linux/drivers/net/ethernet/broadcom/genet/bcmgenet.c
<<
>>
Prefs
   1/*
   2 * Broadcom GENET (Gigabit Ethernet) controller driver
   3 *
   4 * Copyright (c) 2014-2017 Broadcom
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11#define pr_fmt(fmt)                             "bcmgenet: " fmt
  12
  13#include <linux/kernel.h>
  14#include <linux/module.h>
  15#include <linux/sched.h>
  16#include <linux/types.h>
  17#include <linux/fcntl.h>
  18#include <linux/interrupt.h>
  19#include <linux/string.h>
  20#include <linux/if_ether.h>
  21#include <linux/init.h>
  22#include <linux/errno.h>
  23#include <linux/delay.h>
  24#include <linux/platform_device.h>
  25#include <linux/dma-mapping.h>
  26#include <linux/pm.h>
  27#include <linux/clk.h>
  28#include <linux/of.h>
  29#include <linux/of_address.h>
  30#include <linux/of_irq.h>
  31#include <linux/of_net.h>
  32#include <linux/of_platform.h>
  33#include <net/arp.h>
  34
  35#include <linux/mii.h>
  36#include <linux/ethtool.h>
  37#include <linux/netdevice.h>
  38#include <linux/inetdevice.h>
  39#include <linux/etherdevice.h>
  40#include <linux/skbuff.h>
  41#include <linux/in.h>
  42#include <linux/ip.h>
  43#include <linux/ipv6.h>
  44#include <linux/phy.h>
  45#include <linux/platform_data/bcmgenet.h>
  46
  47#include <asm/unaligned.h>
  48
  49#include "bcmgenet.h"
  50
  51/* Maximum number of hardware queues, downsized if needed */
  52#define GENET_MAX_MQ_CNT        4
  53
  54/* Default highest priority queue for multi queue support */
  55#define GENET_Q0_PRIORITY       0
  56
  57#define GENET_Q16_RX_BD_CNT     \
  58        (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
  59#define GENET_Q16_TX_BD_CNT     \
  60        (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
  61
  62#define RX_BUF_LENGTH           2048
  63#define SKB_ALIGNMENT           32
  64
  65/* Tx/Rx DMA register offset, skip 256 descriptors */
  66#define WORDS_PER_BD(p)         (p->hw_params->words_per_bd)
  67#define DMA_DESC_SIZE           (WORDS_PER_BD(priv) * sizeof(u32))
  68
  69#define GENET_TDMA_REG_OFF      (priv->hw_params->tdma_offset + \
  70                                TOTAL_DESC * DMA_DESC_SIZE)
  71
  72#define GENET_RDMA_REG_OFF      (priv->hw_params->rdma_offset + \
  73                                TOTAL_DESC * DMA_DESC_SIZE)
  74
  75static inline void bcmgenet_writel(u32 value, void __iomem *offset)
  76{
  77        /* MIPS chips strapped for BE will automagically configure the
  78         * peripheral registers for CPU-native byte order.
  79         */
  80        if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
  81                __raw_writel(value, offset);
  82        else
  83                writel_relaxed(value, offset);
  84}
  85
  86static inline u32 bcmgenet_readl(void __iomem *offset)
  87{
  88        if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
  89                return __raw_readl(offset);
  90        else
  91                return readl_relaxed(offset);
  92}
  93
  94static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
  95                                             void __iomem *d, u32 value)
  96{
  97        bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
  98}
  99
 100static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
 101                                            void __iomem *d)
 102{
 103        return bcmgenet_readl(d + DMA_DESC_LENGTH_STATUS);
 104}
 105
 106static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
 107                                    void __iomem *d,
 108                                    dma_addr_t addr)
 109{
 110        bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
 111
 112        /* Register writes to GISB bus can take couple hundred nanoseconds
 113         * and are done for each packet, save these expensive writes unless
 114         * the platform is explicitly configured for 64-bits/LPAE.
 115         */
 116#ifdef CONFIG_PHYS_ADDR_T_64BIT
 117        if (priv->hw_params->flags & GENET_HAS_40BITS)
 118                bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
 119#endif
 120}
 121
 122/* Combined address + length/status setter */
 123static inline void dmadesc_set(struct bcmgenet_priv *priv,
 124                               void __iomem *d, dma_addr_t addr, u32 val)
 125{
 126        dmadesc_set_addr(priv, d, addr);
 127        dmadesc_set_length_status(priv, d, val);
 128}
 129
 130static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
 131                                          void __iomem *d)
 132{
 133        dma_addr_t addr;
 134
 135        addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
 136
 137        /* Register writes to GISB bus can take couple hundred nanoseconds
 138         * and are done for each packet, save these expensive writes unless
 139         * the platform is explicitly configured for 64-bits/LPAE.
 140         */
 141#ifdef CONFIG_PHYS_ADDR_T_64BIT
 142        if (priv->hw_params->flags & GENET_HAS_40BITS)
 143                addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
 144#endif
 145        return addr;
 146}
 147
 148#define GENET_VER_FMT   "%1d.%1d EPHY: 0x%04x"
 149
 150#define GENET_MSG_DEFAULT       (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
 151                                NETIF_MSG_LINK)
 152
 153static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
 154{
 155        if (GENET_IS_V1(priv))
 156                return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
 157        else
 158                return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
 159}
 160
 161static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
 162{
 163        if (GENET_IS_V1(priv))
 164                bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
 165        else
 166                bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
 167}
 168
 169/* These macros are defined to deal with register map change
 170 * between GENET1.1 and GENET2. Only those currently being used
 171 * by driver are defined.
 172 */
 173static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
 174{
 175        if (GENET_IS_V1(priv))
 176                return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
 177        else
 178                return bcmgenet_readl(priv->base +
 179                                      priv->hw_params->tbuf_offset + TBUF_CTRL);
 180}
 181
 182static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
 183{
 184        if (GENET_IS_V1(priv))
 185                bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
 186        else
 187                bcmgenet_writel(val, priv->base +
 188                                priv->hw_params->tbuf_offset + TBUF_CTRL);
 189}
 190
 191static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
 192{
 193        if (GENET_IS_V1(priv))
 194                return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
 195        else
 196                return bcmgenet_readl(priv->base +
 197                                      priv->hw_params->tbuf_offset + TBUF_BP_MC);
 198}
 199
 200static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
 201{
 202        if (GENET_IS_V1(priv))
 203                bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
 204        else
 205                bcmgenet_writel(val, priv->base +
 206                                priv->hw_params->tbuf_offset + TBUF_BP_MC);
 207}
 208
 209/* RX/TX DMA register accessors */
 210enum dma_reg {
 211        DMA_RING_CFG = 0,
 212        DMA_CTRL,
 213        DMA_STATUS,
 214        DMA_SCB_BURST_SIZE,
 215        DMA_ARB_CTRL,
 216        DMA_PRIORITY_0,
 217        DMA_PRIORITY_1,
 218        DMA_PRIORITY_2,
 219        DMA_INDEX2RING_0,
 220        DMA_INDEX2RING_1,
 221        DMA_INDEX2RING_2,
 222        DMA_INDEX2RING_3,
 223        DMA_INDEX2RING_4,
 224        DMA_INDEX2RING_5,
 225        DMA_INDEX2RING_6,
 226        DMA_INDEX2RING_7,
 227        DMA_RING0_TIMEOUT,
 228        DMA_RING1_TIMEOUT,
 229        DMA_RING2_TIMEOUT,
 230        DMA_RING3_TIMEOUT,
 231        DMA_RING4_TIMEOUT,
 232        DMA_RING5_TIMEOUT,
 233        DMA_RING6_TIMEOUT,
 234        DMA_RING7_TIMEOUT,
 235        DMA_RING8_TIMEOUT,
 236        DMA_RING9_TIMEOUT,
 237        DMA_RING10_TIMEOUT,
 238        DMA_RING11_TIMEOUT,
 239        DMA_RING12_TIMEOUT,
 240        DMA_RING13_TIMEOUT,
 241        DMA_RING14_TIMEOUT,
 242        DMA_RING15_TIMEOUT,
 243        DMA_RING16_TIMEOUT,
 244};
 245
 246static const u8 bcmgenet_dma_regs_v3plus[] = {
 247        [DMA_RING_CFG]          = 0x00,
 248        [DMA_CTRL]              = 0x04,
 249        [DMA_STATUS]            = 0x08,
 250        [DMA_SCB_BURST_SIZE]    = 0x0C,
 251        [DMA_ARB_CTRL]          = 0x2C,
 252        [DMA_PRIORITY_0]        = 0x30,
 253        [DMA_PRIORITY_1]        = 0x34,
 254        [DMA_PRIORITY_2]        = 0x38,
 255        [DMA_RING0_TIMEOUT]     = 0x2C,
 256        [DMA_RING1_TIMEOUT]     = 0x30,
 257        [DMA_RING2_TIMEOUT]     = 0x34,
 258        [DMA_RING3_TIMEOUT]     = 0x38,
 259        [DMA_RING4_TIMEOUT]     = 0x3c,
 260        [DMA_RING5_TIMEOUT]     = 0x40,
 261        [DMA_RING6_TIMEOUT]     = 0x44,
 262        [DMA_RING7_TIMEOUT]     = 0x48,
 263        [DMA_RING8_TIMEOUT]     = 0x4c,
 264        [DMA_RING9_TIMEOUT]     = 0x50,
 265        [DMA_RING10_TIMEOUT]    = 0x54,
 266        [DMA_RING11_TIMEOUT]    = 0x58,
 267        [DMA_RING12_TIMEOUT]    = 0x5c,
 268        [DMA_RING13_TIMEOUT]    = 0x60,
 269        [DMA_RING14_TIMEOUT]    = 0x64,
 270        [DMA_RING15_TIMEOUT]    = 0x68,
 271        [DMA_RING16_TIMEOUT]    = 0x6C,
 272        [DMA_INDEX2RING_0]      = 0x70,
 273        [DMA_INDEX2RING_1]      = 0x74,
 274        [DMA_INDEX2RING_2]      = 0x78,
 275        [DMA_INDEX2RING_3]      = 0x7C,
 276        [DMA_INDEX2RING_4]      = 0x80,
 277        [DMA_INDEX2RING_5]      = 0x84,
 278        [DMA_INDEX2RING_6]      = 0x88,
 279        [DMA_INDEX2RING_7]      = 0x8C,
 280};
 281
 282static const u8 bcmgenet_dma_regs_v2[] = {
 283        [DMA_RING_CFG]          = 0x00,
 284        [DMA_CTRL]              = 0x04,
 285        [DMA_STATUS]            = 0x08,
 286        [DMA_SCB_BURST_SIZE]    = 0x0C,
 287        [DMA_ARB_CTRL]          = 0x30,
 288        [DMA_PRIORITY_0]        = 0x34,
 289        [DMA_PRIORITY_1]        = 0x38,
 290        [DMA_PRIORITY_2]        = 0x3C,
 291        [DMA_RING0_TIMEOUT]     = 0x2C,
 292        [DMA_RING1_TIMEOUT]     = 0x30,
 293        [DMA_RING2_TIMEOUT]     = 0x34,
 294        [DMA_RING3_TIMEOUT]     = 0x38,
 295        [DMA_RING4_TIMEOUT]     = 0x3c,
 296        [DMA_RING5_TIMEOUT]     = 0x40,
 297        [DMA_RING6_TIMEOUT]     = 0x44,
 298        [DMA_RING7_TIMEOUT]     = 0x48,
 299        [DMA_RING8_TIMEOUT]     = 0x4c,
 300        [DMA_RING9_TIMEOUT]     = 0x50,
 301        [DMA_RING10_TIMEOUT]    = 0x54,
 302        [DMA_RING11_TIMEOUT]    = 0x58,
 303        [DMA_RING12_TIMEOUT]    = 0x5c,
 304        [DMA_RING13_TIMEOUT]    = 0x60,
 305        [DMA_RING14_TIMEOUT]    = 0x64,
 306        [DMA_RING15_TIMEOUT]    = 0x68,
 307        [DMA_RING16_TIMEOUT]    = 0x6C,
 308};
 309
 310static const u8 bcmgenet_dma_regs_v1[] = {
 311        [DMA_CTRL]              = 0x00,
 312        [DMA_STATUS]            = 0x04,
 313        [DMA_SCB_BURST_SIZE]    = 0x0C,
 314        [DMA_ARB_CTRL]          = 0x30,
 315        [DMA_PRIORITY_0]        = 0x34,
 316        [DMA_PRIORITY_1]        = 0x38,
 317        [DMA_PRIORITY_2]        = 0x3C,
 318        [DMA_RING0_TIMEOUT]     = 0x2C,
 319        [DMA_RING1_TIMEOUT]     = 0x30,
 320        [DMA_RING2_TIMEOUT]     = 0x34,
 321        [DMA_RING3_TIMEOUT]     = 0x38,
 322        [DMA_RING4_TIMEOUT]     = 0x3c,
 323        [DMA_RING5_TIMEOUT]     = 0x40,
 324        [DMA_RING6_TIMEOUT]     = 0x44,
 325        [DMA_RING7_TIMEOUT]     = 0x48,
 326        [DMA_RING8_TIMEOUT]     = 0x4c,
 327        [DMA_RING9_TIMEOUT]     = 0x50,
 328        [DMA_RING10_TIMEOUT]    = 0x54,
 329        [DMA_RING11_TIMEOUT]    = 0x58,
 330        [DMA_RING12_TIMEOUT]    = 0x5c,
 331        [DMA_RING13_TIMEOUT]    = 0x60,
 332        [DMA_RING14_TIMEOUT]    = 0x64,
 333        [DMA_RING15_TIMEOUT]    = 0x68,
 334        [DMA_RING16_TIMEOUT]    = 0x6C,
 335};
 336
 337/* Set at runtime once bcmgenet version is known */
 338static const u8 *bcmgenet_dma_regs;
 339
 340static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
 341{
 342        return netdev_priv(dev_get_drvdata(dev));
 343}
 344
 345static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
 346                                      enum dma_reg r)
 347{
 348        return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
 349                              DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
 350}
 351
 352static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
 353                                        u32 val, enum dma_reg r)
 354{
 355        bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
 356                        DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
 357}
 358
 359static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
 360                                      enum dma_reg r)
 361{
 362        return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
 363                              DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
 364}
 365
 366static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
 367                                        u32 val, enum dma_reg r)
 368{
 369        bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
 370                        DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
 371}
 372
 373/* RDMA/TDMA ring registers and accessors
 374 * we merge the common fields and just prefix with T/D the registers
 375 * having different meaning depending on the direction
 376 */
 377enum dma_ring_reg {
 378        TDMA_READ_PTR = 0,
 379        RDMA_WRITE_PTR = TDMA_READ_PTR,
 380        TDMA_READ_PTR_HI,
 381        RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
 382        TDMA_CONS_INDEX,
 383        RDMA_PROD_INDEX = TDMA_CONS_INDEX,
 384        TDMA_PROD_INDEX,
 385        RDMA_CONS_INDEX = TDMA_PROD_INDEX,
 386        DMA_RING_BUF_SIZE,
 387        DMA_START_ADDR,
 388        DMA_START_ADDR_HI,
 389        DMA_END_ADDR,
 390        DMA_END_ADDR_HI,
 391        DMA_MBUF_DONE_THRESH,
 392        TDMA_FLOW_PERIOD,
 393        RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
 394        TDMA_WRITE_PTR,
 395        RDMA_READ_PTR = TDMA_WRITE_PTR,
 396        TDMA_WRITE_PTR_HI,
 397        RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
 398};
 399
 400/* GENET v4 supports 40-bits pointer addressing
 401 * for obvious reasons the LO and HI word parts
 402 * are contiguous, but this offsets the other
 403 * registers.
