linux/drivers/of/fdt.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Functions for working with the Flattened Device Tree data format
   4 *
   5 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
   6 * benh@kernel.crashing.org
   7 */
   8
   9#define pr_fmt(fmt)     "OF: fdt: " fmt
  10
  11#include <linux/crc32.h>
  12#include <linux/kernel.h>
  13#include <linux/initrd.h>
  14#include <linux/memblock.h>
  15#include <linux/mutex.h>
  16#include <linux/of.h>
  17#include <linux/of_fdt.h>
  18#include <linux/of_reserved_mem.h>
  19#include <linux/sizes.h>
  20#include <linux/string.h>
  21#include <linux/errno.h>
  22#include <linux/slab.h>
  23#include <linux/libfdt.h>
  24#include <linux/debugfs.h>
  25#include <linux/serial_core.h>
  26#include <linux/sysfs.h>
  27
  28#include <asm/setup.h>  /* for COMMAND_LINE_SIZE */
  29#include <asm/page.h>
  30
  31#include "of_private.h"
  32
  33/*
  34 * of_fdt_limit_memory - limit the number of regions in the /memory node
  35 * @limit: maximum entries
  36 *
  37 * Adjust the flattened device tree to have at most 'limit' number of
  38 * memory entries in the /memory node. This function may be called
  39 * any time after initial_boot_param is set.
  40 */
  41void of_fdt_limit_memory(int limit)
  42{
  43        int memory;
  44        int len;
  45        const void *val;
  46        int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
  47        int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
  48        const __be32 *addr_prop;
  49        const __be32 *size_prop;
  50        int root_offset;
  51        int cell_size;
  52
  53        root_offset = fdt_path_offset(initial_boot_params, "/");
  54        if (root_offset < 0)
  55                return;
  56
  57        addr_prop = fdt_getprop(initial_boot_params, root_offset,
  58                                "#address-cells", NULL);
  59        if (addr_prop)
  60                nr_address_cells = fdt32_to_cpu(*addr_prop);
  61
  62        size_prop = fdt_getprop(initial_boot_params, root_offset,
  63                                "#size-cells", NULL);
  64        if (size_prop)
  65                nr_size_cells = fdt32_to_cpu(*size_prop);
  66
  67        cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
  68
  69        memory = fdt_path_offset(initial_boot_params, "/memory");
  70        if (memory > 0) {
  71                val = fdt_getprop(initial_boot_params, memory, "reg", &len);
  72                if (len > limit*cell_size) {
  73                        len = limit*cell_size;
  74                        pr_debug("Limiting number of entries to %d\n", limit);
  75                        fdt_setprop(initial_boot_params, memory, "reg", val,
  76                                        len);
  77                }
  78        }
  79}
  80
  81/**
  82 * of_fdt_is_compatible - Return true if given node from the given blob has
  83 * compat in its compatible list
  84 * @blob: A device tree blob
  85 * @node: node to test
  86 * @compat: compatible string to compare with compatible list.
  87 *
  88 * On match, returns a non-zero value with smaller values returned for more
  89 * specific compatible values.
  90 */
  91static int of_fdt_is_compatible(const void *blob,
  92                      unsigned long node, const char *compat)
  93{
  94        const char *cp;
  95        int cplen;
  96        unsigned long l, score = 0;
  97
  98        cp = fdt_getprop(blob, node, "compatible", &cplen);
  99        if (cp == NULL)
 100                return 0;
 101        while (cplen > 0) {
 102                score++;
 103                if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
 104                        return score;
 105                l = strlen(cp) + 1;
 106                cp += l;
 107                cplen -= l;
 108        }
 109
 110        return 0;
 111}
 112
 113/**
 114 * of_fdt_is_big_endian - Return true if given node needs BE MMIO accesses
 115 * @blob: A device tree blob
 116 * @node: node to test
 117 *
 118 * Returns true if the node has a "big-endian" property, or if the kernel
 119 * was compiled for BE *and* the node has a "native-endian" property.
 120 * Returns false otherwise.
