linux/drivers/mmc/core/core.c
<<
>>
Prefs
   1/*
   2 *  linux/drivers/mmc/core/core.c
   3 *
   4 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   5 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
   6 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
   7 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 */
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/interrupt.h>
  16#include <linux/completion.h>
  17#include <linux/device.h>
  18#include <linux/delay.h>
  19#include <linux/pagemap.h>
  20#include <linux/err.h>
  21#include <linux/leds.h>
  22#include <linux/scatterlist.h>
  23#include <linux/log2.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/pm_wakeup.h>
  27#include <linux/suspend.h>
  28#include <linux/fault-inject.h>
  29#include <linux/random.h>
  30#include <linux/slab.h>
  31#include <linux/of.h>
  32
  33#include <linux/mmc/card.h>
  34#include <linux/mmc/host.h>
  35#include <linux/mmc/mmc.h>
  36#include <linux/mmc/sd.h>
  37#include <linux/mmc/slot-gpio.h>
  38
  39#define CREATE_TRACE_POINTS
  40#include <trace/events/mmc.h>
  41
  42#include "core.h"
  43#include "card.h"
  44#include "bus.h"
  45#include "host.h"
  46#include "sdio_bus.h"
  47#include "pwrseq.h"
  48
  49#include "mmc_ops.h"
  50#include "sd_ops.h"
  51#include "sdio_ops.h"
  52
  53/* The max erase timeout, used when host->max_busy_timeout isn't specified */
  54#define MMC_ERASE_TIMEOUT_MS    (60 * 1000) /* 60 s */
  55
  56static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
  57
  58/*
  59 * Enabling software CRCs on the data blocks can be a significant (30%)
  60 * performance cost, and for other reasons may not always be desired.
  61 * So we allow it it to be disabled.
  62 */
  63bool use_spi_crc = 1;
  64module_param(use_spi_crc, bool, 0);
  65
  66static int mmc_schedule_delayed_work(struct delayed_work *work,
  67                                     unsigned long delay)
  68{
  69        /*
  70         * We use the system_freezable_wq, because of two reasons.
  71         * First, it allows several works (not the same work item) to be
  72         * executed simultaneously. Second, the queue becomes frozen when
  73         * userspace becomes frozen during system PM.
  74         */
  75        return queue_delayed_work(system_freezable_wq, work, delay);
  76}
  77
  78#ifdef CONFIG_FAIL_MMC_REQUEST
  79
  80/*
  81 * Internal function. Inject random data errors.
  82 * If mmc_data is NULL no errors are injected.
  83 */
  84static void mmc_should_fail_request(struct mmc_host *host,
  85                                    struct mmc_request *mrq)
  86{
  87        struct mmc_command *cmd = mrq->cmd;
  88        struct mmc_data *data = mrq->data;
  89        static const int data_errors[] = {
  90                -ETIMEDOUT,
  91                -EILSEQ,
  92                -EIO,
  93        };
  94
  95        if (!data)
  96                return;
  97
  98        if (cmd->error || data->error ||
  99            !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
 100                return;
 101
 102        data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
 103        data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
 104}
 105
 106#else /* CONFIG_FAIL_MMC_REQUEST */
 107
 108static inline void mmc_should_fail_request(struct mmc_host *host,
 109                                           struct mmc_request *mrq)
 110{
 111}
 112
 113#endif /* CONFIG_FAIL_MMC_REQUEST */
 114
 115static inline void mmc_complete_cmd(struct mmc_request *mrq)
 116{
 117        if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
 118                complete_all(&mrq->cmd_completion);
 119}
 120
 121void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
 122{
 123        if (!mrq->cap_cmd_during_tfr)
 124                return;
 125
 126        mmc_complete_cmd(mrq);
 127
 128        pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
 129                 mmc_hostname(host), mrq->cmd->opcode);
 130}
 131EXPORT_SYMBOL(mmc_command_done);
 132
 133/**
 134 *      mmc_request_done - finish processing an MMC request
 135 *      @host: MMC host which completed request
 136 *      @mrq: MMC request which request
 137 *
 138 *      MMC drivers should call this function when they have completed
 139 *      their processing of a request.
 140 */
 141void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
 142{
 143        struct mmc_command *cmd = mrq->cmd;
 144        int err = cmd->error;
 145
 146        /* Flag re-tuning needed on CRC errors */
 147        if (cmd->opcode != MMC_SEND_TUNING_BLOCK &&
 148            cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200 &&
 149            !host->retune_crc_disable &&
 150            (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
 151            (mrq->data && mrq->data->error == -EILSEQ) ||
 152            (mrq->stop && mrq->stop->error == -EILSEQ)))
 153                mmc_retune_needed(host);
 154
 155        if (err && cmd->retries && mmc_host_is_spi(host)) {
 156                if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
 157                        cmd->retries = 0;
 158        }
 159
 160        if (host->ongoing_mrq == mrq)
 161                host->ongoing_mrq = NULL;
 162
 163        mmc_complete_cmd(mrq);
 164
 165        trace_mmc_request_done(host, mrq);
 166
 167        /*
 168         * We list various conditions for the command to be considered
 169         * properly done:
 170         *
 171         * - There was no error, OK fine then
 172         * - We are not doing some kind of retry
 173         * - The card was removed (...so just complete everything no matter
 174         *   if there are errors or retries)
 175         */
 176        if (!err || !cmd->retries || mmc_card_removed(host->card)) {
 177                mmc_should_fail_request(host, mrq);
 178
 179                if (!host->ongoing_mrq)
 180                        led_trigger_event(host->led, LED_OFF);
 181
 182                if (mrq->sbc) {
 183                        pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
 184                                mmc_hostname(host), mrq->sbc->opcode,
 185                                mrq->sbc->error,
 186                                mrq->sbc->resp[0], mrq->sbc->resp[1],
 187                                mrq->sbc->resp[2], mrq->sbc->resp[3]);
 188                }
 189
 190                pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 191                        mmc_hostname(host), cmd->opcode, err,
 192                        cmd->resp[0], cmd->resp[1],
 193                        cmd->resp[2], cmd->resp[3]);
 194
 195                if (mrq->data) {
 196                        pr_debug("%s:     %d bytes transferred: %d\n",
 197                                mmc_hostname(host),
 198                                mrq->data->bytes_xfered, mrq->data->error);
 199                }
 200
 201                if (mrq->stop) {
 202                        pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
 203                                mmc_hostname(host), mrq->stop->opcode,
 204                                mrq->stop->error,
 205                                mrq->stop->resp[0], mrq->stop->resp[1],
 206                                mrq->stop->resp[2], mrq->stop->resp[3]);
 207                }
 208        }
 209        /*
 210         * Request starter must handle retries - see
 211         * mmc_wait_for_req_done().
 212         */
 213        if (mrq->done)
 214                mrq->done(mrq);
 215}
 216
 217EXPORT_SYMBOL(mmc_request_done);
 218
 219static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 220{
 221        int err;
 222
 223        /* Assumes host controller has been runtime resumed by mmc_claim_host */
 224        err = mmc_retune(host);
 225        if (err) {
 226                mrq->cmd->error = err;
 227                mmc_request_done(host, mrq);
 228                return;
 229        }
 230
 231        /*
 232         * For sdio rw commands we must wait for card busy otherwise some
 233         * sdio devices won't work properly.
 234         * And bypass I/O abort, reset and bus suspend operations.
 235         */
 236        if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
 237            host->ops->card_busy) {
 238                int tries = 500; /* Wait aprox 500ms at maximum */
 239
 240                while (host->ops->card_busy(host) && --tries)
 241                        mmc_delay(1);
 242
 243                if (tries == 0) {
 244                        mrq->cmd->error = -EBUSY;
 245                        mmc_request_done(host, mrq);
 246                        return;
 247                }
 248        }
 249
 250        if (mrq->cap_cmd_during_tfr) {
 251                host->ongoing_mrq = mrq;
 252                /*
 253                 * Retry path could come through here without having waiting on
 254                 * cmd_completion, so ensure it is reinitialised.
 255                 */
 256                reinit_completion(&mrq->cmd_completion);
 257        }
 258
 259        trace_mmc_request_start(host, mrq);
 260
 261        if (host->cqe_on)
 262                host->cqe_ops->cqe_off(host);
 263
 264        host->ops->request(host, mrq);
 265}
 266
 267static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
 268                             bool cqe)
 269{
 270        if (mrq->sbc) {
 271                pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
 272                         mmc_hostname(host), mrq->sbc->opcode,
 273                         mrq->sbc->arg, mrq->sbc->flags);
 274        }
 275
 276        if (mrq->cmd) {
 277                pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
 278                         mmc_hostname(host), cqe ? "CQE direct " : "",
 279                         mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
 280        } else if (cqe) {
 281                pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
 282                         mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
 283        }
 284
 285        if (mrq->data) {
 286                pr_debug("%s:     blksz %d blocks %d flags %08x "
 287                        "tsac %d ms nsac %d\n",
 288                        mmc_hostname(host), mrq->data->blksz,
 289                        mrq->data->blocks, mrq->data->flags,
 290                        mrq->data->timeout_ns / 1000000,
 291                        mrq->data->timeout_clks);
 292        }
 293
 294        if (mrq->stop) {
 295                pr_debug("%s:     CMD%u arg %08x flags %08x\n",
 296                         mmc_hostname(host), mrq->stop->opcode,
 297                         mrq->stop->arg, mrq->stop->flags);
 298        }
 299}
 300
 301static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
 302{
 303        unsigned int i, sz = 0;
 304        struct scatterlist *sg;
 305
 306        if (mrq->cmd) {
 307                mrq->cmd->error = 0;
 308                mrq->cmd->mrq = mrq;
 309                mrq->cmd->data = mrq->data;
 310        }
 311        if (mrq->sbc) {
 312                mrq->sbc->error = 0;
 313                mrq->sbc->mrq = mrq;
 314        }
 315        if (mrq->data) {
 316                if (mrq->data->blksz > host->max_blk_size ||
 317                    mrq->data->blocks > host->max_blk_count ||
 318                    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
 319                        return -EINVAL;
 320
 321                for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
 322                        sz += sg->length;
 323                if (sz != mrq->data->blocks * mrq->data->blksz)
 324                        return -EINVAL;
 325
 326                mrq->data->error = 0;
 327                mrq->data->mrq = mrq;
 328                if (mrq->stop) {
 329                        mrq->data->stop = mrq->stop;
 330                        mrq->stop->error = 0;
 331                        mrq->stop->mrq = mrq;
 332                }
 333        }
 334
 335        return 0;
 336}
 337
 338int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 339{
 340        int err;
 341
 342        init_completion(&mrq->cmd_completion);
 343
 344        mmc_retune_hold(host);
 345
 346        if (mmc_card_removed(host->card))
 347                return -ENOMEDIUM;
 348
 349        mmc_mrq_pr_debug(host, mrq, false);
 350
 351        WARN_ON(!host->claimed);
 352
 353        err = mmc_mrq_prep(host, mrq);
 354        if (err)
 355                return err;
 356
 357        led_trigger_event(host->led, LED_FULL);
 358        __mmc_start_request(host, mrq);
 359
 360        return 0;
 361}
 362EXPORT_SYMBOL(mmc_start_request);
 363
 364static void mmc_wait_done(struct mmc_request *mrq)
 365{
 366        complete(&mrq->completion);
 367}
 368
 369static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
 370{
 371        struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
 372
 373        /*
 374         * If there is an ongoing transfer, wait for the command line to become
 375         * available.
