linux/drivers/char/agp/isoch.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Setup routines for AGP 3.5 compliant bridges.
   4 */
   5
   6#include <linux/list.h>
   7#include <linux/pci.h>
   8#include <linux/agp_backend.h>
   9#include <linux/module.h>
  10#include <linux/slab.h>
  11
  12#include "agp.h"
  13
  14/* Generic AGP 3.5 enabling routines */
  15
  16struct agp_3_5_dev {
  17        struct list_head list;
  18        u8 capndx;
  19        u32 maxbw;
  20        struct pci_dev *dev;
  21};
  22
  23static void agp_3_5_dev_list_insert(struct list_head *head, struct list_head *new)
  24{
  25        struct agp_3_5_dev *cur, *n = list_entry(new, struct agp_3_5_dev, list);
  26        struct list_head *pos;
  27
  28        list_for_each(pos, head) {
  29                cur = list_entry(pos, struct agp_3_5_dev, list);
  30                if (cur->maxbw > n->maxbw)
  31                        break;
  32        }
  33        list_add_tail(new, pos);
  34}
  35
  36static void agp_3_5_dev_list_sort(struct agp_3_5_dev *list, unsigned int ndevs)
  37{
  38        struct agp_3_5_dev *cur;
  39        struct pci_dev *dev;
  40        struct list_head *pos, *tmp, *head = &list->list, *start = head->next;
  41        u32 nistat;
  42
  43        INIT_LIST_HEAD(head);
  44
  45        for (pos=start; pos!=head; ) {
  46                cur = list_entry(pos, struct agp_3_5_dev, list);
  47                dev = cur->dev;
  48
  49                pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &nistat);
  50                cur->maxbw = (nistat >> 16) & 0xff;
  51
  52                tmp = pos;
  53                pos = pos->next;
  54                agp_3_5_dev_list_insert(head, tmp);
  55        }
  56}
  57
  58/*
  59 * Initialize all isochronous transfer parameters for an AGP 3.0
  60 * node (i.e. a host bridge in combination with the adapters
  61 * lying behind it...)
  62 */
  63
  64static int agp_3_5_isochronous_node_enable(struct agp_bridge_data *bridge,
  65                struct agp_3_5_dev *dev_list, unsigned int ndevs)
  66{
  67        /*
  68         * Convenience structure to make the calculations clearer
  69         * here.  The field names come straight from the AGP 3.0 spec.
  70         */
  71        struct isoch_data {
  72                u32 maxbw;
  73                u32 n;
  74                u32 y;
  75                u32 l;
  76                u32 rq;
  77                struct agp_3_5_dev *dev;
  78        };
  79
  80        struct pci_dev *td = bridge->dev, *dev;
  81        struct list_head *head = &dev_list->list, *pos;
  82        struct agp_3_5_dev *cur;
  83        struct isoch_data *master, target;
  84        unsigned int cdev = 0;
  85        u32 mnistat, tnistat, tstatus, mcmd;
  86        u16 tnicmd, mnicmd;
  87        u8 mcapndx;
  88        u32 tot_bw = 0, tot_n = 0, tot_rq = 0, y_max, rq_isoch, rq_async;
  89        u32 step, rem, rem_isoch, rem_async;
  90        int ret = 0;
  91
  92        /*
  93         * We'll work with an array of isoch_data's (one for each
  94         * device in dev_list) throughout this function.
  95         */
  96        master = kmalloc_array(ndevs, sizeof(*master), GFP_KERNEL);
  97        if (master == NULL) {
  98                ret = -ENOMEM;
  99                goto get_out;
 100        }
 101
 102        /*
 103         * Sort the device list by maxbw.  We need to do this because the
 104         * spec suggests that the devices with the smallest requirements
 105         * have their resources allocated first, with all remaining resources
 106         * falling to the device with the largest requirement.
 107         *
 108         * We don't exactly do this, we divide target resources by ndevs
 109         * and split them amongst the AGP 3.0 devices.  The remainder of such
 110         * division operations are dropped on the last device, sort of like
 111         * the spec mentions it should be done.
 112         *
 113         * We can't do this sort when we initially construct the dev_list
 114         * because we don't know until this function whether isochronous
 115         * transfers are enabled and consequently whether maxbw will mean
 116         * anything.
 117         */
 118        agp_3_5_dev_list_sort(dev_list, ndevs);
 119
 120        pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
 121        pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
 122
 123        /* Extract power-on defaults from the target */
 124        target.maxbw = (tnistat >> 16) & 0xff;
 125        target.n     = (tnistat >> 8)  & 0xff;
 126        target.y     = (tnistat >> 6)  & 0x3;
 127        target.l     = (tnistat >> 3)  & 0x7;
 128        target.rq    = (tstatus >> 24) & 0xff;
 129
 130        y_max = target.y;
 131
 132        /*
 133         * Extract power-on defaults for each device in dev_list.  Along
 134         * the way, calculate the total isochronous bandwidth required
 135         * by these devices and the largest requested payload size.