 121 */
 122bool of_fdt_is_big_endian(const void *blob, unsigned long node)
 123{
 124        if (fdt_getprop(blob, node, "big-endian", NULL))
 125                return true;
 126        if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
 127            fdt_getprop(blob, node, "native-endian", NULL))
 128                return true;
 129        return false;
 130}
 131
 132static bool of_fdt_device_is_available(const void *blob, unsigned long node)
 133{
 134        const char *status = fdt_getprop(blob, node, "status", NULL);
 135
 136        if (!status)
 137                return true;
 138
 139        if (!strcmp(status, "ok") || !strcmp(status, "okay"))
 140                return true;
 141
 142        return false;
 143}
 144
 145/**
 146 * of_fdt_match - Return true if node matches a list of compatible values
 147 */
 148int of_fdt_match(const void *blob, unsigned long node,
 149                 const char *const *compat)
 150{
 151        unsigned int tmp, score = 0;
 152
 153        if (!compat)
 154                return 0;
 155
 156        while (*compat) {
 157                tmp = of_fdt_is_compatible(blob, node, *compat);
 158                if (tmp && (score == 0 || (tmp < score)))
 159                        score = tmp;
 160                compat++;
 161        }
 162
 163        return score;
 164}
 165
 166static void *unflatten_dt_alloc(void **mem, unsigned long size,
 167                                       unsigned long align)
 168{
 169        void *res;
 170
 171        *mem = PTR_ALIGN(*mem, align);
 172        res = *mem;
 173        *mem += size;
 174
 175        return res;
 176}
 177
 178static void populate_properties(const void *blob,
 179                                int offset,
 180                                void **mem,
 181                                struct device_node *np,
 182                                const char *nodename,
 183                                bool dryrun)
 184{
 185        struct property *pp, **pprev = NULL;
 186        int cur;
 187        bool has_name = false;
 188
 189        pprev = &np->properties;
 190        for (cur = fdt_first_property_offset(blob, offset);
 191             cur >= 0;
 192             cur = fdt_next_property_offset(blob, cur)) {
 193                const __be32 *val;
 194                const char *pname;
 195                u32 sz;
 196
 197                val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
 198                if (!val) {
 199                        pr_warn("Cannot locate property at 0x%x\n", cur);
 200                        continue;
 201                }
 202
 203                if (!pname) {
 204                        pr_warn("Cannot find property name at 0x%x\n", cur);
 205                        continue;
 206                }
 207
 208                if (!strcmp(pname, "name"))
 209                        has_name = true;
 210
 211                pp = unflatten_dt_alloc(mem, sizeof(struct property),
 212                                        __alignof__(struct property));
 213                if (dryrun)
 214                        continue;
 215
 216                /* We accept flattened tree phandles either in
 217                 * ePAPR-style "phandle" properties, or the
 218                 * legacy "linux,phandle" properties.  If both
 219                 * appear and have different values, things
 220                 * will get weird. Don't do that.
 221                 */
 222                if (!strcmp(pname, "phandle") ||
 223                    !strcmp(pname, "linux,phandle")) {
 224                        if (!np->phandle)
 225                                np->phandle = be32_to_cpup(val);
 226                }
 227
 228                /* And we process the "ibm,phandle" property
 229                 * used in pSeries dynamic device tree
 230                 * stuff
 231                 */
 232                if (!strcmp(pname, "ibm,phandle"))
 233                        np->phandle = be32_to_cpup(val);
 234
 235                pp->name   = (char *)pname;
 236                pp->length = sz;
 237                pp->value  = (__be32 *)val;
 238                *pprev     = pp;
 239                pprev      = &pp->next;
 240        }
 241
 242        /* With version 0x10 we may not have the name property,
 243         * recreate it here from the unit name if absent
 244         */
 245        if (!has_name) {
 246                const char *p = nodename, *ps = p, *pa = NULL;
 247                int len;
 248
 249                while (*p) {
 250                        if ((*p) == '@')
 251                                pa = p;
 252                        else if ((*p) == '/')
 253                                ps = p + 1;
 254                        p++;
 255                }
 256
 257                if (pa < ps)
 258                        pa = p;
 259                len = (pa - ps) + 1;
 260                pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
 261                                        __alignof__(struct property));
 262                if (!dryrun) {
 263                        pp->name   = "name";
 264                        pp->length = len;
 265                        pp->value  = pp + 1;
 266                        *pprev     = pp;
 267                        pprev      = &pp->next;
 268                        memcpy(pp->value, ps, len - 1);
 269                        ((char *)pp->value)[len - 1] = 0;
 270                        pr_debug("fixed up name for %s -> %s\n",
 271                                 nodename, (char *)pp->value);
 272                }
 273        }
 274
 275        if (!dryrun)
 276                *pprev = NULL;
 277}
 278
 279static bool populate_node(const void *blob,
