linux/drivers/infiniband/sw/rdmavt/qp.c
<<
>>
Prefs
   1/*
   2 * Copyright(c) 2016 - 2020 Intel Corporation.
   3 *
   4 * This file is provided under a dual BSD/GPLv2 license.  When using or
   5 * redistributing this file, you may do so under either license.
   6 *
   7 * GPL LICENSE SUMMARY
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of version 2 of the GNU General Public License as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * BSD LICENSE
  19 *
  20 * Redistribution and use in source and binary forms, with or without
  21 * modification, are permitted provided that the following conditions
  22 * are met:
  23 *
  24 *  - Redistributions of source code must retain the above copyright
  25 *    notice, this list of conditions and the following disclaimer.
  26 *  - Redistributions in binary form must reproduce the above copyright
  27 *    notice, this list of conditions and the following disclaimer in
  28 *    the documentation and/or other materials provided with the
  29 *    distribution.
  30 *  - Neither the name of Intel Corporation nor the names of its
  31 *    contributors may be used to endorse or promote products derived
  32 *    from this software without specific prior written permission.
  33 *
  34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  45 *
  46 */
  47
  48#include <linux/hash.h>
  49#include <linux/bitops.h>
  50#include <linux/lockdep.h>
  51#include <linux/vmalloc.h>
  52#include <linux/slab.h>
  53#include <rdma/ib_verbs.h>
  54#include <rdma/ib_hdrs.h>
  55#include <rdma/opa_addr.h>
  56#include <rdma/uverbs_ioctl.h>
  57#include "qp.h"
  58#include "vt.h"
  59#include "trace.h"
  60
  61#define RVT_RWQ_COUNT_THRESHOLD 16
  62
  63static void rvt_rc_timeout(struct timer_list *t);
  64static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
  65                         enum ib_qp_type type);
  66
  67/*
  68 * Convert the AETH RNR timeout code into the number of microseconds.
  69 */
  70static const u32 ib_rvt_rnr_table[32] = {
  71        655360, /* 00: 655.36 */
  72        10,     /* 01:    .01 */
  73        20,     /* 02     .02 */
  74        30,     /* 03:    .03 */
  75        40,     /* 04:    .04 */
  76        60,     /* 05:    .06 */
  77        80,     /* 06:    .08 */
  78        120,    /* 07:    .12 */
  79        160,    /* 08:    .16 */
  80        240,    /* 09:    .24 */
  81        320,    /* 0A:    .32 */
  82        480,    /* 0B:    .48 */
  83        640,    /* 0C:    .64 */
  84        960,    /* 0D:    .96 */
  85        1280,   /* 0E:   1.28 */
  86        1920,   /* 0F:   1.92 */
  87        2560,   /* 10:   2.56 */
  88        3840,   /* 11:   3.84 */
  89        5120,   /* 12:   5.12 */
  90        7680,   /* 13:   7.68 */
  91        10240,  /* 14:  10.24 */
  92        15360,  /* 15:  15.36 */
  93        20480,  /* 16:  20.48 */
  94        30720,  /* 17:  30.72 */
  95        40960,  /* 18:  40.96 */
  96        61440,  /* 19:  61.44 */
  97        81920,  /* 1A:  81.92 */
  98        122880, /* 1B: 122.88 */
  99        163840, /* 1C: 163.84 */
 100        245760, /* 1D: 245.76 */
 101        327680, /* 1E: 327.68 */
 102        491520  /* 1F: 491.52 */
 103};
 104
 105/*
 106 * Note that it is OK to post send work requests in the SQE and ERR
 107 * states; rvt_do_send() will process them and generate error
 108 * completions as per IB 1.2 C10-96.
 109 */
 110const int ib_rvt_state_ops[IB_QPS_ERR + 1] = {
 111        [IB_QPS_RESET] = 0,
 112        [IB_QPS_INIT] = RVT_POST_RECV_OK,
 113        [IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK,
 114        [IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
 115            RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK |
 116            RVT_PROCESS_NEXT_SEND_OK,
 117        [IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
 118            RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK,
 119        [IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
 120            RVT_POST_SEND_OK | RVT_FLUSH_SEND,
 121        [IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV |
 122            RVT_POST_SEND_OK | RVT_FLUSH_SEND,
 123};
 124EXPORT_SYMBOL(ib_rvt_state_ops);
 125
 126/* platform specific: return the last level cache (llc) size, in KiB */
 127static int rvt_wss_llc_size(void)
 128{
 129        /* assume that the boot CPU value is universal for all CPUs */
 130        return boot_cpu_data.x86_cache_size;
 131}
 132
 133/* platform specific: cacheless copy */
 134static void cacheless_memcpy(void *dst, void *src, size_t n)
 135{
 136        /*
 137         * Use the only available X64 cacheless copy.  Add a __user cast
 138         * to quiet sparse.  The src agument is already in the kernel so
 139         * there are no security issues.  The extra fault recovery machinery
 140         * is not invoked.
 141         */
 142        __copy_user_nocache(dst, (void __user *)src, n, 0);
 143}
 144
 145void rvt_wss_exit(struct rvt_dev_info *rdi)
 146{
 147        struct rvt_wss *wss = rdi->wss;
 148
 149        if (!wss)
 150                return;
 151
 152        /* coded to handle partially initialized and repeat callers */
 153        kfree(wss->entries);
 154        wss->entries = NULL;
 155        kfree(rdi->wss);
 156        rdi->wss = NULL;
 157}
 158
 159/**
 160 * rvt_wss_init - Init wss data structures
 161 *
 162 * Return: 0 on success
 163 */
 164int rvt_wss_init(struct rvt_dev_info *rdi)
 165{
 166        unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
 167        unsigned int wss_threshold = rdi->dparms.wss_threshold;
 168        unsigned int wss_clean_period = rdi->dparms.wss_clean_period;
 169        long llc_size;
 170        long llc_bits;
 171        long table_size;
 172        long table_bits;
 173        struct rvt_wss *wss;
 174        int node = rdi->dparms.node;
 175
 176        if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) {
 177                rdi->wss = NULL;
 178                return 0;
 179        }
 180
 181        rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node);
 182        if (!rdi->wss)
 183                return -ENOMEM;
 184        wss = rdi->wss;
 185
 186        /* check for a valid percent range - default to 80 if none or invalid */
 187        if (wss_threshold < 1 || wss_threshold > 100)
 188                wss_threshold = 80;
 189
 190        /* reject a wildly large period */
 191        if (wss_clean_period > 1000000)
 192                wss_clean_period = 256;
 193
 194        /* reject a zero period */
 195        if (wss_clean_period == 0)
 196                wss_clean_period = 1;
 197
 198        /*
 199         * Calculate the table size - the next power of 2 larger than the
 200         * LLC size.  LLC size is in KiB.
 201         */
 202        llc_size = rvt_wss_llc_size() * 1024;
 203        table_size = roundup_pow_of_two(llc_size);
 204
 205        /* one bit per page in rounded up table */
 206        llc_bits = llc_size / PAGE_SIZE;
 207        table_bits = table_size / PAGE_SIZE;
 208        wss->pages_mask = table_bits - 1;
 209        wss->num_entries = table_bits / BITS_PER_LONG;
 210
 211        wss->threshold = (llc_bits * wss_threshold) / 100;
 212        if (wss->threshold == 0)
 213                wss->threshold = 1;
 214
 215        wss->clean_period = wss_clean_period;
 216        atomic_set(&wss->clean_counter, wss_clean_period);
 217
 218        wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries),
 219                                    GFP_KERNEL, node);
 220        if (!wss->entries) {
 221                rvt_wss_exit(rdi);
 222                return -ENOMEM;
 223        }
 224
 225        return 0;
 226}
 227
 228/*
 229 * Advance the clean counter.  When the clean period has expired,
 230 * clean an entry.
 231 *
 232 * This is implemented in atomics to avoid locking.  Because multiple
 233 * variables are involved, it can be racy which can lead to slightly
 234 * inaccurate information.  Since this is only a heuristic, this is
 235 * OK.  Any innaccuracies will clean themselves out as the counter
 236 * advances.  That said, it is unlikely the entry clean operation will
 237 * race - the next possible racer will not start until the next clean
 238 * period.
 239 *
 240 * The clean counter is implemented as a decrement to zero.  When zero
 241 * is reached an entry is cleaned.
 242 */
 243static void wss_advance_clean_counter(struct rvt_wss *wss)
 244{
 245        int entry;
 246        int weight;
 247        unsigned long bits;
 248
 249        /* become the cleaner if we decrement the counter to zero */
 250        if (atomic_dec_and_test(&wss->clean_counter)) {
 251                /*
 252                 * Set, not add, the clean period.  This avoids an issue
 253                 * where the counter could decrement below the clean period.
 254                 * Doing a set can result in lost decrements, slowing the
 255                 * clean advance.  Since this a heuristic, this possible
 256                 * slowdown is OK.
 257                 *
 258                 * An alternative is to loop, advancing the counter by a
 259                 * clean period until the result is > 0. However, this could
 260                 * lead to several threads keeping another in the clean loop.
 261                 * This could be mitigated by limiting the number of times
 262                 * we stay in the loop.
 263                 */
 264                atomic_set(&wss->clean_counter, wss->clean_period);
 265
 266                /*
 267                 * Uniquely grab the entry to clean and move to next.
 268                 * The current entry is always the lower bits of
 269                 * wss.clean_entry.  The table size, wss.num_entries,
 270                 * is always a power-of-2.
 271                 */
 272                entry = (atomic_inc_return(&wss->clean_entry) - 1)
 273                        & (wss->num_entries - 1);
 274
 275                /* clear the entry and count the bits */
 276                bits = xchg(&wss->entries[entry], 0);
 277                weight = hweight64((u64)bits);
 278                /* only adjust the contended total count if needed */
 279                if (weight)
 280                        atomic_sub(weight, &wss->total_count);
 281        }
 282}
 283
 284/*
 285 * Insert the given address into the working set array.
 286 */
 287static void wss_insert(struct rvt_wss *wss, void *address)
 288{
 289        u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask;
 290        u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
 291        u32 nr = page & (BITS_PER_LONG - 1);
 292
 293        if (!test_and_set_bit(nr, &wss->entries[entry]))
 294                atomic_inc(&wss->total_count);
 295
 296        wss_advance_clean_counter(wss);
 297}
 298
 299/*
 300 * Is the working set larger than the threshold?
 301 */
 302static inline bool wss_exceeds_threshold(struct rvt_wss *wss)
 303{
 304        return atomic_read(&wss->total_count) >= wss->threshold;
 305}
 306
 307static void get_map_page(struct rvt_qpn_table *qpt,
 308                         struct rvt_qpn_map *map)
 309{
 310        unsigned long page = get_zeroed_page(GFP_KERNEL);
 311
 312        /*
 313         * Free the page if someone raced with us installing it.
 314         */
 315
 316        spin_lock(&qpt->lock);
 317        if (map->page)
 318                free_page(page);
 319        else
 320                map->page = (void *)page;
 321        spin_unlock(&qpt->lock);
 322}
 323
 324/**
 325 * init_qpn_table - initialize the QP number table for a device
 326 * @qpt: the QPN table
 327 */
 328static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt)
 329{
 330        u32 offset, i;
 331        struct rvt_qpn_map *map;
 332        int ret = 0;
 333
 334        if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start))
 335                return -EINVAL;
 336
 337        spin_lock_init(&qpt->lock);
 338
 339        qpt->last = rdi->dparms.qpn_start;
 340        qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift;
 341
 342        /*
 343         * Drivers may want some QPs beyond what we need for verbs let them use
 344         * our qpn table. No need for two. Lets go ahead and mark the bitmaps
 345         * for those. The reserved range must be *after* the range which verbs
 346         * will pick from.
 347         */
 348
 349        /* Figure out number of bit maps needed before reserved range */
 350        qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE;
 351
 352        /* This should always be zero */
 353        offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK;
 354
 355        /* Starting with the first reserved bit map */
 356        map = &qpt->map[qpt->nmaps];
 357
 358        rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n",
 359                    rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end);
 360        for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) {
 361                if (!map->page) {
 362                        get_map_page(qpt, map);
 363                        if (!map->page) {
 364                                ret = -ENOMEM;
 365                                break;
 366                        }
 367                }
 368                set_bit(offset, map->page);
 369                offset++;
 370                if (offset == RVT_BITS_PER_PAGE) {
 371                        /* next page */
 372                        qpt->nmaps++;
 373                        map++;
 374                        offset = 0;
 375                }
 376        }
 377        return ret;
 378}
 379
 380/**
 381 * free_qpn_table - free the QP number table for a device
 382 * @qpt: the QPN table
 383 */
 384static void free_qpn_table(struct rvt_qpn_table *qpt)
 385{
 386        int i;
 387
 388        for (i = 0; i < ARRAY_SIZE(qpt->map); i++)
 389                free_page((unsigned long)qpt->map[i].page);
 390}
 391
 392/**
 393 * rvt_driver_qp_init - Init driver qp resources
 394 * @rdi: rvt dev strucutre
 395 *
 396 * Return: 0 on success
 397 */
 398int rvt_driver_qp_init(struct rvt_dev_info *rdi)
 399{
 400        int i;
 401        int ret = -ENOMEM;
 402
 403        if (!rdi->dparms.qp_table_size)
 404                return -EINVAL;
 405
 406        /*
 407         * If driver is not doing any QP allocation then make sure it is
 408         * providing the necessary QP functions.
 409         */
 410        if (!rdi->driver_f.free_all_qps ||
 411            !rdi->driver_f.qp_priv_alloc ||
 412            !rdi->driver_f.qp_priv_free ||
 413            !rdi->driver_f.notify_qp_reset ||
 414            !rdi->driver_f.notify_restart_rc)
 415                return -EINVAL;
 416
 417        /* allocate parent object */
 418        rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL,
 419                                   rdi->dparms.node);
 420        if (!rdi->qp_dev)
 421                return -ENOMEM;
 422
 423        /* allocate hash table */
 424        rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size;
 425        rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size);
 426        rdi->qp_dev->qp_table =
 427                kmalloc_array_node(rdi->qp_dev->qp_table_size,
 428                             sizeof(*rdi->qp_dev->qp_table),
 429                             GFP_KERNEL, rdi->dparms.node);
 430        if (!rdi->qp_dev->qp_table)
 431                goto no_qp_table;
 432
 433        for (i = 0; i < rdi->qp_dev->qp_table_size; i++)
 434                RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL);
 435
 436        spin_lock_init(&rdi->qp_dev->qpt_lock);
 437
 438        /* initialize qpn map */
 439        if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table))
 440                goto fail_table;
 441
 442        spin_lock_init(&rdi->n_qps_lock);
 443
 444        return 0;
 445
 446fail_table:
 447        kfree(rdi->qp_dev->qp_table);
 448        free_qpn_table(&rdi->qp_dev->qpn_table);
 449
 450no_qp_table:
 451        kfree(rdi->qp_dev);
 452
 453        return ret;
 454}
 455
 456/**
 457 * rvt_free_qp_cb - callback function to reset a qp
 458 * @qp: the qp to reset
 459 * @v: a 64-bit value
 460 *
 461 * This function resets the qp and removes it from the
 462 * qp hash table.