 404 */
 405static const u8 genet_dma_ring_regs_v4[] = {
 406        [TDMA_READ_PTR]                 = 0x00,
 407        [TDMA_READ_PTR_HI]              = 0x04,
 408        [TDMA_CONS_INDEX]               = 0x08,
 409        [TDMA_PROD_INDEX]               = 0x0C,
 410        [DMA_RING_BUF_SIZE]             = 0x10,
 411        [DMA_START_ADDR]                = 0x14,
 412        [DMA_START_ADDR_HI]             = 0x18,
 413        [DMA_END_ADDR]                  = 0x1C,
 414        [DMA_END_ADDR_HI]               = 0x20,
 415        [DMA_MBUF_DONE_THRESH]          = 0x24,
 416        [TDMA_FLOW_PERIOD]              = 0x28,
 417        [TDMA_WRITE_PTR]                = 0x2C,
 418        [TDMA_WRITE_PTR_HI]             = 0x30,
 419};
 420
 421static const u8 genet_dma_ring_regs_v123[] = {
 422        [TDMA_READ_PTR]                 = 0x00,
 423        [TDMA_CONS_INDEX]               = 0x04,
 424        [TDMA_PROD_INDEX]               = 0x08,
 425        [DMA_RING_BUF_SIZE]             = 0x0C,
 426        [DMA_START_ADDR]                = 0x10,
 427        [DMA_END_ADDR]                  = 0x14,
 428        [DMA_MBUF_DONE_THRESH]          = 0x18,
 429        [TDMA_FLOW_PERIOD]              = 0x1C,
 430        [TDMA_WRITE_PTR]                = 0x20,
 431};
 432
 433/* Set at runtime once GENET version is known */
 434static const u8 *genet_dma_ring_regs;
 435
 436static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
 437                                           unsigned int ring,
 438                                           enum dma_ring_reg r)
 439{
 440        return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
 441                              (DMA_RING_SIZE * ring) +
 442                              genet_dma_ring_regs[r]);
 443}
 444
 445static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
 446                                             unsigned int ring, u32 val,
 447                                             enum dma_ring_reg r)
 448{
 449        bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
 450                        (DMA_RING_SIZE * ring) +
 451                        genet_dma_ring_regs[r]);
 452}
 453
 454static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
 455                                           unsigned int ring,
 456                                           enum dma_ring_reg r)
 457{
 458        return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
 459                              (DMA_RING_SIZE * ring) +
 460                              genet_dma_ring_regs[r]);
 461}
 462
 463static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
 464                                             unsigned int ring, u32 val,
 465                                             enum dma_ring_reg r)
 466{
 467        bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
 468                        (DMA_RING_SIZE * ring) +
 469                        genet_dma_ring_regs[r]);
 470}
 471
 472static int bcmgenet_begin(struct net_device *dev)
 473{
 474        struct bcmgenet_priv *priv = netdev_priv(dev);
 475
 476        /* Turn on the clock */
 477        return clk_prepare_enable(priv->clk);
 478}
 479
 480static void bcmgenet_complete(struct net_device *dev)
 481{
 482        struct bcmgenet_priv *priv = netdev_priv(dev);
 483
 484        /* Turn off the clock */
 485        clk_disable_unprepare(priv->clk);
 486}
 487
 488static int bcmgenet_get_link_ksettings(struct net_device *dev,
 489                                       struct ethtool_link_ksettings *cmd)
 490{
 491        if (!netif_running(dev))
 492                return -EINVAL;
 493
 494        if (!dev->phydev)
 495                return -ENODEV;
 496
 497        phy_ethtool_ksettings_get(dev->phydev, cmd);
 498
 499        return 0;
 500}
 501
 502static int bcmgenet_set_link_ksettings(struct net_device *dev,
 503                                       const struct ethtool_link_ksettings *cmd)
 504{
 505        if (!netif_running(dev))
 506                return -EINVAL;
 507
 508        if (!dev->phydev)
 509                return -ENODEV;
 510
 511        return phy_ethtool_ksettings_set(dev->phydev, cmd);
 512}
 513
 514static int bcmgenet_set_rx_csum(struct net_device *dev,
 515                                netdev_features_t wanted)
 516{
 517        struct bcmgenet_priv *priv = netdev_priv(dev);
 518        u32 rbuf_chk_ctrl;
 519        bool rx_csum_en;
 520
 521        rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
 522
 523        rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
 524
 525        /* enable rx checksumming */
 526        if (rx_csum_en)
 527                rbuf_chk_ctrl |= RBUF_RXCHK_EN;
 528        else
 529                rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
 530        priv->desc_rxchk_en = rx_csum_en;
 531
 532        /* If UniMAC forwards CRC, we need to skip over it to get
 533         * a valid CHK bit to be set in the per-packet status word
 534        */
 535        if (rx_csum_en && priv->crc_fwd_en)
 536                rbuf_chk_ctrl |= RBUF_SKIP_FCS;
 537        else
 538                rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
 539
 540        bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
 541
 542        return 0;
 543}
 544
 545static int bcmgenet_set_tx_csum(struct net_device *dev,
 546                                netdev_features_t wanted)
 547{
 548        struct bcmgenet_priv *priv = netdev_priv(dev);
 549        bool desc_64b_en;
 550        u32 tbuf_ctrl, rbuf_ctrl;
 551
 552        tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
 553        rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
 554
 555        desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
 556
 557        /* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
 558        if (desc_64b_en) {
 559                tbuf_ctrl |= RBUF_64B_EN;
 560                rbuf_ctrl |= RBUF_64B_EN;
 561        } else {
 562                tbuf_ctrl &= ~RBUF_64B_EN;
 563                rbuf_ctrl &= ~RBUF_64B_EN;
 564        }
 565        priv->desc_64b_en = desc_64b_en;
 566
 567        bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
 568        bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
 569
 570        return 0;
 571}
 572
 573static int bcmgenet_set_features(struct net_device *dev,
 574                                 netdev_features_t features)
 575{
 576        netdev_features_t changed = features ^ dev->features;
 577        netdev_features_t wanted = dev->wanted_features;
 578        int ret = 0;
 579
 580        if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
 581                ret = bcmgenet_set_tx_csum(dev, wanted);
 582        if (changed & (NETIF_F_RXCSUM))
 583                ret = bcmgenet_set_rx_csum(dev, wanted);
 584
 585        return ret;
 586}
 587
 588static u32 bcmgenet_get_msglevel(struct net_device *dev)
 589{
 590        struct bcmgenet_priv *priv = netdev_priv(dev);
 591
 592        return priv->msg_enable;
 593}
 594
 595static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
 596{
 597        struct bcmgenet_priv *priv = netdev_priv(dev);
 598
 599        priv->msg_enable = level;
 600}
 601
 602static int bcmgenet_get_coalesce(struct net_device *dev,
 603                                 struct ethtool_coalesce *ec)
 604{
 605        struct bcmgenet_priv *priv = netdev_priv(dev);
 606        struct bcmgenet_rx_ring *ring;
 607        unsigned int i;
 608
 609        ec->tx_max_coalesced_frames =
 610                bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
 611                                         DMA_MBUF_DONE_THRESH);
 612        ec->rx_max_coalesced_frames =
 613                bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
 614                                         DMA_MBUF_DONE_THRESH);
 615        ec->rx_coalesce_usecs =
 616                bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
 617
 618        for (i = 0; i < priv->hw_params->rx_queues; i++) {
 619                ring = &priv->rx_rings[i];
 620                ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
 621        }
 622        ring = &priv->rx_rings[DESC_INDEX];
 623        ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
 624
 625        return 0;
 626}
 627
 628static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
 629                                     u32 usecs, u32 pkts)
 630{
 631        struct bcmgenet_priv *priv = ring->priv;
 632        unsigned int i = ring->index;
 633        u32 reg;
 634
 635        bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
 636
 637        reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
 638        reg &= ~DMA_TIMEOUT_MASK;
 639        reg |= DIV_ROUND_UP(usecs * 1000, 8192);
 640        bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
 641}
 642
 643static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
 644                                          struct ethtool_coalesce *ec)
 645{
 646        struct dim_cq_moder moder;
 647        u32 usecs, pkts;
 648
 649        ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
 650        ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
 651        usecs = ring->rx_coalesce_usecs;
 652        pkts = ring->rx_max_coalesced_frames;
 653
 654        if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
 655                moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
 656                usecs = moder.usec;
 657                pkts = moder.pkts;
 658        }
 659
 660        ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
 661        bcmgenet_set_rx_coalesce(ring, usecs, pkts);
 662}
 663
 664static int bcmgenet_set_coalesce(struct net_device *dev,
 665                                 struct ethtool_coalesce *ec)
 666{
 667        struct bcmgenet_priv *priv = netdev_priv(dev);
 668        unsigned int i;
 669
 670        /* Base system clock is 125Mhz, DMA timeout is this reference clock
 671         * divided by 1024, which yields roughly 8.192us, our maximum value
 672         * has to fit in the DMA_TIMEOUT_MASK (16 bits)
 673         */
 674        if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
 675            ec->tx_max_coalesced_frames == 0 ||
 676            ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
 677            ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
 678                return -EINVAL;
 679
 680        if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
 681                return -EINVAL;
 682
 683        /* GENET TDMA hardware does not support a configurable timeout, but will
 684         * always generate an interrupt either after MBDONE packets have been
 685         * transmitted, or when the ring is empty.
 686         */
 687        if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
 688            ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low ||
 689            ec->use_adaptive_tx_coalesce)
 690                return -EOPNOTSUPP;
 691
 692        /* Program all TX queues with the same values, as there is no
 693         * ethtool knob to do coalescing on a per-queue basis
 694         */
 695        for (i = 0; i < priv->hw_params->tx_queues; i++)
 696                bcmgenet_tdma_ring_writel(priv, i,
 697                                          ec->tx_max_coalesced_frames,
 698                                          DMA_MBUF_DONE_THRESH);
 699        bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
 700                                  ec->tx_max_coalesced_frames,
 701                                  DMA_MBUF_DONE_THRESH);
 702
 703        for (i = 0; i < priv->hw_params->rx_queues; i++)
 704                bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
 705        bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
 706
 707        return 0;
 708}
 709
 710/* standard ethtool support functions. */
 711enum bcmgenet_stat_type {
 712        BCMGENET_STAT_NETDEV = -1,
 713        BCMGENET_STAT_MIB_RX,
 714        BCMGENET_STAT_MIB_TX,
 715        BCMGENET_STAT_RUNT,
 716        BCMGENET_STAT_MISC,
 717        BCMGENET_STAT_SOFT,
 718};
 719
 720struct bcmgenet_stats {
 721        char stat_string[ETH_GSTRING_LEN];
 722        int stat_sizeof;
 723        int stat_offset;
 724        enum bcmgenet_stat_type type;
 725        /* reg offset from UMAC base for misc counters */
 726        u16 reg_offset;
 727};
 728
 729#define STAT_NETDEV(m) { \
 730        .stat_string = __stringify(m), \
 731        .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
 732        .stat_offset = offsetof(struct net_device_stats, m), \
 733        .type = BCMGENET_STAT_NETDEV, \
 734}
 735
 736#define STAT_GENET_MIB(str, m, _type) { \
 737        .stat_string = str, \
 738        .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
 739        .stat_offset = offsetof(struct bcmgenet_priv, m), \
 740        .type = _type, \
 741}
 742
 743#define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
 744#define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
 745#define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
 746#define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
 747
 748#define STAT_GENET_MISC(str, m, offset) { \
 749        .stat_string = str, \
 750        .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
 751        .stat_offset = offsetof(struct bcmgenet_priv, m), \
 752        .type = BCMGENET_STAT_MISC, \
 753        .reg_offset = offset, \
 754}
 755
 756#define STAT_GENET_Q(num) \
 757        STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
 758                        tx_rings[num].packets), \
 759        STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
 760                        tx_rings[num].bytes), \
 761        STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
 762                        rx_rings[num].bytes),    \
 763        STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
 764                        rx_rings[num].packets), \
 765        STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
 766                        rx_rings[num].errors), \
 767        STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
 768                        rx_rings[num].dropped)
 769
 770/* There is a 0xC gap between the end of RX and beginning of TX stats and then
 771 * between the end of TX stats and the beginning of the RX RUNT
 772 */
 773#define BCMGENET_STAT_OFFSET    0xc
 774
 775/* Hardware counters must be kept in sync because the order/offset
 776 * is important here (order in structure declaration = order in hardware)
 777 */
 778static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
 779        /* general stats */
 780        STAT_NETDEV(rx_packets),
 781        STAT_NETDEV(tx_packets),
 782        STAT_NETDEV(rx_bytes),
 783        STAT_NETDEV(tx_bytes),
 784        STAT_NETDEV(rx_errors),
 785        STAT_NETDEV(tx_errors),
 786        STAT_NETDEV(rx_dropped),
 787        STAT_NETDEV(tx_dropped),
 788        STAT_NETDEV(multicast),
 789        /* UniMAC RSV counters */
 790        STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
 791        STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
 792        STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
 793        STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
 794        STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
 795        STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
 796        STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
 797        STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
 798        STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
 799        STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
 800        STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
 801        STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
 802        STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
 803        STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
 804        STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
 805        STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
 806        STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
 807        STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
 808        STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
 809        STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
 810        STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
 811        STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
 812        STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
 813        STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
 814        STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
 815        STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
 816        STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
 817        STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
 818        STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
 819        /* UniMAC TSV counters */
 820        STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
 821        STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
 822        STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
 823        STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
 824        STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
 825        STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
 826        STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
 827        STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
 828        STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
 829        STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
 830        STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
 831        STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
 832        STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
 833        STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
 834        STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
 835        STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
 836        STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
 837        STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
 838        STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
 839        STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
 840        STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