 280                          int offset,
 281                          void **mem,
 282                          struct device_node *dad,
 283                          struct device_node **pnp,
 284                          bool dryrun)
 285{
 286        struct device_node *np;
 287        const char *pathp;
 288        unsigned int l, allocl;
 289
 290        pathp = fdt_get_name(blob, offset, &l);
 291        if (!pathp) {
 292                *pnp = NULL;
 293                return false;
 294        }
 295
 296        allocl = ++l;
 297
 298        np = unflatten_dt_alloc(mem, sizeof(struct device_node) + allocl,
 299                                __alignof__(struct device_node));
 300        if (!dryrun) {
 301                char *fn;
 302                of_node_init(np);
 303                np->full_name = fn = ((char *)np) + sizeof(*np);
 304
 305                memcpy(fn, pathp, l);
 306
 307                if (dad != NULL) {
 308                        np->parent = dad;
 309                        np->sibling = dad->child;
 310                        dad->child = np;
 311                }
 312        }
 313
 314        populate_properties(blob, offset, mem, np, pathp, dryrun);
 315        if (!dryrun) {
 316                np->name = of_get_property(np, "name", NULL);
 317                np->type = of_get_property(np, "device_type", NULL);
 318
 319                if (!np->name)
 320                        np->name = "<NULL>";
 321                if (!np->type)
 322                        np->type = "<NULL>";
 323        }
 324
 325        *pnp = np;
 326        return true;
 327}
 328
 329static void reverse_nodes(struct device_node *parent)
 330{
 331        struct device_node *child, *next;
 332
 333        /* In-depth first */
 334        child = parent->child;
 335        while (child) {
 336                reverse_nodes(child);
 337
 338                child = child->sibling;
 339        }
 340
 341        /* Reverse the nodes in the child list */
 342        child = parent->child;
 343        parent->child = NULL;
 344        while (child) {
 345                next = child->sibling;
 346
 347                child->sibling = parent->child;
 348                parent->child = child;
 349                child = next;
 350        }
 351}
 352
 353/**
 354 * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
 355 * @blob: The parent device tree blob
 356 * @mem: Memory chunk to use for allocating device nodes and properties
 357 * @dad: Parent struct device_node
 358 * @nodepp: The device_node tree created by the call
 359 *
 360 * It returns the size of unflattened device tree or error code
 361 */
 362static int unflatten_dt_nodes(const void *blob,
 363                              void *mem,
 364                              struct device_node *dad,
 365                              struct device_node **nodepp)
 366{
 367        struct device_node *root;
 368        int offset = 0, depth = 0, initial_depth = 0;
 369#define FDT_MAX_DEPTH   64
 370        struct device_node *nps[FDT_MAX_DEPTH];
 371        void *base = mem;
 372        bool dryrun = !base;
 373
 374        if (nodepp)
 375                *nodepp = NULL;
 376
 377        /*
 378         * We're unflattening device sub-tree if @dad is valid. There are
 379         * possibly multiple nodes in the first level of depth. We need
 380         * set @depth to 1 to make fdt_next_node() happy as it bails
 381         * immediately when negative @depth is found. Otherwise, the device
 382         * nodes except the first one won't be unflattened successfully.
 383         */
 384        if (dad)
 385                depth = initial_depth = 1;
 386
 387        root = dad;
 388        nps[depth] = dad;
 389
 390        for (offset = 0;
 391             offset >= 0 && depth >= initial_depth;
 392             offset = fdt_next_node(blob, offset, &depth)) {
 393                if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH))
 394                        continue;
 395
 396                if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
 397                    !of_fdt_device_is_available(blob, offset))
 398                        continue;
 399
 400                if (!populate_node(blob, offset, &mem, nps[depth],
 401                                   &nps[depth+1], dryrun))
 402                        return mem - base;
 403
 404                if (!dryrun && nodepp && !*nodepp)
 405                        *nodepp = nps[depth+1];
 406                if (!dryrun && !root)
 407                        root = nps[depth+1];
 408        }
 409
 410        if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
 411                pr_err("Error %d processing FDT\n", offset);
 412                return -EINVAL;
 413        }
 414
 415        /*
 416         * Reverse the child list. Some drivers assumes node order matches .dts
 417         * node order
 418         */
 419        if (!dryrun)
 420                reverse_nodes(root);
 421
 422        return mem - base;
 423}
 424
 425/**
 426 * __unflatten_device_tree - create tree of device_nodes from flat blob
 427 *
 428 * unflattens a device-tree, creating the
 429 * tree of struct device_node. It also fills the "name" and "type"
 430 * pointers of the nodes so the normal device-tree walking functions
 431 * can be used.
 432 * @blob: The blob to expand
 433 * @dad: Parent device node
 434 * @mynodes: The device_node tree created by the call
 435 * @dt_alloc: An allocator that provides a virtual address to memory
 436 * for the resulting tree
 437 * @detached: if true set OF_DETACHED on @mynodes
 438 *
 439 * Returns NULL on failure or the memory chunk containing the unflattened
 440 * device tree on success.
