linux/drivers/md/bcache/btree.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
   4 *
   5 * Uses a block device as cache for other block devices; optimized for SSDs.
   6 * All allocation is done in buckets, which should match the erase block size
   7 * of the device.
   8 *
   9 * Buckets containing cached data are kept on a heap sorted by priority;
  10 * bucket priority is increased on cache hit, and periodically all the buckets
  11 * on the heap have their priority scaled down. This currently is just used as
  12 * an LRU but in the future should allow for more intelligent heuristics.
  13 *
  14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
  15 * counter. Garbage collection is used to remove stale pointers.
  16 *
  17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
  18 * as keys are inserted we only sort the pages that have not yet been written.
  19 * When garbage collection is run, we resort the entire node.
  20 *
  21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
  22 */
  23
  24#include "bcache.h"
  25#include "btree.h"
  26#include "debug.h"
  27#include "extents.h"
  28
  29#include <linux/slab.h>
  30#include <linux/bitops.h>
  31#include <linux/hash.h>
  32#include <linux/kthread.h>
  33#include <linux/prefetch.h>
  34#include <linux/random.h>
  35#include <linux/rcupdate.h>
  36#include <linux/sched/clock.h>
  37#include <linux/rculist.h>
  38
  39#include <trace/events/bcache.h>
  40
  41/*
  42 * Todo:
  43 * register_bcache: Return errors out to userspace correctly
  44 *
  45 * Writeback: don't undirty key until after a cache flush
  46 *
  47 * Create an iterator for key pointers
  48 *
  49 * On btree write error, mark bucket such that it won't be freed from the cache
  50 *
  51 * Journalling:
  52 *   Check for bad keys in replay
  53 *   Propagate barriers
  54 *   Refcount journal entries in journal_replay
  55 *
  56 * Garbage collection:
  57 *   Finish incremental gc
  58 *   Gc should free old UUIDs, data for invalid UUIDs
  59 *
  60 * Provide a way to list backing device UUIDs we have data cached for, and
  61 * probably how long it's been since we've seen them, and a way to invalidate
  62 * dirty data for devices that will never be attached again
  63 *
  64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
  65 * that based on that and how much dirty data we have we can keep writeback
  66 * from being starved
  67 *
  68 * Add a tracepoint or somesuch to watch for writeback starvation
  69 *
  70 * When btree depth > 1 and splitting an interior node, we have to make sure
  71 * alloc_bucket() cannot fail. This should be true but is not completely
  72 * obvious.
  73 *
  74 * Plugging?
  75 *
  76 * If data write is less than hard sector size of ssd, round up offset in open
  77 * bucket to the next whole sector
  78 *
  79 * Superblock needs to be fleshed out for multiple cache devices
  80 *
  81 * Add a sysfs tunable for the number of writeback IOs in flight
  82 *
  83 * Add a sysfs tunable for the number of open data buckets
  84 *
  85 * IO tracking: Can we track when one process is doing io on behalf of another?
  86 * IO tracking: Don't use just an average, weigh more recent stuff higher
  87 *
  88 * Test module load/unload
  89 */
  90
  91#define MAX_NEED_GC             64
  92#define MAX_SAVE_PRIO           72
  93
  94#define PTR_DIRTY_BIT           (((uint64_t) 1 << 36))
  95
  96#define PTR_HASH(c, k)                                                  \
  97        (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
  98
  99#define insert_lock(s, b)       ((b)->level <= (s)->lock)
 100
 101/*
 102 * These macros are for recursing down the btree - they handle the details of
 103 * locking and looking up nodes in the cache for you. They're best treated as
 104 * mere syntax when reading code that uses them.
 105 *
 106 * op->lock determines whether we take a read or a write lock at a given depth.
 107 * If you've got a read lock and find that you need a write lock (i.e. you're
 108 * going to have to split), set op->lock and return -EINTR; btree_root() will
 109 * call you again and you'll have the correct lock.
 110 */
 111
 112/**
 113 * btree - recurse down the btree on a specified key
 114 * @fn:         function to call, which will be passed the child node
 115 * @key:        key to recurse on
 116 * @b:          parent btree node
 117 * @op:         pointer to struct btree_op
 118 */
 119#define btree(fn, key, b, op, ...)                                      \
 120({                                                                      \
 121        int _r, l = (b)->level - 1;                                     \
 122        bool _w = l <= (op)->lock;                                      \
 123        struct btree *_child = bch_btree_node_get((b)->c, op, key, l,   \
 124                                                  _w, b);               \
 125        if (!IS_ERR(_child)) {                                          \
 126                _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__);       \
 127                rw_unlock(_w, _child);                                  \
 128        } else                                                          \
 129                _r = PTR_ERR(_child);                                   \
 130        _r;                                                             \
 131})
 132
 133/**
 134 * btree_root - call a function on the root of the btree
 135 * @fn:         function to call, which will be passed the child node
 136 * @c:          cache set
 137 * @op:         pointer to struct btree_op
 138 */
 139#define btree_root(fn, c, op, ...)                                      \
 140({                                                                      \
 141        int _r = -EINTR;                                                \
 142        do {                                                            \
 143                struct btree *_b = (c)->root;                           \
 144                bool _w = insert_lock(op, _b);                          \
 145                rw_lock(_w, _b, _b->level);                             \
 146                if (_b == (c)->root &&                                  \
 147                    _w == insert_lock(op, _b)) {                        \
 148                        _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__);   \
 149                }                                                       \
 150                rw_unlock(_w, _b);                                      \
 151                bch_cannibalize_unlock(c);                              \
 152                if (_r == -EINTR)                                       \
 153                        schedule();                                     \
 154        } while (_r == -EINTR);                                         \
 155                                                                        \
 156        finish_wait(&(c)->btree_cache_wait, &(op)->wait);               \
 157        _r;                                                             \
 158})
 159
 160static inline struct bset *write_block(struct btree *b)
 161{
 162        return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
 163}
 164
 165static void bch_btree_init_next(struct btree *b)
 166{
 167        /* If not a leaf node, always sort */
 168        if (b->level && b->keys.nsets)
 169                bch_btree_sort(&b->keys, &b->c->sort);
 170        else
 171                bch_btree_sort_lazy(&b->keys, &b->c->sort);
 172
 173        if (b->written < btree_blocks(b))
 174                bch_bset_init_next(&b->keys, write_block(b),
 175                                   bset_magic(&b->c->sb));
 176
 177}
 178
 179/* Btree key manipulation */
 180
 181void bkey_put(struct cache_set *c, struct bkey *k)
 182{
 183        unsigned i;
 184
 185        for (i = 0; i < KEY_PTRS(k); i++)
 186                if (ptr_available(c, k, i))
 187                        atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
 188}
 189
 190/* Btree IO */
 191
 192static uint64_t btree_csum_set(struct btree *b, struct bset *i)
 193{
 194        uint64_t crc = b->key.ptr[0];
 195        void *data = (void *) i + 8, *end = bset_bkey_last(i);
 196
 197        crc = bch_crc64_update(crc, data, end - data);
 198        return crc ^ 0xffffffffffffffffULL;
 199}
 200
 201void bch_btree_node_read_done(struct btree *b)
 202{
 203        const char *err = "bad btree header";
 204        struct bset *i = btree_bset_first(b);
 205        struct btree_iter *iter;
 206
 207        iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
 208        iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
 209        iter->used = 0;
 210
 211#ifdef CONFIG_BCACHE_DEBUG
 212        iter->b = &b->keys;
 213#endif
 214
 215        if (!i->seq)
 216                goto err;
 217
 218        for (;
 219             b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
 220             i = write_block(b)) {
 221                err = "unsupported bset version";
 222                if (i->version > BCACHE_BSET_VERSION)
 223                        goto err;
 224
 225                err = "bad btree header";
 226                if (b->written + set_blocks(i, block_bytes(b->c)) >
 227                    btree_blocks(b))
 228                        goto err;
 229
 230                err = "bad magic";
 231                if (i->magic != bset_magic(&b->c->sb))
 232                        goto err;
 233
 234                err = "bad checksum";
 235                switch (i->version) {
 236                case 0:
 237                        if (i->csum != csum_set(i))
 238                                goto err;
 239                        break;
 240                case BCACHE_BSET_VERSION:
 241                        if (i->csum != btree_csum_set(b, i))
 242                                goto err;
 243                        break;
 244                }
 245
 246                err = "empty set";
 247                if (i != b->keys.set[0].data && !i->keys)
 248                        goto err;
 249
 250                bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
 251
 252                b->written += set_blocks(i, block_bytes(b->c));
 253        }
 254
 255        err = "corrupted btree";
 256        for (i = write_block(b);
 257             bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
 258             i = ((void *) i) + block_bytes(b->c))
 259                if (i->seq == b->keys.set[0].data->seq)
