssbs_thread_switch(next);
 508
 509        /*
 510         * Complete any pending TLB or cache maintenance on this CPU in case
 511         * the thread migrates to a different CPU.
 512         * This full barrier is also required by the membarrier system
 513         * call.
 514         */
 515        dsb(ish);
 516
 517        /* the actual thread switch */
 518        last = cpu_switch_to(prev, next);
 519
 520        return last;
 521}
 522
 523unsigned long get_wchan(struct task_struct *p)
 524{
 525        struct stackframe frame;
 526        unsigned long stack_page, ret = 0;
 527        int count = 0;
 528        if (!p || p == current || p->state == TASK_RUNNING)
 529                return 0;
 530
 531        stack_page = (unsigned long)try_get_task_stack(p);
 532        if (!stack_page)
 533                return 0;
 534
 535        frame.fp = thread_saved_fp(p);
 536        frame.pc = thread_saved_pc(p);
 537#ifdef CONFIG_FUNCTION_GRAPH_TRACER
 538        frame.graph = p->curr_ret_stack;
 539#endif
 540        do {
 541                if (unwind_frame(p, &frame))
 542                        goto out;
 543                if (!in_sched_functions(frame.pc)) {
 544                        ret = frame.pc;
 545                        goto out;
 546                }
 547        } while (count ++ < 16);
 548
 549out:
 550        put_task_stack(p);
 551        return ret;
 552}
 553
 554unsigned long arch_align_stack(unsigned long sp)
 555{
 556        if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 557                sp -= get_random_int() & ~PAGE_MASK;
 558        return sp & ~0xf;
 559}
 560
 561unsigned long arch_randomize_brk(struct mm_struct *mm)
 562{
 563        if (is_compat_task())
 564                return randomize_page(mm->brk, SZ_32M);
 565        else
 566                return randomize_page(mm->brk, SZ_1G);
 567}
 568
 569/*
 570 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
 571 */
 572void arch_setup_new_exec(void)
 573{
 574        current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0;
 575
 576        ptrauth_thread_init_user(current);
 577}
 578