linux/arch/x86/mm/tlb.c
<<
>>
Prefs
   1#include <linux/init.h>
   2
   3#include <linux/mm.h>
   4#include <linux/spinlock.h>
   5#include <linux/smp.h>
   6#include <linux/interrupt.h>
   7#include <linux/export.h>
   8#include <linux/cpu.h>
   9#include <linux/debugfs.h>
  10
  11#include <asm/tlbflush.h>
  12#include <asm/mmu_context.h>
  13#include <asm/nospec-branch.h>
  14#include <asm/cache.h>
  15#include <asm/apic.h>
  16
  17/*
  18 *      TLB flushing, formerly SMP-only
  19 *              c/o Linus Torvalds.
  20 *
  21 *      These mean you can really definitely utterly forget about
  22 *      writing to user space from interrupts. (Its not allowed anyway).
  23 *
  24 *      Optimizations Manfred Spraul <manfred@colorfullife.com>
  25 *
  26 *      More scalable flush, from Andi Kleen
  27 *
  28 *      Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
  29 */
  30
  31/*
  32 * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is
  33 * stored in cpu_tlb_state.last_user_mm_ibpb.
  34 */
  35#define LAST_USER_MM_IBPB       0x1UL
  36
  37/*
  38 * We get here when we do something requiring a TLB invalidation
  39 * but could not go invalidate all of the contexts.  We do the
  40 * necessary invalidation by clearing out the 'ctx_id' which
  41 * forces a TLB flush when the context is loaded.
  42 */
  43void clear_asid_other(void)
  44{
  45        u16 asid;
  46
  47        /*
  48         * This is only expected to be set if we have disabled
  49         * kernel _PAGE_GLOBAL pages.
  50         */
  51        if (!static_cpu_has(X86_FEATURE_PTI)) {
  52                WARN_ON_ONCE(1);
  53                return;
  54        }
  55
  56        for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
  57                /* Do not need to flush the current asid */
  58                if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
  59                        continue;
  60                /*
  61                 * Make sure the next time we go to switch to
  62                 * this asid, we do a flush:
  63                 */
  64                this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
  65        }
  66        this_cpu_write(cpu_tlbstate.invalidate_other, false);
  67}
  68
  69atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
  70
  71
  72static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
  73                            u16 *new_asid, bool *need_flush)
  74{
  75        u16 asid;
  76
  77        if (!static_cpu_has(X86_FEATURE_PCID)) {
  78                *new_asid = 0;
  79                *need_flush = true;
  80                return;
  81        }
  82
  83        if (this_cpu_read(cpu_tlbstate.invalidate_other))
  84                clear_asid_other();
  85
  86        for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
  87                if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
  88                    next->context.ctx_id)
  89                        continue;
  90
  91                *new_asid = asid;
  92                *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
  93                               next_tlb_gen);
  94                return;
  95        }
  96
  97        /*
  98         * We don't currently own an ASID slot on this CPU.
  99         * Allocate a slot.
 100         */
 101        *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
 102        if (*new_asid >= TLB_NR_DYN_ASIDS) {
 103                *new_asid = 0;
 104                this_cpu_write(cpu_tlbstate.next_asid, 1);
 105        }
 106        *need_flush = true;
 107}
 108
 109static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
 110{
 111        unsigned long new_mm_cr3;
 112
 113        if (need_flush) {
 114                invalidate_user_asid(new_asid);
 115                new_mm_cr3 = build_cr3(pgdir, new_asid);
 116        } else {
 117                new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
 118        }
 119
 120        /*
 121         * Caution: many callers of this function expect
 122         * that load_cr3() is serializing and orders TLB
 123         * fills with respect to the mm_cpumask writes.
 124         */
 125        write_cr3(new_mm_cr3);
 126}
 127
 128void leave_mm(int cpu)
 129{
 130        struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
 131
 132        /*
 133         * It's plausible that we're in lazy TLB mode while our mm is init_mm.
 134         * If so, our callers still expect us to flush the TLB, but there
 135         * aren't any user TLB entries in init_mm to worry about.
 136         *
 137         * This needs to happen before any other sanity checks due to
 138         * intel_idle's shenanigans.