 376         */
 377        if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
 378                wait_for_completion(&ongoing_mrq->cmd_completion);
 379}
 380
 381static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
 382{
 383        int err;
 384
 385        mmc_wait_ongoing_tfr_cmd(host);
 386
 387        init_completion(&mrq->completion);
 388        mrq->done = mmc_wait_done;
 389
 390        err = mmc_start_request(host, mrq);
 391        if (err) {
 392                mrq->cmd->error = err;
 393                mmc_complete_cmd(mrq);
 394                complete(&mrq->completion);
 395        }
 396
 397        return err;
 398}
 399
 400void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
 401{
 402        struct mmc_command *cmd;
 403
 404        while (1) {
 405                wait_for_completion(&mrq->completion);
 406
 407                cmd = mrq->cmd;
 408
 409                /*
 410                 * If host has timed out waiting for the sanitize
 411                 * to complete, card might be still in programming state
 412                 * so let's try to bring the card out of programming
 413                 * state.
 414                 */
 415                if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
 416                        if (!mmc_interrupt_hpi(host->card)) {
 417                                pr_warn("%s: %s: Interrupted sanitize\n",
 418                                        mmc_hostname(host), __func__);
 419                                cmd->error = 0;
 420                                break;
 421                        } else {
 422                                pr_err("%s: %s: Failed to interrupt sanitize\n",
 423                                       mmc_hostname(host), __func__);
 424                        }
 425                }
 426                if (!cmd->error || !cmd->retries ||
 427                    mmc_card_removed(host->card))
 428                        break;
 429
 430                mmc_retune_recheck(host);
 431
 432                pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
 433                         mmc_hostname(host), cmd->opcode, cmd->error);
 434                cmd->retries--;
 435                cmd->error = 0;
 436                __mmc_start_request(host, mrq);
 437        }
 438
 439        mmc_retune_release(host);
 440}
 441EXPORT_SYMBOL(mmc_wait_for_req_done);
 442
 443/*
 444 * mmc_cqe_start_req - Start a CQE request.
 445 * @host: MMC host to start the request
 446 * @mrq: request to start
 447 *
 448 * Start the request, re-tuning if needed and it is possible. Returns an error
 449 * code if the request fails to start or -EBUSY if CQE is busy.
 450 */
 451int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
 452{
 453        int err;
 454
 455        /*
 456         * CQE cannot process re-tuning commands. Caller must hold retuning
 457         * while CQE is in use.  Re-tuning can happen here only when CQE has no
 458         * active requests i.e. this is the first.  Note, re-tuning will call
 459         * ->cqe_off().
 460         */
 461        err = mmc_retune(host);
 462        if (err)
 463                goto out_err;
 464
 465        mrq->host = host;
 466
 467        mmc_mrq_pr_debug(host, mrq, true);
 468
 469        err = mmc_mrq_prep(host, mrq);
 470        if (err)
 471                goto out_err;
 472
 473        err = host->cqe_ops->cqe_request(host, mrq);
 474        if (err)
 475                goto out_err;
 476
 477        trace_mmc_request_start(host, mrq);
 478
 479        return 0;
 480
 481out_err:
 482        if (mrq->cmd) {
 483                pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
 484                         mmc_hostname(host), mrq->cmd->opcode, err);
 485        } else {
 486                pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
 487                         mmc_hostname(host), mrq->tag, err);
 488        }
 489        return err;
 490}
 491EXPORT_SYMBOL(mmc_cqe_start_req);
 492
 493/**
 494 *      mmc_cqe_request_done - CQE has finished processing an MMC request
 495 *      @host: MMC host which completed request
 496 *      @mrq: MMC request which completed
 497 *
 498 *      CQE drivers should call this function when they have completed
 499 *      their processing of a request.
 500 */
 501void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
 502{
 503        mmc_should_fail_request(host, mrq);
 504
 505        /* Flag re-tuning needed on CRC errors */
 506        if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
 507            (mrq->data && mrq->data->error == -EILSEQ))
 508                mmc_retune_needed(host);
 509
 510        trace_mmc_request_done(host, mrq);
 511
 512        if (mrq->cmd) {
 513                pr_debug("%s: CQE req done (direct CMD%u): %d\n",
 514                         mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
 515        } else {
 516                pr_debug("%s: CQE transfer done tag %d\n",
 517                         mmc_hostname(host), mrq->tag);
 518        }
 519
 520        if (mrq->data) {
 521                pr_debug("%s:     %d bytes transferred: %d\n",
 522                         mmc_hostname(host),
 523                         mrq->data->bytes_xfered, mrq->data->error);
 524        }
 525
 526        mrq->done(mrq);
 527}
 528EXPORT_SYMBOL(mmc_cqe_request_done);
 529
 530/**
 531 *      mmc_cqe_post_req - CQE post process of a completed MMC request
 532 *      @host: MMC host
 533 *      @mrq: MMC request to be processed
 534 */
 535void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
 536{
 537        if (host->cqe_ops->cqe_post_req)
 538                host->cqe_ops->cqe_post_req(host, mrq);
 539}
 540EXPORT_SYMBOL(mmc_cqe_post_req);
 541
 542/* Arbitrary 1 second timeout */
 543#define MMC_CQE_RECOVERY_TIMEOUT        1000
 544
 545/*
 546 * mmc_cqe_recovery - Recover from CQE errors.
 547 * @host: MMC host to recover
 548 *
 549 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
 550 * in eMMC, and discarding the queue in CQE. CQE must call
 551 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
 552 * fails to discard its queue.
 553 */
 554int mmc_cqe_recovery(struct mmc_host *host)
 555{
 556        struct mmc_command cmd;
 557        int err;
 558
 559        mmc_retune_hold_now(host);
 560
 561        /*
 562         * Recovery is expected seldom, if at all, but it reduces performance,
 563         * so make sure it is not completely silent.
 564         */
 565        pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
 566
 567        host->cqe_ops->cqe_recovery_start(host);
 568
 569        memset(&cmd, 0, sizeof(cmd));
 570        cmd.opcode       = MMC_STOP_TRANSMISSION,
 571        cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC,
 572        cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
 573        cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
 574        mmc_wait_for_cmd(host, &cmd, 0);
 575
 576        memset(&cmd, 0, sizeof(cmd));
 577        cmd.opcode       = MMC_CMDQ_TASK_MGMT;
 578        cmd.arg          = 1; /* Discard entire queue */
 579        cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
 580        cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
 581        cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
 582        err = mmc_wait_for_cmd(host, &cmd, 0);
 583
 584        host->cqe_ops->cqe_recovery_finish(host);
 585
 586        mmc_retune_release(host);
 587
 588        return err;
 589}
 590EXPORT_SYMBOL(mmc_cqe_recovery);
 591
 592/**
 593 *      mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
 594 *      @host: MMC host
 595 *      @mrq: MMC request
 596 *
 597 *      mmc_is_req_done() is used with requests that have
 598 *      mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
 599 *      starting a request and before waiting for it to complete. That is,
 600 *      either in between calls to mmc_start_req(), or after mmc_wait_for_req()
 601 *      and before mmc_wait_for_req_done(). If it is called at other times the
 602 *      result is not meaningful.
 603 */
 604bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
 605{
 606        return completion_done(&mrq->completion);
 607}
 608EXPORT_SYMBOL(mmc_is_req_done);
 609
 610/**
 611 *      mmc_wait_for_req - start a request and wait for completion
 612 *      @host: MMC host to start command
 613 *      @mrq: MMC request to start
 614 *
 615 *      Start a new MMC custom command request for a host, and wait
 616 *      for the command to complete. In the case of 'cap_cmd_during_tfr'
 617 *      requests, the transfer is ongoing and the caller can issue further
 618 *      commands that do not use the data lines, and then wait by calling
 619 *      mmc_wait_for_req_done().
 620 *      Does not attempt to parse the response.
 621 */
 622void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
 623{
 624        __mmc_start_req(host, mrq);
 625
 626        if (!mrq->cap_cmd_during_tfr)
 627                mmc_wait_for_req_done(host, mrq);
 628}
 629EXPORT_SYMBOL(mmc_wait_for_req);
 630
 631/**
 632 *      mmc_wait_for_cmd - start a command and wait for completion
 633 *      @host: MMC host to start command
 634 *      @cmd: MMC command to start
 635 *      @retries: maximum number of retries
 636 *
 637 *      Start a new MMC command for a host, and wait for the command
 638 *      to complete.  Return any error that occurred while the command
 639 *      was executing.  Do not attempt to parse the response.
 640 */
 641int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
 642{
 643        struct mmc_request mrq = {};
 644
 645        WARN_ON(!host->claimed);
 646
 647        memset(cmd->resp, 0, sizeof(cmd->resp));
 648        cmd->retries = retries;
 649
 650        mrq.cmd = cmd;
 651        cmd->data = NULL;
 652
 653        mmc_wait_for_req(host, &mrq);
 654
 655        return cmd->error;
 656}
 657
 658EXPORT_SYMBOL(mmc_wait_for_cmd);
 659
 660/**
 661 *      mmc_set_data_timeout - set the timeout for a data command
 662 *      @data: data phase for command
 663 *      @card: the MMC card associated with the data transfer
 664 *
 665 *      Computes the data timeout parameters according to the
 666 *      correct algorithm given the card type.
 667 */
 668void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
 669{
 670        unsigned int mult;
 671
 672        /*
 673         * SDIO cards only define an upper 1 s limit on access.
 674         */
 675        if (mmc_card_sdio(card)) {
 676                data->timeout_ns = 1000000000;
 677                data->timeout_clks = 0;
 678                return;
 679        }
 680
 681        /*
 682         * SD cards use a 100 multiplier rather than 10
 683         */
 684        mult = mmc_card_sd(card) ? 100 : 10;
 685
 686        /*
 687         * Scale up the multiplier (and therefore the timeout) by
 688         * the r2w factor for writes.
 689         */
 690        if (data->flags & MMC_DATA_WRITE)
 691                mult <<= card->csd.r2w_factor;
 692
 693        data->timeout_ns = card->csd.taac_ns * mult;
 694        data->timeout_clks = card->csd.taac_clks * mult;
 695
 696        /*
 697         * SD cards also have an upper limit on the timeout.
 698         */
 699        if (mmc_card_sd(card)) {
 700                unsigned int timeout_us, limit_us;
 701
 702                timeout_us = data->timeout_ns / 1000;
 703                if (card->host->ios.clock)
 704                        timeout_us += data->timeout_clks * 1000 /
 705                                (card->host->ios.clock / 1000);
 706
 707                if (data->flags & MMC_DATA_WRITE)
 708                        /*
 709                         * The MMC spec "It is strongly recommended
 710                         * for hosts to implement more than 500ms
 711                         * timeout value even if the card indicates
 712                         * the 250ms maximum busy length."  Even the
 713                         * previous value of 300ms is known to be
 714                         * insufficient for some cards.
 715                         */
 716                        limit_us = 3000000;
 717                else
 718                        limit_us = 100000;
 719
 720                /*
 721                 * SDHC cards always use these fixed values.