 463 */
 464static void rvt_free_qp_cb(struct rvt_qp *qp, u64 v)
 465{
 466        unsigned int *qp_inuse = (unsigned int *)v;
 467        struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
 468
 469        /* Reset the qp and remove it from the qp hash list */
 470        rvt_reset_qp(rdi, qp, qp->ibqp.qp_type);
 471
 472        /* Increment the qp_inuse count */
 473        (*qp_inuse)++;
 474}
 475
 476/**
 477 * rvt_free_all_qps - check for QPs still in use
 478 * @rdi: rvt device info structure
 479 *
 480 * There should not be any QPs still in use.
 481 * Free memory for table.
 482 * Return the number of QPs still in use.
 483 */
 484static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi)
 485{
 486        unsigned int qp_inuse = 0;
 487
 488        qp_inuse += rvt_mcast_tree_empty(rdi);
 489
 490        rvt_qp_iter(rdi, (u64)&qp_inuse, rvt_free_qp_cb);
 491
 492        return qp_inuse;
 493}
 494
 495/**
 496 * rvt_qp_exit - clean up qps on device exit
 497 * @rdi: rvt dev structure
 498 *
 499 * Check for qp leaks and free resources.
 500 */
 501void rvt_qp_exit(struct rvt_dev_info *rdi)
 502{
 503        u32 qps_inuse = rvt_free_all_qps(rdi);
 504
 505        if (qps_inuse)
 506                rvt_pr_err(rdi, "QP memory leak! %u still in use\n",
 507                           qps_inuse);
 508        if (!rdi->qp_dev)
 509                return;
 510
 511        kfree(rdi->qp_dev->qp_table);
 512        free_qpn_table(&rdi->qp_dev->qpn_table);
 513        kfree(rdi->qp_dev);
 514}
 515
 516static inline unsigned mk_qpn(struct rvt_qpn_table *qpt,
 517                              struct rvt_qpn_map *map, unsigned off)
 518{
 519        return (map - qpt->map) * RVT_BITS_PER_PAGE + off;
 520}
 521
 522/**
 523 * alloc_qpn - Allocate the next available qpn or zero/one for QP type
 524 *             IB_QPT_SMI/IB_QPT_GSI
 525 * @rdi: rvt device info structure
 526 * @qpt: queue pair number table pointer
 527 * @port_num: IB port number, 1 based, comes from core
 528 * @exclude_prefix: prefix of special queue pair number being allocated
 529 *
 530 * Return: The queue pair number
 531 */
 532static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt,
 533                     enum ib_qp_type type, u8 port_num, u8 exclude_prefix)
 534{
 535        u32 i, offset, max_scan, qpn;
 536        struct rvt_qpn_map *map;
 537        u32 ret;
 538        u32 max_qpn = exclude_prefix == RVT_AIP_QP_PREFIX ?
 539                RVT_AIP_QPN_MAX : RVT_QPN_MAX;
 540
 541        if (rdi->driver_f.alloc_qpn)
 542                return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num);
 543
 544        if (type == IB_QPT_SMI || type == IB_QPT_GSI) {
 545                unsigned n;
 546
 547                ret = type == IB_QPT_GSI;
 548                n = 1 << (ret + 2 * (port_num - 1));
 549                spin_lock(&qpt->lock);
 550                if (qpt->flags & n)
 551                        ret = -EINVAL;
 552                else
 553                        qpt->flags |= n;
 554                spin_unlock(&qpt->lock);
 555                goto bail;
 556        }
 557
 558        qpn = qpt->last + qpt->incr;
 559        if (qpn >= max_qpn)
 560                qpn = qpt->incr | ((qpt->last & 1) ^ 1);
 561        /* offset carries bit 0 */
 562        offset = qpn & RVT_BITS_PER_PAGE_MASK;
 563        map = &qpt->map[qpn / RVT_BITS_PER_PAGE];
 564        max_scan = qpt->nmaps - !offset;
 565        for (i = 0;;) {
 566                if (unlikely(!map->page)) {
 567                        get_map_page(qpt, map);
 568                        if (unlikely(!map->page))
 569                                break;
 570                }
 571                do {
 572                        if (!test_and_set_bit(offset, map->page)) {
 573                                qpt->last = qpn;
 574                                ret = qpn;
 575                                goto bail;
 576                        }
 577                        offset += qpt->incr;
 578                        /*
 579                         * This qpn might be bogus if offset >= BITS_PER_PAGE.
 580                         * That is OK.   It gets re-assigned below
 581                         */
 582                        qpn = mk_qpn(qpt, map, offset);
 583                } while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX);
 584                /*
 585                 * In order to keep the number of pages allocated to a
 586                 * minimum, we scan the all existing pages before increasing
 587                 * the size of the bitmap table.
 588                 */
 589                if (++i > max_scan) {
 590                        if (qpt->nmaps == RVT_QPNMAP_ENTRIES)
 591                                break;
 592                        map = &qpt->map[qpt->nmaps++];
 593                        /* start at incr with current bit 0 */
 594                        offset = qpt->incr | (offset & 1);
 595                } else if (map < &qpt->map[qpt->nmaps]) {
 596                        ++map;
 597                        /* start at incr with current bit 0 */
 598                        offset = qpt->incr | (offset & 1);
 599                } else {
 600                        map = &qpt->map[0];
 601                        /* wrap to first map page, invert bit 0 */
 602                        offset = qpt->incr | ((offset & 1) ^ 1);
 603                }
 604                /* there can be no set bits in low-order QoS bits */
 605                WARN_ON(rdi->dparms.qos_shift > 1 &&
 606                        offset & ((BIT(rdi->dparms.qos_shift - 1) - 1) << 1));
 607                qpn = mk_qpn(qpt, map, offset);
 608        }
 609
 610        ret = -ENOMEM;
 611
 612bail:
 613        return ret;
 614}
 615
 616/**
 617 * rvt_clear_mr_refs - Drop help mr refs
 618 * @qp: rvt qp data structure
 619 * @clr_sends: If shoudl clear send side or not
 620 */
 621static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends)
 622{
 623        unsigned n;
 624        struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
 625
 626        if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags))
 627                rvt_put_ss(&qp->s_rdma_read_sge);
 628
 629        rvt_put_ss(&qp->r_sge);
 630
 631        if (clr_sends) {
 632                while (qp->s_last != qp->s_head) {
 633                        struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last);
 634
 635                        rvt_put_qp_swqe(qp, wqe);
 636                        if (++qp->s_last >= qp->s_size)
 637                                qp->s_last = 0;
 638                        smp_wmb(); /* see qp_set_savail */
 639                }
 640                if (qp->s_rdma_mr) {
 641                        rvt_put_mr(qp->s_rdma_mr);
 642                        qp->s_rdma_mr = NULL;
 643                }
 644        }
 645
 646        for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) {
 647                struct rvt_ack_entry *e = &qp->s_ack_queue[n];
 648
 649                if (e->rdma_sge.mr) {
 650                        rvt_put_mr(e->rdma_sge.mr);
 651                        e->rdma_sge.mr = NULL;
 652                }
 653        }
 654}
 655
 656/**
 657 * rvt_swqe_has_lkey - return true if lkey is used by swqe
 658 * @wqe - the send wqe
 659 * @lkey - the lkey
 660 *
 661 * Test the swqe for using lkey
 662 */
 663static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey)
 664{
 665        int i;
 666
 667        for (i = 0; i < wqe->wr.num_sge; i++) {
 668                struct rvt_sge *sge = &wqe->sg_list[i];
 669
 670                if (rvt_mr_has_lkey(sge->mr, lkey))
 671                        return true;
 672        }
 673        return false;
 674}
 675
 676/**
 677 * rvt_qp_sends_has_lkey - return true is qp sends use lkey
 678 * @qp - the rvt_qp
 679 * @lkey - the lkey
 680 */
 681static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey)
 682{
 683        u32 s_last = qp->s_last;
 684
 685        while (s_last != qp->s_head) {
 686                struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last);
 687
 688                if (rvt_swqe_has_lkey(wqe, lkey))
 689                        return true;
 690
 691                if (++s_last >= qp->s_size)
 692                        s_last = 0;
 693        }
 694        if (qp->s_rdma_mr)
 695                if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey))
 696                        return true;
 697        return false;
 698}
 699
 700/**
 701 * rvt_qp_acks_has_lkey - return true if acks have lkey
 702 * @qp - the qp
 703 * @lkey - the lkey
 704 */
 705static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey)
 706{
 707        int i;
 708        struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
 709
 710        for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) {
 711                struct rvt_ack_entry *e = &qp->s_ack_queue[i];
 712
 713                if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey))
 714                        return true;
 715        }
 716        return false;
 717}
 718
 719/*
 720 * rvt_qp_mr_clean - clean up remote ops for lkey
 721 * @qp - the qp
 722 * @lkey - the lkey that is being de-registered
 723 *
 724 * This routine checks if the lkey is being used by
 725 * the qp.
 726 *
 727 * If so, the qp is put into an error state to elminate
 728 * any references from the qp.
 729 */
 730void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey)
 731{
 732        bool lastwqe = false;
 733
 734        if (qp->ibqp.qp_type == IB_QPT_SMI ||
 735            qp->ibqp.qp_type == IB_QPT_GSI)
 736                /* avoid special QPs */
 737                return;
 738        spin_lock_irq(&qp->r_lock);
 739        spin_lock(&qp->s_hlock);
 740        spin_lock(&qp->s_lock);
 741
 742        if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
 743                goto check_lwqe;
 744
 745        if (rvt_ss_has_lkey(&qp->r_sge, lkey) ||
 746            rvt_qp_sends_has_lkey(qp, lkey) ||
 747            rvt_qp_acks_has_lkey(qp, lkey))
 748                lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR);
 749check_lwqe:
 750        spin_unlock(&qp->s_lock);
 751        spin_unlock(&qp->s_hlock);
 752        spin_unlock_irq(&qp->r_lock);
 753        if (lastwqe) {
 754                struct ib_event ev;
 755
 756                ev.device = qp->ibqp.device;
 757                ev.element.qp = &qp->ibqp;
 758                ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
 759                qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
 760        }
 761}
 762
 763/**
 764 * rvt_remove_qp - remove qp form table
 765 * @rdi: rvt dev struct
 766 * @qp: qp to remove
 767 *
 768 * Remove the QP from the table so it can't be found asynchronously by
 769 * the receive routine.
 770 */
 771static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
 772{
 773        struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
 774        u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
 775        unsigned long flags;
 776        int removed = 1;
 777
 778        spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
 779
 780        if (rcu_dereference_protected(rvp->qp[0],
 781                        lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
 782                RCU_INIT_POINTER(rvp->qp[0], NULL);
 783        } else if (rcu_dereference_protected(rvp->qp[1],
 784                        lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
 785                RCU_INIT_POINTER(rvp->qp[1], NULL);
 786        } else {
 787                struct rvt_qp *q;
 788                struct rvt_qp __rcu **qpp;
 789
 790                removed = 0;
 791                qpp = &rdi->qp_dev->qp_table[n];
 792                for (; (q = rcu_dereference_protected(*qpp,
 793                        lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL;
 794                        qpp = &q->next) {
 795                        if (q == qp) {
 796                                RCU_INIT_POINTER(*qpp,
 797                                     rcu_dereference_protected(qp->next,
 798                                     lockdep_is_held(&rdi->qp_dev->qpt_lock)));
 799                                removed = 1;
 800                                trace_rvt_qpremove(qp, n);
 801                                break;
 802                        }
 803                }
 804        }
 805
 806        spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
 807        if (removed) {
 808                synchronize_rcu();
 809                rvt_put_qp(qp);
 810        }
 811}
 812
 813/**
 814 * rvt_alloc_rq - allocate memory for user or kernel buffer
 815 * @rq: receive queue data structure
 816 * @size: number of request queue entries
 817 * @node: The NUMA node
 818 * @udata: True if user data is available or not false
 819 *
 820 * Return: If memory allocation failed, return -ENONEM
 821 * This function is used by both shared receive
 822 * queues and non-shared receive queues to allocate
 823 * memory.
 824 */
 825int rvt_alloc_rq(struct rvt_rq *rq, u32 size, int node,
 826                 struct ib_udata *udata)
 827{
 828        if (udata) {
 829                rq->wq = vmalloc_user(sizeof(struct rvt_rwq) + size);
 830                if (!rq->wq)
 831                        goto bail;
 832                /* need kwq with no buffers */
 833                rq->kwq = kzalloc_node(sizeof(*rq->kwq), GFP_KERNEL, node);
 834                if (!rq->kwq)
 835                        goto bail;
 836                rq->kwq->curr_wq = rq->wq->wq;
 837        } else {
 838                /* need kwq with buffers */
 839                rq->kwq =
 840                        vzalloc_node(sizeof(struct rvt_krwq) + size, node);
 841                if (!rq->kwq)
 842                        goto bail;
 843                rq->kwq->curr_wq = rq->kwq->wq;
 844        }
 845
 846        spin_lock_init(&rq->kwq->p_lock);
 847        spin_lock_init(&rq->kwq->c_lock);
 848        return 0;
 849bail:
 850        rvt_free_rq(rq);
 851        return -ENOMEM;
 852}
 853
 854/**
 855 * rvt_init_qp - initialize the QP state to the reset state
 856 * @qp: the QP to init or reinit
 857 * @type: the QP type
 858 *
 859 * This function is called from both rvt_create_qp() and
 860 * rvt_reset_qp().   The difference is that the reset
 861 * patch the necessary locks to protect against concurent
 862 * access.