 139         */
 140        if (loaded_mm == &init_mm)
 141                return;
 142
 143        /* Warn if we're not lazy. */
 144        WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
 145
 146        switch_mm(NULL, &init_mm, NULL);
 147}
 148EXPORT_SYMBOL_GPL(leave_mm);
 149
 150void switch_mm(struct mm_struct *prev, struct mm_struct *next,
 151               struct task_struct *tsk)
 152{
 153        unsigned long flags;
 154
 155        local_irq_save(flags);
 156        switch_mm_irqs_off(prev, next, tsk);
 157        local_irq_restore(flags);
 158}
 159
 160static void sync_current_stack_to_mm(struct mm_struct *mm)
 161{
 162        unsigned long sp = current_stack_pointer;
 163        pgd_t *pgd = pgd_offset(mm, sp);
 164
 165        if (pgtable_l5_enabled()) {
 166                if (unlikely(pgd_none(*pgd))) {
 167                        pgd_t *pgd_ref = pgd_offset_k(sp);
 168
 169                        set_pgd(pgd, *pgd_ref);
 170                }
 171        } else {
 172                /*
 173                 * "pgd" is faked.  The top level entries are "p4d"s, so sync
 174                 * the p4d.  This compiles to approximately the same code as
 175                 * the 5-level case.
 176                 */
 177                p4d_t *p4d = p4d_offset(pgd, sp);
 178
 179                if (unlikely(p4d_none(*p4d))) {
 180                        pgd_t *pgd_ref = pgd_offset_k(sp);
 181                        p4d_t *p4d_ref = p4d_offset(pgd_ref, sp);
 182
 183                        set_p4d(p4d, *p4d_ref);
 184                }
 185        }
 186}
 187
 188static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next)
 189{
 190        unsigned long next_tif = task_thread_info(next)->flags;
 191        unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB;
 192
 193        return (unsigned long)next->mm | ibpb;
 194}
 195
 196static void cond_ibpb(struct task_struct *next)
 197{
 198        if (!next || !next->mm)
 199                return;
 200
 201        /*
 202         * Both, the conditional and the always IBPB mode use the mm
 203         * pointer to avoid the IBPB when switching between tasks of the
 204         * same process. Using the mm pointer instead of mm->context.ctx_id
 205         * opens a hypothetical hole vs. mm_struct reuse, which is more or
 206         * less impossible to control by an attacker. Aside of that it
 207         * would only affect the first schedule so the theoretically
 208         * exposed data is not really interesting.
 209         */
 210        if (static_branch_likely(&switch_mm_cond_ibpb)) {
 211                unsigned long prev_mm, next_mm;
 212
 213                /*
 214                 * This is a bit more complex than the always mode because
 215                 * it has to handle two cases:
 216                 *
 217                 * 1) Switch from a user space task (potential attacker)
 218                 *    which has TIF_SPEC_IB set to a user space task
 219                 *    (potential victim) which has TIF_SPEC_IB not set.
 220                 *
 221                 * 2) Switch from a user space task (potential attacker)
 222                 *    which has TIF_SPEC_IB not set to a user space task
 223                 *    (potential victim) which has TIF_SPEC_IB set.
 224                 *
 225                 * This could be done by unconditionally issuing IBPB when
 226                 * a task which has TIF_SPEC_IB set is either scheduled in
 227                 * or out. Though that results in two flushes when:
 228                 *
 229                 * - the same user space task is scheduled out and later
 230                 *   scheduled in again and only a kernel thread ran in
 231                 *   between.
 232                 *
 233                 * - a user space task belonging to the same process is
 234                 *   scheduled in after a kernel thread ran in between
 235                 *
 236                 * - a user space task belonging to the same process is
 237                 *   scheduled in immediately.
 238                 *
 239                 * Optimize this with reasonably small overhead for the
 240                 * above cases. Mangle the TIF_SPEC_IB bit into the mm
 241                 * pointer of the incoming task which is stored in
 242                 * cpu_tlbstate.last_user_mm_ibpb for comparison.
 243                 */
 244                next_mm = mm_mangle_tif_spec_ib(next);
 245                prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb);
 246
 247                /*
 248                 * Issue IBPB only if the mm's are different and one or
 249                 * both have the IBPB bit set.
 250                 */
 251                if (next_mm != prev_mm &&
 252                    (next_mm | prev_mm) & LAST_USER_MM_IBPB)
 253                        indirect_branch_prediction_barrier();
 254
 255                this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm);
 256        }
 257
 258        if (static_branch_unlikely(&switch_mm_always_ibpb)) {
 259                /*
 260                 * Only flush when switching to a user space task with a
 261                 * different context than the user space task which ran
 262                 * last on this CPU.