 260                        goto err;
 261
 262        bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
 263
 264        i = b->keys.set[0].data;
 265        err = "short btree key";
 266        if (b->keys.set[0].size &&
 267            bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
 268                goto err;
 269
 270        if (b->written < btree_blocks(b))
 271                bch_bset_init_next(&b->keys, write_block(b),
 272                                   bset_magic(&b->c->sb));
 273out:
 274        mempool_free(iter, &b->c->fill_iter);
 275        return;
 276err:
 277        set_btree_node_io_error(b);
 278        bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
 279                            err, PTR_BUCKET_NR(b->c, &b->key, 0),
 280                            bset_block_offset(b, i), i->keys);
 281        goto out;
 282}
 283
 284static void btree_node_read_endio(struct bio *bio)
 285{
 286        struct closure *cl = bio->bi_private;
 287        closure_put(cl);
 288}
 289
 290static void bch_btree_node_read(struct btree *b)
 291{
 292        uint64_t start_time = local_clock();
 293        struct closure cl;
 294        struct bio *bio;
 295
 296        trace_bcache_btree_read(b);
 297
 298        closure_init_stack(&cl);
 299
 300        bio = bch_bbio_alloc(b->c);
 301        bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
 302        bio->bi_end_io  = btree_node_read_endio;
 303        bio->bi_private = &cl;
 304        bio->bi_opf = REQ_OP_READ | REQ_META;
 305
 306        bch_bio_map(bio, b->keys.set[0].data);
 307
 308        bch_submit_bbio(bio, b->c, &b->key, 0);
 309        closure_sync(&cl);
 310
 311        if (bio->bi_status)
 312                set_btree_node_io_error(b);
 313
 314        bch_bbio_free(bio, b->c);
 315
 316        if (btree_node_io_error(b))
 317                goto err;
 318
 319        bch_btree_node_read_done(b);
 320        bch_time_stats_update(&b->c->btree_read_time, start_time);
 321
 322        return;
 323err:
 324        bch_cache_set_error(b->c, "io error reading bucket %zu",
 325                            PTR_BUCKET_NR(b->c, &b->key, 0));
 326}
 327
 328static void btree_complete_write(struct btree *b, struct btree_write *w)
 329{
 330        if (w->prio_blocked &&
 331            !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
 332                wake_up_allocators(b->c);
 333
 334        if (w->journal) {
 335                atomic_dec_bug(w->journal);
 336                __closure_wake_up(&b->c->journal.wait);
 337        }
 338
 339        w->prio_blocked = 0;
 340        w->journal      = NULL;
 341}
 342
 343static void btree_node_write_unlock(struct closure *cl)
 344{
 345        struct btree *b = container_of(cl, struct btree, io);
 346
 347        up(&b->io_mutex);
 348}
 349
 350static void __btree_node_write_done(struct closure *cl)
 351{
 352        struct btree *b = container_of(cl, struct btree, io);
 353        struct btree_write *w = btree_prev_write(b);
 354
 355        bch_bbio_free(b->bio, b->c);
 356        b->bio = NULL;
 357        btree_complete_write(b, w);
 358
 359        if (btree_node_dirty(b))
 360                schedule_delayed_work(&b->work, 30 * HZ);
 361
 362        closure_return_with_destructor(cl, btree_node_write_unlock);
 363}
 364
 365static void btree_node_write_done(struct closure *cl)
 366{
 367        struct btree *b = container_of(cl, struct btree, io);
 368
 369        bio_free_pages(b->bio);
 370        __btree_node_write_done(cl);
 371}
 372
 373static void btree_node_write_endio(struct bio *bio)
 374{
 375        struct closure *cl = bio->bi_private;
 376        struct btree *b = container_of(cl, struct btree, io);
 377
 378        if (bio->bi_status)
 379                set_btree_node_io_error(b);
 380
 381        bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
 382        closure_put(cl);
 383}
 384
 385static void do_btree_node_write(struct btree *b)
 386{
 387        struct closure *cl = &b->io;
 388        struct bset *i = btree_bset_last(b);
 389        BKEY_PADDED(key) k;
 390
 391        i->version      = BCACHE_BSET_VERSION;
 392        i->csum         = btree_csum_set(b, i);
 393
 394        BUG_ON(b->bio);
 395        b->bio = bch_bbio_alloc(b->c);
 396
 397        b->bio->bi_end_io       = btree_node_write_endio;
 398        b->bio->bi_private      = cl;
 399        b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c));
 400        b->bio->bi_opf          = REQ_OP_WRITE | REQ_META | REQ_FUA;
 401        bch_bio_map(b->bio, i);
 402
 403        /*
 404         * If we're appending to a leaf node, we don't technically need FUA -
 405         * this write just needs to be persisted before the next journal write,
 406         * which will be marked FLUSH|FUA.
 407         *
 408         * Similarly if we're writing a new btree root - the pointer is going to
 409         * be in the next journal entry.
 410         *
 411         * But if we're writing a new btree node (that isn't a root) or
 412         * appending to a non leaf btree node, we need either FUA or a flush
 413         * when we write the parent with the new pointer. FUA is cheaper than a
 414         * flush, and writes appending to leaf nodes aren't blocking anything so
 415         * just make all btree node writes FUA to keep things sane.
 416         */
 417
 418        bkey_copy(&k.key, &b->key);
 419        SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
 420                       bset_sector_offset(&b->keys, i));
 421
 422        if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
 423                int j;
 424                struct bio_vec *bv;
 425                void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
 426
 427                bio_for_each_segment_all(bv, b->bio, j)
 428                        memcpy(page_address(bv->bv_page),
 429                               base + j * PAGE_SIZE, PAGE_SIZE);
 430
 431                bch_submit_bbio(b->bio, b->c, &k.key, 0);
 432
 433                continue_at(cl, btree_node_write_done, NULL);
 434        } else {
 435                /* No problem for multipage bvec since the bio is just allocated */
 436                b->bio->bi_vcnt = 0;
 437                bch_bio_map(b->bio, i);
 438
 439                bch_submit_bbio(b->bio, b->c, &k.key, 0);
 440
 441                closure_sync(cl);
 442                continue_at_nobarrier(cl, __btree_node_write_done, NULL);
 443        }
 444}
 445
 446void __bch_btree_node_write(struct btree *b, struct closure *parent)
 447{
 448        struct bset *i = btree_bset_last(b);
 449
 450        lockdep_assert_held(&b->write_lock);
 451
 452        trace_bcache_btree_write(b);
 453
 454        BUG_ON(current->bio_list);
 455        BUG_ON(b->written >= btree_blocks(b));
 456        BUG_ON(b->written && !i->keys);
 457        BUG_ON(btree_bset_first(b)->seq != i->seq);
 458        bch_check_keys(&b->keys, "writing");
 459
 460        cancel_delayed_work(&b->work);
 461
 462        /* If caller isn't waiting for write, parent refcount is cache set */
 463        down(&b->io_mutex);
 464        closure_init(&b->io, parent ?: &b->c->cl);
 465
 466        clear_bit(BTREE_NODE_dirty,      &b->flags);
 467        change_bit(BTREE_NODE_write_idx, &b->flags);
 468
 469        do_btree_node_write(b);
 470
 471        atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
 472                        &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
 473
 474        b->written += set_blocks(i, block_bytes(b->c));
 475}
 476
 477void bch_btree_node_write(struct btree *b, struct closure *parent)
 478{
 479        unsigned nsets = b->keys.nsets;
 480
 481        lockdep_assert_held(&b->lock);
 482
 483        __bch_btree_node_write(b, parent);
 484
 485        /*
 486         * do verify if there was more than one set initially (i.e. we did a
 487         * sort) and we sorted down to a single set:
 488         */
 489        if (nsets && !b->keys.nsets)
 490                bch_btree_verify(b);
 491
 492        bch_btree_init_next(b);
 493}
 494
 495static void bch_btree_node_write_sync(struct btree *b)
 496{
 497        struct closure cl;
 498
 499        closure_init_stack(&cl);
 500
 501        mutex_lock(&b->write_lock);
 502        bch_btree_node_write(b, &cl);
 503        mutex_unlock(&b->write_lock);
 504
 505        closure_sync(&cl);
 506}
 507
 508static void btree_node_write_work(struct work_struct *w)
 509{
 510        struct btree *b = container_of(to_delayed_work(w), struct btree, work);
 511
 512        mutex_lock(&b->write_lock);
 513        if (btree_node_dirty(b))
 514                __bch_btree_node_write(b, NULL);
 515        mutex_unlock(&b->write_lock);
 516}
 517
 518static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
 519{
 520        struct bset *i = btree_bset_last(b);
 521        struct btree_write *w = btree_current_write(b);
 522
 523        lockdep_assert_held(&b->write_lock);
 524
 525        BUG_ON(!b->written);
 526        BUG_ON(!i->keys);
 527
 528        if (!btree_node_dirty(b))
 529                schedule_delayed_work(&b->work, 30 * HZ);
 530
 531        set_btree_node_dirty(b);
 532
 533        if (journal_ref) {
 534                if (w->journal &&
 535                    journal_pin_cmp(b->c, w->journal, journal_ref)) {
 536                        atomic_dec_bug(w->journal);
 537                        w->journal = NULL;
 538                }
 539
 540                if (!w->journal) {
 541                        w->journal = journal_ref;
 542                        atomic_inc(w->journal);
 543                }
 544        }
 545
 546        /* Force write if set is too big */
 547        if (set_bytes(i) > PAGE_SIZE - 48 &&
 548            !current->bio_list)
 549                bch_btree_node_write(b, NULL);
 550}
 551
 552/*
 553 * Btree in memory cache - allocation/freeing
 554 * mca -> memory cache
 555 */
 556
 557#define mca_reserve(c)  (((c->root && c->root->level)           \
 558                          ? c->root->level : 1) * 8 + 16)
 559#define mca_can_free(c)                                         \
 560        max_t(int, 0, c->btree_cache_used - mca_reserve(c))
 561
 562static void mca_data_free(struct btree *b)
 563{
 564        BUG_ON(b->io_mutex.count != 1);
 565
 566        bch_btree_keys_free(&b->keys);
 567
 568        b->c->btree_cache_used--;
 569        list_move(&b->list, &b->c->btree_cache_freed);
 570}
 571
 572static void mca_bucket_free(struct btree *b)