 863 */
 864static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
 865                        enum ib_qp_type type)
 866{
 867        qp->remote_qpn = 0;
 868        qp->qkey = 0;
 869        qp->qp_access_flags = 0;
 870        qp->s_flags &= RVT_S_SIGNAL_REQ_WR;
 871        qp->s_hdrwords = 0;
 872        qp->s_wqe = NULL;
 873        qp->s_draining = 0;
 874        qp->s_next_psn = 0;
 875        qp->s_last_psn = 0;
 876        qp->s_sending_psn = 0;
 877        qp->s_sending_hpsn = 0;
 878        qp->s_psn = 0;
 879        qp->r_psn = 0;
 880        qp->r_msn = 0;
 881        if (type == IB_QPT_RC) {
 882                qp->s_state = IB_OPCODE_RC_SEND_LAST;
 883                qp->r_state = IB_OPCODE_RC_SEND_LAST;
 884        } else {
 885                qp->s_state = IB_OPCODE_UC_SEND_LAST;
 886                qp->r_state = IB_OPCODE_UC_SEND_LAST;
 887        }
 888        qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE;
 889        qp->r_nak_state = 0;
 890        qp->r_aflags = 0;
 891        qp->r_flags = 0;
 892        qp->s_head = 0;
 893        qp->s_tail = 0;
 894        qp->s_cur = 0;
 895        qp->s_acked = 0;
 896        qp->s_last = 0;
 897        qp->s_ssn = 1;
 898        qp->s_lsn = 0;
 899        qp->s_mig_state = IB_MIG_MIGRATED;
 900        qp->r_head_ack_queue = 0;
 901        qp->s_tail_ack_queue = 0;
 902        qp->s_acked_ack_queue = 0;
 903        qp->s_num_rd_atomic = 0;
 904        qp->r_sge.num_sge = 0;
 905        atomic_set(&qp->s_reserved_used, 0);
 906}
 907
 908/**
 909 * _rvt_reset_qp - initialize the QP state to the reset state
 910 * @qp: the QP to reset
 911 * @type: the QP type
 912 *
 913 * r_lock, s_hlock, and s_lock are required to be held by the caller
 914 */
 915static void _rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
 916                          enum ib_qp_type type)
 917        __must_hold(&qp->s_lock)
 918        __must_hold(&qp->s_hlock)
 919        __must_hold(&qp->r_lock)
 920{
 921        lockdep_assert_held(&qp->r_lock);
 922        lockdep_assert_held(&qp->s_hlock);
 923        lockdep_assert_held(&qp->s_lock);
 924        if (qp->state != IB_QPS_RESET) {
 925                qp->state = IB_QPS_RESET;
 926
 927                /* Let drivers flush their waitlist */
 928                rdi->driver_f.flush_qp_waiters(qp);
 929                rvt_stop_rc_timers(qp);
 930                qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT);
 931                spin_unlock(&qp->s_lock);
 932                spin_unlock(&qp->s_hlock);
 933                spin_unlock_irq(&qp->r_lock);
 934
 935                /* Stop the send queue and the retry timer */
 936                rdi->driver_f.stop_send_queue(qp);
 937                rvt_del_timers_sync(qp);
 938                /* Wait for things to stop */
 939                rdi->driver_f.quiesce_qp(qp);
 940
 941                /* take qp out the hash and wait for it to be unused */
 942                rvt_remove_qp(rdi, qp);
 943
 944                /* grab the lock b/c it was locked at call time */
 945                spin_lock_irq(&qp->r_lock);
 946                spin_lock(&qp->s_hlock);
 947                spin_lock(&qp->s_lock);
 948
 949                rvt_clear_mr_refs(qp, 1);
 950                /*
 951                 * Let the driver do any tear down or re-init it needs to for
 952                 * a qp that has been reset
 953                 */
 954                rdi->driver_f.notify_qp_reset(qp);
 955        }
 956        rvt_init_qp(rdi, qp, type);
 957        lockdep_assert_held(&qp->r_lock);
 958        lockdep_assert_held(&qp->s_hlock);
 959        lockdep_assert_held(&qp->s_lock);
 960}
 961
 962/**
 963 * rvt_reset_qp - initialize the QP state to the reset state
 964 * @rdi: the device info
 965 * @qp: the QP to reset
 966 * @type: the QP type
 967 *
 968 * This is the wrapper function to acquire the r_lock, s_hlock, and s_lock
 969 * before calling _rvt_reset_qp().
 970 */
 971static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
 972                         enum ib_qp_type type)
 973{
 974        spin_lock_irq(&qp->r_lock);
 975        spin_lock(&qp->s_hlock);
 976        spin_lock(&qp->s_lock);
 977        _rvt_reset_qp(rdi, qp, type);
 978        spin_unlock(&qp->s_lock);
 979        spin_unlock(&qp->s_hlock);
 980        spin_unlock_irq(&qp->r_lock);
 981}
 982
 983/** rvt_free_qpn - Free a qpn from the bit map
 984 * @qpt: QP table
 985 * @qpn: queue pair number to free
 986 */
 987static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn)
 988{
 989        struct rvt_qpn_map *map;
 990
 991        if ((qpn & RVT_AIP_QP_PREFIX_MASK) == RVT_AIP_QP_BASE)
 992                qpn &= RVT_AIP_QP_SUFFIX;
 993
 994        map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE;
 995        if (map->page)
 996                clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page);
 997}
 998
 999/**
1000 * get_allowed_ops - Given a QP type return the appropriate allowed OP
1001 * @type: valid, supported, QP type
1002 */
1003static u8 get_allowed_ops(enum ib_qp_type type)
1004{
1005        return type == IB_QPT_RC ? IB_OPCODE_RC : type == IB_QPT_UC ?
1006                IB_OPCODE_UC : IB_OPCODE_UD;
1007}
1008
1009/**
1010 * free_ud_wq_attr - Clean up AH attribute cache for UD QPs
1011 * @qp: Valid QP with allowed_ops set
1012 *
1013 * The rvt_swqe data structure being used is a union, so this is
1014 * only valid for UD QPs.
1015 */
1016static void free_ud_wq_attr(struct rvt_qp *qp)
1017{
1018        struct rvt_swqe *wqe;
1019        int i;
1020
1021        for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
1022                wqe = rvt_get_swqe_ptr(qp, i);
1023                kfree(wqe->ud_wr.attr);
1024                wqe->ud_wr.attr = NULL;
1025        }
1026}
1027
1028/**
1029 * alloc_ud_wq_attr - AH attribute cache for UD QPs
1030 * @qp: Valid QP with allowed_ops set
1031 * @node: Numa node for allocation
1032 *
1033 * The rvt_swqe data structure being used is a union, so this is
1034 * only valid for UD QPs.
1035 */
1036static int alloc_ud_wq_attr(struct rvt_qp *qp, int node)
1037{
1038        struct rvt_swqe *wqe;
1039        int i;
1040
1041        for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
1042                wqe = rvt_get_swqe_ptr(qp, i);
1043                wqe->ud_wr.attr = kzalloc_node(sizeof(*wqe->ud_wr.attr),
1044                                               GFP_KERNEL, node);
1045                if (!wqe->ud_wr.attr) {
1046                        free_ud_wq_attr(qp);
1047                        return -ENOMEM;
1048                }
1049        }
1050
1051        return 0;
1052}
1053
1054/**
1055 * rvt_create_qp - create a queue pair for a device
1056 * @ibpd: the protection domain who's device we create the queue pair for
1057 * @init_attr: the attributes of the queue pair
1058 * @udata: user data for libibverbs.so
1059 *
1060 * Queue pair creation is mostly an rvt issue. However, drivers have their own
1061 * unique idea of what queue pair numbers mean. For instance there is a reserved
1062 * range for PSM.
1063 *
1064 * Return: the queue pair on success, otherwise returns an errno.
1065 *
1066 * Called by the ib_create_qp() core verbs function.
1067 */
1068struct ib_qp *rvt_create_qp(struct ib_pd *ibpd,
1069                            struct ib_qp_init_attr *init_attr,
1070                            struct ib_udata *udata)
1071{
1072        struct rvt_qp *qp;
1073        int err;
1074        struct rvt_swqe *swq = NULL;
1075        size_t sz;
1076        size_t sg_list_sz;
1077        struct ib_qp *ret = ERR_PTR(-ENOMEM);
1078        struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device);
1079        void *priv = NULL;
1080        size_t sqsize;
1081        u8 exclude_prefix = 0;
1082
1083        if (!rdi)
1084                return ERR_PTR(-EINVAL);
1085
1086        if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge ||
1087            init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr ||
1088            (init_attr->create_flags &&
1089             init_attr->create_flags != IB_QP_CREATE_NETDEV_USE))
1090                return ERR_PTR(-EINVAL);
1091
1092        /* Check receive queue parameters if no SRQ is specified. */
1093        if (!init_attr->srq) {
1094                if (init_attr->cap.max_recv_sge >
1095                    rdi->dparms.props.max_recv_sge ||
1096                    init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr)
1097                        return ERR_PTR(-EINVAL);
1098
1099                if (init_attr->cap.max_send_sge +
1100                    init_attr->cap.max_send_wr +
1101                    init_attr->cap.max_recv_sge +
1102                    init_attr->cap.max_recv_wr == 0)
1103                        return ERR_PTR(-EINVAL);
1104        }
1105        sqsize =
1106                init_attr->cap.max_send_wr + 1 +
1107                rdi->dparms.reserved_operations;
1108        switch (init_attr->qp_type) {
1109        case IB_QPT_SMI:
1110        case IB_QPT_GSI:
1111                if (init_attr->port_num == 0 ||
1112                    init_attr->port_num > ibpd->device->phys_port_cnt)
1113                        return ERR_PTR(-EINVAL);
1114                /* fall through */
1115        case IB_QPT_UC:
1116        case IB_QPT_RC:
1117        case IB_QPT_UD:
1118                sz = struct_size(swq, sg_list, init_attr->cap.max_send_sge);
1119                swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node);
1120                if (!swq)
1121                        return ERR_PTR(-ENOMEM);
1122
1123                sz = sizeof(*qp);
1124                sg_list_sz = 0;
1125                if (init_attr->srq) {
1126                        struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq);
1127
1128                        if (srq->rq.max_sge > 1)
1129                                sg_list_sz = sizeof(*qp->r_sg_list) *
1130                                        (srq->rq.max_sge - 1);
1131                } else if (init_attr->cap.max_recv_sge > 1)
1132                        sg_list_sz = sizeof(*qp->r_sg_list) *
1133                                (init_attr->cap.max_recv_sge - 1);
1134                qp = kzalloc_node(sz + sg_list_sz, GFP_KERNEL,
1135                                  rdi->dparms.node);
1136                if (!qp)
1137                        goto bail_swq;
1138                qp->allowed_ops = get_allowed_ops(init_attr->qp_type);
1139
1140                RCU_INIT_POINTER(qp->next, NULL);
1141                if (init_attr->qp_type == IB_QPT_RC) {
1142                        qp->s_ack_queue =
1143                                kcalloc_node(rvt_max_atomic(rdi),
1144                                             sizeof(*qp->s_ack_queue),
1145                                             GFP_KERNEL,
1146                                             rdi->dparms.node);
1147                        if (!qp->s_ack_queue)
1148                                goto bail_qp;
1149                }
1150                /* initialize timers needed for rc qp */
1151                timer_setup(&qp->s_timer, rvt_rc_timeout, 0);
1152                hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC,
1153                             HRTIMER_MODE_REL);
1154                qp->s_rnr_timer.function = rvt_rc_rnr_retry;
1155
1156                /*
1157                 * Driver needs to set up it's private QP structure and do any
1158                 * initialization that is needed.
1159                 */
1160                priv = rdi->driver_f.qp_priv_alloc(rdi, qp);
1161                if (IS_ERR(priv)) {
1162                        ret = priv;
1163                        goto bail_qp;
1164                }
1165                qp->priv = priv;
1166                qp->timeout_jiffies =
1167                        usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
1168                                1000UL);
1169                if (init_attr->srq) {
1170                        sz = 0;
1171                } else {
1172                        qp->r_rq.size = init_attr->cap.max_recv_wr + 1;
1173                        qp->r_rq.max_sge = init_attr->cap.max_recv_sge;
1174                        sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) +
1175                                sizeof(struct rvt_rwqe);
1176                        err = rvt_alloc_rq(&qp->r_rq, qp->r_rq.size * sz,
1177                                           rdi->dparms.node, udata);
1178                        if (err) {
1179                                ret = ERR_PTR(err);
1180                                goto bail_driver_priv;
1181                        }
1182                }
1183
1184                /*
1185                 * ib_create_qp() will initialize qp->ibqp
1186                 * except for qp->ibqp.qp_num.
1187                 */
1188                spin_lock_init(&qp->r_lock);
1189                spin_lock_init(&qp->s_hlock);
1190                spin_lock_init(&qp->s_lock);
1191                atomic_set(&qp->refcount, 0);
1192                atomic_set(&qp->local_ops_pending, 0);
1193                init_waitqueue_head(&qp->wait);
1194                INIT_LIST_HEAD(&qp->rspwait);
1195                qp->state = IB_QPS_RESET;
1196                qp->s_wq = swq;
1197                qp->s_size = sqsize;
1198                qp->s_avail = init_attr->cap.max_send_wr;
1199                qp->s_max_sge = init_attr->cap.max_send_sge;
1200                if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR)
1201                        qp->s_flags = RVT_S_SIGNAL_REQ_WR;
1202                err = alloc_ud_wq_attr(qp, rdi->dparms.node);
1203                if (err) {
1204                        ret = (ERR_PTR(err));
1205                        goto bail_rq_rvt;
1206                }
1207
1208                if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE)
1209                        exclude_prefix = RVT_AIP_QP_PREFIX;
1210
1211                err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table,
1212                                init_attr->qp_type,
1213                                init_attr->port_num,
1214                                exclude_prefix);
1215                if (err < 0) {
1216                        ret = ERR_PTR(err);
1217                        goto bail_rq_wq;
1218                }
1219                qp->ibqp.qp_num = err;
1220                if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE)
1221                        qp->ibqp.qp_num |= RVT_AIP_QP_BASE;
1222                qp->port_num = init_attr->port_num;
1223                rvt_init_qp(rdi, qp, init_attr->qp_type);
1224                if (rdi->driver_f.qp_priv_init) {
1225                        err = rdi->driver_f.qp_priv_init(rdi, qp, init_attr);
1226                        if (err) {
1227                                ret = ERR_PTR(err);
1228                                goto bail_rq_wq;
1229                        }
1230                }
1231                break;
1232
1233        default:
1234                /* Don't support raw QPs */
1235                return ERR_PTR(-EOPNOTSUPP);
1236        }
1237
1238        init_attr->cap.max_inline_data = 0;
1239
1240        /*
1241         * Return the address of the RWQ as the offset to mmap.