 841        STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
 842        STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
 843        STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
 844        STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
 845        STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
 846        STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
 847        STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
 848        STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
 849        /* UniMAC RUNT counters */
 850        STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
 851        STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
 852        STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
 853        STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
 854        /* Misc UniMAC counters */
 855        STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
 856                        UMAC_RBUF_OVFL_CNT_V1),
 857        STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
 858                        UMAC_RBUF_ERR_CNT_V1),
 859        STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
 860        STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
 861        STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
 862        STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
 863        /* Per TX queues */
 864        STAT_GENET_Q(0),
 865        STAT_GENET_Q(1),
 866        STAT_GENET_Q(2),
 867        STAT_GENET_Q(3),
 868        STAT_GENET_Q(16),
 869};
 870
 871#define BCMGENET_STATS_LEN      ARRAY_SIZE(bcmgenet_gstrings_stats)
 872
 873static void bcmgenet_get_drvinfo(struct net_device *dev,
 874                                 struct ethtool_drvinfo *info)
 875{
 876        strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
 877}
 878
 879static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
 880{
 881        switch (string_set) {
 882        case ETH_SS_STATS:
 883                return BCMGENET_STATS_LEN;
 884        default:
 885                return -EOPNOTSUPP;
 886        }
 887}
 888
 889static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
 890                                 u8 *data)
 891{
 892        int i;
 893
 894        switch (stringset) {
 895        case ETH_SS_STATS:
 896                for (i = 0; i < BCMGENET_STATS_LEN; i++) {
 897                        memcpy(data + i * ETH_GSTRING_LEN,
 898                               bcmgenet_gstrings_stats[i].stat_string,
 899                               ETH_GSTRING_LEN);
 900                }
 901                break;
 902        }
 903}
 904
 905static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
 906{
 907        u16 new_offset;
 908        u32 val;
 909
 910        switch (offset) {
 911        case UMAC_RBUF_OVFL_CNT_V1:
 912                if (GENET_IS_V2(priv))
 913                        new_offset = RBUF_OVFL_CNT_V2;
 914                else
 915                        new_offset = RBUF_OVFL_CNT_V3PLUS;
 916
 917                val = bcmgenet_rbuf_readl(priv, new_offset);
 918                /* clear if overflowed */
 919                if (val == ~0)
 920                        bcmgenet_rbuf_writel(priv, 0, new_offset);
 921                break;
 922        case UMAC_RBUF_ERR_CNT_V1:
 923                if (GENET_IS_V2(priv))
 924                        new_offset = RBUF_ERR_CNT_V2;
 925                else
 926                        new_offset = RBUF_ERR_CNT_V3PLUS;
 927
 928                val = bcmgenet_rbuf_readl(priv, new_offset);
 929                /* clear if overflowed */
 930                if (val == ~0)
 931                        bcmgenet_rbuf_writel(priv, 0, new_offset);
 932                break;
 933        default:
 934                val = bcmgenet_umac_readl(priv, offset);
 935                /* clear if overflowed */
 936                if (val == ~0)
 937                        bcmgenet_umac_writel(priv, 0, offset);
 938                break;
 939        }
 940
 941        return val;
 942}
 943
 944static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
 945{
 946        int i, j = 0;
 947
 948        for (i = 0; i < BCMGENET_STATS_LEN; i++) {
 949                const struct bcmgenet_stats *s;
 950                u8 offset = 0;
 951                u32 val = 0;
 952                char *p;
 953
 954                s = &bcmgenet_gstrings_stats[i];
 955                switch (s->type) {
 956                case BCMGENET_STAT_NETDEV:
 957                case BCMGENET_STAT_SOFT:
 958                        continue;
 959                case BCMGENET_STAT_RUNT:
 960                        offset += BCMGENET_STAT_OFFSET;
 961                        /* fall through */
 962                case BCMGENET_STAT_MIB_TX:
 963                        offset += BCMGENET_STAT_OFFSET;
 964                        /* fall through */
 965                case BCMGENET_STAT_MIB_RX:
 966                        val = bcmgenet_umac_readl(priv,
 967                                                  UMAC_MIB_START + j + offset);
 968                        offset = 0;     /* Reset Offset */
 969                        break;
 970                case BCMGENET_STAT_MISC:
 971                        if (GENET_IS_V1(priv)) {
 972                                val = bcmgenet_umac_readl(priv, s->reg_offset);
 973                                /* clear if overflowed */
 974                                if (val == ~0)
 975                                        bcmgenet_umac_writel(priv, 0,
 976                                                             s->reg_offset);
 977                        } else {
 978                                val = bcmgenet_update_stat_misc(priv,
 979                                                                s->reg_offset);
 980                        }
 981                        break;
 982                }
 983
 984                j += s->stat_sizeof;
 985                p = (char *)priv + s->stat_offset;
 986                *(u32 *)p = val;
 987        }
 988}
 989
 990static void bcmgenet_get_ethtool_stats(struct net_device *dev,
 991                                       struct ethtool_stats *stats,
 992                                       u64 *data)
 993{
 994        struct bcmgenet_priv *priv = netdev_priv(dev);
 995        int i;
 996
 997        if (netif_running(dev))
 998                bcmgenet_update_mib_counters(priv);
 999
1000        for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1001                const struct bcmgenet_stats *s;
1002                char *p;
1003
1004                s = &bcmgenet_gstrings_stats[i];
1005                if (s->type == BCMGENET_STAT_NETDEV)
1006                        p = (char *)&dev->stats;
1007                else
1008                        p = (char *)priv;
1009                p += s->stat_offset;
1010                if (sizeof(unsigned long) != sizeof(u32) &&
1011                    s->stat_sizeof == sizeof(unsigned long))
1012                        data[i] = *(unsigned long *)p;
1013                else
1014                        data[i] = *(u32 *)p;
1015        }
1016}
1017
1018static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
1019{
1020        struct bcmgenet_priv *priv = netdev_priv(dev);
1021        u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1022        u32 reg;
1023
1024        if (enable && !priv->clk_eee_enabled) {
1025                clk_prepare_enable(priv->clk_eee);
1026                priv->clk_eee_enabled = true;
1027        }
1028
1029        reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1030        if (enable)
1031                reg |= EEE_EN;
1032        else
1033                reg &= ~EEE_EN;
1034        bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1035
1036        /* Enable EEE and switch to a 27Mhz clock automatically */
1037        reg = bcmgenet_readl(priv->base + off);
1038        if (enable)
1039                reg |= TBUF_EEE_EN | TBUF_PM_EN;
1040        else
1041                reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1042        bcmgenet_writel(reg, priv->base + off);
1043
1044        /* Do the same for thing for RBUF */
1045        reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1046        if (enable)
1047                reg |= RBUF_EEE_EN | RBUF_PM_EN;
1048        else
1049                reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1050        bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1051
1052        if (!enable && priv->clk_eee_enabled) {
1053                clk_disable_unprepare(priv->clk_eee);
1054                priv->clk_eee_enabled = false;
1055        }
1056
1057        priv->eee.eee_enabled = enable;
1058        priv->eee.eee_active = enable;
1059}
1060
1061static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1062{
1063        struct bcmgenet_priv *priv = netdev_priv(dev);
1064        struct ethtool_eee *p = &priv->eee;
1065
1066        if (GENET_IS_V1(priv))
1067                return -EOPNOTSUPP;
1068
1069        if (!dev->phydev)
1070                return -ENODEV;
1071
1072        e->eee_enabled = p->eee_enabled;
1073        e->eee_active = p->eee_active;
1074        e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1075
1076        return phy_ethtool_get_eee(dev->phydev, e);
1077}
1078
1079static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1080{
1081        struct bcmgenet_priv *priv = netdev_priv(dev);
1082        struct ethtool_eee *p = &priv->eee;
1083        int ret = 0;
1084
1085        if (GENET_IS_V1(priv))
1086                return -EOPNOTSUPP;
1087
1088        if (!dev->phydev)
1089                return -ENODEV;
1090
1091        p->eee_enabled = e->eee_enabled;
1092
1093        if (!p->eee_enabled) {
1094                bcmgenet_eee_enable_set(dev, false);
1095        } else {
1096                ret = phy_init_eee(dev->phydev, 0);
1097                if (ret) {
1098                        netif_err(priv, hw, dev, "EEE initialization failed\n");
1099                        return ret;
1100                }
1101
1102                bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1103                bcmgenet_eee_enable_set(dev, true);
1104        }
1105
1106        return phy_ethtool_set_eee(dev->phydev, e);
1107}
1108
1109/* standard ethtool support functions. */
1110static const struct ethtool_ops bcmgenet_ethtool_ops = {
1111        .begin                  = bcmgenet_begin,
1112        .complete               = bcmgenet_complete,
1113        .get_strings            = bcmgenet_get_strings,
1114        .get_sset_count         = bcmgenet_get_sset_count,
1115        .get_ethtool_stats      = bcmgenet_get_ethtool_stats,
1116        .get_drvinfo            = bcmgenet_get_drvinfo,
1117        .get_link               = ethtool_op_get_link,
1118        .get_msglevel           = bcmgenet_get_msglevel,
1119        .set_msglevel           = bcmgenet_set_msglevel,
1120        .get_wol                = bcmgenet_get_wol,
1121        .set_wol                = bcmgenet_set_wol,
1122        .get_eee                = bcmgenet_get_eee,
1123        .set_eee                = bcmgenet_set_eee,
1124        .nway_reset             = phy_ethtool_nway_reset,
1125        .get_coalesce           = bcmgenet_get_coalesce,
1126        .set_coalesce           = bcmgenet_set_coalesce,
1127        .get_link_ksettings     = bcmgenet_get_link_ksettings,
1128        .set_link_ksettings     = bcmgenet_set_link_ksettings,
1129};
1130
1131/* Power down the unimac, based on mode. */
1132static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1133                                enum bcmgenet_power_mode mode)
1134{
1135        int ret = 0;
1136        u32 reg;
1137
1138        switch (mode) {
1139        case GENET_POWER_CABLE_SENSE:
1140                phy_detach(priv->dev->phydev);
1141                break;
1142
1143        case GENET_POWER_WOL_MAGIC:
1144                ret = bcmgenet_wol_power_down_cfg(priv, mode);
1145                break;
1146
1147        case GENET_POWER_PASSIVE:
1148                /* Power down LED */
1149                if (priv->hw_params->flags & GENET_HAS_EXT) {
1150                        reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1151                        if (GENET_IS_V5(priv))
1152                                reg |= EXT_PWR_DOWN_PHY_EN |
1153                                       EXT_PWR_DOWN_PHY_RD |
1154                                       EXT_PWR_DOWN_PHY_SD |
1155                                       EXT_PWR_DOWN_PHY_RX |
1156                                       EXT_PWR_DOWN_PHY_TX |
1157                                       EXT_IDDQ_GLBL_PWR;
1158                        else
1159                                reg |= EXT_PWR_DOWN_PHY;
1160
1161                        reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1162                        bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1163
1164                        bcmgenet_phy_power_set(priv->dev, false);
1165                }
1166                break;
1167        default:
1168                break;
1169        }
1170
1171        return 0;
1172}
1173
1174static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1175                              enum bcmgenet_power_mode mode)
1176{
1177        u32 reg;
1178
1179        if (!(priv->hw_params->flags & GENET_HAS_EXT))
1180                return;
1181
1182        reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1183
1184        switch (mode) {
1185        case GENET_POWER_PASSIVE:
1186                reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1187                if (GENET_IS_V5(priv)) {
1188                        reg &= ~(EXT_PWR_DOWN_PHY_EN |
1189                                 EXT_PWR_DOWN_PHY_RD |
1190                                 EXT_PWR_DOWN_PHY_SD |
1191                                 EXT_PWR_DOWN_PHY_RX |
1192                                 EXT_PWR_DOWN_PHY_TX |
1193                                 EXT_IDDQ_GLBL_PWR);
1194                        reg |=   EXT_PHY_RESET;
1195                        bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1196                        mdelay(1);
1197
1198                        reg &=  ~EXT_PHY_RESET;
1199                } else {
1200                        reg &= ~EXT_PWR_DOWN_PHY;
1201                        reg |= EXT_PWR_DN_EN_LD;
1202                }
1203                bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1204                bcmgenet_phy_power_set(priv->dev, true);
1205                break;
1206
1207        case GENET_POWER_CABLE_SENSE:
1208                /* enable APD */
1209                if (!GENET_IS_V5(priv)) {
1210                        reg |= EXT_PWR_DN_EN_LD;
1211                        bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1212                }
1213                break;
1214        case GENET_POWER_WOL_MAGIC:
1215                bcmgenet_wol_power_up_cfg(priv, mode);
1216                return;
1217        default:
1218                break;
1219        }
1220}
1221
1222/* ioctl handle special commands that are not present in ethtool. */
1223static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1224{
1225        if (!netif_running(dev))
1226                return -EINVAL;
1227
1228        if (!dev->phydev)
1229                return -ENODEV;
1230
1231        return phy_mii_ioctl(dev->phydev, rq, cmd);
1232}
1233
1234static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1235                                         struct bcmgenet_tx_ring *ring)
1236{
1237        struct enet_cb *tx_cb_ptr;
1238
1239        tx_cb_ptr = ring->cbs;
1240        tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1241
1242        /* Advancing local write pointer */
1243        if (ring->write_ptr == ring->end_ptr)
1244                ring->write_ptr = ring->cb_ptr;
1245        else
1246                ring->write_ptr++;
1247
1248        return tx_cb_ptr;
1249}
1250
1251static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1252                                         struct bcmgenet_tx_ring *ring)
1253{
1254        struct enet_cb *tx_cb_ptr;
1255
1256        tx_cb_ptr = ring->cbs;
1257        tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1258
1259        /* Rewinding local write pointer */
1260        if (ring->write_ptr == ring->cb_ptr)
1261                ring->write_ptr = ring->end_ptr;
1262        else
1263                ring->write_ptr--;
1264
1265        return tx_cb_ptr;
1266}
1267
1268static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1269{
1270        bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1271                                 INTRL2_CPU_MASK_SET);
1272}
1273
1274static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1275{
1276        bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1277                                 INTRL2_CPU_MASK_CLEAR);
1278}
1279
1280static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1281{
1282        bcmgenet_intrl2_1_writel(ring->priv,
1283                                 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1284                                 INTRL2_CPU_MASK_SET);
1285}
1286
1287static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1288{
1289        bcmgenet_intrl2_1_writel(ring->priv,
1290                                 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1291                                 INTRL2_CPU_MASK_CLEAR);
1292}
1293
1294static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1295{
1296        bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1297                                 INTRL2_CPU_MASK_SET);
1298}
1299
1300static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1301{
1302        bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1303                                 INTRL2_CPU_MASK_CLEAR);
1304}
1305
1306static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1307{
1308        bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1309                                 INTRL2_CPU_MASK_CLEAR);
1310}
1311
1312static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1313{
1314        bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1315                                 INTRL2_CPU_MASK_SET);
1316}
1317
1318/* Simple helper to free a transmit control block's resources
1319 * Returns an skb when the last transmit control block associated with the
1320 * skb is freed.  The skb should be freed by the caller if necessary.