 573{
 574        BUG_ON(btree_node_dirty(b));
 575
 576        b->key.ptr[0] = 0;
 577        hlist_del_init_rcu(&b->hash);
 578        list_move(&b->list, &b->c->btree_cache_freeable);
 579}
 580
 581static unsigned btree_order(struct bkey *k)
 582{
 583        return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
 584}
 585
 586static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
 587{
 588        if (!bch_btree_keys_alloc(&b->keys,
 589                                  max_t(unsigned,
 590                                        ilog2(b->c->btree_pages),
 591                                        btree_order(k)),
 592                                  gfp)) {
 593                b->c->btree_cache_used++;
 594                list_move(&b->list, &b->c->btree_cache);
 595        } else {
 596                list_move(&b->list, &b->c->btree_cache_freed);
 597        }
 598}
 599
 600static struct btree *mca_bucket_alloc(struct cache_set *c,
 601                                      struct bkey *k, gfp_t gfp)
 602{
 603        struct btree *b = kzalloc(sizeof(struct btree), gfp);
 604        if (!b)
 605                return NULL;
 606
 607        init_rwsem(&b->lock);
 608        lockdep_set_novalidate_class(&b->lock);
 609        mutex_init(&b->write_lock);
 610        lockdep_set_novalidate_class(&b->write_lock);
 611        INIT_LIST_HEAD(&b->list);
 612        INIT_DELAYED_WORK(&b->work, btree_node_write_work);
 613        b->c = c;
 614        sema_init(&b->io_mutex, 1);
 615
 616        mca_data_alloc(b, k, gfp);
 617        return b;
 618}
 619
 620static int mca_reap(struct btree *b, unsigned min_order, bool flush)
 621{
 622        struct closure cl;
 623
 624        closure_init_stack(&cl);
 625        lockdep_assert_held(&b->c->bucket_lock);
 626
 627        if (!down_write_trylock(&b->lock))
 628                return -ENOMEM;
 629
 630        BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
 631
 632        if (b->keys.page_order < min_order)
 633                goto out_unlock;
 634
 635        if (!flush) {
 636                if (btree_node_dirty(b))
 637                        goto out_unlock;
 638
 639                if (down_trylock(&b->io_mutex))
 640                        goto out_unlock;
 641                up(&b->io_mutex);
 642        }
 643
 644        mutex_lock(&b->write_lock);
 645        if (btree_node_dirty(b))
 646                __bch_btree_node_write(b, &cl);
 647        mutex_unlock(&b->write_lock);
 648
 649        closure_sync(&cl);
 650
 651        /* wait for any in flight btree write */
 652        down(&b->io_mutex);
 653        up(&b->io_mutex);
 654
 655        return 0;
 656out_unlock:
 657        rw_unlock(true, b);
 658        return -ENOMEM;
 659}
 660
 661static unsigned long bch_mca_scan(struct shrinker *shrink,
 662                                  struct shrink_control *sc)
 663{
 664        struct cache_set *c = container_of(shrink, struct cache_set, shrink);
 665        struct btree *b, *t;
 666        unsigned long i, nr = sc->nr_to_scan;
 667        unsigned long freed = 0;
 668        unsigned int btree_cache_used;
 669
 670        if (c->shrinker_disabled)
 671                return SHRINK_STOP;
 672
 673        if (c->btree_cache_alloc_lock)
 674                return SHRINK_STOP;
 675
 676        /* Return -1 if we can't do anything right now */
 677        if (sc->gfp_mask & __GFP_IO)
 678                mutex_lock(&c->bucket_lock);
 679        else if (!mutex_trylock(&c->bucket_lock))
 680                return -1;
 681
 682        /*
 683         * It's _really_ critical that we don't free too many btree nodes - we
 684         * have to always leave ourselves a reserve. The reserve is how we
 685         * guarantee that allocating memory for a new btree node can always
 686         * succeed, so that inserting keys into the btree can always succeed and
 687         * IO can always make forward progress:
 688         */
 689        nr /= c->btree_pages;
 690        nr = min_t(unsigned long, nr, mca_can_free(c));
 691
 692        i = 0;
 693        btree_cache_used = c->btree_cache_used;
 694        list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
 695                if (nr <= 0)
 696                        goto out;
 697
 698                if (++i > 3 &&
 699                    !mca_reap(b, 0, false)) {
 700                        mca_data_free(b);
 701                        rw_unlock(true, b);
 702                        freed++;
 703                }
 704                nr--;
 705        }
 706
 707        for (;  (nr--) && i < btree_cache_used; i++) {
 708                if (list_empty(&c->btree_cache))
 709                        goto out;
 710
 711                b = list_first_entry(&c->btree_cache, struct btree, list);
 712                list_rotate_left(&c->btree_cache);
 713
 714                if (!b->accessed &&
 715                    !mca_reap(b, 0, false)) {
 716                        mca_bucket_free(b);
 717                        mca_data_free(b);
 718                        rw_unlock(true, b);
 719                        freed++;
 720                } else
 721                        b->accessed = 0;
 722        }
 723out:
 724        mutex_unlock(&c->bucket_lock);
 725        return freed * c->btree_pages;
 726}
 727
 728static unsigned long bch_mca_count(struct shrinker *shrink,
 729                                   struct shrink_control *sc)
 730{
 731        struct cache_set *c = container_of(shrink, struct cache_set, shrink);
 732
 733        if (c->shrinker_disabled)
 734                return 0;
 735
 736        if (c->btree_cache_alloc_lock)
 737                return 0;
 738
 739        return mca_can_free(c) * c->btree_pages;
 740}
 741
 742void bch_btree_cache_free(struct cache_set *c)
 743{
 744        struct btree *b;
 745        struct closure cl;
 746        closure_init_stack(&cl);
 747
 748        if (c->shrink.list.next)
 749                unregister_shrinker(&c->shrink);
 750
 751        mutex_lock(&c->bucket_lock);
 752
 753#ifdef CONFIG_BCACHE_DEBUG
 754        if (c->verify_data)
 755                list_move(&c->verify_data->list, &c->btree_cache);
 756
 757        free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
 758#endif
 759
 760        list_splice(&c->btree_cache_freeable,
 761                    &c->btree_cache);
 762
 763        while (!list_empty(&c->btree_cache)) {
 764                b = list_first_entry(&c->btree_cache, struct btree, list);
 765
 766                if (btree_node_dirty(b))
 767                        btree_complete_write(b, btree_current_write(b));
 768                clear_bit(BTREE_NODE_dirty, &b->flags);
 769
 770                mca_data_free(b);
 771        }
 772
 773        while (!list_empty(&c->btree_cache_freed)) {
 774                b = list_first_entry(&c->btree_cache_freed,
 775                                     struct btree, list);
 776                list_del(&b->list);
 777                cancel_delayed_work_sync(&b->work);
 778                kfree(b);
 779        }
 780
 781        mutex_unlock(&c->bucket_lock);
 782}
 783
 784int bch_btree_cache_alloc(struct cache_set *c)
 785{
 786        unsigned i;
 787
 788        for (i = 0; i < mca_reserve(c); i++)
 789                if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
 790                        return -ENOMEM;
 791
 792        list_splice_init(&c->btree_cache,
 793                         &c->btree_cache_freeable);
 794
 795#ifdef CONFIG_BCACHE_DEBUG
 796        mutex_init(&c->verify_lock);
 797
 798        c->verify_ondisk = (void *)
 799                __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
 800
 801        c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
 802
 803        if (c->verify_data &&
 804            c->verify_data->keys.set->data)
 805                list_del_init(&c->verify_data->list);
 806        else
 807                c->verify_data = NULL;
 808#endif
 809
 810        c->shrink.count_objects = bch_mca_count;
 811        c->shrink.scan_objects = bch_mca_scan;
 812        c->shrink.seeks = 4;
 813        c->shrink.batch = c->btree_pages * 2;
 814
 815        if (register_shrinker(&c->shrink))
 816                pr_warn("bcache: %s: could not register shrinker",
 817                                __func__);
 818
 819        return 0;
 820}
 821
 822/* Btree in memory cache - hash table */
 823
 824static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
 825{
 826        return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
 827}
 828
 829static struct btree *mca_find(struct cache_set *c, struct bkey *k)
 830{
 831        struct btree *b;
 832
 833        rcu_read_lock();
 834        hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
 835                if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
 836                        goto out;
 837        b = NULL;
 838out:
 839        rcu_read_unlock();
 840        return b;
 841}
 842
 843static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
 844{
 845        struct task_struct *old;
 846
 847        old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
 848        if (old && old != current) {
 849                if (op)
 850                        prepare_to_wait(&c->btree_cache_wait, &op->wait,
 851                                        TASK_UNINTERRUPTIBLE);
 852                return -EINTR;
 853        }
 854
 855        return 0;
 856}
 857
 858static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
 859                                     struct bkey *k)
 860{
 861        struct btree *b;
 862
 863        trace_bcache_btree_cache_cannibalize(c);
 864
 865        if (mca_cannibalize_lock(c, op))
 866                return ERR_PTR(-EINTR);
 867
 868        list_for_each_entry_reverse(b, &c->btree_cache, list)
 869                if (!mca_reap(b, btree_order(k), false))
 870                        return b;
 871
 872        list_for_each_entry_reverse(b, &c->btree_cache, list)
 873                if (!mca_reap(b, btree_order(k), true))
 874                        return b;
 875
 876        WARN(1, "btree cache cannibalize failed\n");
 877        return ERR_PTR(-ENOMEM);
 878}
 879
 880/*
 881 * We can only have one thread cannibalizing other cached btree nodes at a time,
 882 * or we'll deadlock. We use an open coded mutex to ensure that, which a
 883 * cannibalize_bucket() will take. This means every time we unlock the root of
 884 * the btree, we need to release this lock if we have it held.