1242         * See rvt_mmap() for details.
1243         */
1244        if (udata && udata->outlen >= sizeof(__u64)) {
1245                if (!qp->r_rq.wq) {
1246                        __u64 offset = 0;
1247
1248                        err = ib_copy_to_udata(udata, &offset,
1249                                               sizeof(offset));
1250                        if (err) {
1251                                ret = ERR_PTR(err);
1252                                goto bail_qpn;
1253                        }
1254                } else {
1255                        u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz;
1256
1257                        qp->ip = rvt_create_mmap_info(rdi, s, udata,
1258                                                      qp->r_rq.wq);
1259                        if (IS_ERR(qp->ip)) {
1260                                ret = ERR_CAST(qp->ip);
1261                                goto bail_qpn;
1262                        }
1263
1264                        err = ib_copy_to_udata(udata, &qp->ip->offset,
1265                                               sizeof(qp->ip->offset));
1266                        if (err) {
1267                                ret = ERR_PTR(err);
1268                                goto bail_ip;
1269                        }
1270                }
1271                qp->pid = current->pid;
1272        }
1273
1274        spin_lock(&rdi->n_qps_lock);
1275        if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) {
1276                spin_unlock(&rdi->n_qps_lock);
1277                ret = ERR_PTR(-ENOMEM);
1278                goto bail_ip;
1279        }
1280
1281        rdi->n_qps_allocated++;
1282        /*
1283         * Maintain a busy_jiffies variable that will be added to the timeout
1284         * period in mod_retry_timer and add_retry_timer. This busy jiffies
1285         * is scaled by the number of rc qps created for the device to reduce
1286         * the number of timeouts occurring when there is a large number of
1287         * qps. busy_jiffies is incremented every rc qp scaling interval.
1288         * The scaling interval is selected based on extensive performance
1289         * evaluation of targeted workloads.
1290         */
1291        if (init_attr->qp_type == IB_QPT_RC) {
1292                rdi->n_rc_qps++;
1293                rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1294        }
1295        spin_unlock(&rdi->n_qps_lock);
1296
1297        if (qp->ip) {
1298                spin_lock_irq(&rdi->pending_lock);
1299                list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps);
1300                spin_unlock_irq(&rdi->pending_lock);
1301        }
1302
1303        ret = &qp->ibqp;
1304
1305        return ret;
1306
1307bail_ip:
1308        if (qp->ip)
1309                kref_put(&qp->ip->ref, rvt_release_mmap_info);
1310
1311bail_qpn:
1312        rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1313
1314bail_rq_wq:
1315        free_ud_wq_attr(qp);
1316
1317bail_rq_rvt:
1318        rvt_free_rq(&qp->r_rq);
1319
1320bail_driver_priv:
1321        rdi->driver_f.qp_priv_free(rdi, qp);
1322
1323bail_qp:
1324        kfree(qp->s_ack_queue);
1325        kfree(qp);
1326
1327bail_swq:
1328        vfree(swq);
1329
1330        return ret;
1331}
1332
1333/**
1334 * rvt_error_qp - put a QP into the error state
1335 * @qp: the QP to put into the error state
1336 * @err: the receive completion error to signal if a RWQE is active
1337 *
1338 * Flushes both send and receive work queues.
1339 *
1340 * Return: true if last WQE event should be generated.
1341 * The QP r_lock and s_lock should be held and interrupts disabled.
1342 * If we are already in error state, just return.
1343 */
1344int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err)
1345{
1346        struct ib_wc wc;
1347        int ret = 0;
1348        struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1349
1350        lockdep_assert_held(&qp->r_lock);
1351        lockdep_assert_held(&qp->s_lock);
1352        if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
1353                goto bail;
1354
1355        qp->state = IB_QPS_ERR;
1356
1357        if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
1358                qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
1359                del_timer(&qp->s_timer);
1360        }
1361
1362        if (qp->s_flags & RVT_S_ANY_WAIT_SEND)
1363                qp->s_flags &= ~RVT_S_ANY_WAIT_SEND;
1364
1365        rdi->driver_f.notify_error_qp(qp);
1366
1367        /* Schedule the sending tasklet to drain the send work queue. */
1368        if (READ_ONCE(qp->s_last) != qp->s_head)
1369                rdi->driver_f.schedule_send(qp);
1370
1371        rvt_clear_mr_refs(qp, 0);
1372
1373        memset(&wc, 0, sizeof(wc));
1374        wc.qp = &qp->ibqp;
1375        wc.opcode = IB_WC_RECV;
1376
1377        if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) {
1378                wc.wr_id = qp->r_wr_id;
1379                wc.status = err;
1380                rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1381        }
1382        wc.status = IB_WC_WR_FLUSH_ERR;
1383
1384        if (qp->r_rq.kwq) {
1385                u32 head;
1386                u32 tail;
1387                struct rvt_rwq *wq = NULL;
1388                struct rvt_krwq *kwq = NULL;
1389
1390                spin_lock(&qp->r_rq.kwq->c_lock);
1391                /* qp->ip used to validate if there is a  user buffer mmaped */
1392                if (qp->ip) {
1393                        wq = qp->r_rq.wq;
1394                        head = RDMA_READ_UAPI_ATOMIC(wq->head);
1395                        tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
1396                } else {
1397                        kwq = qp->r_rq.kwq;
1398                        head = kwq->head;
1399                        tail = kwq->tail;
1400                }
1401                /* sanity check pointers before trusting them */
1402                if (head >= qp->r_rq.size)
1403                        head = 0;
1404                if (tail >= qp->r_rq.size)
1405                        tail = 0;
1406                while (tail != head) {
1407                        wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id;
1408                        if (++tail >= qp->r_rq.size)
1409                                tail = 0;
1410                        rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1411                }
1412                if (qp->ip)
1413                        RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
1414                else
1415                        kwq->tail = tail;
1416                spin_unlock(&qp->r_rq.kwq->c_lock);
1417        } else if (qp->ibqp.event_handler) {
1418                ret = 1;
1419        }
1420
1421bail:
1422        return ret;
1423}
1424EXPORT_SYMBOL(rvt_error_qp);
1425
1426/*
1427 * Put the QP into the hash table.
1428 * The hash table holds a reference to the QP.
1429 */
1430static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
1431{
1432        struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
1433        unsigned long flags;
1434
1435        rvt_get_qp(qp);
1436        spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
1437
1438        if (qp->ibqp.qp_num <= 1) {
1439                rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp);
1440        } else {
1441                u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
1442
1443                qp->next = rdi->qp_dev->qp_table[n];
1444                rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp);
1445                trace_rvt_qpinsert(qp, n);
1446        }
1447
1448        spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
1449}
1450
1451/**
1452 * rvt_modify_qp - modify the attributes of a queue pair
1453 * @ibqp: the queue pair who's attributes we're modifying
1454 * @attr: the new attributes
1455 * @attr_mask: the mask of attributes to modify
1456 * @udata: user data for libibverbs.so
1457 *
1458 * Return: 0 on success, otherwise returns an errno.
1459 */
1460int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1461                  int attr_mask, struct ib_udata *udata)
1462{
1463        struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1464        struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1465        enum ib_qp_state cur_state, new_state;
1466        struct ib_event ev;
1467        int lastwqe = 0;
1468        int mig = 0;
1469        int pmtu = 0; /* for gcc warning only */
1470        int opa_ah;
1471
1472        spin_lock_irq(&qp->r_lock);
1473        spin_lock(&qp->s_hlock);
1474        spin_lock(&qp->s_lock);
1475
1476        cur_state = attr_mask & IB_QP_CUR_STATE ?
1477                attr->cur_qp_state : qp->state;
1478        new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state;
1479        opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num);
1480
1481        if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type,
1482                                attr_mask))
1483                goto inval;
1484
1485        if (rdi->driver_f.check_modify_qp &&
1486            rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata))
1487                goto inval;
1488
1489        if (attr_mask & IB_QP_AV) {
1490                if (opa_ah) {
1491                        if (rdma_ah_get_dlid(&attr->ah_attr) >=
1492                                opa_get_mcast_base(OPA_MCAST_NR))
1493                                goto inval;
1494                } else {
1495                        if (rdma_ah_get_dlid(&attr->ah_attr) >=
1496                                be16_to_cpu(IB_MULTICAST_LID_BASE))
1497                                goto inval;
1498                }
1499
1500                if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr))
1501                        goto inval;
1502        }
1503
1504        if (attr_mask & IB_QP_ALT_PATH) {
1505                if (opa_ah) {
1506                        if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1507                                opa_get_mcast_base(OPA_MCAST_NR))
1508                                goto inval;
1509                } else {
1510                        if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1511                                be16_to_cpu(IB_MULTICAST_LID_BASE))
1512                                goto inval;
1513                }
1514
1515                if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr))
1516                        goto inval;
1517                if (attr->alt_pkey_index >= rvt_get_npkeys(rdi))
1518                        goto inval;
1519        }
1520
1521        if (attr_mask & IB_QP_PKEY_INDEX)
1522                if (attr->pkey_index >= rvt_get_npkeys(rdi))
1523                        goto inval;
1524
1525        if (attr_mask & IB_QP_MIN_RNR_TIMER)
1526                if (attr->min_rnr_timer > 31)
1527                        goto inval;
1528
1529        if (attr_mask & IB_QP_PORT)
1530                if (qp->ibqp.qp_type == IB_QPT_SMI ||
1531                    qp->ibqp.qp_type == IB_QPT_GSI ||
1532                    attr->port_num == 0 ||
1533                    attr->port_num > ibqp->device->phys_port_cnt)
1534                        goto inval;
1535
1536        if (attr_mask & IB_QP_DEST_QPN)
1537                if (attr->dest_qp_num > RVT_QPN_MASK)
1538                        goto inval;
1539
1540        if (attr_mask & IB_QP_RETRY_CNT)
1541                if (attr->retry_cnt > 7)
1542                        goto inval;
1543
1544        if (attr_mask & IB_QP_RNR_RETRY)
1545                if (attr->rnr_retry > 7)
1546                        goto inval;
1547
1548        /*
1549         * Don't allow invalid path_mtu values.  OK to set greater
1550         * than the active mtu (or even the max_cap, if we have tuned
1551         * that to a small mtu.  We'll set qp->path_mtu
1552         * to the lesser of requested attribute mtu and active,
1553         * for packetizing messages.
1554         * Note that the QP port has to be set in INIT and MTU in RTR.
1555         */
1556        if (attr_mask & IB_QP_PATH_MTU) {
1557                pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr);
1558                if (pmtu < 0)
1559                        goto inval;
1560        }
1561
1562        if (attr_mask & IB_QP_PATH_MIG_STATE) {
1563                if (attr->path_mig_state == IB_MIG_REARM) {
1564                        if (qp->s_mig_state == IB_MIG_ARMED)
1565                                goto inval;
1566                        if (new_state != IB_QPS_RTS)
1567                                goto inval;
1568                } else if (attr->path_mig_state == IB_MIG_MIGRATED) {
1569                        if (qp->s_mig_state == IB_MIG_REARM)
1570                                goto inval;
1571                        if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD)
1572                                goto inval;
1573                        if (qp->s_mig_state == IB_MIG_ARMED)
1574                                mig = 1;
1575                } else {
1576                        goto inval;
1577                }
1578        }
1579
1580        if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1581                if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic)
1582                        goto inval;
1583
1584        switch (new_state) {
1585        case IB_QPS_RESET:
1586                if (qp->state != IB_QPS_RESET)
1587                        _rvt_reset_qp(rdi, qp, ibqp->qp_type);
1588                break;
1589
1590        case IB_QPS_RTR:
1591                /* Allow event to re-trigger if QP set to RTR more than once */
1592                qp->r_flags &= ~RVT_R_COMM_EST;
1593                qp->state = new_state;
1594                break;
1595
1596        case IB_QPS_SQD:
1597                qp->s_draining = qp->s_last != qp->s_cur;
1598                qp->state = new_state;
1599                break;
1600
1601        case IB_QPS_SQE:
1602                if (qp->ibqp.qp_type == IB_QPT_RC)
1603                        goto inval;
1604                qp->state = new_state;
1605                break;
1606
1607        case IB_QPS_ERR:
1608                lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
1609                break;
1610
1611        default:
1612                qp->state = new_state;
1613                break;
1614        }
1615
1616        if (attr_mask & IB_QP_PKEY_INDEX)
1617                qp->s_pkey_index = attr->pkey_index;
1618
1619        if (attr_mask & IB_QP_PORT)
1620                qp->port_num = attr->port_num;
1621
1622        if (attr_mask & IB_QP_DEST_QPN)
1623                qp->remote_qpn = attr->dest_qp_num;
1624
1625        if (attr_mask & IB_QP_SQ_PSN) {
1626                qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask;
1627                qp->s_psn = qp->s_next_psn;
1628                qp->s_sending_psn = qp->s_next_psn;
1629                qp->s_last_psn = qp->s_next_psn - 1;
1630                qp->s_sending_hpsn = qp->s_last_psn;
1631        }
1632
1633        if (attr_mask & IB_QP_RQ_PSN)
1634                qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask;
1635
1636        if (attr_mask & IB_QP_ACCESS_FLAGS)
1637                qp->qp_access_flags = attr->qp_access_flags;
1638
1639        if (attr_mask & IB_QP_AV) {
1640                rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr);
1641                qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr);
1642                qp->srate_mbps = ib_rate_to_mbps(qp->s_srate);
1643        }
1644
1645        if (attr_mask & IB_QP_ALT_PATH) {
1646                rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr);
1647                qp->s_alt_pkey_index = attr->alt_pkey_index;
1648        }
1649
1650        if (attr_mask & IB_QP_PATH_MIG_STATE) {
1651                qp->s_mig_state = attr->path_mig_state;
1652                if (mig) {
1653                        qp->remote_ah_attr = qp->alt_ah_attr;
1654                        qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
1655                        qp->s_pkey_index = qp->s_alt_pkey_index;
1656                }
1657        }
1658
1659        if (attr_mask & IB_QP_PATH_MTU) {
1660                qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu);
1661                qp->log_pmtu = ilog2(qp->pmtu);
1662        }
1663
1664        if (attr_mask & IB_QP_RETRY_CNT) {
1665                qp->s_retry_cnt = attr->retry_cnt;
1666                qp->s_retry = attr->retry_cnt;
1667        }
1668
1669        if (attr_mask & IB_QP_RNR_RETRY) {
1670                qp->s_rnr_retry_cnt = attr->rnr_retry;
1671                qp->s_rnr_retry = attr->rnr_retry;
1672        }
1673
1674        if (attr_mask & IB_QP_MIN_RNR_TIMER)
1675                qp->r_min_rnr_timer = attr->min_rnr_timer;
1676
1677        if (attr_mask & IB_QP_TIMEOUT) {
1678                qp->timeout = attr->timeout;
1679                qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout);
1680        }
1681
1682        if (attr_mask & IB_QP_QKEY)
1683                qp->qkey = attr->qkey;
1684
1685        if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1686                qp->r_max_rd_atomic = attr->max_dest_rd_atomic;
1687
1688        if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC)
1689                qp->s_max_rd_atomic = attr->max_rd_atomic;
1690
1691        if (rdi->driver_f.modify_qp)
1692                rdi->driver_f.modify_qp(qp, attr, attr_mask, udata);
1693
1694        spin_unlock(&qp->s_lock);
1695        spin_unlock(&qp->s_hlock);
1696        spin_unlock_irq(&qp->r_lock);
1697
1698        if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
1699                rvt_insert_qp(rdi, qp);
1700
1701        if (lastwqe) {
1702                ev.device = qp->ibqp.device;
1703                ev.element.qp = &qp->ibqp;
1704                ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
1705                qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1706        }
1707        if (mig) {
1708                ev.device = qp->ibqp.device;
1709                ev.element.qp = &qp->ibqp;
1710                ev.event = IB_EVENT_PATH_MIG;
1711                qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1712        }
1713        return 0;
1714
1715inval:
1716        spin_unlock(&qp->s_lock);
1717        spin_unlock(&qp->s_hlock);
1718        spin_unlock_irq(&qp->r_lock);
1719        return -EINVAL;
1720}
1721
1722/**
1723 * rvt_destroy_qp - destroy a queue pair
1724 * @ibqp: the queue pair to destroy
1725 *
1726 * Note that this can be called while the QP is actively sending or
1727 * receiving!