1321 */
1322static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1323                                           struct enet_cb *cb)
1324{
1325        struct sk_buff *skb;
1326
1327        skb = cb->skb;
1328
1329        if (skb) {
1330                cb->skb = NULL;
1331                if (cb == GENET_CB(skb)->first_cb)
1332                        dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1333                                         dma_unmap_len(cb, dma_len),
1334                                         DMA_TO_DEVICE);
1335                else
1336                        dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1337                                       dma_unmap_len(cb, dma_len),
1338                                       DMA_TO_DEVICE);
1339                dma_unmap_addr_set(cb, dma_addr, 0);
1340
1341                if (cb == GENET_CB(skb)->last_cb)
1342                        return skb;
1343
1344        } else if (dma_unmap_addr(cb, dma_addr)) {
1345                dma_unmap_page(dev,
1346                               dma_unmap_addr(cb, dma_addr),
1347                               dma_unmap_len(cb, dma_len),
1348                               DMA_TO_DEVICE);
1349                dma_unmap_addr_set(cb, dma_addr, 0);
1350        }
1351
1352        return NULL;
1353}
1354
1355/* Simple helper to free a receive control block's resources */
1356static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1357                                           struct enet_cb *cb)
1358{
1359        struct sk_buff *skb;
1360
1361        skb = cb->skb;
1362        cb->skb = NULL;
1363
1364        if (dma_unmap_addr(cb, dma_addr)) {
1365                dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1366                                 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1367                dma_unmap_addr_set(cb, dma_addr, 0);
1368        }
1369
1370        return skb;
1371}
1372
1373/* Unlocked version of the reclaim routine */
1374static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1375                                          struct bcmgenet_tx_ring *ring)
1376{
1377        struct bcmgenet_priv *priv = netdev_priv(dev);
1378        unsigned int txbds_processed = 0;
1379        unsigned int bytes_compl = 0;
1380        unsigned int pkts_compl = 0;
1381        unsigned int txbds_ready;
1382        unsigned int c_index;
1383        struct sk_buff *skb;
1384
1385        /* Clear status before servicing to reduce spurious interrupts */
1386        if (ring->index == DESC_INDEX)
1387                bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1388                                         INTRL2_CPU_CLEAR);
1389        else
1390                bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1391                                         INTRL2_CPU_CLEAR);
1392
1393        /* Compute how many buffers are transmitted since last xmit call */
1394        c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1395                & DMA_C_INDEX_MASK;
1396        txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1397
1398        netif_dbg(priv, tx_done, dev,
1399                  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1400                  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1401
1402        /* Reclaim transmitted buffers */
1403        while (txbds_processed < txbds_ready) {
1404                skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1405                                          &priv->tx_cbs[ring->clean_ptr]);
1406                if (skb) {
1407                        pkts_compl++;
1408                        bytes_compl += GENET_CB(skb)->bytes_sent;
1409                        dev_consume_skb_any(skb);
1410                }
1411
1412                txbds_processed++;
1413                if (likely(ring->clean_ptr < ring->end_ptr))
1414                        ring->clean_ptr++;
1415                else
1416                        ring->clean_ptr = ring->cb_ptr;
1417        }
1418
1419        ring->free_bds += txbds_processed;
1420        ring->c_index = c_index;
1421
1422        ring->packets += pkts_compl;
1423        ring->bytes += bytes_compl;
1424
1425        netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1426                                  pkts_compl, bytes_compl);
1427
1428        return txbds_processed;
1429}
1430
1431static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1432                                struct bcmgenet_tx_ring *ring)
1433{
1434        unsigned int released;
1435
1436        spin_lock_bh(&ring->lock);
1437        released = __bcmgenet_tx_reclaim(dev, ring);
1438        spin_unlock_bh(&ring->lock);
1439
1440        return released;
1441}
1442
1443static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1444{
1445        struct bcmgenet_tx_ring *ring =
1446                container_of(napi, struct bcmgenet_tx_ring, napi);
1447        unsigned int work_done = 0;
1448        struct netdev_queue *txq;
1449
1450        spin_lock(&ring->lock);
1451        work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1452        if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1453                txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1454                netif_tx_wake_queue(txq);
1455        }
1456        spin_unlock(&ring->lock);
1457
1458        if (work_done == 0) {
1459                napi_complete(napi);
1460                ring->int_enable(ring);
1461
1462                return 0;
1463        }
1464
1465        return budget;
1466}
1467
1468static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1469{
1470        struct bcmgenet_priv *priv = netdev_priv(dev);
1471        int i;
1472
1473        if (netif_is_multiqueue(dev)) {
1474                for (i = 0; i < priv->hw_params->tx_queues; i++)
1475                        bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1476        }
1477
1478        bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1479}
1480
1481/* Reallocate the SKB to put enough headroom in front of it and insert
1482 * the transmit checksum offsets in the descriptors
1483 */
1484static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1485                                            struct sk_buff *skb)
1486{
1487        struct status_64 *status = NULL;
1488        struct sk_buff *new_skb;
1489        u16 offset;
1490        u8 ip_proto;
1491        __be16 ip_ver;
1492        u32 tx_csum_info;
1493
1494        if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1495                /* If 64 byte status block enabled, must make sure skb has
1496                 * enough headroom for us to insert 64B status block.
1497                 */
1498                new_skb = skb_realloc_headroom(skb, sizeof(*status));
1499                dev_kfree_skb(skb);
1500                if (!new_skb) {
1501                        dev->stats.tx_dropped++;
1502                        return NULL;
1503                }
1504                skb = new_skb;
1505        }
1506
1507        skb_push(skb, sizeof(*status));
1508        status = (struct status_64 *)skb->data;
1509
1510        if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1511                ip_ver = skb->protocol;
1512                switch (ip_ver) {
1513                case htons(ETH_P_IP):
1514                        ip_proto = ip_hdr(skb)->protocol;
1515                        break;
1516                case htons(ETH_P_IPV6):
1517                        ip_proto = ipv6_hdr(skb)->nexthdr;
1518                        break;
1519                default:
1520                        return skb;
1521                }
1522
1523                offset = skb_checksum_start_offset(skb) - sizeof(*status);
1524                tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1525                                (offset + skb->csum_offset);
1526
1527                /* Set the length valid bit for TCP and UDP and just set
1528                 * the special UDP flag for IPv4, else just set to 0.
1529                 */
1530                if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1531                        tx_csum_info |= STATUS_TX_CSUM_LV;
1532                        if (ip_proto == IPPROTO_UDP &&
1533                            ip_ver == htons(ETH_P_IP))
1534                                tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1535                } else {
1536                        tx_csum_info = 0;
1537                }
1538
1539                status->tx_csum_info = tx_csum_info;
1540        }
1541
1542        return skb;
1543}
1544
1545static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1546{
1547        struct bcmgenet_priv *priv = netdev_priv(dev);
1548        struct device *kdev = &priv->pdev->dev;
1549        struct bcmgenet_tx_ring *ring = NULL;
1550        struct enet_cb *tx_cb_ptr;
1551        struct netdev_queue *txq;
1552        int nr_frags, index;
1553        dma_addr_t mapping;
1554        unsigned int size;
1555        skb_frag_t *frag;
1556        u32 len_stat;
1557        int ret;
1558        int i;
1559
1560        index = skb_get_queue_mapping(skb);
1561        /* Mapping strategy:
1562         * queue_mapping = 0, unclassified, packet xmited through ring16
1563         * queue_mapping = 1, goes to ring 0. (highest priority queue
1564         * queue_mapping = 2, goes to ring 1.
1565         * queue_mapping = 3, goes to ring 2.
1566         * queue_mapping = 4, goes to ring 3.
1567         */
1568        if (index == 0)
1569                index = DESC_INDEX;
1570        else
1571                index -= 1;
1572
1573        ring = &priv->tx_rings[index];
1574        txq = netdev_get_tx_queue(dev, ring->queue);
1575
1576        nr_frags = skb_shinfo(skb)->nr_frags;
1577
1578        spin_lock(&ring->lock);
1579        if (ring->free_bds <= (nr_frags + 1)) {
1580                if (!netif_tx_queue_stopped(txq)) {
1581                        netif_tx_stop_queue(txq);
1582                        netdev_err(dev,
1583                                   "%s: tx ring %d full when queue %d awake\n",
1584                                   __func__, index, ring->queue);
1585                }
1586                ret = NETDEV_TX_BUSY;
1587                goto out;
1588        }
1589
1590        if (skb_padto(skb, ETH_ZLEN)) {
1591                ret = NETDEV_TX_OK;
1592                goto out;
1593        }
1594
1595        /* Retain how many bytes will be sent on the wire, without TSB inserted
1596         * by transmit checksum offload
1597         */
1598        GENET_CB(skb)->bytes_sent = skb->len;
1599
1600        /* set the SKB transmit checksum */
1601        if (priv->desc_64b_en) {
1602                skb = bcmgenet_put_tx_csum(dev, skb);
1603                if (!skb) {
1604                        ret = NETDEV_TX_OK;
1605                        goto out;
1606                }
1607        }
1608
1609        for (i = 0; i <= nr_frags; i++) {
1610                tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1611
1612                BUG_ON(!tx_cb_ptr);
1613
1614                if (!i) {
1615                        /* Transmit single SKB or head of fragment list */
1616                        GENET_CB(skb)->first_cb = tx_cb_ptr;
1617                        size = skb_headlen(skb);
1618                        mapping = dma_map_single(kdev, skb->data, size,
1619                                                 DMA_TO_DEVICE);
1620                } else {
1621                        /* xmit fragment */
1622                        frag = &skb_shinfo(skb)->frags[i - 1];
1623                        size = skb_frag_size(frag);
1624                        mapping = skb_frag_dma_map(kdev, frag, 0, size,
1625                                                   DMA_TO_DEVICE);
1626                }
1627
1628                ret = dma_mapping_error(kdev, mapping);
1629                if (ret) {
1630                        priv->mib.tx_dma_failed++;
1631                        netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1632                        ret = NETDEV_TX_OK;
1633                        goto out_unmap_frags;
1634                }
1635                dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1636                dma_unmap_len_set(tx_cb_ptr, dma_len, size);
1637
1638                tx_cb_ptr->skb = skb;
1639
1640                len_stat = (size << DMA_BUFLENGTH_SHIFT) |
1641                           (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
1642
1643                if (!i) {
1644                        len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
1645                        if (skb->ip_summed == CHECKSUM_PARTIAL)
1646                                len_stat |= DMA_TX_DO_CSUM;
1647                }
1648                if (i == nr_frags)
1649                        len_stat |= DMA_EOP;
1650
1651                dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
1652        }
1653
1654        GENET_CB(skb)->last_cb = tx_cb_ptr;
1655        skb_tx_timestamp(skb);
1656
1657        /* Decrement total BD count and advance our write pointer */
1658        ring->free_bds -= nr_frags + 1;
1659        ring->prod_index += nr_frags + 1;
1660        ring->prod_index &= DMA_P_INDEX_MASK;
1661
1662        netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1663
1664        if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1665                netif_tx_stop_queue(txq);
1666
1667        if (!netdev_xmit_more() || netif_xmit_stopped(txq))
1668                /* Packets are ready, update producer index */
1669                bcmgenet_tdma_ring_writel(priv, ring->index,
1670                                          ring->prod_index, TDMA_PROD_INDEX);
1671out:
1672        spin_unlock(&ring->lock);
1673
1674        return ret;
1675
1676out_unmap_frags:
1677        /* Back up for failed control block mapping */
1678        bcmgenet_put_txcb(priv, ring);
1679
1680        /* Unmap successfully mapped control blocks */
1681        while (i-- > 0) {
1682                tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
1683                bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
1684        }
1685
1686        dev_kfree_skb(skb);
1687        goto out;
1688}
1689
1690static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1691                                          struct enet_cb *cb)
1692{
1693        struct device *kdev = &priv->pdev->dev;
1694        struct sk_buff *skb;
1695        struct sk_buff *rx_skb;
1696        dma_addr_t mapping;
1697
1698        /* Allocate a new Rx skb */
1699        skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1700        if (!skb) {
1701                priv->mib.alloc_rx_buff_failed++;
1702                netif_err(priv, rx_err, priv->dev,
1703                          "%s: Rx skb allocation failed\n", __func__);
1704                return NULL;
1705        }
1706
1707        /* DMA-map the new Rx skb */
1708        mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1709                                 DMA_FROM_DEVICE);
1710        if (dma_mapping_error(kdev, mapping)) {
1711                priv->mib.rx_dma_failed++;
1712                dev_kfree_skb_any(skb);
1713                netif_err(priv, rx_err, priv->dev,
1714                          "%s: Rx skb DMA mapping failed\n", __func__);
1715                return NULL;
1716        }
1717
1718        /* Grab the current Rx skb from the ring and DMA-unmap it */
1719        rx_skb = bcmgenet_free_rx_cb(kdev, cb);
1720
1721        /* Put the new Rx skb on the ring */
1722        cb->skb = skb;
1723        dma_unmap_addr_set(cb, dma_addr, mapping);
1724        dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
1725        dmadesc_set_addr(priv, cb->bd_addr, mapping);
1726
1727        /* Return the current Rx skb to caller */
1728        return rx_skb;
1729}
1730
1731/* bcmgenet_desc_rx - descriptor based rx process.
1732 * this could be called from bottom half, or from NAPI polling method.