 441 */
 442void *__unflatten_device_tree(const void *blob,
 443                              struct device_node *dad,
 444                              struct device_node **mynodes,
 445                              void *(*dt_alloc)(u64 size, u64 align),
 446                              bool detached)
 447{
 448        int size;
 449        void *mem;
 450
 451        pr_debug(" -> unflatten_device_tree()\n");
 452
 453        if (!blob) {
 454                pr_debug("No device tree pointer\n");
 455                return NULL;
 456        }
 457
 458        pr_debug("Unflattening device tree:\n");
 459        pr_debug("magic: %08x\n", fdt_magic(blob));
 460        pr_debug("size: %08x\n", fdt_totalsize(blob));
 461        pr_debug("version: %08x\n", fdt_version(blob));
 462
 463        if (fdt_check_header(blob)) {
 464                pr_err("Invalid device tree blob header\n");
 465                return NULL;
 466        }
 467
 468        /* First pass, scan for size */
 469        size = unflatten_dt_nodes(blob, NULL, dad, NULL);
 470        if (size < 0)
 471                return NULL;
 472
 473        size = ALIGN(size, 4);
 474        pr_debug("  size is %d, allocating...\n", size);
 475
 476        /* Allocate memory for the expanded device tree */
 477        mem = dt_alloc(size + 4, __alignof__(struct device_node));
 478        if (!mem)
 479                return NULL;
 480
 481        memset(mem, 0, size);
 482
 483        *(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
 484
 485        pr_debug("  unflattening %p...\n", mem);
 486
 487        /* Second pass, do actual unflattening */
 488        unflatten_dt_nodes(blob, mem, dad, mynodes);
 489        if (be32_to_cpup(mem + size) != 0xdeadbeef)
 490                pr_warning("End of tree marker overwritten: %08x\n",
 491                           be32_to_cpup(mem + size));
 492
 493        if (detached && mynodes) {
 494                of_node_set_flag(*mynodes, OF_DETACHED);
 495                pr_debug("unflattened tree is detached\n");
 496        }
 497
 498        pr_debug(" <- unflatten_device_tree()\n");
 499        return mem;
 500}
 501
 502static void *kernel_tree_alloc(u64 size, u64 align)
 503{
 504        return kzalloc(size, GFP_KERNEL);
 505}
 506
 507static DEFINE_MUTEX(of_fdt_unflatten_mutex);
 508
 509/**
 510 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
 511 * @blob: Flat device tree blob
 512 * @dad: Parent device node
 513 * @mynodes: The device tree created by the call
 514 *
 515 * unflattens the device-tree passed by the firmware, creating the
 516 * tree of struct device_node. It also fills the "name" and "type"
 517 * pointers of the nodes so the normal device-tree walking functions
 518 * can be used.
 519 *
 520 * Returns NULL on failure or the memory chunk containing the unflattened
 521 * device tree on success.
 522 */
 523void *of_fdt_unflatten_tree(const unsigned long *blob,
 524                            struct device_node *dad,
 525                            struct device_node **mynodes)
 526{
 527        void *mem;
 528
 529        mutex_lock(&of_fdt_unflatten_mutex);
 530        mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
 531                                      true);
 532        mutex_unlock(&of_fdt_unflatten_mutex);
 533
 534        return mem;
 535}
 536EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
 537
 538/* Everything below here references initial_boot_params directly. */
 539int __initdata dt_root_addr_cells;
 540int __initdata dt_root_size_cells;
 541
 542void *initial_boot_params;
 543
 544#ifdef CONFIG_OF_EARLY_FLATTREE
 545
 546static u32 of_fdt_crc32;
 547
 548/**
 549 * res_mem_reserve_reg() - reserve all memory described in 'reg' property
 550 */
 551static int __init __reserved_mem_reserve_reg(unsigned long node,
 552                                             const char *uname)
 553{
 554        int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
 555        phys_addr_t base, size;
 556        int len;
 557        const __be32 *prop;
 558        int nomap, first = 1;
 559
 560        prop = of_get_flat_dt_prop(node, "reg", &len);
 561        if (!prop)
 562                return -ENOENT;
 563
 564        if (len && len % t_len != 0) {
 565                pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
 566                       uname);
 567                return -EINVAL;
 568        }
 569
 570        nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
 571
 572        while (len >= t_len) {
 573                base = dt_mem_next_cell(dt_root_addr_cells, &prop);
 574                size = dt_mem_next_cell(dt_root_size_cells, &prop);
 575
 576                if (size &&
 577                    early_init_dt_reserve_memory_arch(base, size, nomap) == 0)
 578                        pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %ld MiB\n",
 579                                uname, &base, (unsigned long)size / SZ_1M);
 580                else
 581                        pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %ld MiB\n",
 582                                uname, &base, (unsigned long)size / SZ_1M);
 583
 584                len -= t_len;
 585                if (first) {
 586                        fdt_reserved_mem_save_node(node, uname, base, size);
 587                        first = 0;
 588                }
 589        }
 590        return 0;
 591}
 592
 593/**
 594 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
 595 * in /reserved-memory matches the values supported by the current implementation,
 596 * also check if ranges property has been provided
 597 */
 598static int __init __reserved_mem_check_root(unsigned long node)
 599{
 600        const __be32 *prop;
 601
 602        prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
 603        if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
 604                return -EINVAL;
 605
 606        prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
 607        if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
 608                return -EINVAL;
 609
 610        prop = of_get_flat_dt_prop(node, "ranges", NULL);
 611        if (!prop)
 612                return -EINVAL;
 613        return 0;
 614}
 615
 616/**
 617 * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
 618 */
 619static int __init __fdt_scan_reserved_mem(unsigned long node, const char *uname,
 620                                          int depth, void *data)
 621{
 622        static int found;
 623        int err;
 624
 625        if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) {
 626                if (__reserved_mem_check_root(node) != 0) {
 627                        pr_err("Reserved memory: unsupported node format, ignoring\n");
 628                        /* break scan */
 629                        return 1;
 630                }
 631                found = 1;
 632                /* scan next node */
 633                return 0;
 634        } else if (!found) {
 635                /* scan next node */
 636                return 0;
 637        } else if (found && depth < 2) {
 638                /* scanning of /reserved-memory has been finished */
 639                return 1;
 640        }
 641
 642        if (!of_fdt_device_is_available(initial_boot_params, node))
 643                return 0;
 644
 645        err = __reserved_mem_reserve_reg(node, uname);
 646        if (err == -ENOENT && of_get_flat_dt_prop(node, "size", NULL))
 647                fdt_reserved_mem_save_node(node, uname, 0, 0);
 648
 649        /* scan next node */
 650        return 0;
 651}
 652
 653/**
 654 * early_init_fdt_scan_reserved_mem() - create reserved memory regions
 655 *
 656 * This function grabs memory from early allocator for device exclusive use
 657 * defined in device tree structures. It should be called by arch specific code
 658 * once the early allocator (i.e. memblock) has been fully activated.