1728 *
1729 * Return: 0 on success.
1730 */
1731int rvt_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata)
1732{
1733        struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1734        struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1735
1736        rvt_reset_qp(rdi, qp, ibqp->qp_type);
1737
1738        wait_event(qp->wait, !atomic_read(&qp->refcount));
1739        /* qpn is now available for use again */
1740        rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1741
1742        spin_lock(&rdi->n_qps_lock);
1743        rdi->n_qps_allocated--;
1744        if (qp->ibqp.qp_type == IB_QPT_RC) {
1745                rdi->n_rc_qps--;
1746                rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1747        }
1748        spin_unlock(&rdi->n_qps_lock);
1749
1750        if (qp->ip)
1751                kref_put(&qp->ip->ref, rvt_release_mmap_info);
1752        kvfree(qp->r_rq.kwq);
1753        rdi->driver_f.qp_priv_free(rdi, qp);
1754        kfree(qp->s_ack_queue);
1755        rdma_destroy_ah_attr(&qp->remote_ah_attr);
1756        rdma_destroy_ah_attr(&qp->alt_ah_attr);
1757        free_ud_wq_attr(qp);
1758        vfree(qp->s_wq);
1759        kfree(qp);
1760        return 0;
1761}
1762
1763/**
1764 * rvt_query_qp - query an ipbq
1765 * @ibqp: IB qp to query
1766 * @attr: attr struct to fill in
1767 * @attr_mask: attr mask ignored
1768 * @init_attr: struct to fill in
1769 *
1770 * Return: always 0
1771 */
1772int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1773                 int attr_mask, struct ib_qp_init_attr *init_attr)
1774{
1775        struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1776        struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1777
1778        attr->qp_state = qp->state;
1779        attr->cur_qp_state = attr->qp_state;
1780        attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu);
1781        attr->path_mig_state = qp->s_mig_state;
1782        attr->qkey = qp->qkey;
1783        attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask;
1784        attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask;
1785        attr->dest_qp_num = qp->remote_qpn;
1786        attr->qp_access_flags = qp->qp_access_flags;
1787        attr->cap.max_send_wr = qp->s_size - 1 -
1788                rdi->dparms.reserved_operations;
1789        attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1;
1790        attr->cap.max_send_sge = qp->s_max_sge;
1791        attr->cap.max_recv_sge = qp->r_rq.max_sge;
1792        attr->cap.max_inline_data = 0;
1793        attr->ah_attr = qp->remote_ah_attr;
1794        attr->alt_ah_attr = qp->alt_ah_attr;
1795        attr->pkey_index = qp->s_pkey_index;
1796        attr->alt_pkey_index = qp->s_alt_pkey_index;
1797        attr->en_sqd_async_notify = 0;
1798        attr->sq_draining = qp->s_draining;
1799        attr->max_rd_atomic = qp->s_max_rd_atomic;
1800        attr->max_dest_rd_atomic = qp->r_max_rd_atomic;
1801        attr->min_rnr_timer = qp->r_min_rnr_timer;
1802        attr->port_num = qp->port_num;
1803        attr->timeout = qp->timeout;
1804        attr->retry_cnt = qp->s_retry_cnt;
1805        attr->rnr_retry = qp->s_rnr_retry_cnt;
1806        attr->alt_port_num =
1807                rdma_ah_get_port_num(&qp->alt_ah_attr);
1808        attr->alt_timeout = qp->alt_timeout;
1809
1810        init_attr->event_handler = qp->ibqp.event_handler;
1811        init_attr->qp_context = qp->ibqp.qp_context;
1812        init_attr->send_cq = qp->ibqp.send_cq;
1813        init_attr->recv_cq = qp->ibqp.recv_cq;
1814        init_attr->srq = qp->ibqp.srq;
1815        init_attr->cap = attr->cap;
1816        if (qp->s_flags & RVT_S_SIGNAL_REQ_WR)
1817                init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
1818        else
1819                init_attr->sq_sig_type = IB_SIGNAL_ALL_WR;
1820        init_attr->qp_type = qp->ibqp.qp_type;
1821        init_attr->port_num = qp->port_num;
1822        return 0;
1823}
1824
1825/**
1826 * rvt_post_receive - post a receive on a QP
1827 * @ibqp: the QP to post the receive on
1828 * @wr: the WR to post
1829 * @bad_wr: the first bad WR is put here
1830 *
1831 * This may be called from interrupt context.
1832 *
1833 * Return: 0 on success otherwise errno
1834 */
1835int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr,
1836                  const struct ib_recv_wr **bad_wr)
1837{
1838        struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1839        struct rvt_krwq *wq = qp->r_rq.kwq;
1840        unsigned long flags;
1841        int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) &&
1842                                !qp->ibqp.srq;
1843
1844        /* Check that state is OK to post receive. */
1845        if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) {
1846                *bad_wr = wr;
1847                return -EINVAL;
1848        }
1849
1850        for (; wr; wr = wr->next) {
1851                struct rvt_rwqe *wqe;
1852                u32 next;
1853                int i;
1854
1855                if ((unsigned)wr->num_sge > qp->r_rq.max_sge) {
1856                        *bad_wr = wr;
1857                        return -EINVAL;
1858                }
1859
1860                spin_lock_irqsave(&qp->r_rq.kwq->p_lock, flags);
1861                next = wq->head + 1;
1862                if (next >= qp->r_rq.size)
1863                        next = 0;
1864                if (next == READ_ONCE(wq->tail)) {
1865                        spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1866                        *bad_wr = wr;
1867                        return -ENOMEM;
1868                }
1869                if (unlikely(qp_err_flush)) {
1870                        struct ib_wc wc;
1871
1872                        memset(&wc, 0, sizeof(wc));
1873                        wc.qp = &qp->ibqp;
1874                        wc.opcode = IB_WC_RECV;
1875                        wc.wr_id = wr->wr_id;
1876                        wc.status = IB_WC_WR_FLUSH_ERR;
1877                        rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1878                } else {
1879                        wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head);
1880                        wqe->wr_id = wr->wr_id;
1881                        wqe->num_sge = wr->num_sge;
1882                        for (i = 0; i < wr->num_sge; i++) {
1883                                wqe->sg_list[i].addr = wr->sg_list[i].addr;
1884                                wqe->sg_list[i].length = wr->sg_list[i].length;
1885                                wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
1886                        }
1887                        /*
1888                         * Make sure queue entry is written
1889                         * before the head index.
1890                         */
1891                        smp_store_release(&wq->head, next);
1892                }
1893                spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1894        }
1895        return 0;
1896}
1897
1898/**
1899 * rvt_qp_valid_operation - validate post send wr request
1900 * @qp - the qp
1901 * @post-parms - the post send table for the driver
1902 * @wr - the work request
1903 *
1904 * The routine validates the operation based on the
1905 * validation table an returns the length of the operation
1906 * which can extend beyond the ib_send_bw.  Operation
1907 * dependent flags key atomic operation validation.
1908 *
1909 * There is an exception for UD qps that validates the pd and
1910 * overrides the length to include the additional UD specific
1911 * length.
1912 *
1913 * Returns a negative error or the length of the work request
1914 * for building the swqe.
1915 */
1916static inline int rvt_qp_valid_operation(
1917        struct rvt_qp *qp,
1918        const struct rvt_operation_params *post_parms,
1919        const struct ib_send_wr *wr)
1920{
1921        int len;
1922
1923        if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length)
1924                return -EINVAL;
1925        if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type)))
1926                return -EINVAL;
1927        if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) &&
1928            ibpd_to_rvtpd(qp->ibqp.pd)->user)
1929                return -EINVAL;
1930        if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE &&
1931            (wr->num_sge == 0 ||
1932             wr->sg_list[0].length < sizeof(u64) ||
1933             wr->sg_list[0].addr & (sizeof(u64) - 1)))
1934                return -EINVAL;
1935        if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC &&
1936            !qp->s_max_rd_atomic)
1937                return -EINVAL;
1938        len = post_parms[wr->opcode].length;
1939        /* UD specific */
1940        if (qp->ibqp.qp_type != IB_QPT_UC &&
1941            qp->ibqp.qp_type != IB_QPT_RC) {
1942                if (qp->ibqp.pd != ud_wr(wr)->ah->pd)
1943                        return -EINVAL;
1944                len = sizeof(struct ib_ud_wr);
1945        }
1946        return len;
1947}
1948
1949/**
1950 * rvt_qp_is_avail - determine queue capacity
1951 * @qp: the qp
1952 * @rdi: the rdmavt device
1953 * @reserved_op: is reserved operation
1954 *
1955 * This assumes the s_hlock is held but the s_last
1956 * qp variable is uncontrolled.
1957 *
1958 * For non reserved operations, the qp->s_avail
1959 * may be changed.
1960 *
1961 * The return value is zero or a -ENOMEM.
1962 */
1963static inline int rvt_qp_is_avail(
1964        struct rvt_qp *qp,
1965        struct rvt_dev_info *rdi,
1966        bool reserved_op)
1967{
1968        u32 slast;
1969        u32 avail;
1970        u32 reserved_used;
1971
1972        /* see rvt_qp_wqe_unreserve() */
1973        smp_mb__before_atomic();
1974        if (unlikely(reserved_op)) {
1975                /* see rvt_qp_wqe_unreserve() */
1976                reserved_used = atomic_read(&qp->s_reserved_used);
1977                if (reserved_used >= rdi->dparms.reserved_operations)
1978                        return -ENOMEM;
1979                return 0;
1980        }
1981        /* non-reserved operations */
1982        if (likely(qp->s_avail))
1983                return 0;
1984        /* See rvt_qp_complete_swqe() */
1985        slast = smp_load_acquire(&qp->s_last);
1986        if (qp->s_head >= slast)
1987                avail = qp->s_size - (qp->s_head - slast);
1988        else
1989                avail = slast - qp->s_head;
1990
1991        reserved_used = atomic_read(&qp->s_reserved_used);
1992        avail =  avail - 1 -
1993                (rdi->dparms.reserved_operations - reserved_used);
1994        /* insure we don't assign a negative s_avail */
1995        if ((s32)avail <= 0)
1996                return -ENOMEM;
1997        qp->s_avail = avail;
1998        if (WARN_ON(qp->s_avail >
1999                    (qp->s_size - 1 - rdi->dparms.reserved_operations)))
2000                rvt_pr_err(rdi,
2001                           "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u",
2002                           qp->ibqp.qp_num, qp->s_size, qp->s_avail,
2003                           qp->s_head, qp->s_tail, qp->s_cur,
2004                           qp->s_acked, qp->s_last);
2005        return 0;
2006}
2007
2008/**
2009 * rvt_post_one_wr - post one RC, UC, or UD send work request
2010 * @qp: the QP to post on
2011 * @wr: the work request to send
2012 */
2013static int rvt_post_one_wr(struct rvt_qp *qp,
2014                           const struct ib_send_wr *wr,
2015                           bool *call_send)
2016{
2017        struct rvt_swqe *wqe;
2018        u32 next;
2019        int i;
2020        int j;
2021        int acc;
2022        struct rvt_lkey_table *rkt;
2023        struct rvt_pd *pd;
2024        struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2025        u8 log_pmtu;
2026        int ret;
2027        size_t cplen;
2028        bool reserved_op;
2029        int local_ops_delayed = 0;
2030
2031        BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE));
2032
2033        /* IB spec says that num_sge == 0 is OK. */
2034        if (unlikely(wr->num_sge > qp->s_max_sge))
2035                return -EINVAL;
2036
2037        ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr);
2038        if (ret < 0)
2039                return ret;
2040        cplen = ret;
2041
2042        /*
2043         * Local operations include fast register and local invalidate.
2044         * Fast register needs to be processed immediately because the
2045         * registered lkey may be used by following work requests and the
2046         * lkey needs to be valid at the time those requests are posted.