1733 */
1734static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1735                                     unsigned int budget)
1736{
1737        struct bcmgenet_priv *priv = ring->priv;
1738        struct net_device *dev = priv->dev;
1739        struct enet_cb *cb;
1740        struct sk_buff *skb;
1741        u32 dma_length_status;
1742        unsigned long dma_flag;
1743        int len;
1744        unsigned int rxpktprocessed = 0, rxpkttoprocess;
1745        unsigned int bytes_processed = 0;
1746        unsigned int p_index, mask;
1747        unsigned int discards;
1748        unsigned int chksum_ok = 0;
1749
1750        /* Clear status before servicing to reduce spurious interrupts */
1751        if (ring->index == DESC_INDEX) {
1752                bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
1753                                         INTRL2_CPU_CLEAR);
1754        } else {
1755                mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
1756                bcmgenet_intrl2_1_writel(priv,
1757                                         mask,
1758                                         INTRL2_CPU_CLEAR);
1759        }
1760
1761        p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1762
1763        discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1764                   DMA_P_INDEX_DISCARD_CNT_MASK;
1765        if (discards > ring->old_discards) {
1766                discards = discards - ring->old_discards;
1767                ring->errors += discards;
1768                ring->old_discards += discards;
1769
1770                /* Clear HW register when we reach 75% of maximum 0xFFFF */
1771                if (ring->old_discards >= 0xC000) {
1772                        ring->old_discards = 0;
1773                        bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1774                                                  RDMA_PROD_INDEX);
1775                }
1776        }
1777
1778        p_index &= DMA_P_INDEX_MASK;
1779        rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
1780
1781        netif_dbg(priv, rx_status, dev,
1782                  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1783
1784        while ((rxpktprocessed < rxpkttoprocess) &&
1785               (rxpktprocessed < budget)) {
1786                cb = &priv->rx_cbs[ring->read_ptr];
1787                skb = bcmgenet_rx_refill(priv, cb);
1788
1789                if (unlikely(!skb)) {
1790                        ring->dropped++;
1791                        goto next;
1792                }
1793
1794                if (!priv->desc_64b_en) {
1795                        dma_length_status =
1796                                dmadesc_get_length_status(priv, cb->bd_addr);
1797                } else {
1798                        struct status_64 *status;
1799
1800                        status = (struct status_64 *)skb->data;
1801                        dma_length_status = status->length_status;
1802                }
1803
1804                /* DMA flags and length are still valid no matter how
1805                 * we got the Receive Status Vector (64B RSB or register)
1806                 */
1807                dma_flag = dma_length_status & 0xffff;
1808                len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1809
1810                netif_dbg(priv, rx_status, dev,
1811                          "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1812                          __func__, p_index, ring->c_index,
1813                          ring->read_ptr, dma_length_status);
1814
1815                if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1816                        netif_err(priv, rx_status, dev,
1817                                  "dropping fragmented packet!\n");
1818                        ring->errors++;
1819                        dev_kfree_skb_any(skb);
1820                        goto next;
1821                }
1822
1823                /* report errors */
1824                if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1825                                                DMA_RX_OV |
1826                                                DMA_RX_NO |
1827                                                DMA_RX_LG |
1828                                                DMA_RX_RXER))) {
1829                        netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1830                                  (unsigned int)dma_flag);
1831                        if (dma_flag & DMA_RX_CRC_ERROR)
1832                                dev->stats.rx_crc_errors++;
1833                        if (dma_flag & DMA_RX_OV)
1834                                dev->stats.rx_over_errors++;
1835                        if (dma_flag & DMA_RX_NO)
1836                                dev->stats.rx_frame_errors++;
1837                        if (dma_flag & DMA_RX_LG)
1838                                dev->stats.rx_length_errors++;
1839                        dev->stats.rx_errors++;
1840                        dev_kfree_skb_any(skb);
1841                        goto next;
1842                } /* error packet */
1843
1844                chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1845                             priv->desc_rxchk_en;
1846
1847                skb_put(skb, len);
1848                if (priv->desc_64b_en) {
1849                        skb_pull(skb, 64);
1850                        len -= 64;
1851                }
1852
1853                if (likely(chksum_ok))
1854                        skb->ip_summed = CHECKSUM_UNNECESSARY;
1855
1856                /* remove hardware 2bytes added for IP alignment */
1857                skb_pull(skb, 2);
1858                len -= 2;
1859
1860                if (priv->crc_fwd_en) {
1861                        skb_trim(skb, len - ETH_FCS_LEN);
1862                        len -= ETH_FCS_LEN;
1863                }
1864
1865                bytes_processed += len;
1866
1867                /*Finish setting up the received SKB and send it to the kernel*/
1868                skb->protocol = eth_type_trans(skb, priv->dev);
1869                ring->packets++;
1870                ring->bytes += len;
1871                if (dma_flag & DMA_RX_MULT)
1872                        dev->stats.multicast++;
1873
1874                /* Notify kernel */
1875                napi_gro_receive(&ring->napi, skb);
1876                netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1877
1878next:
1879                rxpktprocessed++;
1880                if (likely(ring->read_ptr < ring->end_ptr))
1881                        ring->read_ptr++;
1882                else
1883                        ring->read_ptr = ring->cb_ptr;
1884
1885                ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1886                bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1887        }
1888
1889        ring->dim.bytes = bytes_processed;
1890        ring->dim.packets = rxpktprocessed;
1891
1892        return rxpktprocessed;
1893}
1894
1895/* Rx NAPI polling method */
1896static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1897{
1898        struct bcmgenet_rx_ring *ring = container_of(napi,
1899                        struct bcmgenet_rx_ring, napi);
1900        struct dim_sample dim_sample = {};
1901        unsigned int work_done;
1902
1903        work_done = bcmgenet_desc_rx(ring, budget);
1904
1905        if (work_done < budget) {
1906                napi_complete_done(napi, work_done);
1907                ring->int_enable(ring);
1908        }
1909
1910        if (ring->dim.use_dim) {
1911                dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
1912                                  ring->dim.bytes, &dim_sample);
1913                net_dim(&ring->dim.dim, dim_sample);
1914        }
1915
1916        return work_done;
1917}
1918
1919static void bcmgenet_dim_work(struct work_struct *work)
1920{
1921        struct dim *dim = container_of(work, struct dim, work);
1922        struct bcmgenet_net_dim *ndim =
1923                        container_of(dim, struct bcmgenet_net_dim, dim);
1924        struct bcmgenet_rx_ring *ring =
1925                        container_of(ndim, struct bcmgenet_rx_ring, dim);
1926        struct dim_cq_moder cur_profile =
1927                        net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
1928
1929        bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
1930        dim->state = DIM_START_MEASURE;
1931}
1932
1933/* Assign skb to RX DMA descriptor. */
1934static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1935                                     struct bcmgenet_rx_ring *ring)
1936{
1937        struct enet_cb *cb;
1938        struct sk_buff *skb;
1939        int i;
1940
1941        netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1942
1943        /* loop here for each buffer needing assign */
1944        for (i = 0; i < ring->size; i++) {
1945                cb = ring->cbs + i;
1946                skb = bcmgenet_rx_refill(priv, cb);
1947                if (skb)
1948                        dev_consume_skb_any(skb);
1949                if (!cb->skb)
1950                        return -ENOMEM;
1951        }
1952
1953        return 0;
1954}
1955
1956static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1957{
1958        struct sk_buff *skb;
1959        struct enet_cb *cb;
1960        int i;
1961
1962        for (i = 0; i < priv->num_rx_bds; i++) {
1963                cb = &priv->rx_cbs[i];
1964
1965                skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
1966                if (skb)
1967                        dev_consume_skb_any(skb);
1968        }
1969}
1970
1971static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1972{
1973        u32 reg;
1974
1975        reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1976        if (enable)
1977                reg |= mask;
1978        else
1979                reg &= ~mask;
1980        bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1981
1982        /* UniMAC stops on a packet boundary, wait for a full-size packet
1983         * to be processed
1984         */
1985        if (enable == 0)
1986                usleep_range(1000, 2000);
1987}
1988
1989static void reset_umac(struct bcmgenet_priv *priv)
1990{
1991        /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1992        bcmgenet_rbuf_ctrl_set(priv, 0);
1993        udelay(10);
1994
1995        /* disable MAC while updating its registers */
1996        bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1997
1998        /* issue soft reset with (rg)mii loopback to ensure a stable rxclk */
1999        bcmgenet_umac_writel(priv, CMD_SW_RESET | CMD_LCL_LOOP_EN, UMAC_CMD);
2000        udelay(2);
2001        bcmgenet_umac_writel(priv, 0, UMAC_CMD);
2002}
2003
2004static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
2005{
2006        /* Mask all interrupts.*/
2007        bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2008        bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2009        bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2010        bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2011}
2012
2013static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2014{
2015        u32 int0_enable = 0;
2016
2017        /* Monitor cable plug/unplugged event for internal PHY, external PHY
2018         * and MoCA PHY
2019         */
2020        if (priv->internal_phy) {
2021                int0_enable |= UMAC_IRQ_LINK_EVENT;
2022        } else if (priv->ext_phy) {
2023                int0_enable |= UMAC_IRQ_LINK_EVENT;
2024        } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2025                if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2026                        int0_enable |= UMAC_IRQ_LINK_EVENT;
2027        }
2028        bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2029}
2030
2031static void init_umac(struct bcmgenet_priv *priv)
2032{
2033        struct device *kdev = &priv->pdev->dev;
2034        u32 reg;
2035        u32 int0_enable = 0;
2036
2037        dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2038
2039        reset_umac(priv);
2040
2041        /* clear tx/rx counter */
2042        bcmgenet_umac_writel(priv,
2043                             MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2044                             UMAC_MIB_CTRL);
2045        bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2046
2047        bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2048
2049        /* init rx registers, enable ip header optimization */
2050        reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2051        reg |= RBUF_ALIGN_2B;
2052        bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2053
2054        if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2055                bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2056
2057        bcmgenet_intr_disable(priv);
2058
2059        /* Configure backpressure vectors for MoCA */
2060        if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2061                reg = bcmgenet_bp_mc_get(priv);
2062                reg |= BIT(priv->hw_params->bp_in_en_shift);
2063
2064                /* bp_mask: back pressure mask */
2065                if (netif_is_multiqueue(priv->dev))
2066                        reg |= priv->hw_params->bp_in_mask;
2067                else
2068                        reg &= ~priv->hw_params->bp_in_mask;
2069                bcmgenet_bp_mc_set(priv, reg);
2070        }
2071
2072        /* Enable MDIO interrupts on GENET v3+ */
2073        if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2074                int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2075
2076        bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2077
2078        dev_dbg(kdev, "done init umac\n");
2079}
2080
2081static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2082                              void (*cb)(struct work_struct *work))
2083{
2084        struct bcmgenet_net_dim *dim = &ring->dim;
2085
2086        INIT_WORK(&dim->dim.work, cb);
2087        dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2088        dim->event_ctr = 0;
2089        dim->packets = 0;
2090        dim->bytes = 0;
2091}
2092
2093static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2094{
2095        struct bcmgenet_net_dim *dim = &ring->dim;
2096        struct dim_cq_moder moder;
2097        u32 usecs, pkts;
2098
2099        usecs = ring->rx_coalesce_usecs;
2100        pkts = ring->rx_max_coalesced_frames;
2101
2102        /* If DIM was enabled, re-apply default parameters */
2103        if (dim->use_dim) {
2104                moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2105                usecs = moder.usec;
2106                pkts = moder.pkts;
2107        }
2108
2109        bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2110}
2111
2112/* Initialize a Tx ring along with corresponding hardware registers */
2113static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2114                                  unsigned int index, unsigned int size,
2115                                  unsigned int start_ptr, unsigned int end_ptr)
2116{
2117        struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2118        u32 words_per_bd = WORDS_PER_BD(priv);
2119        u32 flow_period_val = 0;
2120
2121        spin_lock_init(&ring->lock);
2122        ring->priv = priv;
2123        ring->index = index;
2124        if (index == DESC_INDEX) {
2125                ring->queue = 0;
2126                ring->int_enable = bcmgenet_tx_ring16_int_enable;
2127                ring->int_disable = bcmgenet_tx_ring16_int_disable;
2128        } else {
2129                ring->queue = index + 1;
2130                ring->int_enable = bcmgenet_tx_ring_int_enable;
2131                ring->int_disable = bcmgenet_tx_ring_int_disable;
2132        }
2133        ring->cbs = priv->tx_cbs + start_ptr;
2134        ring->size = size;
2135        ring->clean_ptr = start_ptr;
2136        ring->c_index = 0;
2137        ring->free_bds = size;
2138        ring->write_ptr = start_ptr;
2139        ring->cb_ptr = start_ptr;
2140        ring->end_ptr = end_ptr - 1;
2141        ring->prod_index = 0;
2142
2143        /* Set flow period for ring != 16 */
2144        if (index != DESC_INDEX)
2145                flow_period_val = ENET_MAX_MTU_SIZE << 16;
2146
2147        bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2148        bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2149        bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2150        /* Disable rate control for now */
2151        bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2152                                  TDMA_FLOW_PERIOD);
2153        bcmgenet_tdma_ring_writel(priv, index,
2154                                  ((size << DMA_RING_SIZE_SHIFT) |
2155                                   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2156
2157        /* Set start and end address, read and write pointers */
2158        bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2159                                  DMA_START_ADDR);
2160        bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2161                                  TDMA_READ_PTR);
2162        bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2163                                  TDMA_WRITE_PTR);
2164        bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2165                                  DMA_END_ADDR);
2166
2167        /* Initialize Tx NAPI */
2168        netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
2169                       NAPI_POLL_WEIGHT);
2170}
2171
2172/* Initialize a RDMA ring */
2173static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2174                                 unsigned int index, unsigned int size,
2175                                 unsigned int start_ptr, unsigned int end_ptr)
2176{
2177        struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2178        u32 words_per_bd = WORDS_PER_BD(priv);
2179        int ret;
2180
2181        ring->priv = priv;
2182        ring->index = index;
2183        if (index == DESC_INDEX) {
2184                ring->int_enable = bcmgenet_rx_ring16_int_enable;
2185                ring->int_disable = bcmgenet_rx_ring16_int_disable;
2186        } else {
2187                ring->int_enable = bcmgenet_rx_ring_int_enable;
2188                ring->int_disable = bcmgenet_rx_ring_int_disable;
2189        }
2190        ring->cbs = priv->rx_cbs + start_ptr;
2191        ring->size = size;
2192        ring->c_index = 0;
2193        ring->read_ptr = start_ptr;
2194        ring->cb_ptr = start_ptr;
2195        ring->end_ptr = end_ptr - 1;
2196
2197        ret = bcmgenet_alloc_rx_buffers(priv, ring);
2198        if (ret)
2199                return ret;
2200
2201        bcmgenet_init_dim(ring, bcmgenet_dim_work);
2202        bcmgenet_init_rx_coalesce(ring);
2203
2204        /* Initialize Rx NAPI */
2205        netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2206                       NAPI_POLL_WEIGHT);
2207
2208        bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2209        bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2210        bcmgenet_rdma_ring_writel(priv, index,
2211                                  ((size << DMA_RING_SIZE_SHIFT) |
2212                                   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2213        bcmgenet_rdma_ring_writel(priv, index,
2214                                  (DMA_FC_THRESH_LO <<
2215                                   DMA_XOFF_THRESHOLD_SHIFT) |
2216                                   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2217
2218        /* Set start and end address, read and write pointers */
2219        bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2220                                  DMA_START_ADDR);
2221        bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2222                                  RDMA_READ_PTR);
2223        bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2224                                  RDMA_WRITE_PTR);
2225        bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2226                                  DMA_END_ADDR);
2227
2228        return ret;
2229}
2230
2231static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2232{
2233        unsigned int i;
2234        struct bcmgenet_tx_ring *ring;
2235
2236        for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2237                ring = &priv->tx_rings[i];
2238                napi_enable(&ring->napi);
2239                ring->int_enable(ring);
2240        }
2241
2242        ring = &priv->tx_rings[DESC_INDEX];
2243        napi_enable(&ring->napi);
2244        ring->int_enable(ring);
2245}
2246
2247static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2248{
2249        unsigned int i;
2250        struct bcmgenet_tx_ring *ring;
2251
2252        for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2253                ring = &priv->tx_rings[i];
2254                napi_disable(&ring->napi);
2255        }
2256
2257        ring = &priv->tx_rings[DESC_INDEX];
2258        napi_disable(&ring->napi);
2259}
2260
2261static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2262{
2263        unsigned int i;
2264        struct bcmgenet_tx_ring *ring;
2265
2266        for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2267                ring = &priv->tx_rings[i];
2268                netif_napi_del(&ring->napi);
2269        }
2270
2271        ring = &priv->tx_rings[DESC_INDEX];
2272        netif_napi_del(&ring->napi);
2273}
2274
2275/* Initialize Tx queues
2276 *
2277 * Queues 0-3 are priority-based, each one has 32 descriptors,
2278 * with queue 0 being the highest priority queue.