 659 */
 660void __init early_init_fdt_scan_reserved_mem(void)
 661{
 662        int n;
 663        u64 base, size;
 664
 665        if (!initial_boot_params)
 666                return;
 667
 668        /* Process header /memreserve/ fields */
 669        for (n = 0; ; n++) {
 670                fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
 671                if (!size)
 672                        break;
 673                early_init_dt_reserve_memory_arch(base, size, 0);
 674        }
 675
 676        of_scan_flat_dt(__fdt_scan_reserved_mem, NULL);
 677        fdt_init_reserved_mem();
 678}
 679
 680/**
 681 * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
 682 */
 683void __init early_init_fdt_reserve_self(void)
 684{
 685        if (!initial_boot_params)
 686                return;
 687
 688        /* Reserve the dtb region */
 689        early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
 690                                          fdt_totalsize(initial_boot_params),
 691                                          0);
 692}
 693
 694/**
 695 * of_scan_flat_dt - scan flattened tree blob and call callback on each.
 696 * @it: callback function
 697 * @data: context data pointer
 698 *
 699 * This function is used to scan the flattened device-tree, it is
 700 * used to extract the memory information at boot before we can
 701 * unflatten the tree
 702 */
 703int __init of_scan_flat_dt(int (*it)(unsigned long node,
 704                                     const char *uname, int depth,
 705                                     void *data),
 706                           void *data)
 707{
 708        const void *blob = initial_boot_params;
 709        const char *pathp;
 710        int offset, rc = 0, depth = -1;
 711
 712        if (!blob)
 713                return 0;
 714
 715        for (offset = fdt_next_node(blob, -1, &depth);
 716             offset >= 0 && depth >= 0 && !rc;
 717             offset = fdt_next_node(blob, offset, &depth)) {
 718
 719                pathp = fdt_get_name(blob, offset, NULL);
 720                if (*pathp == '/')
 721                        pathp = kbasename(pathp);
 722                rc = it(offset, pathp, depth, data);
 723        }
 724        return rc;
 725}
 726
 727/**
 728 * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
 729 * @it: callback function
 730 * @data: context data pointer
 731 *
 732 * This function is used to scan sub-nodes of a node.
 733 */
 734int __init of_scan_flat_dt_subnodes(unsigned long parent,
 735                                    int (*it)(unsigned long node,
 736                                              const char *uname,
 737                                              void *data),
 738                                    void *data)
 739{
 740        const void *blob = initial_boot_params;
 741        int node;
 742
 743        fdt_for_each_subnode(node, blob, parent) {
 744                const char *pathp;
 745                int rc;
 746
 747                pathp = fdt_get_name(blob, node, NULL);
 748                if (*pathp == '/')
 749                        pathp = kbasename(pathp);
 750                rc = it(node, pathp, data);
 751                if (rc)
 752                        return rc;
 753        }
 754        return 0;
 755}
 756
 757/**
 758 * of_get_flat_dt_subnode_by_name - get the subnode by given name
 759 *
 760 * @node: the parent node
 761 * @uname: the name of subnode
 762 * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
 763 */
 764
 765int of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
 766{
 767        return fdt_subnode_offset(initial_boot_params, node, uname);
 768}
 769
 770/**
 771 * of_get_flat_dt_root - find the root node in the flat blob
 772 */
 773unsigned long __init of_get_flat_dt_root(void)
 774{
 775        return 0;
 776}
 777
 778/**
 779 * of_get_flat_dt_size - Return the total size of the FDT
 780 */
 781int __init of_get_flat_dt_size(void)
 782{
 783        return fdt_totalsize(initial_boot_params);
 784}
 785
 786/**
 787 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
 788 *
 789 * This function can be used within scan_flattened_dt callback to get
 790 * access to properties
 791 */
 792const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
 793                                       int *size)
 794{
 795        return fdt_getprop(initial_boot_params, node, name, size);
 796}
 797
 798/**
 799 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
 800 * @node: node to test
 801 * @compat: compatible string to compare with compatible list.