 722                 */
 723                if (timeout_us > limit_us) {
 724                        data->timeout_ns = limit_us * 1000;
 725                        data->timeout_clks = 0;
 726                }
 727
 728                /* assign limit value if invalid */
 729                if (timeout_us == 0)
 730                        data->timeout_ns = limit_us * 1000;
 731        }
 732
 733        /*
 734         * Some cards require longer data read timeout than indicated in CSD.
 735         * Address this by setting the read timeout to a "reasonably high"
 736         * value. For the cards tested, 600ms has proven enough. If necessary,
 737         * this value can be increased if other problematic cards require this.
 738         */
 739        if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
 740                data->timeout_ns = 600000000;
 741                data->timeout_clks = 0;
 742        }
 743
 744        /*
 745         * Some cards need very high timeouts if driven in SPI mode.
 746         * The worst observed timeout was 900ms after writing a
 747         * continuous stream of data until the internal logic
 748         * overflowed.
 749         */
 750        if (mmc_host_is_spi(card->host)) {
 751                if (data->flags & MMC_DATA_WRITE) {
 752                        if (data->timeout_ns < 1000000000)
 753                                data->timeout_ns = 1000000000;  /* 1s */
 754                } else {
 755                        if (data->timeout_ns < 100000000)
 756                                data->timeout_ns =  100000000;  /* 100ms */
 757                }
 758        }
 759}
 760EXPORT_SYMBOL(mmc_set_data_timeout);
 761
 762/**
 763 *      mmc_align_data_size - pads a transfer size to a more optimal value
 764 *      @card: the MMC card associated with the data transfer
 765 *      @sz: original transfer size
 766 *
 767 *      Pads the original data size with a number of extra bytes in
 768 *      order to avoid controller bugs and/or performance hits
 769 *      (e.g. some controllers revert to PIO for certain sizes).
 770 *
 771 *      Returns the improved size, which might be unmodified.
 772 *
 773 *      Note that this function is only relevant when issuing a
 774 *      single scatter gather entry.
 775 */
 776unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
 777{
 778        /*
 779         * FIXME: We don't have a system for the controller to tell
 780         * the core about its problems yet, so for now we just 32-bit
 781         * align the size.
 782         */
 783        sz = ((sz + 3) / 4) * 4;
 784
 785        return sz;
 786}
 787EXPORT_SYMBOL(mmc_align_data_size);
 788
 789/*
 790 * Allow claiming an already claimed host if the context is the same or there is
 791 * no context but the task is the same.
 792 */
 793static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
 794                                   struct task_struct *task)
 795{
 796        return host->claimer == ctx ||
 797               (!ctx && task && host->claimer->task == task);
 798}
 799
 800static inline void mmc_ctx_set_claimer(struct mmc_host *host,
 801                                       struct mmc_ctx *ctx,
 802                                       struct task_struct *task)
 803{
 804        if (!host->claimer) {
 805                if (ctx)
 806                        host->claimer = ctx;
 807                else
 808                        host->claimer = &host->default_ctx;
 809        }
 810        if (task)
 811                host->claimer->task = task;
 812}
 813
 814/**
 815 *      __mmc_claim_host - exclusively claim a host
 816 *      @host: mmc host to claim
 817 *      @ctx: context that claims the host or NULL in which case the default
 818 *      context will be used
 819 *      @abort: whether or not the operation should be aborted
 820 *
 821 *      Claim a host for a set of operations.  If @abort is non null and
 822 *      dereference a non-zero value then this will return prematurely with
 823 *      that non-zero value without acquiring the lock.  Returns zero
 824 *      with the lock held otherwise.
 825 */
 826int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
 827                     atomic_t *abort)
 828{
 829        struct task_struct *task = ctx ? NULL : current;
 830        DECLARE_WAITQUEUE(wait, current);
 831        unsigned long flags;
 832        int stop;
 833        bool pm = false;
 834
 835        might_sleep();
 836
 837        add_wait_queue(&host->wq, &wait);
 838        spin_lock_irqsave(&host->lock, flags);
 839        while (1) {
 840                set_current_state(TASK_UNINTERRUPTIBLE);
 841                stop = abort ? atomic_read(abort) : 0;
 842                if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
 843                        break;
 844                spin_unlock_irqrestore(&host->lock, flags);
 845                schedule();
 846                spin_lock_irqsave(&host->lock, flags);
 847        }
 848        set_current_state(TASK_RUNNING);
 849        if (!stop) {
 850                host->claimed = 1;
 851                mmc_ctx_set_claimer(host, ctx, task);
 852                host->claim_cnt += 1;
 853                if (host->claim_cnt == 1)
 854                        pm = true;
 855        } else
 856                wake_up(&host->wq);
 857        spin_unlock_irqrestore(&host->lock, flags);
 858        remove_wait_queue(&host->wq, &wait);
 859
 860        if (pm)
 861                pm_runtime_get_sync(mmc_dev(host));
 862
 863        return stop;
 864}
 865EXPORT_SYMBOL(__mmc_claim_host);
 866
 867/**
 868 *      mmc_release_host - release a host
 869 *      @host: mmc host to release
 870 *
 871 *      Release a MMC host, allowing others to claim the host
 872 *      for their operations.
 873 */
 874void mmc_release_host(struct mmc_host *host)
 875{
 876        unsigned long flags;
 877
 878        WARN_ON(!host->claimed);
 879
 880        spin_lock_irqsave(&host->lock, flags);
 881        if (--host->claim_cnt) {
 882                /* Release for nested claim */
 883                spin_unlock_irqrestore(&host->lock, flags);
 884        } else {
 885                host->claimed = 0;
 886                host->claimer->task = NULL;
 887                host->claimer = NULL;
 888                spin_unlock_irqrestore(&host->lock, flags);
 889                wake_up(&host->wq);
 890                pm_runtime_mark_last_busy(mmc_dev(host));
 891                pm_runtime_put_autosuspend(mmc_dev(host));
 892        }
 893}
 894EXPORT_SYMBOL(mmc_release_host);
 895
 896/*
 897 * This is a helper function, which fetches a runtime pm reference for the
 898 * card device and also claims the host.
 899 */
 900void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
 901{
 902        pm_runtime_get_sync(&card->dev);
 903        __mmc_claim_host(card->host, ctx, NULL);
 904}
 905EXPORT_SYMBOL(mmc_get_card);
 906
 907/*
 908 * This is a helper function, which releases the host and drops the runtime
 909 * pm reference for the card device.
 910 */
 911void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
 912{
 913        struct mmc_host *host = card->host;
 914
 915        WARN_ON(ctx && host->claimer != ctx);
 916
 917        mmc_release_host(host);
 918        pm_runtime_mark_last_busy(&card->dev);
 919        pm_runtime_put_autosuspend(&card->dev);
 920}
 921EXPORT_SYMBOL(mmc_put_card);
 922
 923/*
 924 * Internal function that does the actual ios call to the host driver,
 925 * optionally printing some debug output.
 926 */
 927static inline void mmc_set_ios(struct mmc_host *host)
 928{
 929        struct mmc_ios *ios = &host->ios;
 930
 931        pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
 932                "width %u timing %u\n",
 933                 mmc_hostname(host), ios->clock, ios->bus_mode,
 934                 ios->power_mode, ios->chip_select, ios->vdd,
 935                 1 << ios->bus_width, ios->timing);
 936
 937        host->ops->set_ios(host, ios);
 938}
 939
 940/*
 941 * Control chip select pin on a host.
 942 */
 943void mmc_set_chip_select(struct mmc_host *host, int mode)
 944{
 945        host->ios.chip_select = mode;
 946        mmc_set_ios(host);
 947}
 948
 949/*
 950 * Sets the host clock to the highest possible frequency that
 951 * is below "hz".
 952 */
 953void mmc_set_clock(struct mmc_host *host, unsigned int hz)
 954{
 955        WARN_ON(hz && hz < host->f_min);
 956
 957        if (hz > host->f_max)
 958                hz = host->f_max;
 959
 960        host->ios.clock = hz;
 961        mmc_set_ios(host);
 962}
 963
 964int mmc_execute_tuning(struct mmc_card *card)
 965{
 966        struct mmc_host *host = card->host;
 967        u32 opcode;
 968        int err;
 969
 970        if (!host->ops->execute_tuning)
 971                return 0;
 972
 973        if (host->cqe_on)
 974                host->cqe_ops->cqe_off(host);
 975
 976        if (mmc_card_mmc(card))
 977                opcode = MMC_SEND_TUNING_BLOCK_HS200;
 978        else
 979                opcode = MMC_SEND_TUNING_BLOCK;
 980
 981        err = host->ops->execute_tuning(host, opcode);
 982
 983        if (err)
 984                pr_err("%s: tuning execution failed: %d\n",
 985                        mmc_hostname(host), err);
 986        else
 987                mmc_retune_enable(host);
 988
 989        return err;
 990}
 991
 992/*
 993 * Change the bus mode (open drain/push-pull) of a host.
 994 */
 995void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
 996{
 997        host->ios.bus_mode = mode;
 998        mmc_set_ios(host);
 999}
1000
1001/*
1002 * Change data bus width of a host.
1003 */
1004void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1005{
1006        host->ios.bus_width = width;
1007        mmc_set_ios(host);
1008}
1009
1010/*
1011 * Set initial state after a power cycle or a hw_reset.
1012 */
1013void mmc_set_initial_state(struct mmc_host *host)
1014{
1015        if (host->cqe_on)
1016                host->cqe_ops->cqe_off(host);
1017
1018        mmc_retune_disable(host);
1019
1020        if (mmc_host_is_spi(host))
1021                host->ios.chip_select = MMC_CS_HIGH;
1022        else
1023                host->ios.chip_select = MMC_CS_DONTCARE;
1024        host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1025        host->ios.bus_width = MMC_BUS_WIDTH_1;
1026        host->ios.timing = MMC_TIMING_LEGACY;
1027        host->ios.drv_type = 0;
1028        host->ios.enhanced_strobe = false;
1029
1030        /*
1031         * Make sure we are in non-enhanced strobe mode before we
1032         * actually enable it in ext_csd.
1033         */
1034        if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1035             host->ops->hs400_enhanced_strobe)
1036                host->ops->hs400_enhanced_strobe(host, &host->ios);
1037
1038        mmc_set_ios(host);
1039}
1040
1041/**
1042 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1043 * @vdd:        voltage (mV)
1044 * @low_bits:   prefer low bits in boundary cases
1045 *
1046 * This function returns the OCR bit number according to the provided @vdd
1047 * value. If conversion is not possible a negative errno value returned.
1048 *
1049 * Depending on the @low_bits flag the function prefers low or high OCR bits
1050 * on boundary voltages. For example,
1051 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1052 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1053 *
1054 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1055 */
1056static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1057{
1058        const int max_bit = ilog2(MMC_VDD_35_36);
1059        int bit;
1060
1061        if (vdd < 1650 || vdd > 3600)
1062                return -EINVAL;
1063
1064        if (vdd >= 1650 && vdd <= 1950)
1065                return ilog2(MMC_VDD_165_195);
1066
1067        if (low_bits)
1068                vdd -= 1;
1069
1070        /* Base 2000 mV, step 100 mV, bit's base 8. */
1071        bit = (vdd - 2000) / 100 + 8;
1072        if (bit > max_bit)
1073                return max_bit;
1074        return bit;
1075}
1076
1077/**
1078 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1079 * @vdd_min:    minimum voltage value (mV)
1080 * @vdd_max:    maximum voltage value (mV)
1081 *
1082 * This function returns the OCR mask bits according to the provided @vdd_min
1083 * and @vdd_max values. If conversion is not possible the function returns 0.