2047         * Local invalidate can be processed immediately if fencing is
2048         * not required and no previous local invalidate ops are pending.
2049         * Signaled local operations that have been processed immediately
2050         * need to have requests with "completion only" flags set posted
2051         * to the send queue in order to generate completions.
2052         */
2053        if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) {
2054                switch (wr->opcode) {
2055                case IB_WR_REG_MR:
2056                        ret = rvt_fast_reg_mr(qp,
2057                                              reg_wr(wr)->mr,
2058                                              reg_wr(wr)->key,
2059                                              reg_wr(wr)->access);
2060                        if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2061                                return ret;
2062                        break;
2063                case IB_WR_LOCAL_INV:
2064                        if ((wr->send_flags & IB_SEND_FENCE) ||
2065                            atomic_read(&qp->local_ops_pending)) {
2066                                local_ops_delayed = 1;
2067                        } else {
2068                                ret = rvt_invalidate_rkey(
2069                                        qp, wr->ex.invalidate_rkey);
2070                                if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2071                                        return ret;
2072                        }
2073                        break;
2074                default:
2075                        return -EINVAL;
2076                }
2077        }
2078
2079        reserved_op = rdi->post_parms[wr->opcode].flags &
2080                        RVT_OPERATION_USE_RESERVE;
2081        /* check for avail */
2082        ret = rvt_qp_is_avail(qp, rdi, reserved_op);
2083        if (ret)
2084                return ret;
2085        next = qp->s_head + 1;
2086        if (next >= qp->s_size)
2087                next = 0;
2088
2089        rkt = &rdi->lkey_table;
2090        pd = ibpd_to_rvtpd(qp->ibqp.pd);
2091        wqe = rvt_get_swqe_ptr(qp, qp->s_head);
2092
2093        /* cplen has length from above */
2094        memcpy(&wqe->wr, wr, cplen);
2095
2096        wqe->length = 0;
2097        j = 0;
2098        if (wr->num_sge) {
2099                struct rvt_sge *last_sge = NULL;
2100
2101                acc = wr->opcode >= IB_WR_RDMA_READ ?
2102                        IB_ACCESS_LOCAL_WRITE : 0;
2103                for (i = 0; i < wr->num_sge; i++) {
2104                        u32 length = wr->sg_list[i].length;
2105
2106                        if (length == 0)
2107                                continue;
2108                        ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge,
2109                                          &wr->sg_list[i], acc);
2110                        if (unlikely(ret < 0))
2111                                goto bail_inval_free;
2112                        wqe->length += length;
2113                        if (ret)
2114                                last_sge = &wqe->sg_list[j];
2115                        j += ret;
2116                }
2117                wqe->wr.num_sge = j;
2118        }
2119
2120        /*
2121         * Calculate and set SWQE PSN values prior to handing it off
2122         * to the driver's check routine. This give the driver the
2123         * opportunity to adjust PSN values based on internal checks.
2124         */
2125        log_pmtu = qp->log_pmtu;
2126        if (qp->allowed_ops == IB_OPCODE_UD) {
2127                struct rvt_ah *ah = rvt_get_swqe_ah(wqe);
2128
2129                log_pmtu = ah->log_pmtu;
2130                rdma_copy_ah_attr(wqe->ud_wr.attr, &ah->attr);
2131        }
2132
2133        if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) {
2134                if (local_ops_delayed)
2135                        atomic_inc(&qp->local_ops_pending);
2136                else
2137                        wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY;
2138                wqe->ssn = 0;
2139                wqe->psn = 0;
2140                wqe->lpsn = 0;
2141        } else {
2142                wqe->ssn = qp->s_ssn++;
2143                wqe->psn = qp->s_next_psn;
2144                wqe->lpsn = wqe->psn +
2145                                (wqe->length ?
2146                                        ((wqe->length - 1) >> log_pmtu) :
2147                                        0);
2148        }
2149
2150        /* general part of wqe valid - allow for driver checks */
2151        if (rdi->driver_f.setup_wqe) {
2152                ret = rdi->driver_f.setup_wqe(qp, wqe, call_send);
2153                if (ret < 0)
2154                        goto bail_inval_free_ref;
2155        }
2156
2157        if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL))
2158                qp->s_next_psn = wqe->lpsn + 1;
2159
2160        if (unlikely(reserved_op)) {
2161                wqe->wr.send_flags |= RVT_SEND_RESERVE_USED;
2162                rvt_qp_wqe_reserve(qp, wqe);
2163        } else {
2164                wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED;
2165                qp->s_avail--;
2166        }
2167        trace_rvt_post_one_wr(qp, wqe, wr->num_sge);
2168        smp_wmb(); /* see request builders */
2169        qp->s_head = next;
2170
2171        return 0;
2172
2173bail_inval_free_ref:
2174        if (qp->allowed_ops == IB_OPCODE_UD)
2175                rdma_destroy_ah_attr(wqe->ud_wr.attr);
2176bail_inval_free:
2177        /* release mr holds */
2178        while (j) {
2179                struct rvt_sge *sge = &wqe->sg_list[--j];
2180
2181                rvt_put_mr(sge->mr);
2182        }
2183        return ret;
2184}
2185
2186/**
2187 * rvt_post_send - post a send on a QP
2188 * @ibqp: the QP to post the send on
2189 * @wr: the list of work requests to post
2190 * @bad_wr: the first bad WR is put here
2191 *
2192 * This may be called from interrupt context.
2193 *
2194 * Return: 0 on success else errno
2195 */
2196int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr,
2197                  const struct ib_send_wr **bad_wr)
2198{
2199        struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
2200        struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2201        unsigned long flags = 0;
2202        bool call_send;
2203        unsigned nreq = 0;
2204        int err = 0;
2205
2206        spin_lock_irqsave(&qp->s_hlock, flags);
2207
2208        /*
2209         * Ensure QP state is such that we can send. If not bail out early,
2210         * there is no need to do this every time we post a send.
2211         */
2212        if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) {
2213                spin_unlock_irqrestore(&qp->s_hlock, flags);
2214                return -EINVAL;
2215        }
2216
2217        /*
2218         * If the send queue is empty, and we only have a single WR then just go
2219         * ahead and kick the send engine into gear. Otherwise we will always
2220         * just schedule the send to happen later.
2221         */
2222        call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next;
2223
2224        for (; wr; wr = wr->next) {
2225                err = rvt_post_one_wr(qp, wr, &call_send);
2226                if (unlikely(err)) {
2227                        *bad_wr = wr;
2228                        goto bail;
2229                }
2230                nreq++;
2231        }
2232bail:
2233        spin_unlock_irqrestore(&qp->s_hlock, flags);
2234        if (nreq) {
2235                /*
2236                 * Only call do_send if there is exactly one packet, and the
2237                 * driver said it was ok.
2238                 */
2239                if (nreq == 1 && call_send)
2240                        rdi->driver_f.do_send(qp);
2241                else
2242                        rdi->driver_f.schedule_send_no_lock(qp);
2243        }
2244        return err;
2245}
2246
2247/**
2248 * rvt_post_srq_receive - post a receive on a shared receive queue
2249 * @ibsrq: the SRQ to post the receive on
2250 * @wr: the list of work requests to post
2251 * @bad_wr: A pointer to the first WR to cause a problem is put here
2252 *
2253 * This may be called from interrupt context.
2254 *
2255 * Return: 0 on success else errno
2256 */
2257int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr,
2258                      const struct ib_recv_wr **bad_wr)
2259{
2260        struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq);
2261        struct rvt_krwq *wq;
2262        unsigned long flags;
2263
2264        for (; wr; wr = wr->next) {
2265                struct rvt_rwqe *wqe;
2266                u32 next;
2267                int i;
2268
2269                if ((unsigned)wr->num_sge > srq->rq.max_sge) {
2270                        *bad_wr = wr;
2271                        return -EINVAL;
2272                }
2273
2274                spin_lock_irqsave(&srq->rq.kwq->p_lock, flags);
2275                wq = srq->rq.kwq;
2276                next = wq->head + 1;
2277                if (next >= srq->rq.size)
2278                        next = 0;
2279                if (next == READ_ONCE(wq->tail)) {
2280                        spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2281                        *bad_wr = wr;
2282                        return -ENOMEM;
2283                }
2284
2285                wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head);
2286                wqe->wr_id = wr->wr_id;
2287                wqe->num_sge = wr->num_sge;
2288                for (i = 0; i < wr->num_sge; i++) {
2289                        wqe->sg_list[i].addr = wr->sg_list[i].addr;
2290                        wqe->sg_list[i].length = wr->sg_list[i].length;
2291                        wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
2292                }
2293                /* Make sure queue entry is written before the head index. */
2294                smp_store_release(&wq->head, next);
2295                spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2296        }
2297        return 0;
2298}
2299
2300/*
2301 * rvt used the internal kernel struct as part of its ABI, for now make sure
2302 * the kernel struct does not change layout. FIXME: rvt should never cast the
2303 * user struct to a kernel struct.
2304 */
2305static struct ib_sge *rvt_cast_sge(struct rvt_wqe_sge *sge)
2306{
2307        BUILD_BUG_ON(offsetof(struct ib_sge, addr) !=
2308                     offsetof(struct rvt_wqe_sge, addr));
2309        BUILD_BUG_ON(offsetof(struct ib_sge, length) !=
2310                     offsetof(struct rvt_wqe_sge, length));
2311        BUILD_BUG_ON(offsetof(struct ib_sge, lkey) !=
2312                     offsetof(struct rvt_wqe_sge, lkey));
2313        return (struct ib_sge *)sge;
2314}
2315
2316/*
2317 * Validate a RWQE and fill in the SGE state.
2318 * Return 1 if OK.
2319 */
2320static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe)
2321{
2322        int i, j, ret;
2323        struct ib_wc wc;
2324        struct rvt_lkey_table *rkt;
2325        struct rvt_pd *pd;
2326        struct rvt_sge_state *ss;
2327        struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2328
2329        rkt = &rdi->lkey_table;
2330        pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd);
2331        ss = &qp->r_sge;
2332        ss->sg_list = qp->r_sg_list;
2333        qp->r_len = 0;
2334        for (i = j = 0; i < wqe->num_sge; i++) {
2335                if (wqe->sg_list[i].length == 0)
2336                        continue;
2337                /* Check LKEY */
2338                ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge,
2339                                  NULL, rvt_cast_sge(&wqe->sg_list[i]),
2340                                  IB_ACCESS_LOCAL_WRITE);
2341                if (unlikely(ret <= 0))
2342                        goto bad_lkey;
2343                qp->r_len += wqe->sg_list[i].length;
2344                j++;
2345        }
2346        ss->num_sge = j;
2347        ss->total_len = qp->r_len;
2348        return 1;
2349
2350bad_lkey:
2351        while (j) {
2352                struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge;
2353
2354                rvt_put_mr(sge->mr);
2355        }
2356        ss->num_sge = 0;
2357        memset(&wc, 0, sizeof(wc));
2358        wc.wr_id = wqe->wr_id;
2359        wc.status = IB_WC_LOC_PROT_ERR;
2360        wc.opcode = IB_WC_RECV;
2361        wc.qp = &qp->ibqp;
2362        /* Signal solicited completion event. */
2363        rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
2364        return 0;
2365}
2366
2367/**
2368 * get_rvt_head - get head indices of the circular buffer
2369 * @rq: data structure for request queue entry
2370 * @ip: the QP
2371 *
2372 * Return - head index value
2373 */
2374static inline u32 get_rvt_head(struct rvt_rq *rq, void *ip)
2375{
2376        u32 head;
2377
2378        if (ip)
2379                head = RDMA_READ_UAPI_ATOMIC(rq->wq->head);
2380        else
2381                head = rq->kwq->head;
2382
2383        return head;
2384}
2385
2386/**
2387 * rvt_get_rwqe - copy the next RWQE into the QP's RWQE
2388 * @qp: the QP
2389 * @wr_id_only: update qp->r_wr_id only, not qp->r_sge
2390 *
2391 * Return -1 if there is a local error, 0 if no RWQE is available,
2392 * otherwise return 1.
2393 *
2394 * Can be called from interrupt level.
2395 */
2396int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only)
2397{
2398        unsigned long flags;
2399        struct rvt_rq *rq;
2400        struct rvt_krwq *kwq = NULL;
2401        struct rvt_rwq *wq;
2402        struct rvt_srq *srq;
2403        struct rvt_rwqe *wqe;
2404        void (*handler)(struct ib_event *, void *);
2405        u32 tail;
2406        u32 head;
2407        int ret;
2408        void *ip = NULL;
2409
2410        if (qp->ibqp.srq) {
2411                srq = ibsrq_to_rvtsrq(qp->ibqp.srq);
2412                handler = srq->ibsrq.event_handler;
2413                rq = &srq->rq;
2414                ip = srq->ip;
2415        } else {
2416                srq = NULL;
2417                handler = NULL;
2418                rq = &qp->r_rq;
2419                ip = qp->ip;
2420        }
2421
2422        spin_lock_irqsave(&rq->kwq->c_lock, flags);
2423        if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2424                ret = 0;
2425                goto unlock;
2426        }
2427        kwq = rq->kwq;
2428        if (ip) {
2429                wq = rq->wq;
2430                tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
2431        } else {
2432                tail = kwq->tail;
2433        }
2434
2435        /* Validate tail before using it since it is user writable. */
2436        if (tail >= rq->size)
2437                tail = 0;
2438
2439        if (kwq->count < RVT_RWQ_COUNT_THRESHOLD) {
2440                head = get_rvt_head(rq, ip);
2441                kwq->count = rvt_get_rq_count(rq, head, tail);
2442        }
2443        if (unlikely(kwq->count == 0)) {
2444                ret = 0;
2445                goto unlock;
2446        }
2447        /* Make sure entry is read after the count is read. */
2448        smp_rmb();
2449        wqe = rvt_get_rwqe_ptr(rq, tail);
2450        /*
2451         * Even though we update the tail index in memory, the verbs
2452         * consumer is not supposed to post more entries until a
2453         * completion is generated.