 802 */
 803int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
 804{
 805        return of_fdt_is_compatible(initial_boot_params, node, compat);
 806}
 807
 808/**
 809 * of_flat_dt_match - Return true if node matches a list of compatible values
 810 */
 811int __init of_flat_dt_match(unsigned long node, const char *const *compat)
 812{
 813        return of_fdt_match(initial_boot_params, node, compat);
 814}
 815
 816/**
 817 * of_get_flat_dt_prop - Given a node in the flat blob, return the phandle
 818 */
 819uint32_t __init of_get_flat_dt_phandle(unsigned long node)
 820{
 821        return fdt_get_phandle(initial_boot_params, node);
 822}
 823
 824struct fdt_scan_status {
 825        const char *name;
 826        int namelen;
 827        int depth;
 828        int found;
 829        int (*iterator)(unsigned long node, const char *uname, int depth, void *data);
 830        void *data;
 831};
 832
 833const char * __init of_flat_dt_get_machine_name(void)
 834{
 835        const char *name;
 836        unsigned long dt_root = of_get_flat_dt_root();
 837
 838        name = of_get_flat_dt_prop(dt_root, "model", NULL);
 839        if (!name)
 840                name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
 841        return name;
 842}
 843
 844/**
 845 * of_flat_dt_match_machine - Iterate match tables to find matching machine.
 846 *
 847 * @default_match: A machine specific ptr to return in case of no match.
 848 * @get_next_compat: callback function to return next compatible match table.
 849 *
 850 * Iterate through machine match tables to find the best match for the machine
 851 * compatible string in the FDT.
 852 */
 853const void * __init of_flat_dt_match_machine(const void *default_match,
 854                const void * (*get_next_compat)(const char * const**))
 855{
 856        const void *data = NULL;
 857        const void *best_data = default_match;
 858        const char *const *compat;
 859        unsigned long dt_root;
 860        unsigned int best_score = ~1, score = 0;
 861
 862        dt_root = of_get_flat_dt_root();
 863        while ((data = get_next_compat(&compat))) {
 864                score = of_flat_dt_match(dt_root, compat);
 865                if (score > 0 && score < best_score) {
 866                        best_data = data;
 867                        best_score = score;
 868                }
 869        }
 870        if (!best_data) {
 871                const char *prop;
 872                int size;
 873
 874                pr_err("\n unrecognized device tree list:\n[ ");
 875
 876                prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
 877                if (prop) {
 878                        while (size > 0) {
 879                                printk("'%s' ", prop);
 880                                size -= strlen(prop) + 1;
 881                                prop += strlen(prop) + 1;
 882                        }
 883                }
 884                printk("]\n\n");
 885                return NULL;
 886        }
 887
 888        pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
 889
 890        return best_data;
 891}
 892
 893#ifdef CONFIG_BLK_DEV_INITRD
 894#ifndef __early_init_dt_declare_initrd
 895static void __early_init_dt_declare_initrd(unsigned long start,
 896                                           unsigned long end)
 897{
 898        initrd_start = (unsigned long)__va(start);
 899        initrd_end = (unsigned long)__va(end);
 900        initrd_below_start_ok = 1;
 901}
 902#endif
 903
 904/**
 905 * early_init_dt_check_for_initrd - Decode initrd location from flat tree
 906 * @node: reference to node containing initrd location ('chosen')
 907 */
 908static void __init early_init_dt_check_for_initrd(unsigned long node)
 909{
 910        u64 start, end;
 911        int len;
 912        const __be32 *prop;
 913
 914        pr_debug("Looking for initrd properties... ");
 915
 916        prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
 917        if (!prop)
 918                return;
 919        start = of_read_number(prop, len/4);
 920
 921        prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
 922        if (!prop)
 923                return;
 924        end = of_read_number(prop, len/4);
 925
 926        __early_init_dt_declare_initrd(start, end);
 927
 928        pr_debug("initrd_start=0x%llx  initrd_end=0x%llx\n",
 929                 (unsigned long long)start, (unsigned long long)end);
 930}
 931#else
 932static inline void early_init_dt_check_for_initrd(unsigned long node)
 933{
 934}
 935#endif /* CONFIG_BLK_DEV_INITRD */
 936
 937#ifdef CONFIG_SERIAL_EARLYCON
 938
 939int __init early_init_dt_scan_chosen_stdout(void)
 940{
 941        int offset;
 942        const char *p, *q, *options = NULL;
 943        int l;
 944        const struct earlycon_id **p_match;
 945        const void *fdt = initial_boot_params;
 946
 947        offset = fdt_path_offset(fdt, "/chosen");
 948        if (offset < 0)
 949                offset = fdt_path_offset(fdt, "/chosen@0");
 950        if (offset < 0)
 951                return -ENOENT;
 952
 953        p = fdt_getprop(fdt, offset, "stdout-path", &l);
 954        if (!p)
 955                p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
