linux/drivers/pinctrl/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Core driver for the pin control subsystem
   4 *
   5 * Copyright (C) 2011-2012 ST-Ericsson SA
   6 * Written on behalf of Linaro for ST-Ericsson
   7 * Based on bits of regulator core, gpio core and clk core
   8 *
   9 * Author: Linus Walleij <linus.walleij@linaro.org>
  10 *
  11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
  12 */
  13#define pr_fmt(fmt) "pinctrl core: " fmt
  14
  15#include <linux/kernel.h>
  16#include <linux/kref.h>
  17#include <linux/export.h>
  18#include <linux/init.h>
  19#include <linux/device.h>
  20#include <linux/slab.h>
  21#include <linux/err.h>
  22#include <linux/list.h>
  23#include <linux/debugfs.h>
  24#include <linux/seq_file.h>
  25#include <linux/pinctrl/consumer.h>
  26#include <linux/pinctrl/pinctrl.h>
  27#include <linux/pinctrl/machine.h>
  28
  29#ifdef CONFIG_GPIOLIB
  30#include <asm-generic/gpio.h>
  31#endif
  32
  33#include "core.h"
  34#include "devicetree.h"
  35#include "pinmux.h"
  36#include "pinconf.h"
  37
  38
  39static bool pinctrl_dummy_state;
  40
  41/* Mutex taken to protect pinctrl_list */
  42static DEFINE_MUTEX(pinctrl_list_mutex);
  43
  44/* Mutex taken to protect pinctrl_maps */
  45DEFINE_MUTEX(pinctrl_maps_mutex);
  46
  47/* Mutex taken to protect pinctrldev_list */
  48static DEFINE_MUTEX(pinctrldev_list_mutex);
  49
  50/* Global list of pin control devices (struct pinctrl_dev) */
  51static LIST_HEAD(pinctrldev_list);
  52
  53/* List of pin controller handles (struct pinctrl) */
  54static LIST_HEAD(pinctrl_list);
  55
  56/* List of pinctrl maps (struct pinctrl_maps) */
  57LIST_HEAD(pinctrl_maps);
  58
  59
  60/**
  61 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
  62 *
  63 * Usually this function is called by platforms without pinctrl driver support
  64 * but run with some shared drivers using pinctrl APIs.
  65 * After calling this function, the pinctrl core will return successfully
  66 * with creating a dummy state for the driver to keep going smoothly.
  67 */
  68void pinctrl_provide_dummies(void)
  69{
  70        pinctrl_dummy_state = true;
  71}
  72
  73const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
  74{
  75        /* We're not allowed to register devices without name */
  76        return pctldev->desc->name;
  77}
  78EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
  79
  80const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
  81{
  82        return dev_name(pctldev->dev);
  83}
  84EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
  85
  86void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
  87{
  88        return pctldev->driver_data;
  89}
  90EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
  91
  92/**
  93 * get_pinctrl_dev_from_devname() - look up pin controller device
  94 * @devname: the name of a device instance, as returned by dev_name()
  95 *
  96 * Looks up a pin control device matching a certain device name or pure device
  97 * pointer, the pure device pointer will take precedence.
  98 */
  99struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
 100{
 101        struct pinctrl_dev *pctldev;
 102
 103        if (!devname)
 104                return NULL;
 105
 106        mutex_lock(&pinctrldev_list_mutex);
 107
 108        list_for_each_entry(pctldev, &pinctrldev_list, node) {
 109                if (!strcmp(dev_name(pctldev->dev), devname)) {
 110                        /* Matched on device name */
 111                        mutex_unlock(&pinctrldev_list_mutex);
 112                        return pctldev;
 113                }
 114        }
 115
 116        mutex_unlock(&pinctrldev_list_mutex);
 117
 118        return NULL;
 119}
 120
 121struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
 122{
 123        struct pinctrl_dev *pctldev;
 124
 125        mutex_lock(&pinctrldev_list_mutex);
 126
 127        list_for_each_entry(pctldev, &pinctrldev_list, node)
 128                if (pctldev->dev->of_node == np) {
 129                        mutex_unlock(&pinctrldev_list_mutex);
 130                        return pctldev;
 131                }
 132
 133        mutex_unlock(&pinctrldev_list_mutex);
 134
 135        return NULL;
 136}
 137
 138/**
 139 * pin_get_from_name() - look up a pin number from a name
 140 * @pctldev: the pin control device to lookup the pin on
 141 * @name: the name of the pin to look up
 142 */
 143int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
 144{
 145        unsigned i, pin;
 146
 147        /* The pin number can be retrived from the pin controller descriptor */
 148        for (i = 0; i < pctldev->desc->npins; i++) {
 149                struct pin_desc *desc;
 150
 151                pin = pctldev->desc->pins[i].number;
 152                desc = pin_desc_get(pctldev, pin);
 153                /* Pin space may be sparse */
 154                if (desc && !strcmp(name, desc->name))
 155                        return pin;
 156        }
 157
 158        return -EINVAL;
 159}
 160
 161/**
 162 * pin_get_name_from_id() - look up a pin name from a pin id
 163 * @pctldev: the pin control device to lookup the pin on
 164 * @name: the name of the pin to look up
 165 */
 166const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
 167{
 168        const struct pin_desc *desc;
 169
 170        desc = pin_desc_get(pctldev, pin);