2454         */
2455        if (++tail >= rq->size)
2456                tail = 0;
2457        if (ip)
2458                RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
2459        else
2460                kwq->tail = tail;
2461        if (!wr_id_only && !init_sge(qp, wqe)) {
2462                ret = -1;
2463                goto unlock;
2464        }
2465        qp->r_wr_id = wqe->wr_id;
2466
2467        kwq->count--;
2468        ret = 1;
2469        set_bit(RVT_R_WRID_VALID, &qp->r_aflags);
2470        if (handler) {
2471                /*
2472                 * Validate head pointer value and compute
2473                 * the number of remaining WQEs.
2474                 */
2475                if (kwq->count < srq->limit) {
2476                        kwq->count =
2477                                rvt_get_rq_count(rq,
2478                                                 get_rvt_head(rq, ip), tail);
2479                        if (kwq->count < srq->limit) {
2480                                struct ib_event ev;
2481
2482                                srq->limit = 0;
2483                                spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2484                                ev.device = qp->ibqp.device;
2485                                ev.element.srq = qp->ibqp.srq;
2486                                ev.event = IB_EVENT_SRQ_LIMIT_REACHED;
2487                                handler(&ev, srq->ibsrq.srq_context);
2488                                goto bail;
2489                        }
2490                }
2491        }
2492unlock:
2493        spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2494bail:
2495        return ret;
2496}
2497EXPORT_SYMBOL(rvt_get_rwqe);
2498
2499/**
2500 * qp_comm_est - handle trap with QP established
2501 * @qp: the QP
2502 */
2503void rvt_comm_est(struct rvt_qp *qp)
2504{
2505        qp->r_flags |= RVT_R_COMM_EST;
2506        if (qp->ibqp.event_handler) {
2507                struct ib_event ev;
2508
2509                ev.device = qp->ibqp.device;
2510                ev.element.qp = &qp->ibqp;
2511                ev.event = IB_EVENT_COMM_EST;
2512                qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2513        }
2514}
2515EXPORT_SYMBOL(rvt_comm_est);
2516
2517void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err)
2518{
2519        unsigned long flags;
2520        int lastwqe;
2521
2522        spin_lock_irqsave(&qp->s_lock, flags);
2523        lastwqe = rvt_error_qp(qp, err);
2524        spin_unlock_irqrestore(&qp->s_lock, flags);
2525
2526        if (lastwqe) {
2527                struct ib_event ev;
2528
2529                ev.device = qp->ibqp.device;
2530                ev.element.qp = &qp->ibqp;
2531                ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
2532                qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2533        }
2534}
2535EXPORT_SYMBOL(rvt_rc_error);
2536
2537/*
2538 *  rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table
2539 *  @index - the index
2540 *  return usec from an index into ib_rvt_rnr_table
2541 */
2542unsigned long rvt_rnr_tbl_to_usec(u32 index)
2543{
2544        return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)];
2545}
2546EXPORT_SYMBOL(rvt_rnr_tbl_to_usec);
2547
2548static inline unsigned long rvt_aeth_to_usec(u32 aeth)
2549{
2550        return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) &
2551                                  IB_AETH_CREDIT_MASK];
2552}
2553
2554/*
2555 *  rvt_add_retry_timer_ext - add/start a retry timer
2556 *  @qp - the QP
2557 *  @shift - timeout shift to wait for multiple packets
2558 *  add a retry timer on the QP
2559 */
2560void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift)
2561{
2562        struct ib_qp *ibqp = &qp->ibqp;
2563        struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2564
2565        lockdep_assert_held(&qp->s_lock);
2566        qp->s_flags |= RVT_S_TIMER;
2567       /* 4.096 usec. * (1 << qp->timeout) */
2568        qp->s_timer.expires = jiffies + rdi->busy_jiffies +
2569                              (qp->timeout_jiffies << shift);
2570        add_timer(&qp->s_timer);
2571}
2572EXPORT_SYMBOL(rvt_add_retry_timer_ext);
2573
2574/**
2575 * rvt_add_rnr_timer - add/start an rnr timer on the QP
2576 * @qp: the QP
2577 * @aeth: aeth of RNR timeout, simulated aeth for loopback
2578 */
2579void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth)
2580{
2581        u32 to;
2582
2583        lockdep_assert_held(&qp->s_lock);
2584        qp->s_flags |= RVT_S_WAIT_RNR;
2585        to = rvt_aeth_to_usec(aeth);
2586        trace_rvt_rnrnak_add(qp, to);
2587        hrtimer_start(&qp->s_rnr_timer,
2588                      ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED);
2589}
2590EXPORT_SYMBOL(rvt_add_rnr_timer);
2591
2592/**
2593 * rvt_stop_rc_timers - stop all timers
2594 * @qp: the QP
2595 * stop any pending timers
2596 */
2597void rvt_stop_rc_timers(struct rvt_qp *qp)
2598{
2599        lockdep_assert_held(&qp->s_lock);
2600        /* Remove QP from all timers */
2601        if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
2602                qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
2603                del_timer(&qp->s_timer);
2604                hrtimer_try_to_cancel(&qp->s_rnr_timer);
2605        }
2606}
2607EXPORT_SYMBOL(rvt_stop_rc_timers);
2608
2609/**
2610 * rvt_stop_rnr_timer - stop an rnr timer
2611 * @qp - the QP
2612 *
2613 * stop an rnr timer and return if the timer
2614 * had been pending.
2615 */
2616static void rvt_stop_rnr_timer(struct rvt_qp *qp)
2617{
2618        lockdep_assert_held(&qp->s_lock);
2619        /* Remove QP from rnr timer */
2620        if (qp->s_flags & RVT_S_WAIT_RNR) {
2621                qp->s_flags &= ~RVT_S_WAIT_RNR;
2622                trace_rvt_rnrnak_stop(qp, 0);
2623        }
2624}
2625
2626/**
2627 * rvt_del_timers_sync - wait for any timeout routines to exit
2628 * @qp: the QP
2629 */
2630void rvt_del_timers_sync(struct rvt_qp *qp)
2631{
2632        del_timer_sync(&qp->s_timer);
2633        hrtimer_cancel(&qp->s_rnr_timer);
2634}
2635EXPORT_SYMBOL(rvt_del_timers_sync);
2636
2637/*
2638 * This is called from s_timer for missing responses.
2639 */
2640static void rvt_rc_timeout(struct timer_list *t)
2641{
2642        struct rvt_qp *qp = from_timer(qp, t, s_timer);
2643        struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2644        unsigned long flags;
2645
2646        spin_lock_irqsave(&qp->r_lock, flags);
2647        spin_lock(&qp->s_lock);
2648        if (qp->s_flags & RVT_S_TIMER) {
2649                struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
2650
2651                qp->s_flags &= ~RVT_S_TIMER;
2652                rvp->n_rc_timeouts++;
2653                del_timer(&qp->s_timer);
2654                trace_rvt_rc_timeout(qp, qp->s_last_psn + 1);
2655                if (rdi->driver_f.notify_restart_rc)
2656                        rdi->driver_f.notify_restart_rc(qp,
2657                                                        qp->s_last_psn + 1,
2658                                                        1);
2659                rdi->driver_f.schedule_send(qp);
2660        }
2661        spin_unlock(&qp->s_lock);
2662        spin_unlock_irqrestore(&qp->r_lock, flags);
2663}
2664
2665/*
2666 * This is called from s_timer for RNR timeouts.
2667 */
2668enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t)
2669{
2670        struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer);
2671        struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2672        unsigned long flags;
2673
2674        spin_lock_irqsave(&qp->s_lock, flags);
2675        rvt_stop_rnr_timer(qp);
2676        trace_rvt_rnrnak_timeout(qp, 0);
2677        rdi->driver_f.schedule_send(qp);
2678        spin_unlock_irqrestore(&qp->s_lock, flags);
2679        return HRTIMER_NORESTART;
2680}
2681EXPORT_SYMBOL(rvt_rc_rnr_retry);
2682
2683/**
2684 * rvt_qp_iter_init - initial for QP iteration
2685 * @rdi: rvt devinfo
2686 * @v: u64 value
2687 * @cb: user-defined callback
2688 *
2689 * This returns an iterator suitable for iterating QPs
2690 * in the system.
2691 *
2692 * The @cb is a user-defined callback and @v is a 64-bit
2693 * value passed to and relevant for processing in the
2694 * @cb.  An example use case would be to alter QP processing
2695 * based on criteria not part of the rvt_qp.
2696 *
2697 * Use cases that require memory allocation to succeed
2698 * must preallocate appropriately.
2699 *
2700 * Return: a pointer to an rvt_qp_iter or NULL
2701 */
2702struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi,
2703                                     u64 v,
2704                                     void (*cb)(struct rvt_qp *qp, u64 v))
2705{
2706        struct rvt_qp_iter *i;
2707
2708        i = kzalloc(sizeof(*i), GFP_KERNEL);
2709        if (!i)
2710                return NULL;
2711
2712        i->rdi = rdi;
2713        /* number of special QPs (SMI/GSI) for device */
2714        i->specials = rdi->ibdev.phys_port_cnt * 2;
2715        i->v = v;
2716        i->cb = cb;
2717
2718        return i;
2719}
2720EXPORT_SYMBOL(rvt_qp_iter_init);
2721
2722/**
2723 * rvt_qp_iter_next - return the next QP in iter
2724 * @iter: the iterator
2725 *
2726 * Fine grained QP iterator suitable for use
2727 * with debugfs seq_file mechanisms.
2728 *
2729 * Updates iter->qp with the current QP when the return
2730 * value is 0.
2731 *
2732 * Return: 0 - iter->qp is valid 1 - no more QPs
2733 */
2734int rvt_qp_iter_next(struct rvt_qp_iter *iter)
2735        __must_hold(RCU)
2736{
2737        int n = iter->n;
2738        int ret = 1;
2739        struct rvt_qp *pqp = iter->qp;
2740        struct rvt_qp *qp;
2741        struct rvt_dev_info *rdi = iter->rdi;
2742
2743        /*
2744         * The approach is to consider the special qps
2745         * as additional table entries before the
2746         * real hash table.  Since the qp code sets
2747         * the qp->next hash link to NULL, this works just fine.
2748         *
2749         * iter->specials is 2 * # ports
2750         *
2751         * n = 0..iter->specials is the special qp indices
2752         *
2753         * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are
2754         * the potential hash bucket entries
2755         *
2756         */
2757        for (; n <  rdi->qp_dev->qp_table_size + iter->specials; n++) {
2758                if (pqp) {
2759                        qp = rcu_dereference(pqp->next);
2760                } else {
2761                        if (n < iter->specials) {
2762                                struct rvt_ibport *rvp;
2763                                int pidx;
2764
2765                                pidx = n % rdi->ibdev.phys_port_cnt;
2766                                rvp = rdi->ports[pidx];
2767                                qp = rcu_dereference(rvp->qp[n & 1]);
2768                        } else {
2769                                qp = rcu_dereference(
2770                                        rdi->qp_dev->qp_table[
2771                                                (n - iter->specials)]);
2772                        }
2773                }
2774                pqp = qp;
2775                if (qp) {
2776                        iter->qp = qp;
2777                        iter->n = n;
2778                        return 0;
2779                }
2780        }
2781        return ret;
2782}
2783EXPORT_SYMBOL(rvt_qp_iter_next);
2784
2785/**
2786 * rvt_qp_iter - iterate all QPs
2787 * @rdi: rvt devinfo
2788 * @v: a 64-bit value
2789 * @cb: a callback
2790 *
2791 * This provides a way for iterating all QPs.
2792 *
2793 * The @cb is a user-defined callback and @v is a 64-bit
2794 * value passed to and relevant for processing in the
2795 * cb.  An example use case would be to alter QP processing
2796 * based on criteria not part of the rvt_qp.
2797 *
2798 * The code has an internal iterator to simplify
2799 * non seq_file use cases.
2800 */
2801void rvt_qp_iter(struct rvt_dev_info *rdi,
2802                 u64 v,
2803                 void (*cb)(struct rvt_qp *qp, u64 v))
2804{
2805        int ret;
2806        struct rvt_qp_iter i = {
2807                .rdi = rdi,
2808                .specials = rdi->ibdev.phys_port_cnt * 2,
2809                .v = v,
2810                .cb = cb
2811        };
2812
2813        rcu_read_lock();
2814        do {
2815                ret = rvt_qp_iter_next(&i);
2816                if (!ret) {
2817                        rvt_get_qp(i.qp);
2818                        rcu_read_unlock();
2819                        i.cb(i.qp, i.v);
2820                        rcu_read_lock();
2821                        rvt_put_qp(i.qp);
2822                }
2823        } while (!ret);
2824        rcu_read_unlock();
2825}
2826EXPORT_SYMBOL(rvt_qp_iter);
2827
2828/*
2829 * This should be called with s_lock held.
2830 */
2831void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe,
2832                       enum ib_wc_status status)
2833{
2834        u32 old_last, last;
2835        struct rvt_dev_info *rdi;
2836
2837        if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2838                return;
2839        rdi = ib_to_rvt(qp->ibqp.device);
2840
2841        old_last = qp->s_last;
2842        trace_rvt_qp_send_completion(qp, wqe, old_last);
2843        last = rvt_qp_complete_swqe(qp, wqe, rdi->wc_opcode[wqe->wr.opcode],
2844                                    status);
2845        if (qp->s_acked == old_last)
2846                qp->s_acked = last;
2847        if (qp->s_cur == old_last)
2848                qp->s_cur = last;
2849        if (qp->s_tail == old_last)
2850                qp->s_tail = last;
2851        if (qp->state == IB_QPS_SQD && last == qp->s_cur)
2852                qp->s_draining = 0;
2853}
2854EXPORT_SYMBOL(rvt_send_complete);
2855
2856/**
2857 * rvt_copy_sge - copy data to SGE memory
2858 * @qp: associated QP
2859 * @ss: the SGE state
2860 * @data: the data to copy
2861 * @length: the length of the data
2862 * @release: boolean to release MR
2863 * @copy_last: do a separate copy of the last 8 bytes
2864 */
2865void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss,
2866                  void *data, u32 length,
2867                  bool release, bool copy_last)
2868{
2869        struct rvt_sge *sge = &ss->sge;
2870        int i;
2871        bool in_last = false;
2872        bool cacheless_copy = false;
2873        struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2874        struct rvt_wss *wss = rdi->wss;
2875        unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
2876
2877        if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) {
2878                cacheless_copy = length >= PAGE_SIZE;
2879        } else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) {
2880                if (length >= PAGE_SIZE) {
2881                        /*
2882                         * NOTE: this *assumes*:
2883                         * o The first vaddr is the dest.