 136         */
 137        list_for_each(pos, head) {
 138                cur = list_entry(pos, struct agp_3_5_dev, list);
 139                dev = cur->dev;
 140
 141                mcapndx = cur->capndx;
 142
 143                pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &mnistat);
 144
 145                master[cdev].maxbw = (mnistat >> 16) & 0xff;
 146                master[cdev].n     = (mnistat >> 8)  & 0xff;
 147                master[cdev].y     = (mnistat >> 6)  & 0x3;
 148                master[cdev].dev   = cur;
 149
 150                tot_bw += master[cdev].maxbw;
 151                y_max = max(y_max, master[cdev].y);
 152
 153                cdev++;
 154        }
 155
 156        /* Check if this configuration has any chance of working */
 157        if (tot_bw > target.maxbw) {
 158                dev_err(&td->dev, "isochronous bandwidth required "
 159                        "by AGP 3.0 devices exceeds that which is supported by "
 160                        "the AGP 3.0 bridge!\n");
 161                ret = -ENODEV;
 162                goto free_and_exit;
 163        }
 164
 165        target.y = y_max;
 166
 167        /*
 168         * Write the calculated payload size into the target's NICMD
 169         * register.  Doing this directly effects the ISOCH_N value
 170         * in the target's NISTAT register, so we need to do this now
 171         * to get an accurate value for ISOCH_N later.
 172         */
 173        pci_read_config_word(td, bridge->capndx+AGPNICMD, &tnicmd);
 174        tnicmd &= ~(0x3 << 6);
 175        tnicmd |= target.y << 6;
 176        pci_write_config_word(td, bridge->capndx+AGPNICMD, tnicmd);
 177
 178        /* Reread the target's ISOCH_N */
 179        pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
 180        target.n = (tnistat >> 8) & 0xff;
 181
 182        /* Calculate the minimum ISOCH_N needed by each master */
 183        for (cdev=0; cdev<ndevs; cdev++) {
 184                master[cdev].y = target.y;
 185                master[cdev].n = master[cdev].maxbw / (master[cdev].y + 1);
 186
 187                tot_n += master[cdev].n;
 188        }
 189
 190        /* Exit if the minimal ISOCH_N allocation among the masters is more
 191         * than the target can handle. */
 192        if (tot_n > target.n) {
 193                dev_err(&td->dev, "number of isochronous "
 194                        "transactions per period required by AGP 3.0 devices "
 195                        "exceeds that which is supported by the AGP 3.0 "
 196                        "bridge!\n");
 197                ret = -ENODEV;
 198                goto free_and_exit;
 199        }
 200
 201        /* Calculate left over ISOCH_N capability in the target.  We'll give
 202         * this to the hungriest device (as per the spec) */
 203        rem  = target.n - tot_n;
 204
 205        /*
 206         * Calculate the minimum isochronous RQ depth needed by each master.
 207         * Along the way, distribute the extra ISOCH_N capability calculated
 208         * above.
 209         */
 210        for (cdev=0; cdev<ndevs; cdev++) {
 211                /*
 212                 * This is a little subtle.  If ISOCH_Y > 64B, then ISOCH_Y
 213                 * byte isochronous writes will be broken into 64B pieces.
 214                 * This means we need to budget more RQ depth to account for
 215                 * these kind of writes (each isochronous write is actually
 216                 * many writes on the AGP bus).