2279 *
2280 * Queue 16 is the default Tx queue with
2281 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2282 *
2283 * The transmit control block pool is then partitioned as follows:
2284 * - Tx queue 0 uses tx_cbs[0..31]
2285 * - Tx queue 1 uses tx_cbs[32..63]
2286 * - Tx queue 2 uses tx_cbs[64..95]
2287 * - Tx queue 3 uses tx_cbs[96..127]
2288 * - Tx queue 16 uses tx_cbs[128..255]
2289 */
2290static void bcmgenet_init_tx_queues(struct net_device *dev)
2291{
2292        struct bcmgenet_priv *priv = netdev_priv(dev);
2293        u32 i, dma_enable;
2294        u32 dma_ctrl, ring_cfg;
2295        u32 dma_priority[3] = {0, 0, 0};
2296
2297        dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2298        dma_enable = dma_ctrl & DMA_EN;
2299        dma_ctrl &= ~DMA_EN;
2300        bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2301
2302        dma_ctrl = 0;
2303        ring_cfg = 0;
2304
2305        /* Enable strict priority arbiter mode */
2306        bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2307
2308        /* Initialize Tx priority queues */
2309        for (i = 0; i < priv->hw_params->tx_queues; i++) {
2310                bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2311                                      i * priv->hw_params->tx_bds_per_q,
2312                                      (i + 1) * priv->hw_params->tx_bds_per_q);
2313                ring_cfg |= (1 << i);
2314                dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2315                dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2316                        ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2317        }
2318
2319        /* Initialize Tx default queue 16 */
2320        bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2321                              priv->hw_params->tx_queues *
2322                              priv->hw_params->tx_bds_per_q,
2323                              TOTAL_DESC);
2324        ring_cfg |= (1 << DESC_INDEX);
2325        dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2326        dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2327                ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2328                 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2329
2330        /* Set Tx queue priorities */
2331        bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2332        bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2333        bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2334
2335        /* Enable Tx queues */
2336        bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2337
2338        /* Enable Tx DMA */
2339        if (dma_enable)
2340                dma_ctrl |= DMA_EN;
2341        bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2342}
2343
2344static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2345{
2346        unsigned int i;
2347        struct bcmgenet_rx_ring *ring;
2348
2349        for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2350                ring = &priv->rx_rings[i];
2351                napi_enable(&ring->napi);
2352                ring->int_enable(ring);
2353        }
2354
2355        ring = &priv->rx_rings[DESC_INDEX];
2356        napi_enable(&ring->napi);
2357        ring->int_enable(ring);
2358}
2359
2360static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2361{
2362        unsigned int i;
2363        struct bcmgenet_rx_ring *ring;
2364
2365        for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2366                ring = &priv->rx_rings[i];
2367                napi_disable(&ring->napi);
2368                cancel_work_sync(&ring->dim.dim.work);
2369        }
2370
2371        ring = &priv->rx_rings[DESC_INDEX];
2372        napi_disable(&ring->napi);
2373        cancel_work_sync(&ring->dim.dim.work);
2374}
2375
2376static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2377{
2378        unsigned int i;
2379        struct bcmgenet_rx_ring *ring;
2380
2381        for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2382                ring = &priv->rx_rings[i];
2383                netif_napi_del(&ring->napi);
2384        }
2385
2386        ring = &priv->rx_rings[DESC_INDEX];
2387        netif_napi_del(&ring->napi);
2388}
2389
2390/* Initialize Rx queues
2391 *
2392 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2393 * used to direct traffic to these queues.
2394 *
2395 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2396 */
2397static int bcmgenet_init_rx_queues(struct net_device *dev)
2398{
2399        struct bcmgenet_priv *priv = netdev_priv(dev);
2400        u32 i;
2401        u32 dma_enable;
2402        u32 dma_ctrl;
2403        u32 ring_cfg;
2404        int ret;
2405
2406        dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2407        dma_enable = dma_ctrl & DMA_EN;
2408        dma_ctrl &= ~DMA_EN;
2409        bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2410
2411        dma_ctrl = 0;
2412        ring_cfg = 0;
2413
2414        /* Initialize Rx priority queues */
2415        for (i = 0; i < priv->hw_params->rx_queues; i++) {
2416                ret = bcmgenet_init_rx_ring(priv, i,
2417                                            priv->hw_params->rx_bds_per_q,
2418                                            i * priv->hw_params->rx_bds_per_q,
2419                                            (i + 1) *
2420                                            priv->hw_params->rx_bds_per_q);
2421                if (ret)
2422                        return ret;
2423
2424                ring_cfg |= (1 << i);
2425                dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2426        }
2427
2428        /* Initialize Rx default queue 16 */
2429        ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2430                                    priv->hw_params->rx_queues *
2431                                    priv->hw_params->rx_bds_per_q,
2432                                    TOTAL_DESC);
2433        if (ret)
2434                return ret;
2435
2436        ring_cfg |= (1 << DESC_INDEX);
2437        dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2438
2439        /* Enable rings */
2440        bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2441
2442        /* Configure ring as descriptor ring and re-enable DMA if enabled */
2443        if (dma_enable)
2444                dma_ctrl |= DMA_EN;
2445        bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2446
2447        return 0;
2448}
2449
2450static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2451{
2452        int ret = 0;
2453        int timeout = 0;
2454        u32 reg;
2455        u32 dma_ctrl;
2456        int i;
2457
2458        /* Disable TDMA to stop add more frames in TX DMA */
2459        reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2460        reg &= ~DMA_EN;
2461        bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2462
2463        /* Check TDMA status register to confirm TDMA is disabled */
2464        while (timeout++ < DMA_TIMEOUT_VAL) {
2465                reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2466                if (reg & DMA_DISABLED)
2467                        break;
2468
2469                udelay(1);
2470        }
2471
2472        if (timeout == DMA_TIMEOUT_VAL) {
2473                netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2474                ret = -ETIMEDOUT;
2475        }
2476
2477        /* Wait 10ms for packet drain in both tx and rx dma */
2478        usleep_range(10000, 20000);
2479
2480        /* Disable RDMA */
2481        reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2482        reg &= ~DMA_EN;
2483        bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2484
2485        timeout = 0;
2486        /* Check RDMA status register to confirm RDMA is disabled */
2487        while (timeout++ < DMA_TIMEOUT_VAL) {
2488                reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2489                if (reg & DMA_DISABLED)
2490                        break;
2491
2492                udelay(1);
2493        }
2494
2495        if (timeout == DMA_TIMEOUT_VAL) {
2496                netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2497                ret = -ETIMEDOUT;
2498        }
2499
2500        dma_ctrl = 0;
2501        for (i = 0; i < priv->hw_params->rx_queues; i++)
2502                dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2503        reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2504        reg &= ~dma_ctrl;
2505        bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2506
2507        dma_ctrl = 0;
2508        for (i = 0; i < priv->hw_params->tx_queues; i++)
2509                dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2510        reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2511        reg &= ~dma_ctrl;
2512        bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2513
2514        return ret;
2515}
2516
2517static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2518{
2519        struct netdev_queue *txq;
2520        struct sk_buff *skb;
2521        struct enet_cb *cb;
2522        int i;
2523
2524        bcmgenet_fini_rx_napi(priv);
2525        bcmgenet_fini_tx_napi(priv);
2526
2527        for (i = 0; i < priv->num_tx_bds; i++) {
2528                cb = priv->tx_cbs + i;
2529                skb = bcmgenet_free_tx_cb(&priv->pdev->dev, cb);
2530                if (skb)
2531                        dev_kfree_skb(skb);
2532        }
2533
2534        for (i = 0; i < priv->hw_params->tx_queues; i++) {
2535                txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2536                netdev_tx_reset_queue(txq);
2537        }
2538
2539        txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2540        netdev_tx_reset_queue(txq);
2541
2542        bcmgenet_free_rx_buffers(priv);
2543        kfree(priv->rx_cbs);
2544        kfree(priv->tx_cbs);
2545}
2546
2547/* init_edma: Initialize DMA control register */
2548static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2549{
2550        int ret;
2551        unsigned int i;
2552        struct enet_cb *cb;
2553
2554        netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2555
2556        /* Initialize common Rx ring structures */
2557        priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2558        priv->num_rx_bds = TOTAL_DESC;
2559        priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2560                               GFP_KERNEL);
2561        if (!priv->rx_cbs)
2562                return -ENOMEM;
2563
2564        for (i = 0; i < priv->num_rx_bds; i++) {
2565                cb = priv->rx_cbs + i;
2566                cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2567        }
2568
2569        /* Initialize common TX ring structures */
2570        priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2571        priv->num_tx_bds = TOTAL_DESC;
2572        priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2573                               GFP_KERNEL);
2574        if (!priv->tx_cbs) {
2575                kfree(priv->rx_cbs);
2576                return -ENOMEM;
2577        }
2578
2579        for (i = 0; i < priv->num_tx_bds; i++) {
2580                cb = priv->tx_cbs + i;
2581                cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2582        }
2583
2584        /* Init rDma */
2585        bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2586
2587        /* Initialize Rx queues */
2588        ret = bcmgenet_init_rx_queues(priv->dev);
2589        if (ret) {
2590                netdev_err(priv->dev, "failed to initialize Rx queues\n");
2591                bcmgenet_free_rx_buffers(priv);
2592                kfree(priv->rx_cbs);
2593                kfree(priv->tx_cbs);
2594                return ret;
2595        }
2596
2597        /* Init tDma */
2598        bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2599
2600        /* Initialize Tx queues */
2601        bcmgenet_init_tx_queues(priv->dev);
2602
2603        return 0;
2604}
2605
2606/* Interrupt bottom half */
2607static void bcmgenet_irq_task(struct work_struct *work)
2608{
2609        unsigned int status;
2610        struct bcmgenet_priv *priv = container_of(
2611                        work, struct bcmgenet_priv, bcmgenet_irq_work);
2612
2613        netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2614
2615        spin_lock_irq(&priv->lock);
2616        status = priv->irq0_stat;
2617        priv->irq0_stat = 0;
2618        spin_unlock_irq(&priv->lock);
2619
2620        /* Link UP/DOWN event */
2621        if (status & UMAC_IRQ_LINK_EVENT)
2622                phy_mac_interrupt(priv->dev->phydev);
2623}
2624
2625/* bcmgenet_isr1: handle Rx and Tx priority queues */
2626static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2627{
2628        struct bcmgenet_priv *priv = dev_id;
2629        struct bcmgenet_rx_ring *rx_ring;
2630        struct bcmgenet_tx_ring *tx_ring;
2631        unsigned int index, status;
2632
2633        /* Read irq status */
2634        status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2635                ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2636
2637        /* clear interrupts */
2638        bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
2639
2640        netif_dbg(priv, intr, priv->dev,
2641                  "%s: IRQ=0x%x\n", __func__, status);
2642
2643        /* Check Rx priority queue interrupts */
2644        for (index = 0; index < priv->hw_params->rx_queues; index++) {
2645                if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2646                        continue;
2647
2648                rx_ring = &priv->rx_rings[index];
2649                rx_ring->dim.event_ctr++;
2650
2651                if (likely(napi_schedule_prep(&rx_ring->napi))) {
2652                        rx_ring->int_disable(rx_ring);
2653                        __napi_schedule_irqoff(&rx_ring->napi);
2654                }
2655        }
2656
2657        /* Check Tx priority queue interrupts */
2658        for (index = 0; index < priv->hw_params->tx_queues; index++) {
2659                if (!(status & BIT(index)))
2660                        continue;
2661
2662                tx_ring = &priv->tx_rings[index];
2663
2664                if (likely(napi_schedule_prep(&tx_ring->napi))) {
2665                        tx_ring->int_disable(tx_ring);
2666                        __napi_schedule_irqoff(&tx_ring->napi);
2667                }
2668        }
2669
2670        return IRQ_HANDLED;
2671}
2672
2673/* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2674static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2675{
2676        struct bcmgenet_priv *priv = dev_id;
2677        struct bcmgenet_rx_ring *rx_ring;
2678        struct bcmgenet_tx_ring *tx_ring;
2679        unsigned int status;
2680        unsigned long flags;
2681
2682        /* Read irq status */
2683        status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2684                ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2685
2686        /* clear interrupts */
2687        bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
2688
2689        netif_dbg(priv, intr, priv->dev,
2690                  "IRQ=0x%x\n", status);
2691
2692        if (status & UMAC_IRQ_RXDMA_DONE) {
2693                rx_ring = &priv->rx_rings[DESC_INDEX];
2694                rx_ring->dim.event_ctr++;
2695
2696                if (likely(napi_schedule_prep(&rx_ring->napi))) {
2697                        rx_ring->int_disable(rx_ring);
2698                        __napi_schedule_irqoff(&rx_ring->napi);
2699                }
2700        }
2701
2702        if (status & UMAC_IRQ_TXDMA_DONE) {
2703                tx_ring = &priv->tx_rings[DESC_INDEX];
2704
2705                if (likely(napi_schedule_prep(&tx_ring->napi))) {
2706                        tx_ring->int_disable(tx_ring);
2707                        __napi_schedule_irqoff(&tx_ring->napi);
2708                }
2709        }
2710
2711        if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2712                status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2713                wake_up(&priv->wq);
2714        }
2715
2716        /* all other interested interrupts handled in bottom half */
2717        status &= UMAC_IRQ_LINK_EVENT;
2718        if (status) {
2719                /* Save irq status for bottom-half processing. */
2720                spin_lock_irqsave(&priv->lock, flags);
2721                priv->irq0_stat |= status;
2722                spin_unlock_irqrestore(&priv->lock, flags);
2723
2724                schedule_work(&priv->bcmgenet_irq_work);
2725        }
2726
2727        return IRQ_HANDLED;
2728}
2729
2730static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2731{
2732        struct bcmgenet_priv *priv = dev_id;
2733
2734        pm_wakeup_event(&priv->pdev->dev, 0);
2735
2736        return IRQ_HANDLED;
2737}
2738
2739#ifdef CONFIG_NET_POLL_CONTROLLER
2740static void bcmgenet_poll_controller(struct net_device *dev)
2741{
2742        struct bcmgenet_priv *priv = netdev_priv(dev);
2743
2744        /* Invoke the main RX/TX interrupt handler */
2745        disable_irq(priv->irq0);
2746        bcmgenet_isr0(priv->irq0, priv);
2747        enable_irq(priv->irq0);
2748
2749        /* And the interrupt handler for RX/TX priority queues */
2750        disable_irq(priv->irq1);
2751        bcmgenet_isr1(priv->irq1, priv);
2752        enable_irq(priv->irq1);
2753}
2754#endif
2755
2756static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2757{
2758        u32 reg;
2759
2760        reg = bcmgenet_rbuf_ctrl_get(priv);
2761        reg |= BIT(1);
2762        bcmgenet_rbuf_ctrl_set(priv, reg);
2763        udelay(10);
2764
2765        reg &= ~BIT(1);
2766        bcmgenet_rbuf_ctrl_set(priv, reg);
2767        udelay(10);
2768}
2769
2770static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2771                                 unsigned char *addr)
2772{
2773        bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2774                        (addr[2] << 8) | addr[3], UMAC_MAC0);
2775        bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2776}
2777
2778/* Returns a reusable dma control register value */
2779static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2780{
2781        u32 reg;
2782        u32 dma_ctrl;
2783
2784        /* disable DMA */
2785        dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2786        reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2787        reg &= ~dma_ctrl;
2788        bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2789
2790        reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2791        reg &= ~dma_ctrl;
2792        bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2793
2794        bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2795        udelay(10);
2796        bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2797
2798        return dma_ctrl;
2799}
2800
2801static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2802{
2803        u32 reg;
2804
2805        reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2806        reg |= dma_ctrl;
2807        bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2808
2809        reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2810        reg |= dma_ctrl;
2811        bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2812}
2813
2814/* bcmgenet_hfb_clear
2815 *
2816 * Clear Hardware Filter Block and disable all filtering.