2884                         * o If multiple pages, then vaddr is sequential.
2885                         */
2886                        wss_insert(wss, sge->vaddr);
2887                        if (length >= (2 * PAGE_SIZE))
2888                                wss_insert(wss, (sge->vaddr + PAGE_SIZE));
2889
2890                        cacheless_copy = wss_exceeds_threshold(wss);
2891                } else {
2892                        wss_advance_clean_counter(wss);
2893                }
2894        }
2895
2896        if (copy_last) {
2897                if (length > 8) {
2898                        length -= 8;
2899                } else {
2900                        copy_last = false;
2901                        in_last = true;
2902                }
2903        }
2904
2905again:
2906        while (length) {
2907                u32 len = rvt_get_sge_length(sge, length);
2908
2909                WARN_ON_ONCE(len == 0);
2910                if (unlikely(in_last)) {
2911                        /* enforce byte transfer ordering */
2912                        for (i = 0; i < len; i++)
2913                                ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
2914                } else if (cacheless_copy) {
2915                        cacheless_memcpy(sge->vaddr, data, len);
2916                } else {
2917                        memcpy(sge->vaddr, data, len);
2918                }
2919                rvt_update_sge(ss, len, release);
2920                data += len;
2921                length -= len;
2922        }
2923
2924        if (copy_last) {
2925                copy_last = false;
2926                in_last = true;
2927                length = 8;
2928                goto again;
2929        }
2930}
2931EXPORT_SYMBOL(rvt_copy_sge);
2932
2933static enum ib_wc_status loopback_qp_drop(struct rvt_ibport *rvp,
2934                                          struct rvt_qp *sqp)
2935{
2936        rvp->n_pkt_drops++;
2937        /*
2938         * For RC, the requester would timeout and retry so
2939         * shortcut the timeouts and just signal too many retries.
2940         */
2941        return sqp->ibqp.qp_type == IB_QPT_RC ?
2942                IB_WC_RETRY_EXC_ERR : IB_WC_SUCCESS;
2943}
2944
2945/**
2946 * ruc_loopback - handle UC and RC loopback requests
2947 * @sqp: the sending QP
2948 *
2949 * This is called from rvt_do_send() to forward a WQE addressed to the same HFI
2950 * Note that although we are single threaded due to the send engine, we still
2951 * have to protect against post_send().  We don't have to worry about
2952 * receive interrupts since this is a connected protocol and all packets
2953 * will pass through here.
2954 */
2955void rvt_ruc_loopback(struct rvt_qp *sqp)
2956{
2957        struct rvt_ibport *rvp =  NULL;
2958        struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device);
2959        struct rvt_qp *qp;
2960        struct rvt_swqe *wqe;
2961        struct rvt_sge *sge;
2962        unsigned long flags;
2963        struct ib_wc wc;
2964        u64 sdata;
2965        atomic64_t *maddr;
2966        enum ib_wc_status send_status;
2967        bool release;
2968        int ret;
2969        bool copy_last = false;
2970        int local_ops = 0;
2971
2972        rcu_read_lock();
2973        rvp = rdi->ports[sqp->port_num - 1];
2974
2975        /*
2976         * Note that we check the responder QP state after
2977         * checking the requester's state.
2978         */
2979
2980        qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp,
2981                            sqp->remote_qpn);
2982
2983        spin_lock_irqsave(&sqp->s_lock, flags);
2984
2985        /* Return if we are already busy processing a work request. */
2986        if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) ||
2987            !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2988                goto unlock;
2989
2990        sqp->s_flags |= RVT_S_BUSY;
2991
2992again:
2993        if (sqp->s_last == READ_ONCE(sqp->s_head))
2994                goto clr_busy;
2995        wqe = rvt_get_swqe_ptr(sqp, sqp->s_last);
2996
2997        /* Return if it is not OK to start a new work request. */
2998        if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) {
2999                if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND))
3000                        goto clr_busy;
3001                /* We are in the error state, flush the work request. */
3002                send_status = IB_WC_WR_FLUSH_ERR;
3003                goto flush_send;
3004        }
3005
3006        /*
3007         * We can rely on the entry not changing without the s_lock
3008         * being held until we update s_last.
3009         * We increment s_cur to indicate s_last is in progress.
3010         */
3011        if (sqp->s_last == sqp->s_cur) {
3012                if (++sqp->s_cur >= sqp->s_size)
3013                        sqp->s_cur = 0;
3014        }
3015        spin_unlock_irqrestore(&sqp->s_lock, flags);
3016
3017        if (!qp) {
3018                send_status = loopback_qp_drop(rvp, sqp);
3019                goto serr_no_r_lock;
3020        }
3021        spin_lock_irqsave(&qp->r_lock, flags);
3022        if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) ||
3023            qp->ibqp.qp_type != sqp->ibqp.qp_type) {
3024                send_status = loopback_qp_drop(rvp, sqp);
3025                goto serr;
3026        }
3027
3028        memset(&wc, 0, sizeof(wc));
3029        send_status = IB_WC_SUCCESS;
3030
3031        release = true;
3032        sqp->s_sge.sge = wqe->sg_list[0];
3033        sqp->s_sge.sg_list = wqe->sg_list + 1;
3034        sqp->s_sge.num_sge = wqe->wr.num_sge;
3035        sqp->s_len = wqe->length;
3036        switch (wqe->wr.opcode) {
3037        case IB_WR_REG_MR:
3038                goto send_comp;
3039
3040        case IB_WR_LOCAL_INV:
3041                if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) {
3042                        if (rvt_invalidate_rkey(sqp,
3043                                                wqe->wr.ex.invalidate_rkey))
3044                                send_status = IB_WC_LOC_PROT_ERR;
3045                        local_ops = 1;
3046                }
3047                goto send_comp;
3048
3049        case IB_WR_SEND_WITH_INV:
3050        case IB_WR_SEND_WITH_IMM:
3051        case IB_WR_SEND:
3052                ret = rvt_get_rwqe(qp, false);
3053                if (ret < 0)
3054                        goto op_err;
3055                if (!ret)
3056                        goto rnr_nak;
3057                if (wqe->length > qp->r_len)
3058                        goto inv_err;
3059                switch (wqe->wr.opcode) {
3060                case IB_WR_SEND_WITH_INV:
3061                        if (!rvt_invalidate_rkey(qp,
3062                                                 wqe->wr.ex.invalidate_rkey)) {
3063                                wc.wc_flags = IB_WC_WITH_INVALIDATE;
3064                                wc.ex.invalidate_rkey =
3065                                        wqe->wr.ex.invalidate_rkey;
3066                        }
3067                        break;
3068                case IB_WR_SEND_WITH_IMM:
3069                        wc.wc_flags = IB_WC_WITH_IMM;
3070                        wc.ex.imm_data = wqe->wr.ex.imm_data;
3071                        break;
3072                default:
3073                        break;
3074                }
3075                break;
3076
3077        case IB_WR_RDMA_WRITE_WITH_IMM:
3078                if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3079                        goto inv_err;
3080                wc.wc_flags = IB_WC_WITH_IMM;
3081                wc.ex.imm_data = wqe->wr.ex.imm_data;
3082                ret = rvt_get_rwqe(qp, true);
3083                if (ret < 0)
3084                        goto op_err;
3085                if (!ret)
3086                        goto rnr_nak;
3087                /* skip copy_last set and qp_access_flags recheck */
3088                goto do_write;
3089        case IB_WR_RDMA_WRITE:
3090                copy_last = rvt_is_user_qp(qp);
3091                if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3092                        goto inv_err;
3093do_write:
3094                if (wqe->length == 0)
3095                        break;
3096                if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length,
3097                                          wqe->rdma_wr.remote_addr,
3098                                          wqe->rdma_wr.rkey,
3099                                          IB_ACCESS_REMOTE_WRITE)))
3100                        goto acc_err;
3101                qp->r_sge.sg_list = NULL;
3102                qp->r_sge.num_sge = 1;
3103                qp->r_sge.total_len = wqe->length;
3104                break;
3105
3106        case IB_WR_RDMA_READ:
3107                if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
3108                        goto inv_err;
3109                if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length,
3110                                          wqe->rdma_wr.remote_addr,
3111                                          wqe->rdma_wr.rkey,
3112                                          IB_ACCESS_REMOTE_READ)))
3113                        goto acc_err;
3114                release = false;
3115                sqp->s_sge.sg_list = NULL;
3116                sqp->s_sge.num_sge = 1;
3117                qp->r_sge.sge = wqe->sg_list[0];
3118                qp->r_sge.sg_list = wqe->sg_list + 1;
3119                qp->r_sge.num_sge = wqe->wr.num_sge;
3120                qp->r_sge.total_len = wqe->length;
3121                break;
3122
3123        case IB_WR_ATOMIC_CMP_AND_SWP:
3124        case IB_WR_ATOMIC_FETCH_AND_ADD:
3125                if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC)))
3126                        goto inv_err;
3127                if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64),
3128                                          wqe->atomic_wr.remote_addr,
3129                                          wqe->atomic_wr.rkey,
3130                                          IB_ACCESS_REMOTE_ATOMIC)))
3131                        goto acc_err;
3132                /* Perform atomic OP and save result. */
3133                maddr = (atomic64_t *)qp->r_sge.sge.vaddr;
3134                sdata = wqe->atomic_wr.compare_add;
3135                *(u64 *)sqp->s_sge.sge.vaddr =
3136                        (wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ?
3137                        (u64)atomic64_add_return(sdata, maddr) - sdata :
3138                        (u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr,
3139                                      sdata, wqe->atomic_wr.swap);
3140                rvt_put_mr(qp->r_sge.sge.mr);
3141                qp->r_sge.num_sge = 0;
3142                goto send_comp;
3143
3144        default:
3145                send_status = IB_WC_LOC_QP_OP_ERR;
3146                goto serr;
3147        }
3148
3149        sge = &sqp->s_sge.sge;
3150        while (sqp->s_len) {
3151                u32 len = rvt_get_sge_length(sge, sqp->s_len);
3152
3153                WARN_ON_ONCE(len == 0);
3154                rvt_copy_sge(qp, &qp->r_sge, sge->vaddr,
3155                             len, release, copy_last);
3156                rvt_update_sge(&sqp->s_sge, len, !release);
3157                sqp->s_len -= len;
3158        }
3159        if (release)
3160                rvt_put_ss(&qp->r_sge);
3161
3162        if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags))
3163                goto send_comp;
3164
3165        if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM)
3166                wc.opcode = IB_WC_RECV_RDMA_WITH_IMM;
3167        else
3168                wc.opcode = IB_WC_RECV;
3169        wc.wr_id = qp->r_wr_id;
3170        wc.status = IB_WC_SUCCESS;
3171        wc.byte_len = wqe->length;
3172        wc.qp = &qp->ibqp;
3173        wc.src_qp = qp->remote_qpn;
3174        wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX;
3175        wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr);
3176        wc.port_num = 1;
3177        /* Signal completion event if the solicited bit is set. */
3178        rvt_recv_cq(qp, &wc, wqe->wr.send_flags & IB_SEND_SOLICITED);
3179
3180send_comp:
3181        spin_unlock_irqrestore(&qp->r_lock, flags);
3182        spin_lock_irqsave(&sqp->s_lock, flags);
3183        rvp->n_loop_pkts++;
3184flush_send:
3185        sqp->s_rnr_retry = sqp->s_rnr_retry_cnt;
3186        rvt_send_complete(sqp, wqe, send_status);
3187        if (local_ops) {
3188                atomic_dec(&sqp->local_ops_pending);
3189                local_ops = 0;
3190        }
3191        goto again;
3192
3193rnr_nak:
3194        /* Handle RNR NAK */
3195        if (qp->ibqp.qp_type == IB_QPT_UC)
3196                goto send_comp;
3197        rvp->n_rnr_naks++;
3198        /*
3199         * Note: we don't need the s_lock held since the BUSY flag
3200         * makes this single threaded.
3201         */
3202        if (sqp->s_rnr_retry == 0) {
3203                send_status = IB_WC_RNR_RETRY_EXC_ERR;
3204                goto serr;
3205        }
3206        if (sqp->s_rnr_retry_cnt < 7)
3207                sqp->s_rnr_retry--;
3208        spin_unlock_irqrestore(&qp->r_lock, flags);
3209        spin_lock_irqsave(&sqp->s_lock, flags);
3210        if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK))
3211                goto clr_busy;
3212        rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer <<
3213                                IB_AETH_CREDIT_SHIFT);
3214        goto clr_busy;
3215
3216op_err:
3217        send_status = IB_WC_REM_OP_ERR;
3218        wc.status = IB_WC_LOC_QP_OP_ERR;
3219        goto err;
3220
3221inv_err:
3222        send_status =
3223                sqp->ibqp.qp_type == IB_QPT_RC ?
3224                        IB_WC_REM_INV_REQ_ERR :
3225                        IB_WC_SUCCESS;
3226        wc.status = IB_WC_LOC_QP_OP_ERR;
3227        goto err;
3228
3229acc_err:
3230        send_status = IB_WC_REM_ACCESS_ERR;
3231        wc.status = IB_WC_LOC_PROT_ERR;
3232err:
3233        /* responder goes to error state */
3234        rvt_rc_error(qp, wc.status);
3235
3236serr:
3237        spin_unlock_irqrestore(&qp->r_lock, flags);
3238serr_no_r_lock:
3239        spin_lock_irqsave(&sqp->s_lock, flags);
3240        rvt_send_complete(sqp, wqe, send_status);
3241        if (sqp->ibqp.qp_type == IB_QPT_RC) {
3242                int lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR);
3243
3244                sqp->s_flags &= ~RVT_S_BUSY;
3245                spin_unlock_irqrestore(&sqp->s_lock, flags);
3246                if (lastwqe) {
3247                        struct ib_event ev;
3248
3249                        ev.device = sqp->ibqp.device;
3250                        ev.element.qp = &sqp->ibqp;
3251                        ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
3252                        sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context);
3253                }
3254                goto done;
3255        }
3256clr_busy:
3257        sqp->s_flags &= ~RVT_S_BUSY;
3258unlock:
3259        spin_unlock_irqrestore(&sqp->s_lock, flags);
3260done:
3261        rcu_read_unlock();
3262}
3263EXPORT_SYMBOL(rvt_ruc_loopback);
3264