 171        if (!desc) {
 172                dev_err(pctldev->dev, "failed to get pin(%d) name\n",
 173                        pin);
 174                return NULL;
 175        }
 176
 177        return desc->name;
 178}
 179
 180/* Deletes a range of pin descriptors */
 181static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
 182                                  const struct pinctrl_pin_desc *pins,
 183                                  unsigned num_pins)
 184{
 185        int i;
 186
 187        for (i = 0; i < num_pins; i++) {
 188                struct pin_desc *pindesc;
 189
 190                pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
 191                                            pins[i].number);
 192                if (pindesc) {
 193                        radix_tree_delete(&pctldev->pin_desc_tree,
 194                                          pins[i].number);
 195                        if (pindesc->dynamic_name)
 196                                kfree(pindesc->name);
 197                }
 198                kfree(pindesc);
 199        }
 200}
 201
 202static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
 203                                    const struct pinctrl_pin_desc *pin)
 204{
 205        struct pin_desc *pindesc;
 206
 207        pindesc = pin_desc_get(pctldev, pin->number);
 208        if (pindesc) {
 209                dev_err(pctldev->dev, "pin %d already registered\n",
 210                        pin->number);
 211                return -EINVAL;
 212        }
 213
 214        pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
 215        if (!pindesc)
 216                return -ENOMEM;
 217
 218        /* Set owner */
 219        pindesc->pctldev = pctldev;
 220
 221        /* Copy basic pin info */
 222        if (pin->name) {
 223                pindesc->name = pin->name;
 224        } else {
 225                pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
 226                if (!pindesc->name) {
 227                        kfree(pindesc);
 228                        return -ENOMEM;
 229                }
 230                pindesc->dynamic_name = true;
 231        }
 232
 233        pindesc->drv_data = pin->drv_data;
 234
 235        radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
 236        pr_debug("registered pin %d (%s) on %s\n",
 237                 pin->number, pindesc->name, pctldev->desc->name);
 238        return 0;
 239}
 240
 241static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
 242                                 const struct pinctrl_pin_desc *pins,
 243                                 unsigned num_descs)
 244{
 245        unsigned i;
 246        int ret = 0;
 247
 248        for (i = 0; i < num_descs; i++) {
 249                ret = pinctrl_register_one_pin(pctldev, &pins[i]);
 250                if (ret)
 251                        return ret;
 252        }
 253
 254        return 0;
 255}
 256
 257/**
 258 * gpio_to_pin() - GPIO range GPIO number to pin number translation
 259 * @range: GPIO range used for the translation
 260 * @gpio: gpio pin to translate to a pin number
 261 *
 262 * Finds the pin number for a given GPIO using the specified GPIO range
 263 * as a base for translation. The distinction between linear GPIO ranges
 264 * and pin list based GPIO ranges is managed correctly by this function.
 265 *
 266 * This function assumes the gpio is part of the specified GPIO range, use
 267 * only after making sure this is the case (e.g. by calling it on the
 268 * result of successful pinctrl_get_device_gpio_range calls)!
 269 */
 270static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
 271                                unsigned int gpio)
 272{
 273        unsigned int offset = gpio - range->base;
 274        if (range->pins)
 275                return range->pins[offset];
 276        else
 277                return range->pin_base + offset;
 278}
 279
 280/**
 281 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
 282 * @pctldev: pin controller device to check
 283 * @gpio: gpio pin to check taken from the global GPIO pin space
 284 *
 285 * Tries to match a GPIO pin number to the ranges handled by a certain pin
 286 * controller, return the range or NULL
 287 */
 288static struct pinctrl_gpio_range *
 289pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
 290{
 291        struct pinctrl_gpio_range *range;
 292
 293        mutex_lock(&pctldev->mutex);
 294        /* Loop over the ranges */
 295        list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 296                /* Check if we're in the valid range */
 297                if (gpio >= range->base &&
 298                    gpio < range->base + range->npins) {
 299                        mutex_unlock(&pctldev->mutex);
 300                        return range;
 301                }
 302        }
 303        mutex_unlock(&pctldev->mutex);
 304        return NULL;
 305}
 306
 307/**
 308 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
 309 * the same GPIO chip are in range
 310 * @gpio: gpio pin to check taken from the global GPIO pin space
 311 *
 312 * This function is complement of pinctrl_match_gpio_range(). If the return
 313 * value of pinctrl_match_gpio_range() is NULL, this function could be used
 314 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
 315 * of the same GPIO chip don't have back-end pinctrl interface.