 263                 */
 264                if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) {
 265                        indirect_branch_prediction_barrier();
 266                        this_cpu_write(cpu_tlbstate.last_user_mm, next->mm);
 267                }
 268        }
 269}
 270
 271void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
 272                        struct task_struct *tsk)
 273{
 274        struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
 275        u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
 276        unsigned cpu = smp_processor_id();
 277        u64 next_tlb_gen;
 278
 279        /*
 280         * NB: The scheduler will call us with prev == next when switching
 281         * from lazy TLB mode to normal mode if active_mm isn't changing.
 282         * When this happens, we don't assume that CR3 (and hence
 283         * cpu_tlbstate.loaded_mm) matches next.
 284         *
 285         * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
 286         */
 287
 288        /* We don't want flush_tlb_func_* to run concurrently with us. */
 289        if (IS_ENABLED(CONFIG_PROVE_LOCKING))
 290                WARN_ON_ONCE(!irqs_disabled());
 291
 292        /*
 293         * Verify that CR3 is what we think it is.  This will catch
 294         * hypothetical buggy code that directly switches to swapper_pg_dir
 295         * without going through leave_mm() / switch_mm_irqs_off() or that
 296         * does something like write_cr3(read_cr3_pa()).
 297         *
 298         * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
 299         * isn't free.
 300         */
 301#ifdef CONFIG_DEBUG_VM
 302        if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
 303                /*
 304                 * If we were to BUG here, we'd be very likely to kill
 305                 * the system so hard that we don't see the call trace.
 306                 * Try to recover instead by ignoring the error and doing
 307                 * a global flush to minimize the chance of corruption.
 308                 *
 309                 * (This is far from being a fully correct recovery.
 310                 *  Architecturally, the CPU could prefetch something
 311                 *  back into an incorrect ASID slot and leave it there
 312                 *  to cause trouble down the road.  It's better than
 313                 *  nothing, though.)
 314                 */
 315                __flush_tlb_all();
 316        }
 317#endif
 318        this_cpu_write(cpu_tlbstate.is_lazy, false);
 319
 320        /*
 321         * The membarrier system call requires a full memory barrier and
 322         * core serialization before returning to user-space, after
 323         * storing to rq->curr. Writing to CR3 provides that full
 324         * memory barrier and core serializing instruction.
 325         */
 326        if (real_prev == next) {
 327                VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
 328                           next->context.ctx_id);
 329
 330                /*
 331                 * We don't currently support having a real mm loaded without
 332                 * our cpu set in mm_cpumask().  We have all the bookkeeping
 333                 * in place to figure out whether we would need to flush
 334                 * if our cpu were cleared in mm_cpumask(), but we don't
 335                 * currently use it.
 336                 */
 337                if (WARN_ON_ONCE(real_prev != &init_mm &&
 338                                 !cpumask_test_cpu(cpu, mm_cpumask(next))))
 339                        cpumask_set_cpu(cpu, mm_cpumask(next));
 340
 341                return;
 342        } else {
 343                u16 new_asid;
 344                bool need_flush;
 345
 346                /*
 347                 * Avoid user/user BTB poisoning by flushing the branch
 348                 * predictor when switching between processes. This stops
 349                 * one process from doing Spectre-v2 attacks on another.
 350                 */
 351                cond_ibpb(tsk);
 352
 353                if (IS_ENABLED(CONFIG_VMAP_STACK)) {
 354                        /*
 355                         * If our current stack is in vmalloc space and isn't
 356                         * mapped in the new pgd, we'll double-fault.  Forcibly
 357                         * map it.
 358                         */
 359                        sync_current_stack_to_mm(next);
 360                }
 361
 362                /* Stop remote flushes for the previous mm */
 363                VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(real_prev)) &&
 364                                real_prev != &init_mm);
 365                cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
 366
 367                /*
 368                 * Start remote flushes and then read tlb_gen.
 369                 */
 370                cpumask_set_cpu(cpu, mm_cpumask(next));
 371                next_tlb_gen = atomic64_read(&next->context.tlb_gen);
 372
 373                choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
 374
 375                /* Let nmi_uaccess_okay() know that we're changing CR3. */
 376                this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
 377                barrier();
 378
 379                if (need_flush) {
 380                        this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
 381                        this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
 382                        load_new_mm_cr3(next->pgd, new_asid, true);
 383
 384                        trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
 385                } else {
 386                        /* The new ASID is already up to date. */
 387                        load_new_mm_cr3(next->pgd, new_asid, false);
 388
 389                        trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
 390                }
 391
 392                /* Make sure we write CR3 before loaded_mm. */
 393                barrier();
 394
 395                this_cpu_write(cpu_tlbstate.loaded_mm, next);
 396                this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
 397        }
 398
 399        load_mm_cr4(next);
 400        switch_ldt(real_prev, next);
 401}
 402
 403/*
 404 * Please ignore the name of this function.  It should be called
 405 * switch_to_kernel_thread().