 217                 */
 218                master[cdev].rq = master[cdev].n;
 219                if (master[cdev].y > 0x1)
 220                        master[cdev].rq *= (1 << (master[cdev].y - 1));
 221
 222                tot_rq += master[cdev].rq;
 223        }
 224        master[ndevs-1].n += rem;
 225
 226        /* Figure the number of isochronous and asynchronous RQ slots the
 227         * target is providing. */
 228        rq_isoch = (target.y > 0x1) ? target.n * (1 << (target.y - 1)) : target.n;
 229        rq_async = target.rq - rq_isoch;
 230
 231        /* Exit if the minimal RQ needs of the masters exceeds what the target
 232         * can provide. */
 233        if (tot_rq > rq_isoch) {
 234                dev_err(&td->dev, "number of request queue slots "
 235                        "required by the isochronous bandwidth requested by "
 236                        "AGP 3.0 devices exceeds the number provided by the "
 237                        "AGP 3.0 bridge!\n");
 238                ret = -ENODEV;
 239                goto free_and_exit;
 240        }
 241
 242        /* Calculate asynchronous RQ capability in the target (per master) as
 243         * well as the total number of leftover isochronous RQ slots. */
 244        step      = rq_async / ndevs;
 245        rem_async = step + (rq_async % ndevs);
 246        rem_isoch = rq_isoch - tot_rq;
 247
 248        /* Distribute the extra RQ slots calculated above and write our
 249         * isochronous settings out to the actual devices. */
 250        for (cdev=0; cdev<ndevs; cdev++) {
 251                cur = master[cdev].dev;
 252                dev = cur->dev;
 253
 254                mcapndx = cur->capndx;
 255
 256                master[cdev].rq += (cdev == ndevs - 1)
 257                              ? (rem_async + rem_isoch) : step;
 258
 259                pci_read_config_word(dev, cur->capndx+AGPNICMD, &mnicmd);
 260                pci_read_config_dword(dev, cur->capndx+AGPCMD, &mcmd);
 261
 262                mnicmd &= ~(0xff << 8);
 263                mnicmd &= ~(0x3  << 6);
 264                mcmd   &= ~(0xff << 24);
 265
 266                mnicmd |= master[cdev].n  << 8;
 267                mnicmd |= master[cdev].y  << 6;
 268                mcmd   |= master[cdev].rq << 24;
 269
 270                pci_write_config_dword(dev, cur->capndx+AGPCMD, mcmd);
 271                pci_write_config_word(dev, cur->capndx+AGPNICMD, mnicmd);
 272        }
 273
 274free_and_exit:
 275        kfree(master);
 276
 277get_out:
 278        return ret;
 279}
 280
 281/*
 282 * This function basically allocates request queue slots among the
 283 * AGP 3.0 systems in nonisochronous nodes.  The algorithm is
 284 * pretty stupid, divide the total number of RQ slots provided by the
 285 * target by ndevs.  Distribute this many slots to each AGP 3.0 device,
 286 * giving any left over slots to the last device in dev_list.
 287 */
 288static void agp_3_5_nonisochronous_node_enable(struct agp_bridge_data *bridge,
 289                struct agp_3_5_dev *dev_list, unsigned int ndevs)
 290{
 291        struct agp_3_5_dev *cur;
 292        struct list_head *head = &dev_list->list, *pos;
 293        u32 tstatus, mcmd;
 294        u32 trq, mrq, rem;
 295        unsigned int cdev = 0;
 296
 297        pci_read_config_dword(bridge->dev, bridge->capndx+AGPSTAT, &tstatus);
 298
 299        trq = (tstatus >> 24) & 0xff;
 300        mrq = trq / ndevs;
 301
 302        rem = mrq + (trq % ndevs);
 303
 304        for (pos=head->next; cdev<ndevs; cdev++, pos=pos->next) {
 305                cur = list_entry(pos, struct agp_3_5_dev, list);
 306
 307                pci_read_config_dword(cur->dev, cur->capndx+AGPCMD, &mcmd);
 308                mcmd &= ~(0xff << 24);
 309                mcmd |= ((cdev == ndevs - 1) ? rem : mrq) << 24;
 310                pci_write_config_dword(cur->dev, cur->capndx+AGPCMD, mcmd);
 311        }
 312}
 313
 314/*
 315 * Fully configure and enable an AGP 3.0 host bridge and all the devices
 316 * lying behind it.
 317 */
 318int agp_3_5_enable(struct agp_bridge_data *bridge)
 319{
 320        struct pci_dev *td = bridge->dev, *dev = NULL;
 321        u8 mcapndx;
 322        u32 isoch, arqsz;
 323        u32 tstatus, mstatus, ncapid;
 324        u32 mmajor;
 325        u16 mpstat;
 326        struct agp_3_5_dev *dev_list, *cur;
 327        struct list_head *head, *pos;
 328        unsigned int ndevs = 0;
 329        int ret = 0;
 330
 331        /* Extract some power-on defaults from the target */
 332        pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
 333        isoch     = (tstatus >> 17) & 0x1;
 334        if (isoch == 0) /* isoch xfers not available, bail out. */
 335                return -ENODEV;
 336
 337        arqsz     = (tstatus >> 13) & 0x7;
 338
 339        /*
 340         * Allocate a head for our AGP 3.5 device list
 341         * (multiple AGP v3 devices are allowed behind a single bridge).