2817 */
2818static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2819{
2820        u32 i;
2821
2822        bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2823        bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2824        bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2825
2826        for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2827                bcmgenet_rdma_writel(priv, 0x0, i);
2828
2829        for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2830                bcmgenet_hfb_reg_writel(priv, 0x0,
2831                                        HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2832
2833        for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2834                        priv->hw_params->hfb_filter_size; i++)
2835                bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2836}
2837
2838static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2839{
2840        if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2841                return;
2842
2843        bcmgenet_hfb_clear(priv);
2844}
2845
2846static void bcmgenet_netif_start(struct net_device *dev)
2847{
2848        struct bcmgenet_priv *priv = netdev_priv(dev);
2849
2850        /* Start the network engine */
2851        bcmgenet_enable_rx_napi(priv);
2852
2853        umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2854
2855        netif_tx_start_all_queues(dev);
2856        bcmgenet_enable_tx_napi(priv);
2857
2858        /* Monitor link interrupts now */
2859        bcmgenet_link_intr_enable(priv);
2860
2861        phy_start(dev->phydev);
2862}
2863
2864static int bcmgenet_open(struct net_device *dev)
2865{
2866        struct bcmgenet_priv *priv = netdev_priv(dev);
2867        unsigned long dma_ctrl;
2868        u32 reg;
2869        int ret;
2870
2871        netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2872
2873        /* Turn on the clock */
2874        clk_prepare_enable(priv->clk);
2875
2876        /* If this is an internal GPHY, power it back on now, before UniMAC is
2877         * brought out of reset as absolutely no UniMAC activity is allowed
2878         */
2879        if (priv->internal_phy)
2880                bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2881
2882        /* take MAC out of reset */
2883        bcmgenet_umac_reset(priv);
2884
2885        init_umac(priv);
2886
2887        /* Make sure we reflect the value of CRC_CMD_FWD */
2888        reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2889        priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2890
2891        bcmgenet_set_hw_addr(priv, dev->dev_addr);
2892
2893        if (priv->internal_phy) {
2894                reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2895                reg |= EXT_ENERGY_DET_MASK;
2896                bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2897        }
2898
2899        /* Disable RX/TX DMA and flush TX queues */
2900        dma_ctrl = bcmgenet_dma_disable(priv);
2901
2902        /* Reinitialize TDMA and RDMA and SW housekeeping */
2903        ret = bcmgenet_init_dma(priv);
2904        if (ret) {
2905                netdev_err(dev, "failed to initialize DMA\n");
2906                goto err_clk_disable;
2907        }
2908
2909        /* Always enable ring 16 - descriptor ring */
2910        bcmgenet_enable_dma(priv, dma_ctrl);
2911
2912        /* HFB init */
2913        bcmgenet_hfb_init(priv);
2914
2915        ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2916                          dev->name, priv);
2917        if (ret < 0) {
2918                netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2919                goto err_fini_dma;
2920        }
2921
2922        ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2923                          dev->name, priv);
2924        if (ret < 0) {
2925                netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2926                goto err_irq0;
2927        }
2928
2929        ret = bcmgenet_mii_probe(dev);
2930        if (ret) {
2931                netdev_err(dev, "failed to connect to PHY\n");
2932                goto err_irq1;
2933        }
2934
2935        bcmgenet_netif_start(dev);
2936
2937        return 0;
2938
2939err_irq1:
2940        free_irq(priv->irq1, priv);
2941err_irq0:
2942        free_irq(priv->irq0, priv);
2943err_fini_dma:
2944        bcmgenet_dma_teardown(priv);
2945        bcmgenet_fini_dma(priv);
2946err_clk_disable:
2947        if (priv->internal_phy)
2948                bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2949        clk_disable_unprepare(priv->clk);
2950        return ret;
2951}
2952
2953static void bcmgenet_netif_stop(struct net_device *dev)
2954{
2955        struct bcmgenet_priv *priv = netdev_priv(dev);
2956
2957        bcmgenet_disable_tx_napi(priv);
2958        netif_tx_stop_all_queues(dev);
2959
2960        /* Disable MAC receive */
2961        umac_enable_set(priv, CMD_RX_EN, false);
2962
2963        bcmgenet_dma_teardown(priv);
2964
2965        /* Disable MAC transmit. TX DMA disabled must be done before this */
2966        umac_enable_set(priv, CMD_TX_EN, false);
2967
2968        phy_stop(dev->phydev);
2969        bcmgenet_disable_rx_napi(priv);
2970        bcmgenet_intr_disable(priv);
2971
2972        /* Wait for pending work items to complete. Since interrupts are
2973         * disabled no new work will be scheduled.
2974         */
2975        cancel_work_sync(&priv->bcmgenet_irq_work);
2976
2977        priv->old_link = -1;
2978        priv->old_speed = -1;
2979        priv->old_duplex = -1;
2980        priv->old_pause = -1;
2981
2982        /* tx reclaim */
2983        bcmgenet_tx_reclaim_all(dev);
2984        bcmgenet_fini_dma(priv);
2985}
2986
2987static int bcmgenet_close(struct net_device *dev)
2988{
2989        struct bcmgenet_priv *priv = netdev_priv(dev);
2990        int ret = 0;
2991
2992        netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2993
2994        bcmgenet_netif_stop(dev);
2995
2996        /* Really kill the PHY state machine and disconnect from it */
2997        phy_disconnect(dev->phydev);
2998
2999        free_irq(priv->irq0, priv);
3000        free_irq(priv->irq1, priv);
3001
3002        if (priv->internal_phy)
3003                ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3004
3005        clk_disable_unprepare(priv->clk);
3006
3007        return ret;
3008}
3009
3010static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3011{
3012        struct bcmgenet_priv *priv = ring->priv;
3013        u32 p_index, c_index, intsts, intmsk;
3014        struct netdev_queue *txq;
3015        unsigned int free_bds;
3016        bool txq_stopped;
3017
3018        if (!netif_msg_tx_err(priv))
3019                return;
3020
3021        txq = netdev_get_tx_queue(priv->dev, ring->queue);
3022
3023        spin_lock(&ring->lock);
3024        if (ring->index == DESC_INDEX) {
3025                intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3026                intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3027        } else {
3028                intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3029                intmsk = 1 << ring->index;
3030        }
3031        c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3032        p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3033        txq_stopped = netif_tx_queue_stopped(txq);
3034        free_bds = ring->free_bds;
3035        spin_unlock(&ring->lock);
3036
3037        netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3038                  "TX queue status: %s, interrupts: %s\n"
3039                  "(sw)free_bds: %d (sw)size: %d\n"
3040                  "(sw)p_index: %d (hw)p_index: %d\n"
3041                  "(sw)c_index: %d (hw)c_index: %d\n"
3042                  "(sw)clean_p: %d (sw)write_p: %d\n"
3043                  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3044                  ring->index, ring->queue,
3045                  txq_stopped ? "stopped" : "active",
3046                  intsts & intmsk ? "enabled" : "disabled",
3047                  free_bds, ring->size,
3048                  ring->prod_index, p_index & DMA_P_INDEX_MASK,
3049                  ring->c_index, c_index & DMA_C_INDEX_MASK,
3050                  ring->clean_ptr, ring->write_ptr,
3051                  ring->cb_ptr, ring->end_ptr);
3052}
3053
3054static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3055{
3056        struct bcmgenet_priv *priv = netdev_priv(dev);
3057        u32 int0_enable = 0;
3058        u32 int1_enable = 0;
3059        unsigned int q;
3060
3061        netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3062
3063        for (q = 0; q < priv->hw_params->tx_queues; q++)
3064                bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3065        bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3066
3067        bcmgenet_tx_reclaim_all(dev);
3068
3069        for (q = 0; q < priv->hw_params->tx_queues; q++)
3070                int1_enable |= (1 << q);
3071
3072        int0_enable = UMAC_IRQ_TXDMA_DONE;
3073
3074        /* Re-enable TX interrupts if disabled */
3075        bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3076        bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3077
3078        netif_trans_update(dev);
3079
3080        dev->stats.tx_errors++;
3081
3082        netif_tx_wake_all_queues(dev);
3083}
3084
3085#define MAX_MC_COUNT    16
3086
3087static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3088                                         unsigned char *addr,
3089                                         int *i,
3090                                         int *mc)
3091{
3092        u32 reg;
3093
3094        bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3095                             UMAC_MDF_ADDR + (*i * 4));
3096        bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3097                             addr[4] << 8 | addr[5],
3098                             UMAC_MDF_ADDR + ((*i + 1) * 4));
3099        reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
3100        reg |= (1 << (MAX_MC_COUNT - *mc));
3101        bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3102        *i += 2;
3103        (*mc)++;
3104}
3105
3106static void bcmgenet_set_rx_mode(struct net_device *dev)
3107{
3108        struct bcmgenet_priv *priv = netdev_priv(dev);
3109        struct netdev_hw_addr *ha;
3110        int i, mc;
3111        u32 reg;
3112
3113        netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3114
3115        /* Promiscuous mode */
3116        reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3117        if (dev->flags & IFF_PROMISC) {
3118                reg |= CMD_PROMISC;
3119                bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3120                bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3121                return;
3122        } else {
3123                reg &= ~CMD_PROMISC;
3124                bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3125        }
3126
3127        /* UniMac doesn't support ALLMULTI */
3128        if (dev->flags & IFF_ALLMULTI) {
3129                netdev_warn(dev, "ALLMULTI is not supported\n");
3130                return;
3131        }
3132
3133        /* update MDF filter */
3134        i = 0;
3135        mc = 0;
3136        /* Broadcast */
3137        bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
3138        /* my own address.*/
3139        bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
3140        /* Unicast list*/
3141        if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
3142                return;
3143
3144        if (!netdev_uc_empty(dev))
3145                netdev_for_each_uc_addr(ha, dev)
3146                        bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3147        /* Multicast */
3148        if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
3149                return;
3150
3151        netdev_for_each_mc_addr(ha, dev)
3152                bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3153}
3154
3155/* Set the hardware MAC address. */
3156static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3157{
3158        struct sockaddr *addr = p;
3159
3160        /* Setting the MAC address at the hardware level is not possible
3161         * without disabling the UniMAC RX/TX enable bits.
3162         */
3163        if (netif_running(dev))
3164                return -EBUSY;
3165
3166        ether_addr_copy(dev->dev_addr, addr->sa_data);
3167
3168        return 0;
3169}
3170
3171static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3172{
3173        struct bcmgenet_priv *priv = netdev_priv(dev);
3174        unsigned long tx_bytes = 0, tx_packets = 0;
3175        unsigned long rx_bytes = 0, rx_packets = 0;
3176        unsigned long rx_errors = 0, rx_dropped = 0;
3177        struct bcmgenet_tx_ring *tx_ring;
3178        struct bcmgenet_rx_ring *rx_ring;
3179        unsigned int q;
3180
3181        for (q = 0; q < priv->hw_params->tx_queues; q++) {
3182                tx_ring = &priv->tx_rings[q];
3183                tx_bytes += tx_ring->bytes;
3184                tx_packets += tx_ring->packets;
3185        }
3186        tx_ring = &priv->tx_rings[DESC_INDEX];
3187        tx_bytes += tx_ring->bytes;
3188        tx_packets += tx_ring->packets;
3189
3190        for (q = 0; q < priv->hw_params->rx_queues; q++) {
3191                rx_ring = &priv->rx_rings[q];
3192
3193                rx_bytes += rx_ring->bytes;
3194                rx_packets += rx_ring->packets;
3195                rx_errors += rx_ring->errors;
3196                rx_dropped += rx_ring->dropped;
3197        }
3198        rx_ring = &priv->rx_rings[DESC_INDEX];
3199        rx_bytes += rx_ring->bytes;
3200        rx_packets += rx_ring->packets;
3201        rx_errors += rx_ring->errors;
3202        rx_dropped += rx_ring->dropped;
3203
3204        dev->stats.tx_bytes = tx_bytes;
3205        dev->stats.tx_packets = tx_packets;
3206        dev->stats.rx_bytes = rx_bytes;
3207        dev->stats.rx_packets = rx_packets;
3208        dev->stats.rx_errors = rx_errors;
3209        dev->stats.rx_missed_errors = rx_errors;
3210        return &dev->stats;
3211}
3212
3213static const struct net_device_ops bcmgenet_netdev_ops = {
3214        .ndo_open               = bcmgenet_open,
3215        .ndo_stop               = bcmgenet_close,
3216        .ndo_start_xmit         = bcmgenet_xmit,
3217        .ndo_tx_timeout         = bcmgenet_timeout,
3218        .ndo_set_rx_mode        = bcmgenet_set_rx_mode,
3219        .ndo_set_mac_address    = bcmgenet_set_mac_addr,
3220        .ndo_do_ioctl           = bcmgenet_ioctl,
3221        .ndo_set_features       = bcmgenet_set_features,
3222#ifdef CONFIG_NET_POLL_CONTROLLER
3223        .ndo_poll_controller    = bcmgenet_poll_controller,
3224#endif
3225        .ndo_get_stats          = bcmgenet_get_stats,
3226};
3227
3228/* Array of GENET hardware parameters/characteristics */
3229static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3230        [GENET_V1] = {
3231                .tx_queues = 0,
3232                .tx_bds_per_q = 0,
3233                .rx_queues = 0,
3234                .rx_bds_per_q = 0,
3235                .bp_in_en_shift = 16,
3236                .bp_in_mask = 0xffff,
3237                .hfb_filter_cnt = 16,
3238                .qtag_mask = 0x1F,
3239                .hfb_offset = 0x1000,
3240                .rdma_offset = 0x2000,
3241                .tdma_offset = 0x3000,
3242                .words_per_bd = 2,
3243        },
3244        [GENET_V2] = {
3245                .tx_queues = 4,
3246                .tx_bds_per_q = 32,
3247                .rx_queues = 0,
3248                .rx_bds_per_q = 0,
3249                .bp_in_en_shift = 16,
3250                .bp_in_mask = 0xffff,
3251                .hfb_filter_cnt = 16,
3252                .qtag_mask = 0x1F,
3253                .tbuf_offset = 0x0600,
3254                .hfb_offset = 0x1000,
3255                .hfb_reg_offset = 0x2000,
3256                .rdma_offset = 0x3000,
3257                .tdma_offset = 0x4000,
3258                .words_per_bd = 2,
3259                .flags = GENET_HAS_EXT,
3260        },
3261        [GENET_V3] = {
3262                .tx_queues = 4,
3263                .tx_bds_per_q = 32,
3264                .rx_queues = 0,
3265                .rx_bds_per_q = 0,
3266                .bp_in_en_shift = 17,
3267                .bp_in_mask = 0x1ffff,
3268                .hfb_filter_cnt = 48,
3269                .hfb_filter_size = 128,
3270                .qtag_mask = 0x3F,
3271                .tbuf_offset = 0x0600,
3272                .hfb_offset = 0x8000,
3273                .hfb_reg_offset = 0xfc00,
3274                .rdma_offset = 0x10000,
3275                .tdma_offset = 0x11000,
3276                .words_per_bd = 2,
3277                .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3278                         GENET_HAS_MOCA_LINK_DET,
3279        },
3280        [GENET_V4] = {
3281                .tx_queues = 4,
3282                .tx_bds_per_q = 32,
3283                .rx_queues = 0,
3284                .rx_bds_per_q = 0,
3285                .bp_in_en_shift = 17,
3286                .bp_in_mask = 0x1ffff,
3287                .hfb_filter_cnt = 48,
3288                .hfb_filter_size = 128,
3289                .qtag_mask = 0x3F,
3290                .tbuf_offset = 0x0600,
3291                .hfb_offset = 0x8000,
3292                .hfb_reg_offset = 0xfc00,
3293                .rdma_offset = 0x2000,
3294                .tdma_offset = 0x4000,
3295                .words_per_bd = 3,
3296                .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3297                         GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3298        },
3299        [GENET_V5] = {
3300                .tx_queues = 4,
3301                .tx_bds_per_q = 32,
3302                .rx_queues = 0,
3303                .rx_bds_per_q = 0,
3304                .bp_in_en_shift = 17,
3305                .bp_in_mask = 0x1ffff,
3306                .hfb_filter_cnt = 48,
3307                .hfb_filter_size = 128,
3308                .qtag_mask = 0x3F,
3309                .tbuf_offset = 0x0600,
3310                .hfb_offset = 0x8000,
3311                .hfb_reg_offset = 0xfc00,
3312                .rdma_offset = 0x2000,
3313                .tdma_offset = 0x4000,
3314                .words_per_bd = 3,
3315                .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3316                         GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3317        },
3318};
3319
3320/* Infer hardware parameters from the detected GENET version */
3321static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3322{
3323        struct bcmgenet_hw_params *params;
3324        u32 reg;
3325        u8 major;
3326        u16 gphy_rev;
3327
3328        if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3329                bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3330                genet_dma_ring_regs = genet_dma_ring_regs_v4;
3331                priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3332        } else if (GENET_IS_V3(priv)) {
3333                bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3334                genet_dma_ring_regs = genet_dma_ring_regs_v123;
3335                priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3336        } else if (GENET_IS_V2(priv)) {
3337                bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3338                genet_dma_ring_regs = genet_dma_ring_regs_v123;
3339                priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3340        } else if (GENET_IS_V1(priv)) {
3341                bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3342                genet_dma_ring_regs = genet_dma_ring_regs_v123;
3343                priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3344        }
3345
3346        /* enum genet_version starts at 1 */
3347        priv->hw_params = &bcmgenet_hw_params[priv->version];
3348        params = priv->hw_params;
3349
3350        /* Read GENET HW version */
3351        reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3352        major = (reg >> 24 & 0x0f);
3353        if (major == 6)
3354                major = 5;
3355        else if (major == 5)
3356                major = 4;
3357        else if (major == 0)
3358                major = 1;
3359        if (major != priv->version) {
3360                dev_err(&priv->pdev->dev,
3361                        "GENET version mismatch, got: %d, configured for: %d\n",
3362                        major, priv->version);
3363        }
3364
3365        /* Print the GENET core version */
3366        dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3367                 major, (reg >> 16) & 0x0f, reg & 0xffff);
3368
3369        /* Store the integrated PHY revision for the MDIO probing function
3370         * to pass this information to the PHY driver. The PHY driver expects
3371         * to find the PHY major revision in bits 15:8 while the GENET register
3372         * stores that information in bits 7:0, account for that.