 406 *
 407 * enter_lazy_tlb() is a hint from the scheduler that we are entering a
 408 * kernel thread or other context without an mm.  Acceptable implementations
 409 * include doing nothing whatsoever, switching to init_mm, or various clever
 410 * lazy tricks to try to minimize TLB flushes.
 411 *
 412 * The scheduler reserves the right to call enter_lazy_tlb() several times
 413 * in a row.  It will notify us that we're going back to a real mm by
 414 * calling switch_mm_irqs_off().
 415 */
 416void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
 417{
 418        if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
 419                return;
 420
 421        if (tlb_defer_switch_to_init_mm()) {
 422                /*
 423                 * There's a significant optimization that may be possible
 424                 * here.  We have accurate enough TLB flush tracking that we
 425                 * don't need to maintain coherence of TLB per se when we're
 426                 * lazy.  We do, however, need to maintain coherence of
 427                 * paging-structure caches.  We could, in principle, leave our
 428                 * old mm loaded and only switch to init_mm when
 429                 * tlb_remove_page() happens.
 430                 */
 431                this_cpu_write(cpu_tlbstate.is_lazy, true);
 432        } else {
 433                switch_mm(NULL, &init_mm, NULL);
 434        }
 435}
 436
 437/*
 438 * Call this when reinitializing a CPU.  It fixes the following potential
 439 * problems:
 440 *
 441 * - The ASID changed from what cpu_tlbstate thinks it is (most likely
 442 *   because the CPU was taken down and came back up with CR3's PCID
 443 *   bits clear.  CPU hotplug can do this.
 444 *
 445 * - The TLB contains junk in slots corresponding to inactive ASIDs.
 446 *
 447 * - The CPU went so far out to lunch that it may have missed a TLB
 448 *   flush.
 449 */
 450void initialize_tlbstate_and_flush(void)
 451{
 452        int i;
 453        struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
 454        u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
 455        unsigned long cr3 = __read_cr3();
 456
 457        /* Assert that CR3 already references the right mm. */
 458        WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
 459
 460        /*
 461         * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
 462         * doesn't work like other CR4 bits because it can only be set from
 463         * long mode.)
 464         */
 465        WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
 466                !(cr4_read_shadow() & X86_CR4_PCIDE));
 467
 468        /* Force ASID 0 and force a TLB flush. */
 469        write_cr3(build_cr3(mm->pgd, 0));
 470
 471        /* Reinitialize tlbstate. */
 472        this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB);
 473        this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
 474        this_cpu_write(cpu_tlbstate.next_asid, 1);
 475        this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
 476        this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
 477
 478        for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
 479                this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
 480}
 481
 482/*
 483 * flush_tlb_func_common()'s memory ordering requirement is that any
 484 * TLB fills that happen after we flush the TLB are ordered after we
 485 * read active_mm's tlb_gen.  We don't need any explicit barriers
 486 * because all x86 flush operations are serializing and the
 487 * atomic64_read operation won't be reordered by the compiler.
 488 */
 489static void flush_tlb_func_common(const struct flush_tlb_info *f,
 490                                  bool local, enum tlb_flush_reason reason)
 491{
 492        /*
 493         * We have three different tlb_gen values in here.  They are:
 494         *
 495         * - mm_tlb_gen:     the latest generation.
 496         * - local_tlb_gen:  the generation that this CPU has already caught
 497         *                   up to.
 498         * - f->new_tlb_gen: the generation that the requester of the flush
 499         *                   wants us to catch up to.
 500         */
 501        struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
 502        u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
 503        u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
 504        u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
 505
 506        /* This code cannot presently handle being reentered. */
 507        VM_WARN_ON(!irqs_disabled());
 508
 509        if (unlikely(loaded_mm == &init_mm))
 510                return;
 511
 512        VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
 513                   loaded_mm->context.ctx_id);
 514
 515        if (this_cpu_read(cpu_tlbstate.is_lazy)) {
 516                /*
 517                 * We're in lazy mode.  We need to at least flush our
 518                 * paging-structure cache to avoid speculatively reading
 519                 * garbage into our TLB.  Since switching to init_mm is barely
 520                 * slower than a minimal flush, just switch to init_mm.