1084 *
1085 * Notes wrt boundary cases:
1086 * This function sets the OCR bits for all boundary voltages, for example
1087 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1088 * MMC_VDD_34_35 mask.
1089 */
1090u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1091{
1092        u32 mask = 0;
1093
1094        if (vdd_max < vdd_min)
1095                return 0;
1096
1097        /* Prefer high bits for the boundary vdd_max values. */
1098        vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1099        if (vdd_max < 0)
1100                return 0;
1101
1102        /* Prefer low bits for the boundary vdd_min values. */
1103        vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1104        if (vdd_min < 0)
1105                return 0;
1106
1107        /* Fill the mask, from max bit to min bit. */
1108        while (vdd_max >= vdd_min)
1109                mask |= 1 << vdd_max--;
1110
1111        return mask;
1112}
1113EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1114
1115#ifdef CONFIG_OF
1116
1117/**
1118 * mmc_of_parse_voltage - return mask of supported voltages
1119 * @np: The device node need to be parsed.
1120 * @mask: mask of voltages available for MMC/SD/SDIO
1121 *
1122 * Parse the "voltage-ranges" DT property, returning zero if it is not
1123 * found, negative errno if the voltage-range specification is invalid,
1124 * or one if the voltage-range is specified and successfully parsed.
1125 */
1126int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1127{
1128        const u32 *voltage_ranges;
1129        int num_ranges, i;
1130
1131        voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1132        num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1133        if (!voltage_ranges) {
1134                pr_debug("%pOF: voltage-ranges unspecified\n", np);
1135                return 0;
1136        }
1137        if (!num_ranges) {
1138                pr_err("%pOF: voltage-ranges empty\n", np);
1139                return -EINVAL;
1140        }
1141
1142        for (i = 0; i < num_ranges; i++) {
1143                const int j = i * 2;
1144                u32 ocr_mask;
1145
1146                ocr_mask = mmc_vddrange_to_ocrmask(
1147                                be32_to_cpu(voltage_ranges[j]),
1148                                be32_to_cpu(voltage_ranges[j + 1]));
1149                if (!ocr_mask) {
1150                        pr_err("%pOF: voltage-range #%d is invalid\n",
1151                                np, i);
1152                        return -EINVAL;
1153                }
1154                *mask |= ocr_mask;
1155        }
1156
1157        return 1;
1158}
1159EXPORT_SYMBOL(mmc_of_parse_voltage);
1160
1161#endif /* CONFIG_OF */
1162
1163static int mmc_of_get_func_num(struct device_node *node)
1164{
1165        u32 reg;
1166        int ret;
1167
1168        ret = of_property_read_u32(node, "reg", &reg);
1169        if (ret < 0)
1170                return ret;
1171
1172        return reg;
1173}
1174
1175struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1176                unsigned func_num)
1177{
1178        struct device_node *node;
1179
1180        if (!host->parent || !host->parent->of_node)
1181                return NULL;
1182
1183        for_each_child_of_node(host->parent->of_node, node) {
1184                if (mmc_of_get_func_num(node) == func_num)
1185                        return node;
1186        }
1187
1188        return NULL;
1189}
1190
1191#ifdef CONFIG_REGULATOR
1192
1193/**
1194 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1195 * @vdd_bit:    OCR bit number
1196 * @min_uV:     minimum voltage value (mV)
1197 * @max_uV:     maximum voltage value (mV)
1198 *
1199 * This function returns the voltage range according to the provided OCR
1200 * bit number. If conversion is not possible a negative errno value returned.
1201 */
1202static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1203{
1204        int             tmp;
1205
1206        if (!vdd_bit)
1207                return -EINVAL;
1208
1209        /*
1210         * REVISIT mmc_vddrange_to_ocrmask() may have set some
1211         * bits this regulator doesn't quite support ... don't
1212         * be too picky, most cards and regulators are OK with
1213         * a 0.1V range goof (it's a small error percentage).
1214         */
1215        tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1216        if (tmp == 0) {
1217                *min_uV = 1650 * 1000;
1218                *max_uV = 1950 * 1000;
1219        } else {
1220                *min_uV = 1900 * 1000 + tmp * 100 * 1000;
1221                *max_uV = *min_uV + 100 * 1000;
1222        }
1223
1224        return 0;
1225}
1226
1227/**
1228 * mmc_regulator_get_ocrmask - return mask of supported voltages
1229 * @supply: regulator to use
1230 *
1231 * This returns either a negative errno, or a mask of voltages that
1232 * can be provided to MMC/SD/SDIO devices using the specified voltage
1233 * regulator.  This would normally be called before registering the
1234 * MMC host adapter.
1235 */
1236int mmc_regulator_get_ocrmask(struct regulator *supply)
1237{
1238        int                     result = 0;
1239        int                     count;
1240        int                     i;
1241        int                     vdd_uV;
1242        int                     vdd_mV;
1243
1244        count = regulator_count_voltages(supply);
1245        if (count < 0)
1246                return count;
1247
1248        for (i = 0; i < count; i++) {
1249                vdd_uV = regulator_list_voltage(supply, i);
1250                if (vdd_uV <= 0)
1251                        continue;
1252
1253                vdd_mV = vdd_uV / 1000;
1254                result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1255        }
1256
1257        if (!result) {
1258                vdd_uV = regulator_get_voltage(supply);
1259                if (vdd_uV <= 0)
1260                        return vdd_uV;
1261
1262                vdd_mV = vdd_uV / 1000;
1263                result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1264        }
1265
1266        return result;
1267}
1268EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1269
1270/**
1271 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1272 * @mmc: the host to regulate
1273 * @supply: regulator to use
1274 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1275 *
1276 * Returns zero on success, else negative errno.
1277 *
1278 * MMC host drivers may use this to enable or disable a regulator using
1279 * a particular supply voltage.  This would normally be called from the
1280 * set_ios() method.
1281 */
1282int mmc_regulator_set_ocr(struct mmc_host *mmc,
1283                        struct regulator *supply,
1284                        unsigned short vdd_bit)
1285{
1286        int                     result = 0;
1287        int                     min_uV, max_uV;
1288
1289        if (vdd_bit) {
1290                mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
1291
1292                result = regulator_set_voltage(supply, min_uV, max_uV);
1293                if (result == 0 && !mmc->regulator_enabled) {
1294                        result = regulator_enable(supply);
1295                        if (!result)
1296                                mmc->regulator_enabled = true;
1297                }
1298        } else if (mmc->regulator_enabled) {
1299                result = regulator_disable(supply);
1300                if (result == 0)
1301                        mmc->regulator_enabled = false;
1302        }
1303
1304        if (result)
1305                dev_err(mmc_dev(mmc),
1306                        "could not set regulator OCR (%d)\n", result);
1307        return result;
1308}
1309EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1310
1311static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1312                                                  int min_uV, int target_uV,
1313                                                  int max_uV)
1314{
1315        /*
1316         * Check if supported first to avoid errors since we may try several
1317         * signal levels during power up and don't want to show errors.
1318         */
1319        if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1320                return -EINVAL;
1321
1322        return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1323                                             max_uV);
1324}
1325
1326/**
1327 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1328 *
1329 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1330 * That will match the behavior of old boards where VQMMC and VMMC were supplied
1331 * by the same supply.  The Bus Operating conditions for 3.3V signaling in the
1332 * SD card spec also define VQMMC in terms of VMMC.
1333 * If this is not possible we'll try the full 2.7-3.6V of the spec.
1334 *
1335 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1336 * requested voltage.  This is definitely a good idea for UHS where there's a
1337 * separate regulator on the card that's trying to make 1.8V and it's best if
1338 * we match.
1339 *
1340 * This function is expected to be used by a controller's
1341 * start_signal_voltage_switch() function.
1342 */
1343int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1344{
1345        struct device *dev = mmc_dev(mmc);
1346        int ret, volt, min_uV, max_uV;
1347
1348        /* If no vqmmc supply then we can't change the voltage */
1349        if (IS_ERR(mmc->supply.vqmmc))
1350                return -EINVAL;
1351
1352        switch (ios->signal_voltage) {
1353        case MMC_SIGNAL_VOLTAGE_120:
1354                return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1355                                                1100000, 1200000, 1300000);
1356        case MMC_SIGNAL_VOLTAGE_180:
1357                return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1358                                                1700000, 1800000, 1950000);
1359        case MMC_SIGNAL_VOLTAGE_330:
1360                ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1361                if (ret < 0)
1362                        return ret;
1363
1364                dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1365                        __func__, volt, max_uV);
1366
1367                min_uV = max(volt - 300000, 2700000);
1368                max_uV = min(max_uV + 200000, 3600000);
1369
1370                /*
1371                 * Due to a limitation in the current implementation of
1372                 * regulator_set_voltage_triplet() which is taking the lowest
1373                 * voltage possible if below the target, search for a suitable
1374                 * voltage in two steps and try to stay close to vmmc
1375                 * with a 0.3V tolerance at first.
1376                 */
1377                if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1378                                                min_uV, volt, max_uV))
1379                        return 0;
1380
1381                return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1382                                                2700000, volt, 3600000);
1383        default:
1384                return -EINVAL;
1385        }
1386}
1387EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1388
1389#endif /* CONFIG_REGULATOR */
1390
1391/**
1392 * mmc_regulator_get_supply - try to get VMMC and VQMMC regulators for a host
1393 * @mmc: the host to regulate
1394 *
1395 * Returns 0 or errno. errno should be handled, it is either a critical error
1396 * or -EPROBE_DEFER. 0 means no critical error but it does not mean all
1397 * regulators have been found because they all are optional. If you require
1398 * certain regulators, you need to check separately in your driver if they got
1399 * populated after calling this function.
1400 */
1401int mmc_regulator_get_supply(struct mmc_host *mmc)
1402{
1403        struct device *dev = mmc_dev(mmc);
1404        int ret;
1405
1406        mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1407        mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1408
1409        if (IS_ERR(mmc->supply.vmmc)) {
1410                if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1411                        return -EPROBE_DEFER;
1412                dev_dbg(dev, "No vmmc regulator found\n");
1413        } else {
1414                ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1415                if (ret > 0)
1416                        mmc->ocr_avail = ret;
1417                else
1418                        dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1419        }
1420
1421        if (IS_ERR(mmc->supply.vqmmc)) {
1422                if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1423                        return -EPROBE_DEFER;
1424                dev_dbg(dev, "No vqmmc regulator found\n");
1425        }
1426
1427        return 0;
1428}
1429EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1430
1431/*
1432 * Mask off any voltages we don't support and select
1433 * the lowest voltage
1434 */
1435u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1436{
1437        int bit;
1438
1439        /*
1440         * Sanity check the voltages that the card claims to
1441         * support.