 342         */
 343        if ((dev_list = kmalloc(sizeof(*dev_list), GFP_KERNEL)) == NULL) {
 344                ret = -ENOMEM;
 345                goto get_out;
 346        }
 347        head = &dev_list->list;
 348        INIT_LIST_HEAD(head);
 349
 350        /* Find all AGP devices, and add them to dev_list. */
 351        for_each_pci_dev(dev) {
 352                mcapndx = pci_find_capability(dev, PCI_CAP_ID_AGP);
 353                if (mcapndx == 0)
 354                        continue;
 355
 356                switch ((dev->class >>8) & 0xff00) {
 357                        case 0x0600:    /* Bridge */
 358                                /* Skip bridges. We should call this function for each one. */
 359                                continue;
 360
 361                        case 0x0001:    /* Unclassified device */
 362                                /* Don't know what this is, but log it for investigation. */
 363                                if (mcapndx != 0) {
 364                                        dev_info(&td->dev, "wacky, found unclassified AGP device %s [%04x/%04x]\n",
 365                                                 pci_name(dev),
 366                                                 dev->vendor, dev->device);
 367                                }
 368                                continue;
 369
 370                        case 0x0300:    /* Display controller */
 371                        case 0x0400:    /* Multimedia controller */
 372                                if ((cur = kmalloc(sizeof(*cur), GFP_KERNEL)) == NULL) {
 373                                        ret = -ENOMEM;
 374                                        goto free_and_exit;
 375                                }
 376                                cur->dev = dev;
 377
 378                                pos = &cur->list;
 379                                list_add(pos, head);
 380                                ndevs++;
 381                                continue;
 382
 383                        default:
 384                                continue;
 385                }
 386        }
 387
 388        /*
 389         * Take an initial pass through the devices lying behind our host
 390         * bridge.  Make sure each one is actually an AGP 3.0 device, otherwise
 391         * exit with an error message.  Along the way store the AGP 3.0
 392         * cap_ptr for each device
 393         */
 394        list_for_each(pos, head) {
 395                cur = list_entry(pos, struct agp_3_5_dev, list);
 396                dev = cur->dev;
 397
 398                pci_read_config_word(dev, PCI_STATUS, &mpstat);
 399                if ((mpstat & PCI_STATUS_CAP_LIST) == 0)
 400                        continue;
 401
 402                pci_read_config_byte(dev, PCI_CAPABILITY_LIST, &mcapndx);
 403                if (mcapndx != 0) {
 404                        do {
 405                                pci_read_config_dword(dev, mcapndx, &ncapid);
 406                                if ((ncapid & 0xff) != 2)
 407                                        mcapndx = (ncapid >> 8) & 0xff;
 408                        }
 409                        while (((ncapid & 0xff) != 2) && (mcapndx != 0));
 410                }
 411
 412                if (mcapndx == 0) {
 413                        dev_err(&td->dev, "woah!  Non-AGP device %s on "
 414                                "secondary bus of AGP 3.5 bridge!\n",
 415                                pci_name(dev));
 416                        ret = -ENODEV;
 417                        goto free_and_exit;
 418                }
 419
 420                mmajor = (ncapid >> AGP_MAJOR_VERSION_SHIFT) & 0xf;
 421                if (mmajor < 3) {
 422                        dev_err(&td->dev, "woah!  AGP 2.0 device %s on "
 423                                "secondary bus of AGP 3.5 bridge operating "
 424                                "with AGP 3.0 electricals!\n", pci_name(dev));
 425                        ret = -ENODEV;
 426                        goto free_and_exit;
 427                }
 428
 429                cur->capndx = mcapndx;
 430
 431                pci_read_config_dword(dev, cur->capndx+AGPSTAT, &mstatus);
 432
 433                if (((mstatus >> 3) & 0x1) == 0) {
 434                        dev_err(&td->dev, "woah!  AGP 3.x device %s not "
 435                                "operating in AGP 3.x mode on secondary bus "
 436                                "of AGP 3.5 bridge operating with AGP 3.0 "
 437                                "electricals!\n", pci_name(dev));
 438                        ret = -ENODEV;
 439                        goto free_and_exit;
 440                }
 441        }               
 442
 443        /*
 444         * Call functions to divide target resources amongst the AGP 3.0
 445         * masters.  This process is dramatically different depending on
 446         * whether isochronous transfers are supported.
 447         */
 448        if (isoch) {
 449                ret = agp_3_5_isochronous_node_enable(bridge, dev_list, ndevs);
 450                if (ret) {
 451                        dev_info(&td->dev, "something bad happened setting "
 452                                 "up isochronous xfers; falling back to "
 453                                 "non-isochronous xfer mode\n");
 454                } else {
 455                        goto free_and_exit;
 456                }
 457        }
 458        agp_3_5_nonisochronous_node_enable(bridge, dev_list, ndevs);
 459
 460free_and_exit:
 461        /* Be sure to free the dev_list */
 462        for (pos=head->next; pos!=head; ) {
 463                cur = list_entry(pos, struct agp_3_5_dev, list);
 464
 465                pos = pos->next;
 466                kfree(cur);
 467        }
 468        kfree(dev_list);
 469
 470get_out:
 471        return ret;
 472}
 473