 885 */
 886static void bch_cannibalize_unlock(struct cache_set *c)
 887{
 888        if (c->btree_cache_alloc_lock == current) {
 889                c->btree_cache_alloc_lock = NULL;
 890                wake_up(&c->btree_cache_wait);
 891        }
 892}
 893
 894static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
 895                               struct bkey *k, int level)
 896{
 897        struct btree *b;
 898
 899        BUG_ON(current->bio_list);
 900
 901        lockdep_assert_held(&c->bucket_lock);
 902
 903        if (mca_find(c, k))
 904                return NULL;
 905
 906        /* btree_free() doesn't free memory; it sticks the node on the end of
 907         * the list. Check if there's any freed nodes there:
 908         */
 909        list_for_each_entry(b, &c->btree_cache_freeable, list)
 910                if (!mca_reap(b, btree_order(k), false))
 911                        goto out;
 912
 913        /* We never free struct btree itself, just the memory that holds the on
 914         * disk node. Check the freed list before allocating a new one:
 915         */
 916        list_for_each_entry(b, &c->btree_cache_freed, list)
 917                if (!mca_reap(b, 0, false)) {
 918                        mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
 919                        if (!b->keys.set[0].data)
 920                                goto err;
 921                        else
 922                                goto out;
 923                }
 924
 925        b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
 926        if (!b)
 927                goto err;
 928
 929        BUG_ON(!down_write_trylock(&b->lock));
 930        if (!b->keys.set->data)
 931                goto err;
 932out:
 933        BUG_ON(b->io_mutex.count != 1);
 934
 935        bkey_copy(&b->key, k);
 936        list_move(&b->list, &c->btree_cache);
 937        hlist_del_init_rcu(&b->hash);
 938        hlist_add_head_rcu(&b->hash, mca_hash(c, k));
 939
 940        lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
 941        b->parent       = (void *) ~0UL;
 942        b->flags        = 0;
 943        b->written      = 0;
 944        b->level        = level;
 945
 946        if (!b->level)
 947                bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
 948                                    &b->c->expensive_debug_checks);
 949        else
 950                bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
 951                                    &b->c->expensive_debug_checks);
 952
 953        return b;
 954err:
 955        if (b)
 956                rw_unlock(true, b);
 957
 958        b = mca_cannibalize(c, op, k);
 959        if (!IS_ERR(b))
 960                goto out;
 961
 962        return b;
 963}
 964
 965/*
 966 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
 967 * in from disk if necessary.
 968 *
 969 * If IO is necessary and running under generic_make_request, returns -EAGAIN.
 970 *
 971 * The btree node will have either a read or a write lock held, depending on
 972 * level and op->lock.
 973 */
 974struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
 975                                 struct bkey *k, int level, bool write,
 976                                 struct btree *parent)
 977{
 978        int i = 0;
 979        struct btree *b;
 980
 981        BUG_ON(level < 0);
 982retry:
 983        b = mca_find(c, k);
 984
 985        if (!b) {
 986                if (current->bio_list)
 987                        return ERR_PTR(-EAGAIN);
 988
 989                mutex_lock(&c->bucket_lock);
 990                b = mca_alloc(c, op, k, level);
 991                mutex_unlock(&c->bucket_lock);
 992
 993                if (!b)
 994                        goto retry;
 995                if (IS_ERR(b))
 996                        return b;
 997
 998                bch_btree_node_read(b);
 999
1000                if (!write)
1001                        downgrade_write(&b->lock);
1002        } else {
1003                rw_lock(write, b, level);
1004                if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1005                        rw_unlock(write, b);
1006                        goto retry;
1007                }
1008                BUG_ON(b->level != level);
1009        }
1010
1011        b->parent = parent;
1012        b->accessed = 1;
1013
1014        for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1015                prefetch(b->keys.set[i].tree);
1016                prefetch(b->keys.set[i].data);
1017        }
1018
1019        for (; i <= b->keys.nsets; i++)
1020                prefetch(b->keys.set[i].data);
1021
1022        if (btree_node_io_error(b)) {
1023                rw_unlock(write, b);
1024                return ERR_PTR(-EIO);
1025        }
1026
1027        BUG_ON(!b->written);
1028
1029        return b;
1030}
1031
1032static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1033{
1034        struct btree *b;
1035
1036        mutex_lock(&parent->c->bucket_lock);
1037        b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1038        mutex_unlock(&parent->c->bucket_lock);
1039
1040        if (!IS_ERR_OR_NULL(b)) {
1041                b->parent = parent;
1042                bch_btree_node_read(b);
1043                rw_unlock(true, b);
1044        }
1045}
1046
1047/* Btree alloc */
1048
1049static void btree_node_free(struct btree *b)
1050{
1051        trace_bcache_btree_node_free(b);
1052
1053        BUG_ON(b == b->c->root);
1054
1055        mutex_lock(&b->write_lock);
1056
1057        if (btree_node_dirty(b))
1058                btree_complete_write(b, btree_current_write(b));
1059        clear_bit(BTREE_NODE_dirty, &b->flags);
1060
1061        mutex_unlock(&b->write_lock);
1062
1063        cancel_delayed_work(&b->work);
1064
1065        mutex_lock(&b->c->bucket_lock);
1066        bch_bucket_free(b->c, &b->key);
1067        mca_bucket_free(b);
1068        mutex_unlock(&b->c->bucket_lock);
1069}
1070
1071struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1072                                     int level, bool wait,
1073                                     struct btree *parent)
1074{
1075        BKEY_PADDED(key) k;
1076        struct btree *b = ERR_PTR(-EAGAIN);
1077
1078        mutex_lock(&c->bucket_lock);
1079retry:
1080        if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
1081                goto err;
1082
1083        bkey_put(c, &k.key);
1084        SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1085
1086        b = mca_alloc(c, op, &k.key, level);
1087        if (IS_ERR(b))
1088                goto err_free;
1089
1090        if (!b) {
1091                cache_bug(c,
1092                        "Tried to allocate bucket that was in btree cache");
1093                goto retry;
1094        }
1095
1096        b->accessed = 1;
1097        b->parent = parent;
1098        bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1099
1100        mutex_unlock(&c->bucket_lock);
1101
1102        trace_bcache_btree_node_alloc(b);
1103        return b;
1104err_free:
1105        bch_bucket_free(c, &k.key);
1106err:
1107        mutex_unlock(&c->bucket_lock);
1108
1109        trace_bcache_btree_node_alloc_fail(c);
1110        return b;
1111}
1112
1113static struct btree *bch_btree_node_alloc(struct cache_set *c,
1114                                          struct btree_op *op, int level,
1115                                          struct btree *parent)
1116{
1117        return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1118}
1119
1120static struct btree *btree_node_alloc_replacement(struct btree *b,
1121                                                  struct btree_op *op)
1122{
1123        struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1124        if (!IS_ERR_OR_NULL(n)) {
1125                mutex_lock(&n->write_lock);
1126                bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1127                bkey_copy_key(&n->key, &b->key);
1128                mutex_unlock(&n->write_lock);
1129        }
1130
1131        return n;
1132}
1133
1134static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1135{
1136        unsigned i;
1137
1138        mutex_lock(&b->c->bucket_lock);
1139
1140        atomic_inc(&b->c->prio_blocked);
1141
1142        bkey_copy(k, &b->key);
1143        bkey_copy_key(k, &ZERO_KEY);
1144
1145        for (i = 0; i < KEY_PTRS(k); i++)
1146                SET_PTR_GEN(k, i,
1147                            bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1148                                        PTR_BUCKET(b->c, &b->key, i)));
1149
1150        mutex_unlock(&b->c->bucket_lock);
1151}
1152
1153static int btree_check_reserve(struct btree *b, struct btree_op *op)
1154{
1155        struct cache_set *c = b->c;
1156        struct cache *ca;
1157        unsigned i, reserve = (c->root->level - b->level) * 2 + 1;
1158
1159        mutex_lock(&c->bucket_lock);
1160
1161        for_each_cache(ca, c, i)
1162                if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1163                        if (op)
1164                                prepare_to_wait(&c->btree_cache_wait, &op->wait,
1165                                                TASK_UNINTERRUPTIBLE);
1166                        mutex_unlock(&c->bucket_lock);
1167                        return -EINTR;
1168                }
1169
1170        mutex_unlock(&c->bucket_lock);
1171
1172        return mca_cannibalize_lock(b->c, op);
1173}
1174
1175/* Garbage collection */
1176
1177static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1178                                    struct bkey *k)
1179{
1180        uint8_t stale = 0;
1181        unsigned i;
1182        struct bucket *g;
1183
1184        /*
1185         * ptr_invalid() can't return true for the keys that mark btree nodes as
1186         * freed, but since ptr_bad() returns true we'll never actually use them
1187         * for anything and thus we don't want mark their pointers here
1188         */
1189        if (!bkey_cmp(k, &ZERO_KEY))
1190                return stale;
1191
1192        for (i = 0; i < KEY_PTRS(k); i++) {
1193                if (!ptr_available(c, k, i))
1194                        continue;
1195
1196                g = PTR_BUCKET(c, k, i);
1197
1198                if (gen_after(g->last_gc, PTR_GEN(k, i)))
1199                        g->last_gc = PTR_GEN(k, i);
1200
1201                if (ptr_stale(c, k, i)) {
1202                        stale = max(stale, ptr_stale(c, k, i));
1203                        continue;
1204                }
1205
1206                cache_bug_on(GC_MARK(g) &&
1207                             (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1208                             c, "inconsistent ptrs: mark = %llu, level = %i",
1209                             GC_MARK(g), level);
1210
1211                if (level)
1212                        SET_GC_MARK(g, GC_MARK_METADATA);
1213                else if (KEY_DIRTY(k))
1214                        SET_GC_MARK(g, GC_MARK_DIRTY);
1215                else if (!GC_MARK(g))
1216                        SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1217
1218                /* guard against overflow */
1219                SET_GC_SECTORS_USED(g, min_t(unsigned,
1220                                             GC_SECTORS_USED(g) + KEY_SIZE(k),
1221                                             MAX_GC_SECTORS_USED));