1442         */
1443        if (ocr & 0x7F) {
1444                dev_warn(mmc_dev(host),
1445                "card claims to support voltages below defined range\n");
1446                ocr &= ~0x7F;
1447        }
1448
1449        ocr &= host->ocr_avail;
1450        if (!ocr) {
1451                dev_warn(mmc_dev(host), "no support for card's volts\n");
1452                return 0;
1453        }
1454
1455        if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1456                bit = ffs(ocr) - 1;
1457                ocr &= 3 << bit;
1458                mmc_power_cycle(host, ocr);
1459        } else {
1460                bit = fls(ocr) - 1;
1461                ocr &= 3 << bit;
1462                if (bit != host->ios.vdd)
1463                        dev_warn(mmc_dev(host), "exceeding card's volts\n");
1464        }
1465
1466        return ocr;
1467}
1468
1469int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1470{
1471        int err = 0;
1472        int old_signal_voltage = host->ios.signal_voltage;
1473
1474        host->ios.signal_voltage = signal_voltage;
1475        if (host->ops->start_signal_voltage_switch)
1476                err = host->ops->start_signal_voltage_switch(host, &host->ios);
1477
1478        if (err)
1479                host->ios.signal_voltage = old_signal_voltage;
1480
1481        return err;
1482
1483}
1484
1485void mmc_set_initial_signal_voltage(struct mmc_host *host)
1486{
1487        /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1488        if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1489                dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1490        else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1491                dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1492        else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1493                dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1494}
1495
1496int mmc_host_set_uhs_voltage(struct mmc_host *host)
1497{
1498        u32 clock;
1499
1500        /*
1501         * During a signal voltage level switch, the clock must be gated
1502         * for 5 ms according to the SD spec
1503         */
1504        clock = host->ios.clock;
1505        host->ios.clock = 0;
1506        mmc_set_ios(host);
1507
1508        if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1509                return -EAGAIN;
1510
1511        /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1512        mmc_delay(10);
1513        host->ios.clock = clock;
1514        mmc_set_ios(host);
1515
1516        return 0;
1517}
1518
1519int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1520{
1521        struct mmc_command cmd = {};
1522        int err = 0;
1523
1524        /*
1525         * If we cannot switch voltages, return failure so the caller
1526         * can continue without UHS mode
1527         */
1528        if (!host->ops->start_signal_voltage_switch)
1529                return -EPERM;
1530        if (!host->ops->card_busy)
1531                pr_warn("%s: cannot verify signal voltage switch\n",
1532                        mmc_hostname(host));
1533
1534        cmd.opcode = SD_SWITCH_VOLTAGE;
1535        cmd.arg = 0;
1536        cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1537
1538        err = mmc_wait_for_cmd(host, &cmd, 0);
1539        if (err)
1540                return err;
1541
1542        if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1543                return -EIO;
1544
1545        /*
1546         * The card should drive cmd and dat[0:3] low immediately
1547         * after the response of cmd11, but wait 1 ms to be sure
1548         */
1549        mmc_delay(1);
1550        if (host->ops->card_busy && !host->ops->card_busy(host)) {
1551                err = -EAGAIN;
1552                goto power_cycle;
1553        }
1554
1555        if (mmc_host_set_uhs_voltage(host)) {
1556                /*
1557                 * Voltages may not have been switched, but we've already
1558                 * sent CMD11, so a power cycle is required anyway
1559                 */
1560                err = -EAGAIN;
1561                goto power_cycle;
1562        }
1563
1564        /* Wait for at least 1 ms according to spec */
1565        mmc_delay(1);
1566
1567        /*
1568         * Failure to switch is indicated by the card holding
1569         * dat[0:3] low
1570         */
1571        if (host->ops->card_busy && host->ops->card_busy(host))
1572                err = -EAGAIN;
1573
1574power_cycle:
1575        if (err) {
1576                pr_debug("%s: Signal voltage switch failed, "
1577                        "power cycling card\n", mmc_hostname(host));
1578                mmc_power_cycle(host, ocr);
1579        }
1580
1581        return err;
1582}
1583
1584/*
1585 * Select timing parameters for host.
1586 */
1587void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1588{
1589        host->ios.timing = timing;
1590        mmc_set_ios(host);
1591}
1592
1593/*
1594 * Select appropriate driver type for host.
1595 */
1596void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1597{
1598        host->ios.drv_type = drv_type;
1599        mmc_set_ios(host);
1600}
1601
1602int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1603                              int card_drv_type, int *drv_type)
1604{
1605        struct mmc_host *host = card->host;
1606        int host_drv_type = SD_DRIVER_TYPE_B;
1607
1608        *drv_type = 0;
1609
1610        if (!host->ops->select_drive_strength)
1611                return 0;
1612
1613        /* Use SD definition of driver strength for hosts */
1614        if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1615                host_drv_type |= SD_DRIVER_TYPE_A;
1616
1617        if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1618                host_drv_type |= SD_DRIVER_TYPE_C;
1619
1620        if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1621                host_drv_type |= SD_DRIVER_TYPE_D;
1622
1623        /*
1624         * The drive strength that the hardware can support
1625         * depends on the board design.  Pass the appropriate
1626         * information and let the hardware specific code
1627         * return what is possible given the options
1628         */
1629        return host->ops->select_drive_strength(card, max_dtr,
1630                                                host_drv_type,
1631                                                card_drv_type,
1632                                                drv_type);
1633}
1634
1635/*
1636 * Apply power to the MMC stack.  This is a two-stage process.
1637 * First, we enable power to the card without the clock running.
1638 * We then wait a bit for the power to stabilise.  Finally,
1639 * enable the bus drivers and clock to the card.
1640 *
1641 * We must _NOT_ enable the clock prior to power stablising.
1642 *
1643 * If a host does all the power sequencing itself, ignore the
1644 * initial MMC_POWER_UP stage.
1645 */
1646void mmc_power_up(struct mmc_host *host, u32 ocr)
1647{
1648        if (host->ios.power_mode == MMC_POWER_ON)
1649                return;
1650
1651        mmc_pwrseq_pre_power_on(host);
1652
1653        host->ios.vdd = fls(ocr) - 1;
1654        host->ios.power_mode = MMC_POWER_UP;
1655        /* Set initial state and call mmc_set_ios */
1656        mmc_set_initial_state(host);
1657
1658        mmc_set_initial_signal_voltage(host);
1659
1660        /*
1661         * This delay should be sufficient to allow the power supply
1662         * to reach the minimum voltage.
1663         */
1664        mmc_delay(host->ios.power_delay_ms);
1665
1666        mmc_pwrseq_post_power_on(host);
1667
1668        host->ios.clock = host->f_init;
1669
1670        host->ios.power_mode = MMC_POWER_ON;
1671        mmc_set_ios(host);
1672
1673        /*
1674         * This delay must be at least 74 clock sizes, or 1 ms, or the
1675         * time required to reach a stable voltage.
1676         */
1677        mmc_delay(host->ios.power_delay_ms);
1678}
1679
1680void mmc_power_off(struct mmc_host *host)
1681{
1682        if (host->ios.power_mode == MMC_POWER_OFF)
1683                return;
1684
1685        mmc_pwrseq_power_off(host);
1686
1687        host->ios.clock = 0;
1688        host->ios.vdd = 0;
1689
1690        host->ios.power_mode = MMC_POWER_OFF;
1691        /* Set initial state and call mmc_set_ios */
1692        mmc_set_initial_state(host);
1693
1694        /*
1695         * Some configurations, such as the 802.11 SDIO card in the OLPC
1696         * XO-1.5, require a short delay after poweroff before the card
1697         * can be successfully turned on again.
1698         */
1699        mmc_delay(1);
1700}
1701
1702void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1703{
1704        mmc_power_off(host);
1705        /* Wait at least 1 ms according to SD spec */
1706        mmc_delay(1);
1707        mmc_power_up(host, ocr);
1708}
1709
1710/*
1711 * Cleanup when the last reference to the bus operator is dropped.
1712 */
1713static void __mmc_release_bus(struct mmc_host *host)
1714{
1715        WARN_ON(!host->bus_dead);
1716
1717        host->bus_ops = NULL;
1718}
1719
1720/*
1721 * Increase reference count of bus operator
1722 */
1723static inline void mmc_bus_get(struct mmc_host *host)
1724{
1725        unsigned long flags;
1726
1727        spin_lock_irqsave(&host->lock, flags);
1728        host->bus_refs++;
1729        spin_unlock_irqrestore(&host->lock, flags);
1730}
1731
1732/*
1733 * Decrease reference count of bus operator and free it if
1734 * it is the last reference.
1735 */
1736static inline void mmc_bus_put(struct mmc_host *host)
1737{
1738        unsigned long flags;
1739
1740        spin_lock_irqsave(&host->lock, flags);
1741        host->bus_refs--;
1742        if ((host->bus_refs == 0) && host->bus_ops)
1743                __mmc_release_bus(host);
1744        spin_unlock_irqrestore(&host->lock, flags);
1745}
1746
1747/*
1748 * Assign a mmc bus handler to a host. Only one bus handler may control a
1749 * host at any given time.
1750 */
1751void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1752{
1753        unsigned long flags;
1754
1755        WARN_ON(!host->claimed);
1756
1757        spin_lock_irqsave(&host->lock, flags);
1758
1759        WARN_ON(host->bus_ops);
1760        WARN_ON(host->bus_refs);
1761
1762        host->bus_ops = ops;
1763        host->bus_refs = 1;
1764        host->bus_dead = 0;
1765
1766        spin_unlock_irqrestore(&host->lock, flags);
1767}
1768
1769/*
1770 * Remove the current bus handler from a host.
1771 */
1772void mmc_detach_bus(struct mmc_host *host)
1773{
1774        unsigned long flags;
1775
1776        WARN_ON(!host->claimed);
1777        WARN_ON(!host->bus_ops);
1778
1779        spin_lock_irqsave(&host->lock, flags);
1780
1781        host->bus_dead = 1;
1782
1783        spin_unlock_irqrestore(&host->lock, flags);
1784
1785        mmc_bus_put(host);
1786}
1787
1788static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1789                                bool cd_irq)
1790{
1791        /*
1792         * If the device is configured as wakeup, we prevent a new sleep for
1793         * 5 s to give provision for user space to consume the event.
1794         */
1795        if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1796                device_can_wakeup(mmc_dev(host)))
1797                pm_wakeup_event(mmc_dev(host), 5000);
1798
1799        host->detect_change = 1;
1800        mmc_schedule_delayed_work(&host->detect, delay);
1801}
1802
1803/**
1804 *      mmc_detect_change - process change of state on a MMC socket
1805 *      @host: host which changed state.
1806 *      @delay: optional delay to wait before detection (jiffies)
1807 *
1808 *      MMC drivers should call this when they detect a card has been
1809 *      inserted or removed. The MMC layer will confirm that any
1810 *      present card is still functional, and initialize any newly
1811 *      inserted.
1812 */
1813void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1814{
1815        _mmc_detect_change(host, delay, true);
1816}
1817EXPORT_SYMBOL(mmc_detect_change);
1818
1819void mmc_init_erase(struct mmc_card *card)
1820{
1821        unsigned int sz;
1822
1823        if (is_power_of_2(card->erase_size))
1824                card->erase_shift = ffs(card->erase_size) - 1;
1825        else
1826                card->erase_shift = 0;
1827
1828        /*
1829         * It is possible to erase an arbitrarily large area of an SD or MMC
1830         * card.  That is not desirable because it can take a long time
1831         * (minutes) potentially delaying more important I/O, and also the
1832         * timeout calculations become increasingly hugely over-estimated.