 521                 */
 522                switch_mm_irqs_off(NULL, &init_mm, NULL);
 523                return;
 524        }
 525
 526        if (unlikely(local_tlb_gen == mm_tlb_gen)) {
 527                /*
 528                 * There's nothing to do: we're already up to date.  This can
 529                 * happen if two concurrent flushes happen -- the first flush to
 530                 * be handled can catch us all the way up, leaving no work for
 531                 * the second flush.
 532                 */
 533                trace_tlb_flush(reason, 0);
 534                return;
 535        }
 536
 537        WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
 538        WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
 539
 540        /*
 541         * If we get to this point, we know that our TLB is out of date.
 542         * This does not strictly imply that we need to flush (it's
 543         * possible that f->new_tlb_gen <= local_tlb_gen), but we're
 544         * going to need to flush in the very near future, so we might
 545         * as well get it over with.
 546         *
 547         * The only question is whether to do a full or partial flush.
 548         *
 549         * We do a partial flush if requested and two extra conditions
 550         * are met:
 551         *
 552         * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
 553         *    we've always done all needed flushes to catch up to
 554         *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
 555         *    f->new_tlb_gen == 3, then we know that the flush needed to bring
 556         *    us up to date for tlb_gen 3 is the partial flush we're
 557         *    processing.
 558         *
 559         *    As an example of why this check is needed, suppose that there
 560         *    are two concurrent flushes.  The first is a full flush that
 561         *    changes context.tlb_gen from 1 to 2.  The second is a partial
 562         *    flush that changes context.tlb_gen from 2 to 3.  If they get
 563         *    processed on this CPU in reverse order, we'll see
 564         *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
 565         *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
 566         *    3, we'd be break the invariant: we'd update local_tlb_gen above
 567         *    1 without the full flush that's needed for tlb_gen 2.
 568         *
 569         * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
 570         *    Partial TLB flushes are not all that much cheaper than full TLB
 571         *    flushes, so it seems unlikely that it would be a performance win
 572         *    to do a partial flush if that won't bring our TLB fully up to
 573         *    date.  By doing a full flush instead, we can increase
 574         *    local_tlb_gen all the way to mm_tlb_gen and we can probably
 575         *    avoid another flush in the very near future.
 576         */
 577        if (f->end != TLB_FLUSH_ALL &&
 578            f->new_tlb_gen == local_tlb_gen + 1 &&
 579            f->new_tlb_gen == mm_tlb_gen) {
 580                /* Partial flush */
 581                unsigned long nr_invalidate = (f->end - f->start) >> f->stride_shift;
 582                unsigned long addr = f->start;
 583
 584                while (addr < f->end) {
 585                        __flush_tlb_one_user(addr);
 586                        addr += 1UL << f->stride_shift;
 587                }
 588                if (local)
 589                        count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
 590                trace_tlb_flush(reason, nr_invalidate);
 591        } else {
 592                /* Full flush. */
 593                local_flush_tlb();
 594                if (local)
 595                        count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
 596                trace_tlb_flush(reason, TLB_FLUSH_ALL);
 597        }
 598
 599        /* Both paths above update our state to mm_tlb_gen. */
 600        this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
 601}
 602
 603static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
 604{
 605        const struct flush_tlb_info *f = info;
 606
 607        flush_tlb_func_common(f, true, reason);
 608}
 609
 610static void flush_tlb_func_remote(void *info)
 611{
 612        const struct flush_tlb_info *f = info;
 613
 614        inc_irq_stat(irq_tlb_count);
 615
 616        if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
 617                return;
 618
 619        count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
 620        flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
 621}
 622
 623void native_flush_tlb_others(const struct cpumask *cpumask,
 624                             const struct flush_tlb_info *info)
 625{
 626        count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
 627        if (info->end == TLB_FLUSH_ALL)
 628                trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
 629        else
 630                trace_tlb_flush(TLB_REMOTE_SEND_IPI,
 631                                (info->end - info->start) >> PAGE_SHIFT);
 632
 633        smp_call_function_many(cpumask, flush_tlb_func_remote,
 634                               (void *)info, 1);
 635}
 636
 637/*
 638 * See Documentation/x86/tlb.txt for details.  We choose 33
 639 * because it is large enough to cover the vast majority (at
 640 * least 95%) of allocations, and is small enough that we are
 641 * confident it will not cause too much overhead.  Each single
 642 * flush is about 100 ns, so this caps the maximum overhead at
 643 * _about_ 3,000 ns.