1222
1223                BUG_ON(!GC_SECTORS_USED(g));
1224        }
1225
1226        return stale;
1227}
1228
1229#define btree_mark_key(b, k)    __bch_btree_mark_key(b->c, b->level, k)
1230
1231void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1232{
1233        unsigned i;
1234
1235        for (i = 0; i < KEY_PTRS(k); i++)
1236                if (ptr_available(c, k, i) &&
1237                    !ptr_stale(c, k, i)) {
1238                        struct bucket *b = PTR_BUCKET(c, k, i);
1239
1240                        b->gen = PTR_GEN(k, i);
1241
1242                        if (level && bkey_cmp(k, &ZERO_KEY))
1243                                b->prio = BTREE_PRIO;
1244                        else if (!level && b->prio == BTREE_PRIO)
1245                                b->prio = INITIAL_PRIO;
1246                }
1247
1248        __bch_btree_mark_key(c, level, k);
1249}
1250
1251void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1252{
1253        stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1254}
1255
1256static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1257{
1258        uint8_t stale = 0;
1259        unsigned keys = 0, good_keys = 0;
1260        struct bkey *k;
1261        struct btree_iter iter;
1262        struct bset_tree *t;
1263
1264        gc->nodes++;
1265
1266        for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1267                stale = max(stale, btree_mark_key(b, k));
1268                keys++;
1269
1270                if (bch_ptr_bad(&b->keys, k))
1271                        continue;
1272
1273                gc->key_bytes += bkey_u64s(k);
1274                gc->nkeys++;
1275                good_keys++;
1276
1277                gc->data += KEY_SIZE(k);
1278        }
1279
1280        for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1281                btree_bug_on(t->size &&
1282                             bset_written(&b->keys, t) &&
1283                             bkey_cmp(&b->key, &t->end) < 0,
1284                             b, "found short btree key in gc");
1285
1286        if (b->c->gc_always_rewrite)
1287                return true;
1288
1289        if (stale > 10)
1290                return true;
1291
1292        if ((keys - good_keys) * 2 > keys)
1293                return true;
1294
1295        return false;
1296}
1297
1298#define GC_MERGE_NODES  4U
1299
1300struct gc_merge_info {
1301        struct btree    *b;
1302        unsigned        keys;
1303};
1304
1305static int bch_btree_insert_node(struct btree *, struct btree_op *,
1306                                 struct keylist *, atomic_t *, struct bkey *);
1307
1308static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1309                             struct gc_stat *gc, struct gc_merge_info *r)
1310{
1311        unsigned i, nodes = 0, keys = 0, blocks;
1312        struct btree *new_nodes[GC_MERGE_NODES];
1313        struct keylist keylist;
1314        struct closure cl;
1315        struct bkey *k;
1316
1317        bch_keylist_init(&keylist);
1318
1319        if (btree_check_reserve(b, NULL))
1320                return 0;
1321
1322        memset(new_nodes, 0, sizeof(new_nodes));
1323        closure_init_stack(&cl);
1324
1325        while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1326                keys += r[nodes++].keys;
1327
1328        blocks = btree_default_blocks(b->c) * 2 / 3;
1329
1330        if (nodes < 2 ||
1331            __set_blocks(b->keys.set[0].data, keys,
1332                         block_bytes(b->c)) > blocks * (nodes - 1))
1333                return 0;
1334
1335        for (i = 0; i < nodes; i++) {
1336                new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1337                if (IS_ERR_OR_NULL(new_nodes[i]))
1338                        goto out_nocoalesce;
1339        }
1340
1341        /*
1342         * We have to check the reserve here, after we've allocated our new
1343         * nodes, to make sure the insert below will succeed - we also check
1344         * before as an optimization to potentially avoid a bunch of expensive
1345         * allocs/sorts
1346         */
1347        if (btree_check_reserve(b, NULL))
1348                goto out_nocoalesce;
1349
1350        for (i = 0; i < nodes; i++)
1351                mutex_lock(&new_nodes[i]->write_lock);
1352
1353        for (i = nodes - 1; i > 0; --i) {
1354                struct bset *n1 = btree_bset_first(new_nodes[i]);
1355                struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1356                struct bkey *k, *last = NULL;
1357
1358                keys = 0;
1359
1360                if (i > 1) {
1361                        for (k = n2->start;
1362                             k < bset_bkey_last(n2);
1363                             k = bkey_next(k)) {
1364                                if (__set_blocks(n1, n1->keys + keys +
1365                                                 bkey_u64s(k),
1366                                                 block_bytes(b->c)) > blocks)
1367                                        break;
1368
1369                                last = k;
1370                                keys += bkey_u64s(k);
1371                        }
1372                } else {
1373                        /*
1374                         * Last node we're not getting rid of - we're getting
1375                         * rid of the node at r[0]. Have to try and fit all of
1376                         * the remaining keys into this node; we can't ensure
1377                         * they will always fit due to rounding and variable
1378                         * length keys (shouldn't be possible in practice,
1379                         * though)
1380                         */
1381                        if (__set_blocks(n1, n1->keys + n2->keys,
1382                                         block_bytes(b->c)) >
1383                            btree_blocks(new_nodes[i]))
1384                                goto out_nocoalesce;
1385
1386                        keys = n2->keys;
1387                        /* Take the key of the node we're getting rid of */
1388                        last = &r->b->key;
1389                }
1390
1391                BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1392                       btree_blocks(new_nodes[i]));
1393
1394                if (last)
1395                        bkey_copy_key(&new_nodes[i]->key, last);
1396
1397                memcpy(bset_bkey_last(n1),
1398                       n2->start,
1399                       (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1400
1401                n1->keys += keys;
1402                r[i].keys = n1->keys;
1403
1404                memmove(n2->start,
1405                        bset_bkey_idx(n2, keys),
1406                        (void *) bset_bkey_last(n2) -
1407                        (void *) bset_bkey_idx(n2, keys));
1408
1409                n2->keys -= keys;
1410
1411                if (__bch_keylist_realloc(&keylist,
1412                                          bkey_u64s(&new_nodes[i]->key)))
1413                        goto out_nocoalesce;
1414
1415                bch_btree_node_write(new_nodes[i], &cl);
1416                bch_keylist_add(&keylist, &new_nodes[i]->key);
1417        }
1418
1419        for (i = 0; i < nodes; i++)
1420                mutex_unlock(&new_nodes[i]->write_lock);
1421
1422        closure_sync(&cl);
1423
1424        /* We emptied out this node */
1425        BUG_ON(btree_bset_first(new_nodes[0])->keys);
1426        btree_node_free(new_nodes[0]);
1427        rw_unlock(true, new_nodes[0]);
1428        new_nodes[0] = NULL;
1429
1430        for (i = 0; i < nodes; i++) {
1431                if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1432                        goto out_nocoalesce;
1433
1434                make_btree_freeing_key(r[i].b, keylist.top);
1435                bch_keylist_push(&keylist);
1436        }
1437
1438        bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1439        BUG_ON(!bch_keylist_empty(&keylist));
1440
1441        for (i = 0; i < nodes; i++) {
1442                btree_node_free(r[i].b);
1443                rw_unlock(true, r[i].b);
1444
1445                r[i].b = new_nodes[i];
1446        }
1447
1448        memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1449        r[nodes - 1].b = ERR_PTR(-EINTR);
1450
1451        trace_bcache_btree_gc_coalesce(nodes);
1452        gc->nodes--;
1453
1454        bch_keylist_free(&keylist);
1455
1456        /* Invalidated our iterator */
1457        return -EINTR;
1458
1459out_nocoalesce:
1460        closure_sync(&cl);
1461        bch_keylist_free(&keylist);
1462
1463        while ((k = bch_keylist_pop(&keylist)))
1464                if (!bkey_cmp(k, &ZERO_KEY))
1465                        atomic_dec(&b->c->prio_blocked);
1466
1467        for (i = 0; i < nodes; i++)
1468                if (!IS_ERR_OR_NULL(new_nodes[i])) {
1469                        btree_node_free(new_nodes[i]);
1470                        rw_unlock(true, new_nodes[i]);
1471                }
1472        return 0;
1473}
1474
1475static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1476                                 struct btree *replace)
1477{
1478        struct keylist keys;
1479        struct btree *n;
1480
1481        if (btree_check_reserve(b, NULL))
1482                return 0;
1483
1484        n = btree_node_alloc_replacement(replace, NULL);
1485
1486        /* recheck reserve after allocating replacement node */
1487        if (btree_check_reserve(b, NULL)) {
1488                btree_node_free(n);
1489                rw_unlock(true, n);
1490                return 0;
1491        }
1492
1493        bch_btree_node_write_sync(n);
1494
1495        bch_keylist_init(&keys);
1496        bch_keylist_add(&keys, &n->key);
1497
1498        make_btree_freeing_key(replace, keys.top);
1499        bch_keylist_push(&keys);
1500
1501        bch_btree_insert_node(b, op, &keys, NULL, NULL);
1502        BUG_ON(!bch_keylist_empty(&keys));
1503
1504        btree_node_free(replace);
1505        rw_unlock(true, n);
1506
1507        /* Invalidated our iterator */
1508        return -EINTR;
1509}
1510
1511static unsigned btree_gc_count_keys(struct btree *b)
1512{
1513        struct bkey *k;
1514        struct btree_iter iter;
1515        unsigned ret = 0;
1516
1517        for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1518                ret += bkey_u64s(k);
1519
1520        return ret;
1521}
1522
1523static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1524                            struct closure *writes, struct gc_stat *gc)
1525{
1526        int ret = 0;
1527        bool should_rewrite;
1528        struct bkey *k;
1529        struct btree_iter iter;
1530        struct gc_merge_info r[GC_MERGE_NODES];
1531        struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1532
1533        bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1534
1535        for (i = r; i < r + ARRAY_SIZE(r); i++)
1536                i->b = ERR_PTR(-EINTR);
1537
1538        while (1) {
1539                k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1540                if (k) {
1541                        r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1542                                                  true, b);
1543                        if (IS_ERR(r->b)) {