1833         * Consequently, 'pref_erase' is defined as a guide to limit erases
1834         * to that size and alignment.
1835         *
1836         * For SD cards that define Allocation Unit size, limit erases to one
1837         * Allocation Unit at a time.
1838         * For MMC, have a stab at ai good value and for modern cards it will
1839         * end up being 4MiB. Note that if the value is too small, it can end
1840         * up taking longer to erase. Also note, erase_size is already set to
1841         * High Capacity Erase Size if available when this function is called.
1842         */
1843        if (mmc_card_sd(card) && card->ssr.au) {
1844                card->pref_erase = card->ssr.au;
1845                card->erase_shift = ffs(card->ssr.au) - 1;
1846        } else if (card->erase_size) {
1847                sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1848                if (sz < 128)
1849                        card->pref_erase = 512 * 1024 / 512;
1850                else if (sz < 512)
1851                        card->pref_erase = 1024 * 1024 / 512;
1852                else if (sz < 1024)
1853                        card->pref_erase = 2 * 1024 * 1024 / 512;
1854                else
1855                        card->pref_erase = 4 * 1024 * 1024 / 512;
1856                if (card->pref_erase < card->erase_size)
1857                        card->pref_erase = card->erase_size;
1858                else {
1859                        sz = card->pref_erase % card->erase_size;
1860                        if (sz)
1861                                card->pref_erase += card->erase_size - sz;
1862                }
1863        } else
1864                card->pref_erase = 0;
1865}
1866
1867static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1868                                          unsigned int arg, unsigned int qty)
1869{
1870        unsigned int erase_timeout;
1871
1872        if (arg == MMC_DISCARD_ARG ||
1873            (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1874                erase_timeout = card->ext_csd.trim_timeout;
1875        } else if (card->ext_csd.erase_group_def & 1) {
1876                /* High Capacity Erase Group Size uses HC timeouts */
1877                if (arg == MMC_TRIM_ARG)
1878                        erase_timeout = card->ext_csd.trim_timeout;
1879                else
1880                        erase_timeout = card->ext_csd.hc_erase_timeout;
1881        } else {
1882                /* CSD Erase Group Size uses write timeout */
1883                unsigned int mult = (10 << card->csd.r2w_factor);
1884                unsigned int timeout_clks = card->csd.taac_clks * mult;
1885                unsigned int timeout_us;
1886
1887                /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1888                if (card->csd.taac_ns < 1000000)
1889                        timeout_us = (card->csd.taac_ns * mult) / 1000;
1890                else
1891                        timeout_us = (card->csd.taac_ns / 1000) * mult;
1892
1893                /*
1894                 * ios.clock is only a target.  The real clock rate might be
1895                 * less but not that much less, so fudge it by multiplying by 2.
1896                 */
1897                timeout_clks <<= 1;
1898                timeout_us += (timeout_clks * 1000) /
1899                              (card->host->ios.clock / 1000);
1900
1901                erase_timeout = timeout_us / 1000;
1902
1903                /*
1904                 * Theoretically, the calculation could underflow so round up
1905                 * to 1ms in that case.
1906                 */
1907                if (!erase_timeout)
1908                        erase_timeout = 1;
1909        }
1910
1911        /* Multiplier for secure operations */
1912        if (arg & MMC_SECURE_ARGS) {
1913                if (arg == MMC_SECURE_ERASE_ARG)
1914                        erase_timeout *= card->ext_csd.sec_erase_mult;
1915                else
1916                        erase_timeout *= card->ext_csd.sec_trim_mult;
1917        }
1918
1919        erase_timeout *= qty;
1920
1921        /*
1922         * Ensure at least a 1 second timeout for SPI as per
1923         * 'mmc_set_data_timeout()'
1924         */
1925        if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1926                erase_timeout = 1000;
1927
1928        return erase_timeout;
1929}
1930
1931static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1932                                         unsigned int arg,
1933                                         unsigned int qty)
1934{
1935        unsigned int erase_timeout;
1936
1937        if (card->ssr.erase_timeout) {
1938                /* Erase timeout specified in SD Status Register (SSR) */
1939                erase_timeout = card->ssr.erase_timeout * qty +
1940                                card->ssr.erase_offset;
1941        } else {
1942                /*
1943                 * Erase timeout not specified in SD Status Register (SSR) so
1944                 * use 250ms per write block.
1945                 */
1946                erase_timeout = 250 * qty;
1947        }
1948
1949        /* Must not be less than 1 second */
1950        if (erase_timeout < 1000)
1951                erase_timeout = 1000;
1952
1953        return erase_timeout;
1954}
1955
1956static unsigned int mmc_erase_timeout(struct mmc_card *card,
1957                                      unsigned int arg,
1958                                      unsigned int qty)
1959{
1960        if (mmc_card_sd(card))
1961                return mmc_sd_erase_timeout(card, arg, qty);
1962        else
1963                return mmc_mmc_erase_timeout(card, arg, qty);
1964}
1965
1966static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1967                        unsigned int to, unsigned int arg)
1968{
1969        struct mmc_command cmd = {};
1970        unsigned int qty = 0, busy_timeout = 0;
1971        bool use_r1b_resp = false;
1972        unsigned long timeout;
1973        int loop_udelay=64, udelay_max=32768;
1974        int err;
1975
1976        mmc_retune_hold(card->host);
1977
1978        /*
1979         * qty is used to calculate the erase timeout which depends on how many
1980         * erase groups (or allocation units in SD terminology) are affected.
1981         * We count erasing part of an erase group as one erase group.
1982         * For SD, the allocation units are always a power of 2.  For MMC, the
1983         * erase group size is almost certainly also power of 2, but it does not
1984         * seem to insist on that in the JEDEC standard, so we fall back to
1985         * division in that case.  SD may not specify an allocation unit size,
1986         * in which case the timeout is based on the number of write blocks.
1987         *
1988         * Note that the timeout for secure trim 2 will only be correct if the
1989         * number of erase groups specified is the same as the total of all
1990         * preceding secure trim 1 commands.  Since the power may have been
1991         * lost since the secure trim 1 commands occurred, it is generally
1992         * impossible to calculate the secure trim 2 timeout correctly.
1993         */
1994        if (card->erase_shift)
1995                qty += ((to >> card->erase_shift) -
1996                        (from >> card->erase_shift)) + 1;
1997        else if (mmc_card_sd(card))
1998                qty += to - from + 1;
1999        else
2000                qty += ((to / card->erase_size) -
2001                        (from / card->erase_size)) + 1;
2002
2003        if (!mmc_card_blockaddr(card)) {
2004                from <<= 9;
2005                to <<= 9;
2006        }
2007
2008        if (mmc_card_sd(card))
2009                cmd.opcode = SD_ERASE_WR_BLK_START;
2010        else
2011                cmd.opcode = MMC_ERASE_GROUP_START;
2012        cmd.arg = from;
2013        cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2014        err = mmc_wait_for_cmd(card->host, &cmd, 0);
2015        if (err) {
2016                pr_err("mmc_erase: group start error %d, "
2017                       "status %#x\n", err, cmd.resp[0]);
2018                err = -EIO;
2019                goto out;
2020        }
2021
2022        memset(&cmd, 0, sizeof(struct mmc_command));
2023        if (mmc_card_sd(card))
2024                cmd.opcode = SD_ERASE_WR_BLK_END;
2025        else
2026                cmd.opcode = MMC_ERASE_GROUP_END;
2027        cmd.arg = to;
2028        cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2029        err = mmc_wait_for_cmd(card->host, &cmd, 0);
2030        if (err) {
2031                pr_err("mmc_erase: group end error %d, status %#x\n",
2032                       err, cmd.resp[0]);
2033                err = -EIO;
2034                goto out;
2035        }
2036
2037        memset(&cmd, 0, sizeof(struct mmc_command));
2038        cmd.opcode = MMC_ERASE;
2039        cmd.arg = arg;
2040        busy_timeout = mmc_erase_timeout(card, arg, qty);
2041        /*
2042         * If the host controller supports busy signalling and the timeout for
2043         * the erase operation does not exceed the max_busy_timeout, we should
2044         * use R1B response. Or we need to prevent the host from doing hw busy
2045         * detection, which is done by converting to a R1 response instead.
2046         */
2047        if (card->host->max_busy_timeout &&
2048            busy_timeout > card->host->max_busy_timeout) {
2049                cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2050        } else {
2051                cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2052                cmd.busy_timeout = busy_timeout;
2053                use_r1b_resp = true;
2054        }
2055
2056        err = mmc_wait_for_cmd(card->host, &cmd, 0);
2057        if (err) {
2058                pr_err("mmc_erase: erase error %d, status %#x\n",
2059                       err, cmd.resp[0]);
2060                err = -EIO;
2061                goto out;
2062        }
2063
2064        if (mmc_host_is_spi(card->host))
2065                goto out;
2066
2067        /*
2068         * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
2069         * shall be avoided.
2070         */
2071        if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
2072                goto out;
2073
2074        timeout = jiffies + msecs_to_jiffies(busy_timeout);
2075        do {
2076                memset(&cmd, 0, sizeof(struct mmc_command));
2077                cmd.opcode = MMC_SEND_STATUS;
2078                cmd.arg = card->rca << 16;
2079                cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2080                /* Do not retry else we can't see errors */
2081                err = mmc_wait_for_cmd(card->host, &cmd, 0);
2082                if (err || (cmd.resp[0] & 0xFDF92000)) {
2083                        pr_err("error %d requesting status %#x\n",
2084                                err, cmd.resp[0]);
2085                        err = -EIO;
2086                        goto out;
2087                }
2088
2089                /* Timeout if the device never becomes ready for data and
2090                 * never leaves the program state.
2091                 */
2092                if (time_after(jiffies, timeout)) {
2093                        pr_err("%s: Card stuck in programming state! %s\n",
2094                                mmc_hostname(card->host), __func__);
2095                        err =  -EIO;
2096                        goto out;
2097                }
2098                if ((cmd.resp[0] & R1_READY_FOR_DATA) &&
2099                    R1_CURRENT_STATE(cmd.resp[0]) != R1_STATE_PRG)
2100                        break;
2101
2102                usleep_range(loop_udelay, loop_udelay*2);
2103                if (loop_udelay < udelay_max)
2104                        loop_udelay *= 2;
2105        } while (1);
2106
2107out:
2108        mmc_retune_release(card->host);
2109        return err;
2110}
2111
2112static unsigned int mmc_align_erase_size(struct mmc_card *card,
2113                                         unsigned int *from,
2114                                         unsigned int *to,
2115                                         unsigned int nr)
2116{
2117        unsigned int from_new = *from, nr_new = nr, rem;
2118
2119        /*
2120         * When the 'card->erase_size' is power of 2, we can use round_up/down()
2121         * to align the erase size efficiently.