 956        if (!p || !l)
 957                return -ENOENT;
 958
 959        q = strchrnul(p, ':');
 960        if (*q != '\0')
 961                options = q + 1;
 962        l = q - p;
 963
 964        /* Get the node specified by stdout-path */
 965        offset = fdt_path_offset_namelen(fdt, p, l);
 966        if (offset < 0) {
 967                pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
 968                return 0;
 969        }
 970
 971        for (p_match = __earlycon_table; p_match < __earlycon_table_end;
 972             p_match++) {
 973                const struct earlycon_id *match = *p_match;
 974
 975                if (!match->compatible[0])
 976                        continue;
 977
 978                if (fdt_node_check_compatible(fdt, offset, match->compatible))
 979                        continue;
 980
 981                of_setup_earlycon(match, offset, options);
 982                return 0;
 983        }
 984        return -ENODEV;
 985}
 986#endif
 987
 988/**
 989 * early_init_dt_scan_root - fetch the top level address and size cells
 990 */
 991int __init early_init_dt_scan_root(unsigned long node, const char *uname,
 992                                   int depth, void *data)
 993{
 994        const __be32 *prop;
 995
 996        if (depth != 0)
 997                return 0;
 998
 999        dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
1000        dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
1001
1002        prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1003        if (prop)
1004                dt_root_size_cells = be32_to_cpup(prop);
1005        pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
1006
1007        prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1008        if (prop)
1009                dt_root_addr_cells = be32_to_cpup(prop);
1010        pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1011
1012        /* break now */
1013        return 1;
1014}
1015
1016u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
1017{
1018        const __be32 *p = *cellp;
1019
1020        *cellp = p + s;
1021        return of_read_number(p, s);
1022}
1023
1024/**
1025 * early_init_dt_scan_memory - Look for and parse memory nodes
1026 */
1027int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
1028                                     int depth, void *data)
1029{
1030        const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1031        const __be32 *reg, *endp;
1032        int l;
1033        bool hotpluggable;
1034
1035        /* We are scanning "memory" nodes only */
1036        if (type == NULL) {
1037                /*
1038                 * The longtrail doesn't have a device_type on the
1039                 * /memory node, so look for the node called /memory@0.
1040                 */
1041                if (!IS_ENABLED(CONFIG_PPC32) || depth != 1 || strcmp(uname, "memory@0") != 0)
1042                        return 0;
1043        } else if (strcmp(type, "memory") != 0)
1044                return 0;
1045
1046        reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1047        if (reg == NULL)
1048                reg = of_get_flat_dt_prop(node, "reg", &l);
1049        if (reg == NULL)
1050                return 0;
1051
1052        endp = reg + (l / sizeof(__be32));
1053        hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
1054
1055        pr_debug("memory scan node %s, reg size %d,\n", uname, l);
1056
1057        while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1058                u64 base, size;
1059
1060                base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1061                size = dt_mem_next_cell(dt_root_size_cells, &reg);
1062
1063                if (size == 0)
1064                        continue;
1065                pr_debug(" - %llx ,  %llx\n", (unsigned long long)base,
1066                    (unsigned long long)size);
1067
1068                early_init_dt_add_memory_arch(base, size);
1069
1070                if (!hotpluggable)
1071                        continue;
1072
1073                if (early_init_dt_mark_hotplug_memory_arch(base, size))
1074                        pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1075                                base, base + size);
1076        }
1077
1078        return 0;
1079}
1080
1081int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
1082                                     int depth, void *data)
1083{
1084        int l;
1085        const char *p;
1086
1087        pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1088
1089        if (depth != 1 || !data ||
1090            (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1091                return 0;
1092
1093        early_init_dt_check_for_initrd(node);
1094
1095        /* Retrieve command line */
1096        p = of_get_flat_dt_prop(node, "bootargs", &l);
1097        if (p != NULL && l > 0)
1098                strlcpy(data, p, min((int)l, COMMAND_LINE_SIZE));
1099
1100        /*
1101         * CONFIG_CMDLINE is meant to be a default in case nothing else
1102         * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1103         * is set in which case we override whatever was found earlier.