3373         *
3374         * On newer chips, starting with PHY revision G0, a new scheme is
3375         * deployed similar to the Starfighter 2 switch with GPHY major
3376         * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3377         * is reserved as well as special value 0x01ff, we have a small
3378         * heuristic to check for the new GPHY revision and re-arrange things
3379         * so the GPHY driver is happy.
3380         */
3381        gphy_rev = reg & 0xffff;
3382
3383        if (GENET_IS_V5(priv)) {
3384                /* The EPHY revision should come from the MDIO registers of
3385                 * the PHY not from GENET.
3386                 */
3387                if (gphy_rev != 0) {
3388                        pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3389                                gphy_rev);
3390                }
3391        /* This is reserved so should require special treatment */
3392        } else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3393                pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3394                return;
3395        /* This is the good old scheme, just GPHY major, no minor nor patch */
3396        } else if ((gphy_rev & 0xf0) != 0) {
3397                priv->gphy_rev = gphy_rev << 8;
3398        /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3399        } else if ((gphy_rev & 0xff00) != 0) {
3400                priv->gphy_rev = gphy_rev;
3401        }
3402
3403#ifdef CONFIG_PHYS_ADDR_T_64BIT
3404        if (!(params->flags & GENET_HAS_40BITS))
3405                pr_warn("GENET does not support 40-bits PA\n");
3406#endif
3407
3408        pr_debug("Configuration for version: %d\n"
3409                "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3410                "BP << en: %2d, BP msk: 0x%05x\n"
3411                "HFB count: %2d, QTAQ msk: 0x%05x\n"
3412                "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3413                "RDMA: 0x%05x, TDMA: 0x%05x\n"
3414                "Words/BD: %d\n",
3415                priv->version,
3416                params->tx_queues, params->tx_bds_per_q,
3417                params->rx_queues, params->rx_bds_per_q,
3418                params->bp_in_en_shift, params->bp_in_mask,
3419                params->hfb_filter_cnt, params->qtag_mask,
3420                params->tbuf_offset, params->hfb_offset,
3421                params->hfb_reg_offset,
3422                params->rdma_offset, params->tdma_offset,
3423                params->words_per_bd);
3424}
3425
3426static const struct of_device_id bcmgenet_match[] = {
3427        { .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3428        { .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3429        { .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3430        { .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3431        { .compatible = "brcm,genet-v5", .data = (void *)GENET_V5 },
3432        { },
3433};
3434MODULE_DEVICE_TABLE(of, bcmgenet_match);
3435
3436static int bcmgenet_probe(struct platform_device *pdev)
3437{
3438        struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3439        struct device_node *dn = pdev->dev.of_node;
3440        const struct of_device_id *of_id = NULL;
3441        struct bcmgenet_priv *priv;
3442        struct net_device *dev;
3443        const void *macaddr;
3444        struct resource *r;
3445        unsigned int i;
3446        int err = -EIO;
3447        const char *phy_mode_str;
3448
3449        /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3450        dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3451                                 GENET_MAX_MQ_CNT + 1);
3452        if (!dev) {
3453                dev_err(&pdev->dev, "can't allocate net device\n");
3454                return -ENOMEM;
3455        }
3456
3457        if (dn) {
3458                of_id = of_match_node(bcmgenet_match, dn);
3459                if (!of_id)
3460                        return -EINVAL;
3461        }
3462
3463        priv = netdev_priv(dev);
3464        priv->irq0 = platform_get_irq(pdev, 0);
3465        priv->irq1 = platform_get_irq(pdev, 1);
3466        priv->wol_irq = platform_get_irq(pdev, 2);
3467        if (!priv->irq0 || !priv->irq1) {
3468                dev_err(&pdev->dev, "can't find IRQs\n");
3469                err = -EINVAL;
3470                goto err;
3471        }
3472
3473        if (dn) {
3474                macaddr = of_get_mac_address(dn);
3475                if (!macaddr) {
3476                        dev_err(&pdev->dev, "can't find MAC address\n");
3477                        err = -EINVAL;
3478                        goto err;
3479                }
3480        } else {
3481                macaddr = pd->mac_address;
3482        }
3483
3484        r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3485        priv->base = devm_ioremap_resource(&pdev->dev, r);
3486        if (IS_ERR(priv->base)) {
3487                err = PTR_ERR(priv->base);
3488                goto err;
3489        }
3490
3491        spin_lock_init(&priv->lock);
3492
3493        SET_NETDEV_DEV(dev, &pdev->dev);
3494        dev_set_drvdata(&pdev->dev, dev);
3495        ether_addr_copy(dev->dev_addr, macaddr);
3496        dev->watchdog_timeo = 2 * HZ;
3497        dev->ethtool_ops = &bcmgenet_ethtool_ops;
3498        dev->netdev_ops = &bcmgenet_netdev_ops;
3499
3500        priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3501
3502        /* Set hardware features */
3503        dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3504                NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3505
3506        /* Request the WOL interrupt and advertise suspend if available */
3507        priv->wol_irq_disabled = true;
3508        err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3509                               dev->name, priv);
3510        if (!err)
3511                device_set_wakeup_capable(&pdev->dev, 1);
3512
3513        /* Set the needed headroom to account for any possible
3514         * features enabling/disabling at runtime
3515         */
3516        dev->needed_headroom += 64;
3517
3518        netdev_boot_setup_check(dev);
3519
3520        priv->dev = dev;
3521        priv->pdev = pdev;
3522        if (of_id)
3523                priv->version = (enum bcmgenet_version)of_id->data;
3524        else
3525                priv->version = pd->genet_version;
3526
3527        priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3528        if (IS_ERR(priv->clk)) {
3529                dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3530                priv->clk = NULL;
3531        }
3532
3533        clk_prepare_enable(priv->clk);
3534
3535        bcmgenet_set_hw_params(priv);
3536
3537        /* Mii wait queue */
3538        init_waitqueue_head(&priv->wq);
3539        /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3540        priv->rx_buf_len = RX_BUF_LENGTH;
3541        INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3542
3543        priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3544        if (IS_ERR(priv->clk_wol)) {
3545                dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3546                priv->clk_wol = NULL;
3547        }
3548
3549        priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3550        if (IS_ERR(priv->clk_eee)) {
3551                dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3552                priv->clk_eee = NULL;
3553        }
3554
3555        /* If this is an internal GPHY, power it on now, before UniMAC is
3556         * brought out of reset as absolutely no UniMAC activity is allowed
3557         */
3558        if (dn && !of_property_read_string(dn, "phy-mode", &phy_mode_str) &&
3559            !strcasecmp(phy_mode_str, "internal"))
3560                bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3561
3562        reset_umac(priv);
3563
3564        err = bcmgenet_mii_init(dev);
3565        if (err)
3566                goto err_clk_disable;
3567
3568        /* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3569         * just the ring 16 descriptor based TX
3570         */
3571        netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3572        netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3573
3574        /* Set default coalescing parameters */
3575        for (i = 0; i < priv->hw_params->rx_queues; i++)
3576                priv->rx_rings[i].rx_max_coalesced_frames = 1;
3577        priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
3578
3579        /* libphy will determine the link state */
3580        netif_carrier_off(dev);
3581
3582        /* Turn off the main clock, WOL clock is handled separately */
3583        clk_disable_unprepare(priv->clk);
3584
3585        err = register_netdev(dev);
3586        if (err)
3587                goto err;
3588
3589        return err;
3590
3591err_clk_disable:
3592        clk_disable_unprepare(priv->clk);
3593err:
3594        free_netdev(dev);
3595        return err;
3596}
3597
3598static int bcmgenet_remove(struct platform_device *pdev)
3599{
3600        struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3601
3602        dev_set_drvdata(&pdev->dev, NULL);
3603        unregister_netdev(priv->dev);
3604        bcmgenet_mii_exit(priv->dev);
3605        free_netdev(priv->dev);
3606
3607        return 0;
3608}
3609
3610#ifdef CONFIG_PM_SLEEP
3611static int bcmgenet_suspend(struct device *d)
3612{
3613        struct net_device *dev = dev_get_drvdata(d);
3614        struct bcmgenet_priv *priv = netdev_priv(dev);
3615        int ret = 0;
3616
3617        if (!netif_running(dev))
3618                return 0;
3619
3620        bcmgenet_netif_stop(dev);
3621
3622        if (!device_may_wakeup(d))
3623                phy_suspend(dev->phydev);
3624
3625        netif_device_detach(dev);
3626
3627        /* Prepare the device for Wake-on-LAN and switch to the slow clock */
3628        if (device_may_wakeup(d) && priv->wolopts) {
3629                ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3630                clk_prepare_enable(priv->clk_wol);
3631        } else if (priv->internal_phy) {
3632                ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3633        }
3634
3635        /* Turn off the clocks */
3636        clk_disable_unprepare(priv->clk);
3637
3638        return ret;
3639}
3640
3641static int bcmgenet_resume(struct device *d)
3642{
3643        struct net_device *dev = dev_get_drvdata(d);
3644        struct bcmgenet_priv *priv = netdev_priv(dev);
3645        unsigned long dma_ctrl;
3646        int ret;
3647        u32 reg;
3648
3649        if (!netif_running(dev))
3650                return 0;
3651
3652        /* Turn on the clock */
3653        ret = clk_prepare_enable(priv->clk);
3654        if (ret)
3655                return ret;
3656
3657        /* If this is an internal GPHY, power it back on now, before UniMAC is
3658         * brought out of reset as absolutely no UniMAC activity is allowed
3659         */
3660        if (priv->internal_phy)
3661                bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3662
3663        bcmgenet_umac_reset(priv);
3664
3665        init_umac(priv);
3666
3667        /* From WOL-enabled suspend, switch to regular clock */
3668        if (priv->wolopts)
3669                clk_disable_unprepare(priv->clk_wol);
3670
3671        phy_init_hw(dev->phydev);
3672
3673        /* Speed settings must be restored */
3674        bcmgenet_mii_config(priv->dev, false);
3675
3676        bcmgenet_set_hw_addr(priv, dev->dev_addr);
3677
3678        if (priv->internal_phy) {
3679                reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3680                reg |= EXT_ENERGY_DET_MASK;
3681                bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3682        }
3683
3684        if (priv->wolopts)
3685                bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3686
3687        /* Disable RX/TX DMA and flush TX queues */
3688        dma_ctrl = bcmgenet_dma_disable(priv);
3689
3690        /* Reinitialize TDMA and RDMA and SW housekeeping */
3691        ret = bcmgenet_init_dma(priv);
3692        if (ret) {
3693                netdev_err(dev, "failed to initialize DMA\n");
3694                goto out_clk_disable;
3695        }
3696
3697        /* Always enable ring 16 - descriptor ring */
3698        bcmgenet_enable_dma(priv, dma_ctrl);
3699
3700        netif_device_attach(dev);
3701
3702        if (!device_may_wakeup(d))
3703                phy_resume(dev->phydev);
3704
3705        if (priv->eee.eee_enabled)
3706                bcmgenet_eee_enable_set(dev, true);
3707
3708        bcmgenet_netif_start(dev);
3709
3710        return 0;
3711
3712out_clk_disable:
3713        if (priv->internal_phy)
3714                bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3715        clk_disable_unprepare(priv->clk);
3716        return ret;
3717}
3718#endif /* CONFIG_PM_SLEEP */
3719
3720static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3721
3722static struct platform_driver bcmgenet_driver = {
3723        .probe  = bcmgenet_probe,
3724        .remove = bcmgenet_remove,
3725        .driver = {
3726                .name   = "bcmgenet",
3727                .of_match_table = bcmgenet_match,
3728                .pm     = &bcmgenet_pm_ops,
3729        },
3730};
3731module_platform_driver(bcmgenet_driver);
3732
3733MODULE_AUTHOR("Broadcom Corporation");
3734MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3735MODULE_ALIAS("platform:bcmgenet");
3736MODULE_LICENSE("GPL");
3737