2122         */
2123        if (is_power_of_2(card->erase_size)) {
2124                unsigned int temp = from_new;
2125
2126                from_new = round_up(temp, card->erase_size);
2127                rem = from_new - temp;
2128
2129                if (nr_new > rem)
2130                        nr_new -= rem;
2131                else
2132                        return 0;
2133
2134                nr_new = round_down(nr_new, card->erase_size);
2135        } else {
2136                rem = from_new % card->erase_size;
2137                if (rem) {
2138                        rem = card->erase_size - rem;
2139                        from_new += rem;
2140                        if (nr_new > rem)
2141                                nr_new -= rem;
2142                        else
2143                                return 0;
2144                }
2145
2146                rem = nr_new % card->erase_size;
2147                if (rem)
2148                        nr_new -= rem;
2149        }
2150
2151        if (nr_new == 0)
2152                return 0;
2153
2154        *to = from_new + nr_new;
2155        *from = from_new;
2156
2157        return nr_new;
2158}
2159
2160/**
2161 * mmc_erase - erase sectors.
2162 * @card: card to erase
2163 * @from: first sector to erase
2164 * @nr: number of sectors to erase
2165 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2166 *
2167 * Caller must claim host before calling this function.
2168 */
2169int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2170              unsigned int arg)
2171{
2172        unsigned int rem, to = from + nr;
2173        int err;
2174
2175        if (!(card->host->caps & MMC_CAP_ERASE) ||
2176            !(card->csd.cmdclass & CCC_ERASE))
2177                return -EOPNOTSUPP;
2178
2179        if (!card->erase_size)
2180                return -EOPNOTSUPP;
2181
2182        if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2183                return -EOPNOTSUPP;
2184
2185        if ((arg & MMC_SECURE_ARGS) &&
2186            !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2187                return -EOPNOTSUPP;
2188
2189        if ((arg & MMC_TRIM_ARGS) &&
2190            !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2191                return -EOPNOTSUPP;
2192
2193        if (arg == MMC_SECURE_ERASE_ARG) {
2194                if (from % card->erase_size || nr % card->erase_size)
2195                        return -EINVAL;
2196        }
2197
2198        if (arg == MMC_ERASE_ARG)
2199                nr = mmc_align_erase_size(card, &from, &to, nr);
2200
2201        if (nr == 0)
2202                return 0;
2203
2204        if (to <= from)
2205                return -EINVAL;
2206
2207        /* 'from' and 'to' are inclusive */
2208        to -= 1;
2209
2210        /*
2211         * Special case where only one erase-group fits in the timeout budget:
2212         * If the region crosses an erase-group boundary on this particular
2213         * case, we will be trimming more than one erase-group which, does not
2214         * fit in the timeout budget of the controller, so we need to split it
2215         * and call mmc_do_erase() twice if necessary. This special case is
2216         * identified by the card->eg_boundary flag.
2217         */
2218        rem = card->erase_size - (from % card->erase_size);
2219        if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2220                err = mmc_do_erase(card, from, from + rem - 1, arg);
2221                from += rem;
2222                if ((err) || (to <= from))
2223                        return err;
2224        }
2225
2226        return mmc_do_erase(card, from, to, arg);
2227}
2228EXPORT_SYMBOL(mmc_erase);
2229
2230int mmc_can_erase(struct mmc_card *card)
2231{
2232        if ((card->host->caps & MMC_CAP_ERASE) &&
2233            (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2234                return 1;
2235        return 0;
2236}
2237EXPORT_SYMBOL(mmc_can_erase);
2238
2239int mmc_can_trim(struct mmc_card *card)
2240{
2241        if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2242            (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2243                return 1;
2244        return 0;
2245}
2246EXPORT_SYMBOL(mmc_can_trim);
2247
2248int mmc_can_discard(struct mmc_card *card)
2249{
2250        /*
2251         * As there's no way to detect the discard support bit at v4.5
2252         * use the s/w feature support filed.
2253         */
2254        if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2255                return 1;
2256        return 0;
2257}
2258EXPORT_SYMBOL(mmc_can_discard);
2259
2260int mmc_can_sanitize(struct mmc_card *card)
2261{
2262        if (!mmc_can_trim(card) && !mmc_can_erase(card))
2263                return 0;
2264        if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2265                return 1;
2266        return 0;
2267}
2268EXPORT_SYMBOL(mmc_can_sanitize);
2269
2270int mmc_can_secure_erase_trim(struct mmc_card *card)
2271{
2272        if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2273            !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2274                return 1;
2275        return 0;
2276}
2277EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2278
2279int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2280                            unsigned int nr)
2281{
2282        if (!card->erase_size)
2283                return 0;
2284        if (from % card->erase_size || nr % card->erase_size)
2285                return 0;
2286        return 1;
2287}
2288EXPORT_SYMBOL(mmc_erase_group_aligned);
2289
2290static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2291                                            unsigned int arg)
2292{
2293        struct mmc_host *host = card->host;
2294        unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
2295        unsigned int last_timeout = 0;
2296        unsigned int max_busy_timeout = host->max_busy_timeout ?
2297                        host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
2298
2299        if (card->erase_shift) {
2300                max_qty = UINT_MAX >> card->erase_shift;
2301                min_qty = card->pref_erase >> card->erase_shift;
2302        } else if (mmc_card_sd(card)) {
2303                max_qty = UINT_MAX;
2304                min_qty = card->pref_erase;
2305        } else {
2306                max_qty = UINT_MAX / card->erase_size;
2307                min_qty = card->pref_erase / card->erase_size;
2308        }
2309
2310        /*
2311         * We should not only use 'host->max_busy_timeout' as the limitation
2312         * when deciding the max discard sectors. We should set a balance value
2313         * to improve the erase speed, and it can not get too long timeout at
2314         * the same time.
2315         *
2316         * Here we set 'card->pref_erase' as the minimal discard sectors no
2317         * matter what size of 'host->max_busy_timeout', but if the
2318         * 'host->max_busy_timeout' is large enough for more discard sectors,
2319         * then we can continue to increase the max discard sectors until we
2320         * get a balance value. In cases when the 'host->max_busy_timeout'
2321         * isn't specified, use the default max erase timeout.
2322         */
2323        do {
2324                y = 0;
2325                for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2326                        timeout = mmc_erase_timeout(card, arg, qty + x);
2327
2328                        if (qty + x > min_qty && timeout > max_busy_timeout)
2329                                break;
2330
2331                        if (timeout < last_timeout)
2332                                break;
2333                        last_timeout = timeout;
2334                        y = x;
2335                }
2336                qty += y;
2337        } while (y);
2338
2339        if (!qty)
2340                return 0;
2341
2342        /*
2343         * When specifying a sector range to trim, chances are we might cross
2344         * an erase-group boundary even if the amount of sectors is less than
2345         * one erase-group.
2346         * If we can only fit one erase-group in the controller timeout budget,
2347         * we have to care that erase-group boundaries are not crossed by a
2348         * single trim operation. We flag that special case with "eg_boundary".
2349         * In all other cases we can just decrement qty and pretend that we
2350         * always touch (qty + 1) erase-groups as a simple optimization.
2351         */
2352        if (qty == 1)
2353                card->eg_boundary = 1;
2354        else
2355                qty--;
2356
2357        /* Convert qty to sectors */
2358        if (card->erase_shift)
2359                max_discard = qty << card->erase_shift;
2360        else if (mmc_card_sd(card))
2361                max_discard = qty + 1;
2362        else
2363                max_discard = qty * card->erase_size;
2364
2365        return max_discard;
2366}
2367
2368unsigned int mmc_calc_max_discard(struct mmc_card *card)
2369{
2370        struct mmc_host *host = card->host;
2371        unsigned int max_discard, max_trim;
2372
2373        /*
2374         * Without erase_group_def set, MMC erase timeout depends on clock
2375         * frequence which can change.  In that case, the best choice is
2376         * just the preferred erase size.
2377         */
2378        if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2379                return card->pref_erase;
2380
2381        max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2382        if (max_discard && mmc_can_trim(card)) {
2383                max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2384                if (max_trim < max_discard)
2385                        max_discard = max_trim;
2386        } else if (max_discard < card->erase_size) {
2387                max_discard = 0;
2388        }
2389        pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2390                mmc_hostname(host), max_discard, host->max_busy_timeout ?
2391                host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2392        return max_discard;
2393}
2394EXPORT_SYMBOL(mmc_calc_max_discard);
2395
2396bool mmc_card_is_blockaddr(struct mmc_card *card)
2397{
2398        return card ? mmc_card_blockaddr(card) : false;
2399}
2400EXPORT_SYMBOL(mmc_card_is_blockaddr);
2401
2402int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2403{
2404        struct mmc_command cmd = {};
2405
2406        if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2407            mmc_card_hs400(card) || mmc_card_hs400es(card))
2408                return 0;
2409
2410        cmd.opcode = MMC_SET_BLOCKLEN;
2411        cmd.arg = blocklen;
2412        cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2413        return mmc_wait_for_cmd(card->host, &cmd, 5);
2414}
2415EXPORT_SYMBOL(mmc_set_blocklen);
2416
2417int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2418                        bool is_rel_write)
2419{
2420        struct mmc_command cmd = {};
2421
2422        cmd.opcode = MMC_SET_BLOCK_COUNT;
2423        cmd.arg = blockcount & 0x0000FFFF;
2424        if (is_rel_write)
2425                cmd.arg |= 1 << 31;
2426        cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2427        return mmc_wait_for_cmd(card->host, &cmd, 5);
2428}
2429EXPORT_SYMBOL(mmc_set_blockcount);
2430
2431static void mmc_hw_reset_for_init(struct mmc_host *host)
2432{
2433        mmc_pwrseq_reset(host);
2434
2435        if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2436                return;
2437        host->ops->hw_reset(host);
2438}
2439
2440int mmc_hw_reset(struct mmc_host *host)
2441{
2442        int ret;
2443
2444        if (!host->card)
2445                return -EINVAL;
2446
2447        mmc_bus_get(host);
2448        if (!host->bus_ops || host->bus_dead || !host->bus_ops->hw_reset) {
2449                mmc_bus_put(host);
2450                return -EOPNOTSUPP;
2451        }
2452
2453        ret = host->bus_ops->hw_reset(host);
2454        mmc_bus_put(host);
2455
2456        if (ret)
2457                pr_warn("%s: tried to HW reset card, got error %d\n",
2458                        mmc_hostname(host), ret);
2459
2460        return ret;
2461}
2462EXPORT_SYMBOL(mmc_hw_reset);
2463
2464int mmc_sw_reset(struct mmc_host *host)
2465{
2466        int ret;
2467
2468        if (!host->card)
2469                return -EINVAL;
2470
2471        mmc_bus_get(host);
2472        if (!host->bus_ops || host->bus_dead || !host->bus_ops->sw_reset) {
2473                mmc_bus_put(host);
2474                return -EOPNOTSUPP;
2475        }
2476
2477        ret = host->bus_ops->sw_reset(host);
2478        mmc_bus_put(host);
2479
2480        if (ret)
2481                pr_warn("%s: tried to SW reset card, got error %d\n",
2482                        mmc_hostname(host), ret);
2483
2484        return ret;
2485}
2486EXPORT_SYMBOL(mmc_sw_reset);
2487
2488static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2489{
2490        host->f_init = freq;
2491
2492        pr_debug("%s: %s: trying to init card at %u Hz\n",
2493                mmc_hostname(host), __func__, host->f_init);
2494
2495        mmc_power_up(host, host->ocr_avail);
2496
2497        /*
2498         * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2499         * do a hardware reset if possible.