1544                                ret = PTR_ERR(r->b);
1545                                break;
1546                        }
1547
1548                        r->keys = btree_gc_count_keys(r->b);
1549
1550                        ret = btree_gc_coalesce(b, op, gc, r);
1551                        if (ret)
1552                                break;
1553                }
1554
1555                if (!last->b)
1556                        break;
1557
1558                if (!IS_ERR(last->b)) {
1559                        should_rewrite = btree_gc_mark_node(last->b, gc);
1560                        if (should_rewrite) {
1561                                ret = btree_gc_rewrite_node(b, op, last->b);
1562                                if (ret)
1563                                        break;
1564                        }
1565
1566                        if (last->b->level) {
1567                                ret = btree_gc_recurse(last->b, op, writes, gc);
1568                                if (ret)
1569                                        break;
1570                        }
1571
1572                        bkey_copy_key(&b->c->gc_done, &last->b->key);
1573
1574                        /*
1575                         * Must flush leaf nodes before gc ends, since replace
1576                         * operations aren't journalled
1577                         */
1578                        mutex_lock(&last->b->write_lock);
1579                        if (btree_node_dirty(last->b))
1580                                bch_btree_node_write(last->b, writes);
1581                        mutex_unlock(&last->b->write_lock);
1582                        rw_unlock(true, last->b);
1583                }
1584
1585                memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1586                r->b = NULL;
1587
1588                if (need_resched()) {
1589                        ret = -EAGAIN;
1590                        break;
1591                }
1592        }
1593
1594        for (i = r; i < r + ARRAY_SIZE(r); i++)
1595                if (!IS_ERR_OR_NULL(i->b)) {
1596                        mutex_lock(&i->b->write_lock);
1597                        if (btree_node_dirty(i->b))
1598                                bch_btree_node_write(i->b, writes);
1599                        mutex_unlock(&i->b->write_lock);
1600                        rw_unlock(true, i->b);
1601                }
1602
1603        return ret;
1604}
1605
1606static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1607                             struct closure *writes, struct gc_stat *gc)
1608{
1609        struct btree *n = NULL;
1610        int ret = 0;
1611        bool should_rewrite;
1612
1613        should_rewrite = btree_gc_mark_node(b, gc);
1614        if (should_rewrite) {
1615                n = btree_node_alloc_replacement(b, NULL);
1616
1617                if (!IS_ERR_OR_NULL(n)) {
1618                        bch_btree_node_write_sync(n);
1619
1620                        bch_btree_set_root(n);
1621                        btree_node_free(b);
1622                        rw_unlock(true, n);
1623
1624                        return -EINTR;
1625                }
1626        }
1627
1628        __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1629
1630        if (b->level) {
1631                ret = btree_gc_recurse(b, op, writes, gc);
1632                if (ret)
1633                        return ret;
1634        }
1635
1636        bkey_copy_key(&b->c->gc_done, &b->key);
1637
1638        return ret;
1639}
1640
1641static void btree_gc_start(struct cache_set *c)
1642{
1643        struct cache *ca;
1644        struct bucket *b;
1645        unsigned i;
1646
1647        if (!c->gc_mark_valid)
1648                return;
1649
1650        mutex_lock(&c->bucket_lock);
1651
1652        c->gc_mark_valid = 0;
1653        c->gc_done = ZERO_KEY;
1654
1655        for_each_cache(ca, c, i)
1656                for_each_bucket(b, ca) {
1657                        b->last_gc = b->gen;
1658                        if (!atomic_read(&b->pin)) {
1659                                SET_GC_MARK(b, 0);
1660                                SET_GC_SECTORS_USED(b, 0);
1661                        }
1662                }
1663
1664        mutex_unlock(&c->bucket_lock);
1665}
1666
1667static void bch_btree_gc_finish(struct cache_set *c)
1668{
1669        struct bucket *b;
1670        struct cache *ca;
1671        unsigned i;
1672
1673        mutex_lock(&c->bucket_lock);
1674
1675        set_gc_sectors(c);
1676        c->gc_mark_valid = 1;
1677        c->need_gc      = 0;
1678
1679        for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1680                SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1681                            GC_MARK_METADATA);
1682
1683        /* don't reclaim buckets to which writeback keys point */
1684        rcu_read_lock();
1685        for (i = 0; i < c->devices_max_used; i++) {
1686                struct bcache_device *d = c->devices[i];
1687                struct cached_dev *dc;
1688                struct keybuf_key *w, *n;
1689                unsigned j;
1690
1691                if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1692                        continue;
1693                dc = container_of(d, struct cached_dev, disk);
1694
1695                spin_lock(&dc->writeback_keys.lock);
1696                rbtree_postorder_for_each_entry_safe(w, n,
1697                                        &dc->writeback_keys.keys, node)
1698                        for (j = 0; j < KEY_PTRS(&w->key); j++)
1699                                SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1700                                            GC_MARK_DIRTY);
1701                spin_unlock(&dc->writeback_keys.lock);
1702        }
1703        rcu_read_unlock();
1704
1705        c->avail_nbuckets = 0;
1706        for_each_cache(ca, c, i) {
1707                uint64_t *i;
1708
1709                ca->invalidate_needs_gc = 0;
1710
1711                for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1712                        SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1713
1714                for (i = ca->prio_buckets;
1715                     i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1716                        SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1717
1718                for_each_bucket(b, ca) {
1719                        c->need_gc      = max(c->need_gc, bucket_gc_gen(b));
1720
1721                        if (atomic_read(&b->pin))
1722                                continue;
1723
1724                        BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1725
1726                        if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1727                                c->avail_nbuckets++;
1728                }
1729        }
1730
1731        mutex_unlock(&c->bucket_lock);
1732}
1733
1734static void bch_btree_gc(struct cache_set *c)
1735{
1736        int ret;
1737        struct gc_stat stats;
1738        struct closure writes;
1739        struct btree_op op;
1740        uint64_t start_time = local_clock();
1741
1742        trace_bcache_gc_start(c);
1743
1744        memset(&stats, 0, sizeof(struct gc_stat));
1745        closure_init_stack(&writes);
1746        bch_btree_op_init(&op, SHRT_MAX);
1747
1748        btree_gc_start(c);
1749
1750        /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1751        do {
1752                ret = btree_root(gc_root, c, &op, &writes, &stats);
1753                closure_sync(&writes);
1754                cond_resched();
1755
1756                if (ret && ret != -EAGAIN)
1757                        pr_warn("gc failed!");
1758        } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1759
1760        bch_btree_gc_finish(c);
1761        wake_up_allocators(c);
1762
1763        bch_time_stats_update(&c->btree_gc_time, start_time);
1764
1765        stats.key_bytes *= sizeof(uint64_t);
1766        stats.data      <<= 9;
1767        bch_update_bucket_in_use(c, &stats);
1768        memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1769
1770        trace_bcache_gc_end(c);
1771
1772        bch_moving_gc(c);
1773}
1774
1775static bool gc_should_run(struct cache_set *c)
1776{
1777        struct cache *ca;
1778        unsigned i;
1779
1780        for_each_cache(ca, c, i)
1781                if (ca->invalidate_needs_gc)
1782                        return true;
1783
1784        if (atomic_read(&c->sectors_to_gc) < 0)
1785                return true;
1786
1787        return false;
1788}
1789
1790static int bch_gc_thread(void *arg)
1791{
1792        struct cache_set *c = arg;
1793
1794        while (1) {
1795                wait_event_interruptible(c->gc_wait,
1796                           kthread_should_stop() ||
1797                           test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1798                           gc_should_run(c));
1799
1800                if (kthread_should_stop() ||
1801                    test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1802                        break;
1803
1804                set_gc_sectors(c);
1805                bch_btree_gc(c);
1806        }
1807
1808        wait_for_kthread_stop();
1809        return 0;
1810}
1811
1812int bch_gc_thread_start(struct cache_set *c)
1813{
1814        c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1815        return PTR_ERR_OR_ZERO(c->gc_thread);
1816}
1817
1818/* Initial partial gc */
1819
1820static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1821{
1822        int ret = 0;
1823        struct bkey *k, *p = NULL;
1824        struct btree_iter iter;
1825
1826        for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1827                bch_initial_mark_key(b->c, b->level, k);
1828
1829        bch_initial_mark_key(b->c, b->level + 1, &b->key);
1830
1831        if (b->level) {
1832                bch_btree_iter_init(&b->keys, &iter, NULL);
1833
1834                do {
1835                        k = bch_btree_iter_next_filter(&iter, &b->keys,
1836                                                       bch_ptr_bad);
1837                        if (k)
1838                                btree_node_prefetch(b, k);
1839
1840                        if (p)
1841                                ret = btree(check_recurse, p, b, op);
1842
1843                        p = k;
1844                } while (p && !ret);
1845        }
1846
1847        return ret;
1848}
1849
1850int bch_btree_check(struct cache_set *c)
1851{
1852        struct btree_op op;
1853
1854        bch_btree_op_init(&op, SHRT_MAX);
1855
1856        return btree_root(check_recurse, c, &op);
1857}
1858
1859void bch_initial_gc_finish(struct cache_set *c)
1860{
1861        struct cache *ca;
1862        struct bucket *b;
1863        unsigned i;
1864
1865        bch_btree_gc_finish(c);
1866
1867        mutex_lock(&c->bucket_lock);
1868
1869        /*
1870         * We need to put some unused buckets directly on the prio freelist in
1871         * order to get the allocator thread started - it needs freed buckets in
1872         * order to rewrite the prios and gens, and it needs to rewrite prios
1873         * and gens in order to free buckets.
1874         *
1875         * This is only safe for buckets that have no live data in them, which
1876         * there should always be some of.