 644 *
 645 * This is in units of pages.
 646 */
 647static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
 648
 649void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
 650                                unsigned long end, unsigned int stride_shift,
 651                                bool freed_tables)
 652{
 653        int cpu;
 654
 655        struct flush_tlb_info info __aligned(SMP_CACHE_BYTES) = {
 656                .mm = mm,
 657                .stride_shift = stride_shift,
 658        };
 659
 660        cpu = get_cpu();
 661
 662        /* This is also a barrier that synchronizes with switch_mm(). */
 663        info.new_tlb_gen = inc_mm_tlb_gen(mm);
 664
 665        /* Should we flush just the requested range? */
 666        if ((end != TLB_FLUSH_ALL) &&
 667            ((end - start) >> stride_shift) <= tlb_single_page_flush_ceiling) {
 668                info.start = start;
 669                info.end = end;
 670        } else {
 671                info.start = 0UL;
 672                info.end = TLB_FLUSH_ALL;
 673        }
 674
 675        if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
 676                VM_WARN_ON(irqs_disabled());
 677                local_irq_disable();
 678                flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
 679                local_irq_enable();
 680        }
 681
 682        if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
 683                flush_tlb_others(mm_cpumask(mm), &info);
 684
 685        put_cpu();
 686}
 687
 688
 689static void do_flush_tlb_all(void *info)
 690{
 691        count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
 692        __flush_tlb_all();
 693}
 694
 695void flush_tlb_all(void)
 696{
 697        count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
 698        on_each_cpu(do_flush_tlb_all, NULL, 1);
 699}
 700
 701static void do_kernel_range_flush(void *info)
 702{
 703        struct flush_tlb_info *f = info;
 704        unsigned long addr;
 705
 706        /* flush range by one by one 'invlpg' */
 707        for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
 708                __flush_tlb_one_kernel(addr);
 709}
 710
 711void flush_tlb_kernel_range(unsigned long start, unsigned long end)
 712{
 713
 714        /* Balance as user space task's flush, a bit conservative */
 715        if (end == TLB_FLUSH_ALL ||
 716            (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
 717                on_each_cpu(do_flush_tlb_all, NULL, 1);
 718        } else {
 719                struct flush_tlb_info info;
 720                info.start = start;
 721                info.end = end;
 722                on_each_cpu(do_kernel_range_flush, &info, 1);
 723        }
 724}
 725
 726void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
 727{
 728        struct flush_tlb_info info = {
 729                .mm = NULL,
 730                .start = 0UL,
 731                .end = TLB_FLUSH_ALL,
 732        };
 733
 734        int cpu = get_cpu();
 735
 736        if (cpumask_test_cpu(cpu, &batch->cpumask)) {
 737                VM_WARN_ON(irqs_disabled());
 738                local_irq_disable();
 739                flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
 740                local_irq_enable();
 741        }
 742
 743        if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
 744                flush_tlb_others(&batch->cpumask, &info);
 745
 746        cpumask_clear(&batch->cpumask);
 747
 748        put_cpu();
 749}
 750
 751static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
 752                             size_t count, loff_t *ppos)
 753{
 754        char buf[32];
 755        unsigned int len;
 756
 757        len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
 758        return simple_read_from_buffer(user_buf, count, ppos, buf, len);
 759}
 760
 761static ssize_t tlbflush_write_file(struct file *file,
 762                 const char __user *user_buf, size_t count, loff_t *ppos)
 763{
 764        char buf[32];
 765        ssize_t len;
 766        int ceiling;
 767
 768        len = min(count, sizeof(buf) - 1);
 769        if (copy_from_user(buf, user_buf, len))
 770                return -EFAULT;
 771
 772        buf[len] = '\0';
 773        if (kstrtoint(buf, 0, &ceiling))
 774                return -EINVAL;
 775
 776        if (ceiling < 0)
 777                return -EINVAL;
 778
 779        tlb_single_page_flush_ceiling = ceiling;
 780        return count;
 781}
 782
 783static const struct file_operations fops_tlbflush = {
 784        .read = tlbflush_read_file,
 785        .write = tlbflush_write_file,
 786        .llseek = default_llseek,
 787};
 788
 789static int __init create_tlb_single_page_flush_ceiling(void)
 790{
 791        debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
 792                            arch_debugfs_dir, NULL, &fops_tlbflush);
 793        return 0;
 794}
 795late_initcall(create_tlb_single_page_flush_ceiling);
 796