2500         */
2501        mmc_hw_reset_for_init(host);
2502
2503        /*
2504         * sdio_reset sends CMD52 to reset card.  Since we do not know
2505         * if the card is being re-initialized, just send it.  CMD52
2506         * should be ignored by SD/eMMC cards.
2507         * Skip it if we already know that we do not support SDIO commands
2508         */
2509        if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2510                sdio_reset(host);
2511
2512        mmc_go_idle(host);
2513
2514        if (!(host->caps2 & MMC_CAP2_NO_SD))
2515                mmc_send_if_cond(host, host->ocr_avail);
2516
2517        /* Order's important: probe SDIO, then SD, then MMC */
2518        if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2519                if (!mmc_attach_sdio(host))
2520                        return 0;
2521
2522        if (!(host->caps2 & MMC_CAP2_NO_SD))
2523                if (!mmc_attach_sd(host))
2524                        return 0;
2525
2526        if (!(host->caps2 & MMC_CAP2_NO_MMC))
2527                if (!mmc_attach_mmc(host))
2528                        return 0;
2529
2530        mmc_power_off(host);
2531        return -EIO;
2532}
2533
2534int _mmc_detect_card_removed(struct mmc_host *host)
2535{
2536        int ret;
2537
2538        if (!host->card || mmc_card_removed(host->card))
2539                return 1;
2540
2541        ret = host->bus_ops->alive(host);
2542
2543        /*
2544         * Card detect status and alive check may be out of sync if card is
2545         * removed slowly, when card detect switch changes while card/slot
2546         * pads are still contacted in hardware (refer to "SD Card Mechanical
2547         * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2548         * detect work 200ms later for this case.
2549         */
2550        if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2551                mmc_detect_change(host, msecs_to_jiffies(200));
2552                pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2553        }
2554
2555        if (ret) {
2556                mmc_card_set_removed(host->card);
2557                pr_debug("%s: card remove detected\n", mmc_hostname(host));
2558        }
2559
2560        return ret;
2561}
2562
2563int mmc_detect_card_removed(struct mmc_host *host)
2564{
2565        struct mmc_card *card = host->card;
2566        int ret;
2567
2568        WARN_ON(!host->claimed);
2569
2570        if (!card)
2571                return 1;
2572
2573        if (!mmc_card_is_removable(host))
2574                return 0;
2575
2576        ret = mmc_card_removed(card);
2577        /*
2578         * The card will be considered unchanged unless we have been asked to
2579         * detect a change or host requires polling to provide card detection.
2580         */
2581        if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2582                return ret;
2583
2584        host->detect_change = 0;
2585        if (!ret) {
2586                ret = _mmc_detect_card_removed(host);
2587                if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2588                        /*
2589                         * Schedule a detect work as soon as possible to let a
2590                         * rescan handle the card removal.
2591                         */
2592                        cancel_delayed_work(&host->detect);
2593                        _mmc_detect_change(host, 0, false);
2594                }
2595        }
2596
2597        return ret;
2598}
2599EXPORT_SYMBOL(mmc_detect_card_removed);
2600
2601void mmc_rescan(struct work_struct *work)
2602{
2603        struct mmc_host *host =
2604                container_of(work, struct mmc_host, detect.work);
2605        int i;
2606
2607        if (host->rescan_disable)
2608                return;
2609
2610        /* If there is a non-removable card registered, only scan once */
2611        if (!mmc_card_is_removable(host) && host->rescan_entered)
2612                return;
2613        host->rescan_entered = 1;
2614
2615        if (host->trigger_card_event && host->ops->card_event) {
2616                mmc_claim_host(host);
2617                host->ops->card_event(host);
2618                mmc_release_host(host);
2619                host->trigger_card_event = false;
2620        }
2621
2622        mmc_bus_get(host);
2623
2624        /*
2625         * if there is a _removable_ card registered, check whether it is
2626         * still present
2627         */
2628        if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
2629                host->bus_ops->detect(host);
2630
2631        host->detect_change = 0;
2632
2633        /*
2634         * Let mmc_bus_put() free the bus/bus_ops if we've found that
2635         * the card is no longer present.
2636         */
2637        mmc_bus_put(host);
2638        mmc_bus_get(host);
2639
2640        /* if there still is a card present, stop here */
2641        if (host->bus_ops != NULL) {
2642                mmc_bus_put(host);
2643                goto out;
2644        }
2645
2646        /*
2647         * Only we can add a new handler, so it's safe to
2648         * release the lock here.
2649         */
2650        mmc_bus_put(host);
2651
2652        mmc_claim_host(host);
2653        if (mmc_card_is_removable(host) && host->ops->get_cd &&
2654                        host->ops->get_cd(host) == 0) {
2655                mmc_power_off(host);
2656                mmc_release_host(host);
2657                goto out;
2658        }
2659
2660        for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2661                if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2662                        break;
2663                if (freqs[i] <= host->f_min)
2664                        break;
2665        }
2666        mmc_release_host(host);
2667
2668 out:
2669        if (host->caps & MMC_CAP_NEEDS_POLL)
2670                mmc_schedule_delayed_work(&host->detect, HZ);
2671}
2672
2673void mmc_start_host(struct mmc_host *host)
2674{
2675        host->f_init = max(freqs[0], host->f_min);
2676        host->rescan_disable = 0;
2677        host->ios.power_mode = MMC_POWER_UNDEFINED;
2678
2679        if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2680                mmc_claim_host(host);
2681                mmc_power_up(host, host->ocr_avail);
2682                mmc_release_host(host);
2683        }
2684
2685        mmc_gpiod_request_cd_irq(host);
2686        _mmc_detect_change(host, 0, false);
2687}
2688
2689void mmc_stop_host(struct mmc_host *host)
2690{
2691        if (host->slot.cd_irq >= 0) {
2692                mmc_gpio_set_cd_wake(host, false);
2693                disable_irq(host->slot.cd_irq);
2694        }
2695
2696        host->rescan_disable = 1;
2697        cancel_delayed_work_sync(&host->detect);
2698
2699        /* clear pm flags now and let card drivers set them as needed */
2700        host->pm_flags = 0;
2701
2702        mmc_bus_get(host);
2703        if (host->bus_ops && !host->bus_dead) {
2704                /* Calling bus_ops->remove() with a claimed host can deadlock */
2705                host->bus_ops->remove(host);
2706                mmc_claim_host(host);
2707                mmc_detach_bus(host);
2708                mmc_power_off(host);
2709                mmc_release_host(host);
2710                mmc_bus_put(host);
2711                return;
2712        }
2713        mmc_bus_put(host);
2714
2715        mmc_claim_host(host);
2716        mmc_power_off(host);
2717        mmc_release_host(host);
2718}
2719
2720int mmc_power_save_host(struct mmc_host *host)
2721{
2722        int ret = 0;
2723
2724        pr_debug("%s: %s: powering down\n", mmc_hostname(host), __func__);
2725
2726        mmc_bus_get(host);
2727
2728        if (!host->bus_ops || host->bus_dead) {
2729                mmc_bus_put(host);
2730                return -EINVAL;
2731        }
2732
2733        if (host->bus_ops->power_save)
2734                ret = host->bus_ops->power_save(host);
2735
2736        mmc_bus_put(host);
2737
2738        mmc_power_off(host);
2739
2740        return ret;
2741}
2742EXPORT_SYMBOL(mmc_power_save_host);
2743
2744int mmc_power_restore_host(struct mmc_host *host)
2745{
2746        int ret;
2747
2748        pr_debug("%s: %s: powering up\n", mmc_hostname(host), __func__);
2749
2750        mmc_bus_get(host);
2751
2752        if (!host->bus_ops || host->bus_dead) {
2753                mmc_bus_put(host);
2754                return -EINVAL;
2755        }
2756
2757        mmc_power_up(host, host->card->ocr);
2758        ret = host->bus_ops->power_restore(host);
2759
2760        mmc_bus_put(host);
2761
2762        return ret;
2763}
2764EXPORT_SYMBOL(mmc_power_restore_host);
2765
2766#ifdef CONFIG_PM_SLEEP
2767/* Do the card removal on suspend if card is assumed removeable
2768 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2769   to sync the card.
2770*/
2771static int mmc_pm_notify(struct notifier_block *notify_block,
2772                        unsigned long mode, void *unused)
2773{
2774        struct mmc_host *host = container_of(
2775                notify_block, struct mmc_host, pm_notify);
2776        unsigned long flags;
2777        int err = 0;
2778
2779        switch (mode) {
2780        case PM_HIBERNATION_PREPARE:
2781        case PM_SUSPEND_PREPARE:
2782        case PM_RESTORE_PREPARE:
2783                spin_lock_irqsave(&host->lock, flags);
2784                host->rescan_disable = 1;
2785                spin_unlock_irqrestore(&host->lock, flags);
2786                cancel_delayed_work_sync(&host->detect);
2787
2788                if (!host->bus_ops)
2789                        break;
2790
2791                /* Validate prerequisites for suspend */
2792                if (host->bus_ops->pre_suspend)
2793                        err = host->bus_ops->pre_suspend(host);
2794                if (!err)
2795                        break;
2796
2797                if (!mmc_card_is_removable(host)) {
2798                        dev_warn(mmc_dev(host),
2799                                 "pre_suspend failed for non-removable host: "
2800                                 "%d\n", err);
2801                        /* Avoid removing non-removable hosts */
2802                        break;
2803                }
2804
2805                /* Calling bus_ops->remove() with a claimed host can deadlock */
2806                host->bus_ops->remove(host);
2807                mmc_claim_host(host);
2808                mmc_detach_bus(host);
2809                mmc_power_off(host);
2810                mmc_release_host(host);
2811                host->pm_flags = 0;
2812                break;
2813
2814        case PM_POST_SUSPEND:
2815        case PM_POST_HIBERNATION:
2816        case PM_POST_RESTORE:
2817
2818                spin_lock_irqsave(&host->lock, flags);
2819                host->rescan_disable = 0;
2820                spin_unlock_irqrestore(&host->lock, flags);
2821                _mmc_detect_change(host, 0, false);
2822
2823        }
2824
2825        return 0;
2826}
2827
2828void mmc_register_pm_notifier(struct mmc_host *host)
2829{
2830        host->pm_notify.notifier_call = mmc_pm_notify;
2831        register_pm_notifier(&host->pm_notify);
2832}
2833
2834void mmc_unregister_pm_notifier(struct mmc_host *host)
2835{
2836        unregister_pm_notifier(&host->pm_notify);
2837}
2838#endif
2839
2840static int __init mmc_init(void)
2841{
2842        int ret;
2843
2844        ret = mmc_register_bus();
2845        if (ret)
2846                return ret;
2847
2848        ret = mmc_register_host_class();
2849        if (ret)
2850                goto unregister_bus;
2851
2852        ret = sdio_register_bus();
2853        if (ret)
2854                goto unregister_host_class;
2855
2856        return 0;
2857
2858unregister_host_class:
2859        mmc_unregister_host_class();
2860unregister_bus:
2861        mmc_unregister_bus();
2862        return ret;
2863}
2864
2865static void __exit mmc_exit(void)
2866{
2867        sdio_unregister_bus();
2868        mmc_unregister_host_class();
2869        mmc_unregister_bus();
2870}
2871
2872subsys_initcall(mmc_init);
2873module_exit(mmc_exit);
2874
2875MODULE_LICENSE("GPL");
2876