1877         */
1878        for_each_cache(ca, c, i) {
1879                for_each_bucket(b, ca) {
1880                        if (fifo_full(&ca->free[RESERVE_PRIO]) &&
1881                            fifo_full(&ca->free[RESERVE_BTREE]))
1882                                break;
1883
1884                        if (bch_can_invalidate_bucket(ca, b) &&
1885                            !GC_MARK(b)) {
1886                                __bch_invalidate_one_bucket(ca, b);
1887                                if (!fifo_push(&ca->free[RESERVE_PRIO],
1888                                   b - ca->buckets))
1889                                        fifo_push(&ca->free[RESERVE_BTREE],
1890                                                  b - ca->buckets);
1891                        }
1892                }
1893        }
1894
1895        mutex_unlock(&c->bucket_lock);
1896}
1897
1898/* Btree insertion */
1899
1900static bool btree_insert_key(struct btree *b, struct bkey *k,
1901                             struct bkey *replace_key)
1902{
1903        unsigned status;
1904
1905        BUG_ON(bkey_cmp(k, &b->key) > 0);
1906
1907        status = bch_btree_insert_key(&b->keys, k, replace_key);
1908        if (status != BTREE_INSERT_STATUS_NO_INSERT) {
1909                bch_check_keys(&b->keys, "%u for %s", status,
1910                               replace_key ? "replace" : "insert");
1911
1912                trace_bcache_btree_insert_key(b, k, replace_key != NULL,
1913                                              status);
1914                return true;
1915        } else
1916                return false;
1917}
1918
1919static size_t insert_u64s_remaining(struct btree *b)
1920{
1921        long ret = bch_btree_keys_u64s_remaining(&b->keys);
1922
1923        /*
1924         * Might land in the middle of an existing extent and have to split it
1925         */
1926        if (b->keys.ops->is_extents)
1927                ret -= KEY_MAX_U64S;
1928
1929        return max(ret, 0L);
1930}
1931
1932static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
1933                                  struct keylist *insert_keys,
1934                                  struct bkey *replace_key)
1935{
1936        bool ret = false;
1937        int oldsize = bch_count_data(&b->keys);
1938
1939        while (!bch_keylist_empty(insert_keys)) {
1940                struct bkey *k = insert_keys->keys;
1941
1942                if (bkey_u64s(k) > insert_u64s_remaining(b))
1943                        break;
1944
1945                if (bkey_cmp(k, &b->key) <= 0) {
1946                        if (!b->level)
1947                                bkey_put(b->c, k);
1948
1949                        ret |= btree_insert_key(b, k, replace_key);
1950                        bch_keylist_pop_front(insert_keys);
1951                } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
1952                        BKEY_PADDED(key) temp;
1953                        bkey_copy(&temp.key, insert_keys->keys);
1954
1955                        bch_cut_back(&b->key, &temp.key);
1956                        bch_cut_front(&b->key, insert_keys->keys);
1957
1958                        ret |= btree_insert_key(b, &temp.key, replace_key);
1959                        break;
1960                } else {
1961                        break;
1962                }
1963        }
1964
1965        if (!ret)
1966                op->insert_collision = true;
1967
1968        BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
1969
1970        BUG_ON(bch_count_data(&b->keys) < oldsize);
1971        return ret;
1972}
1973
1974static int btree_split(struct btree *b, struct btree_op *op,
1975                       struct keylist *insert_keys,
1976                       struct bkey *replace_key)
1977{
1978        bool split;
1979        struct btree *n1, *n2 = NULL, *n3 = NULL;
1980        uint64_t start_time = local_clock();
1981        struct closure cl;
1982        struct keylist parent_keys;
1983
1984        closure_init_stack(&cl);
1985        bch_keylist_init(&parent_keys);
1986
1987        if (btree_check_reserve(b, op)) {
1988                if (!b->level)
1989                        return -EINTR;
1990                else
1991                        WARN(1, "insufficient reserve for split\n");
1992        }
1993
1994        n1 = btree_node_alloc_replacement(b, op);
1995        if (IS_ERR(n1))
1996                goto err;
1997
1998        split = set_blocks(btree_bset_first(n1),
1999                           block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
2000
2001        if (split) {
2002                unsigned keys = 0;
2003
2004                trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2005
2006                n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2007                if (IS_ERR(n2))
2008                        goto err_free1;
2009
2010                if (!b->parent) {
2011                        n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2012                        if (IS_ERR(n3))
2013                                goto err_free2;
2014                }
2015
2016                mutex_lock(&n1->write_lock);
2017                mutex_lock(&n2->write_lock);
2018
2019                bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2020
2021                /*
2022                 * Has to be a linear search because we don't have an auxiliary
2023                 * search tree yet
2024                 */
2025
2026                while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2027                        keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2028                                                        keys));
2029
2030                bkey_copy_key(&n1->key,
2031                              bset_bkey_idx(btree_bset_first(n1), keys));
2032                keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2033
2034                btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2035                btree_bset_first(n1)->keys = keys;
2036
2037                memcpy(btree_bset_first(n2)->start,
2038                       bset_bkey_last(btree_bset_first(n1)),
2039                       btree_bset_first(n2)->keys * sizeof(uint64_t));
2040
2041                bkey_copy_key(&n2->key, &b->key);
2042
2043                bch_keylist_add(&parent_keys, &n2->key);
2044                bch_btree_node_write(n2, &cl);
2045                mutex_unlock(&n2->write_lock);
2046                rw_unlock(true, n2);
2047        } else {
2048                trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2049
2050                mutex_lock(&n1->write_lock);
2051                bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2052        }
2053
2054        bch_keylist_add(&parent_keys, &n1->key);
2055        bch_btree_node_write(n1, &cl);
2056        mutex_unlock(&n1->write_lock);
2057
2058        if (n3) {
2059                /* Depth increases, make a new root */
2060                mutex_lock(&n3->write_lock);
2061                bkey_copy_key(&n3->key, &MAX_KEY);
2062                bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2063                bch_btree_node_write(n3, &cl);
2064                mutex_unlock(&n3->write_lock);
2065
2066                closure_sync(&cl);
2067                bch_btree_set_root(n3);
2068                rw_unlock(true, n3);
2069        } else if (!b->parent) {
2070                /* Root filled up but didn't need to be split */
2071                closure_sync(&cl);
2072                bch_btree_set_root(n1);
2073        } else {
2074                /* Split a non root node */
2075                closure_sync(&cl);
2076                make_btree_freeing_key(b, parent_keys.top);
2077                bch_keylist_push(&parent_keys);
2078
2079                bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2080                BUG_ON(!bch_keylist_empty(&parent_keys));
2081        }
2082
2083        btree_node_free(b);
2084        rw_unlock(true, n1);
2085
2086        bch_time_stats_update(&b->c->btree_split_time, start_time);
2087
2088        return 0;
2089err_free2:
2090        bkey_put(b->c, &n2->key);
2091        btree_node_free(n2);
2092        rw_unlock(true, n2);
2093err_free1:
2094        bkey_put(b->c, &n1->key);
2095        btree_node_free(n1);
2096        rw_unlock(true, n1);
2097err:
2098        WARN(1, "bcache: btree split failed (level %u)", b->level);
2099
2100        if (n3 == ERR_PTR(-EAGAIN) ||
2101            n2 == ERR_PTR(-EAGAIN) ||
2102            n1 == ERR_PTR(-EAGAIN))
2103                return -EAGAIN;
2104
2105        return -ENOMEM;
2106}
2107
2108static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2109                                 struct keylist *insert_keys,
2110                                 atomic_t *journal_ref,
2111                                 struct bkey *replace_key)
2112{
2113        struct closure cl;
2114
2115        BUG_ON(b->level && replace_key);
2116
2117        closure_init_stack(&cl);
2118
2119        mutex_lock(&b->write_lock);
2120
2121        if (write_block(b) != btree_bset_last(b) &&
2122            b->keys.last_set_unwritten)
2123                bch_btree_init_next(b); /* just wrote a set */
2124
2125        if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2126                mutex_unlock(&b->write_lock);
2127                goto split;
2128        }
2129
2130        BUG_ON(write_block(b) != btree_bset_last(b));
2131
2132        if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2133                if (!b->level)
2134                        bch_btree_leaf_dirty(b, journal_ref);
2135                else
2136                        bch_btree_node_write(b, &cl);
2137        }
2138
2139        mutex_unlock(&b->write_lock);
2140
2141        /* wait for btree node write if necessary, after unlock */
2142        closure_sync(&cl);
2143
2144        return 0;
2145split:
2146        if (current->bio_list) {
2147                op->lock = b->c->root->level + 1;
2148                return -EAGAIN;
2149        } else if (op->lock <= b->c->root->level) {
2150                op->lock = b->c->root->level + 1;
2151                return -EINTR;
2152        } else {
2153                /* Invalidated all iterators */
2154                int ret = btree_split(b, op, insert_keys, replace_key);
2155
2156                if (bch_keylist_empty(insert_keys))
2157                        return 0;
2158                else if (!ret)
2159                        return -EINTR;
2160                return ret;
2161        }
2162}
2163
2164int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2165                               struct bkey *check_key)
2166{
2167        int ret = -EINTR;
2168        uint64_t btree_ptr = b->key.ptr[0];
2169        unsigned long seq = b->seq;
2170        struct keylist insert;
2171        bool upgrade = op->lock == -1;
2172
2173        bch_keylist_init(&insert);
2174
2175        if (upgrade) {
2176                rw_unlock(false, b);
2177                rw_lock(true, b, b->level);
2178
2179                if (b->key.ptr[0] != btree_ptr ||
2180                   b->seq != seq + 1) {
2181                        op->lock = b->level;
2182                        goto out;
2183               }
2184        }
2185
2186        SET_KEY_PTRS(check_key, 1);
2187        get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2188
2189        SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2190