1104         */
1105#ifdef CONFIG_CMDLINE
1106#if defined(CONFIG_CMDLINE_EXTEND)
1107        strlcat(data, " ", COMMAND_LINE_SIZE);
1108        strlcat(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1109#elif defined(CONFIG_CMDLINE_FORCE)
1110        strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1111#else
1112        /* No arguments from boot loader, use kernel's  cmdl*/
1113        if (!((char *)data)[0])
1114                strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1115#endif
1116#endif /* CONFIG_CMDLINE */
1117
1118        pr_debug("Command line is: %s\n", (char*)data);
1119
1120        /* break now */
1121        return 1;
1122}
1123
1124#ifndef MIN_MEMBLOCK_ADDR
1125#define MIN_MEMBLOCK_ADDR       __pa(PAGE_OFFSET)
1126#endif
1127#ifndef MAX_MEMBLOCK_ADDR
1128#define MAX_MEMBLOCK_ADDR       ((phys_addr_t)~0)
1129#endif
1130
1131void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1132{
1133        const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1134
1135        if (!PAGE_ALIGNED(base)) {
1136                if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1137                        pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1138                                base, base + size);
1139                        return;
1140                }
1141                size -= PAGE_SIZE - (base & ~PAGE_MASK);
1142                base = PAGE_ALIGN(base);
1143        }
1144        size &= PAGE_MASK;
1145
1146        if (base > MAX_MEMBLOCK_ADDR) {
1147                pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1148                                base, base + size);
1149                return;
1150        }
1151
1152        if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1153                pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1154                                ((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1155                size = MAX_MEMBLOCK_ADDR - base + 1;
1156        }
1157
1158        if (base + size < phys_offset) {
1159                pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1160                           base, base + size);
1161                return;
1162        }
1163        if (base < phys_offset) {
1164                pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1165                           base, phys_offset);
1166                size -= phys_offset - base;
1167                base = phys_offset;
1168        }
1169        memblock_add(base, size);
1170}
1171
1172int __init __weak early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size)
1173{
1174        return memblock_mark_hotplug(base, size);
1175}
1176
1177int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1178                                        phys_addr_t size, bool nomap)
1179{
1180        if (nomap)
1181                return memblock_remove(base, size);
1182        return memblock_reserve(base, size);
1183}
1184
1185static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1186{
1187        void *ptr = memblock_alloc(size, align);
1188
1189        if (!ptr)
1190                panic("%s: Failed to allocate %llu bytes align=0x%llx\n",
1191                      __func__, size, align);
1192
1193        return ptr;
1194}
1195
1196bool __init early_init_dt_verify(void *params)
1197{
1198        if (!params)
1199                return false;
1200
1201        /* check device tree validity */
1202        if (fdt_check_header(params))
1203                return false;
1204
1205        /* Setup flat device-tree pointer */
1206        initial_boot_params = params;
1207        of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1208                                fdt_totalsize(initial_boot_params));
1209        return true;
1210}
1211
1212
1213void __init early_init_dt_scan_nodes(void)
1214{
1215        /* Retrieve various information from the /chosen node */
1216        of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
1217
1218        /* Initialize {size,address}-cells info */
1219        of_scan_flat_dt(early_init_dt_scan_root, NULL);
1220
1221        /* Setup memory, calling early_init_dt_add_memory_arch */
1222        of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1223}
1224
1225bool __init early_init_dt_scan(void *params)
1226{
1227        bool status;
1228
1229        status = early_init_dt_verify(params);
1230        if (!status)
1231                return false;
1232
1233        early_init_dt_scan_nodes();
1234        return true;
1235}
1236
1237/**
1238 * unflatten_device_tree - create tree of device_nodes from flat blob
1239 *
1240 * unflattens the device-tree passed by the firmware, creating the
1241 * tree of struct device_node. It also fills the "name" and "type"
1242 * pointers of the nodes so the normal device-tree walking functions
1243 * can be used.
1244 */
1245void __init unflatten_device_tree(void)
1246{
1247        __unflatten_device_tree(initial_boot_params, NULL, &of_root,
1248                                early_init_dt_alloc_memory_arch, false);
1249
1250        /* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1251        of_alias_scan(early_init_dt_alloc_memory_arch);
1252
1253        unittest_unflatten_overlay_base();
1254}
1255
1256/**
1257 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1258 *
1259 * Copies and unflattens the device-tree passed by the firmware, creating the
1260 * tree of struct device_node. It also fills the "name" and "type"
1261 * pointers of the nodes so the normal device-tree walking functions
1262 * can be used. This should only be used when the FDT memory has not been
1263 * reserved such is the case when the FDT is built-in to the kernel init
1264 * section. If the FDT memory is reserved already then unflatten_device_tree
1265 * should be used instead.
1266 */
1267void __init unflatten_and_copy_device_tree(void)
1268{
1269        int size;
1270        void *dt;
1271
1272        if (!initial_boot_params) {
1273                pr_warn("No valid device tree found, continuing without\n");
1274                return;
1275        }
1276
1277        size = fdt_totalsize(initial_boot_params);
1278        dt = early_init_dt_alloc_memory_arch(size,
1279                                             roundup_pow_of_two(FDT_V17_SIZE));
1280
1281        if (dt) {
1282                memcpy(dt, initial_boot_params, size);
1283                initial_boot_params = dt;
1284        }
1285        unflatten_device_tree();
1286}
1287
1288#ifdef CONFIG_SYSFS
1289static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1290                               struct bin_attribute *bin_attr,
1291                               char *buf, loff_t off, size_t count)
1292{
1293        memcpy(buf, initial_boot_params + off, count);
1294        return count;
1295}
1296
1297static int __init of_fdt_raw_init(void)
1298{
1299        static struct bin_attribute of_fdt_raw_attr =
1300                __BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1301
1302        if (!initial_boot_params)
1303                return 0;
1304
1305        if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1306                                     fdt_totalsize(initial_boot_params))) {
1307                pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1308                return 0;
1309        }
1310        of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1311        return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1312}
1313late_initcall(of_fdt_raw_init);
1314#endif
1315
1316#endif /* CONFIG_OF_EARLY_FLATTREE */
1317