2191        bch_keylist_add(&insert, check_key);
2192
2193        ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2194
2195        BUG_ON(!ret && !bch_keylist_empty(&insert));
2196out:
2197        if (upgrade)
2198                downgrade_write(&b->lock);
2199        return ret;
2200}
2201
2202struct btree_insert_op {
2203        struct btree_op op;
2204        struct keylist  *keys;
2205        atomic_t        *journal_ref;
2206        struct bkey     *replace_key;
2207};
2208
2209static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2210{
2211        struct btree_insert_op *op = container_of(b_op,
2212                                        struct btree_insert_op, op);
2213
2214        int ret = bch_btree_insert_node(b, &op->op, op->keys,
2215                                        op->journal_ref, op->replace_key);
2216        if (ret && !bch_keylist_empty(op->keys))
2217                return ret;
2218        else
2219                return MAP_DONE;
2220}
2221
2222int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2223                     atomic_t *journal_ref, struct bkey *replace_key)
2224{
2225        struct btree_insert_op op;
2226        int ret = 0;
2227
2228        BUG_ON(current->bio_list);
2229        BUG_ON(bch_keylist_empty(keys));
2230
2231        bch_btree_op_init(&op.op, 0);
2232        op.keys         = keys;
2233        op.journal_ref  = journal_ref;
2234        op.replace_key  = replace_key;
2235
2236        while (!ret && !bch_keylist_empty(keys)) {
2237                op.op.lock = 0;
2238                ret = bch_btree_map_leaf_nodes(&op.op, c,
2239                                               &START_KEY(keys->keys),
2240                                               btree_insert_fn);
2241        }
2242
2243        if (ret) {
2244                struct bkey *k;
2245
2246                pr_err("error %i", ret);
2247
2248                while ((k = bch_keylist_pop(keys)))
2249                        bkey_put(c, k);
2250        } else if (op.op.insert_collision)
2251                ret = -ESRCH;
2252
2253        return ret;
2254}
2255
2256void bch_btree_set_root(struct btree *b)
2257{
2258        unsigned i;
2259        struct closure cl;
2260
2261        closure_init_stack(&cl);
2262
2263        trace_bcache_btree_set_root(b);
2264
2265        BUG_ON(!b->written);
2266
2267        for (i = 0; i < KEY_PTRS(&b->key); i++)
2268                BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2269
2270        mutex_lock(&b->c->bucket_lock);
2271        list_del_init(&b->list);
2272        mutex_unlock(&b->c->bucket_lock);
2273
2274        b->c->root = b;
2275
2276        bch_journal_meta(b->c, &cl);
2277        closure_sync(&cl);
2278}
2279
2280/* Map across nodes or keys */
2281
2282static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2283                                       struct bkey *from,
2284                                       btree_map_nodes_fn *fn, int flags)
2285{
2286        int ret = MAP_CONTINUE;
2287
2288        if (b->level) {
2289                struct bkey *k;
2290                struct btree_iter iter;
2291
2292                bch_btree_iter_init(&b->keys, &iter, from);
2293
2294                while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2295                                                       bch_ptr_bad))) {
2296                        ret = btree(map_nodes_recurse, k, b,
2297                                    op, from, fn, flags);
2298                        from = NULL;
2299
2300                        if (ret != MAP_CONTINUE)
2301                                return ret;
2302                }
2303        }
2304
2305        if (!b->level || flags == MAP_ALL_NODES)
2306                ret = fn(op, b);
2307
2308        return ret;
2309}
2310
2311int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2312                          struct bkey *from, btree_map_nodes_fn *fn, int flags)
2313{
2314        return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2315}
2316
2317static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2318                                      struct bkey *from, btree_map_keys_fn *fn,
2319                                      int flags)
2320{
2321        int ret = MAP_CONTINUE;
2322        struct bkey *k;
2323        struct btree_iter iter;
2324
2325        bch_btree_iter_init(&b->keys, &iter, from);
2326
2327        while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2328                ret = !b->level
2329                        ? fn(op, b, k)
2330                        : btree(map_keys_recurse, k, b, op, from, fn, flags);
2331                from = NULL;
2332
2333                if (ret != MAP_CONTINUE)
2334                        return ret;
2335        }
2336
2337        if (!b->level && (flags & MAP_END_KEY))
2338                ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2339                                     KEY_OFFSET(&b->key), 0));
2340
2341        return ret;
2342}
2343
2344int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2345                       struct bkey *from, btree_map_keys_fn *fn, int flags)
2346{
2347        return btree_root(map_keys_recurse, c, op, from, fn, flags);
2348}
2349
2350/* Keybuf code */
2351
2352static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2353{
2354        /* Overlapping keys compare equal */
2355        if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2356                return -1;
2357        if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2358                return 1;
2359        return 0;
2360}
2361
2362static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2363                                            struct keybuf_key *r)
2364{
2365        return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2366}
2367
2368struct refill {
2369        struct btree_op op;
2370        unsigned        nr_found;
2371        struct keybuf   *buf;
2372        struct bkey     *end;
2373        keybuf_pred_fn  *pred;
2374};
2375
2376static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2377                            struct bkey *k)
2378{
2379        struct refill *refill = container_of(op, struct refill, op);
2380        struct keybuf *buf = refill->buf;
2381        int ret = MAP_CONTINUE;
2382
2383        if (bkey_cmp(k, refill->end) >= 0) {
2384                ret = MAP_DONE;
2385                goto out;
2386        }
2387
2388        if (!KEY_SIZE(k)) /* end key */
2389                goto out;
2390
2391        if (refill->pred(buf, k)) {
2392                struct keybuf_key *w;
2393
2394                spin_lock(&buf->lock);
2395
2396                w = array_alloc(&buf->freelist);
2397                if (!w) {
2398                        spin_unlock(&buf->lock);
2399                        return MAP_DONE;
2400                }
2401
2402                w->private = NULL;
2403                bkey_copy(&w->key, k);
2404
2405                if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2406                        array_free(&buf->freelist, w);
2407                else
2408                        refill->nr_found++;
2409
2410                if (array_freelist_empty(&buf->freelist))
2411                        ret = MAP_DONE;
2412
2413                spin_unlock(&buf->lock);
2414        }
2415out:
2416        buf->last_scanned = *k;
2417        return ret;
2418}
2419
2420void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2421                       struct bkey *end, keybuf_pred_fn *pred)
2422{
2423        struct bkey start = buf->last_scanned;
2424        struct refill refill;
2425
2426        cond_resched();
2427
2428        bch_btree_op_init(&refill.op, -1);
2429        refill.nr_found = 0;
2430        refill.buf      = buf;
2431        refill.end      = end;
2432        refill.pred     = pred;
2433
2434        bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2435                           refill_keybuf_fn, MAP_END_KEY);
2436
2437        trace_bcache_keyscan(refill.nr_found,
2438                             KEY_INODE(&start), KEY_OFFSET(&start),
2439                             KEY_INODE(&buf->last_scanned),
2440                             KEY_OFFSET(&buf->last_scanned));
2441
2442        spin_lock(&buf->lock);
2443
2444        if (!RB_EMPTY_ROOT(&buf->keys)) {
2445                struct keybuf_key *w;
2446                w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2447                buf->start      = START_KEY(&w->key);
2448
2449                w = RB_LAST(&buf->keys, struct keybuf_key, node);
2450                buf->end        = w->key;
2451        } else {
2452                buf->start      = MAX_KEY;
2453                buf->end        = MAX_KEY;
2454        }
2455
2456        spin_unlock(&buf->lock);
2457}
2458
2459static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2460{
2461        rb_erase(&w->node, &buf->keys);
2462        array_free(&buf->freelist, w);
2463}
2464
2465void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2466{
2467        spin_lock(&buf->lock);
2468        __bch_keybuf_del(buf, w);
2469        spin_unlock(&buf->lock);
2470}
2471
2472bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2473                                  struct bkey *end)
2474{
2475        bool ret = false;
2476        struct keybuf_key *p, *w, s;
2477        s.key = *start;
2478
2479        if (bkey_cmp(end, &buf->start) <= 0 ||
2480            bkey_cmp(start, &buf->end) >= 0)
2481                return false;
2482
2483        spin_lock(&buf->lock);
2484        w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2485
2486        while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2487                p = w;
2488                w = RB_NEXT(w, node);
2489
2490                if (p->private)
2491                        ret = true;
2492                else
2493                        __bch_keybuf_del(buf, p);
2494        }
2495
2496        spin_unlock(&buf->lock);
2497        return ret;
2498}
2499
2500struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2501{
2502        struct keybuf_key *w;
2503        spin_lock(&buf->lock);
2504
2505        w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2506
2507        while (w && w->private)
2508                w = RB_NEXT(w, node);
2509
2510        if (w)
2511                w->private = ERR_PTR(-EINTR);
2512
2513        spin_unlock(&buf->lock);
2514        return w;
2515}
2516
2517struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2518                                          struct keybuf *buf,
2519                                          struct bkey *end,
2520                                          keybuf_pred_fn *pred)
2521{
2522        struct keybuf_key *ret;
2523
2524        while (1) {
2525                ret = bch_keybuf_next(buf);
2526                if (ret)
2527                        break;
2528
2529                if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2530                        pr_debug("scan finished");
2531                        break;
2532                }
2533
2534                bch_refill_keybuf(c, buf, end, pred);
2535        }
2536
2537        return ret;
2538}
2539
2540void bch_keybuf_init(struct keybuf *buf)
2541{
2542        buf->last_scanned       = MAX_KEY;
2543        buf->keys               = RB_ROOT;
2544
2545        spin_lock_init(&buf->lock);
2546        array_allocator_init(&buf->freelist);
2547}
2548