 316 * If the return value is true, it means that pinctrl device is ready & the
 317 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
 318 * is false, it means that pinctrl device may not be ready.
 319 */
 320#ifdef CONFIG_GPIOLIB
 321static bool pinctrl_ready_for_gpio_range(unsigned gpio)
 322{
 323        struct pinctrl_dev *pctldev;
 324        struct pinctrl_gpio_range *range = NULL;
 325        struct gpio_chip *chip = gpio_to_chip(gpio);
 326
 327        if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
 328                return false;
 329
 330        mutex_lock(&pinctrldev_list_mutex);
 331
 332        /* Loop over the pin controllers */
 333        list_for_each_entry(pctldev, &pinctrldev_list, node) {
 334                /* Loop over the ranges */
 335                mutex_lock(&pctldev->mutex);
 336                list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 337                        /* Check if any gpio range overlapped with gpio chip */
 338                        if (range->base + range->npins - 1 < chip->base ||
 339                            range->base > chip->base + chip->ngpio - 1)
 340                                continue;
 341                        mutex_unlock(&pctldev->mutex);
 342                        mutex_unlock(&pinctrldev_list_mutex);
 343                        return true;
 344                }
 345                mutex_unlock(&pctldev->mutex);
 346        }
 347
 348        mutex_unlock(&pinctrldev_list_mutex);
 349
 350        return false;
 351}
 352#else
 353static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
 354#endif
 355
 356/**
 357 * pinctrl_get_device_gpio_range() - find device for GPIO range
 358 * @gpio: the pin to locate the pin controller for
 359 * @outdev: the pin control device if found
 360 * @outrange: the GPIO range if found
 361 *
 362 * Find the pin controller handling a certain GPIO pin from the pinspace of
 363 * the GPIO subsystem, return the device and the matching GPIO range. Returns
 364 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
 365 * may still have not been registered.
 366 */
 367static int pinctrl_get_device_gpio_range(unsigned gpio,
 368                                         struct pinctrl_dev **outdev,
 369                                         struct pinctrl_gpio_range **outrange)
 370{
 371        struct pinctrl_dev *pctldev;
 372
 373        mutex_lock(&pinctrldev_list_mutex);
 374
 375        /* Loop over the pin controllers */
 376        list_for_each_entry(pctldev, &pinctrldev_list, node) {
 377                struct pinctrl_gpio_range *range;
 378
 379                range = pinctrl_match_gpio_range(pctldev, gpio);
 380                if (range) {
 381                        *outdev = pctldev;
 382                        *outrange = range;
 383                        mutex_unlock(&pinctrldev_list_mutex);
 384                        return 0;
 385                }
 386        }
 387
 388        mutex_unlock(&pinctrldev_list_mutex);
 389
 390        return -EPROBE_DEFER;
 391}
 392
 393/**
 394 * pinctrl_add_gpio_range() - register a GPIO range for a controller
 395 * @pctldev: pin controller device to add the range to
 396 * @range: the GPIO range to add
 397 *
 398 * This adds a range of GPIOs to be handled by a certain pin controller. Call
 399 * this to register handled ranges after registering your pin controller.
 400 */
 401void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
 402                            struct pinctrl_gpio_range *range)
 403{
 404        mutex_lock(&pctldev->mutex);
 405        list_add_tail(&range->node, &pctldev->gpio_ranges);
 406        mutex_unlock(&pctldev->mutex);
 407}
 408EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
 409
 410void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
 411                             struct pinctrl_gpio_range *ranges,
 412                             unsigned nranges)
 413{
 414        int i;
 415
 416        for (i = 0; i < nranges; i++)
 417                pinctrl_add_gpio_range(pctldev, &ranges[i]);
 418}
 419EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
 420
 421struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
 422                struct pinctrl_gpio_range *range)
 423{
 424        struct pinctrl_dev *pctldev;
 425
 426        pctldev = get_pinctrl_dev_from_devname(devname);
 427
 428        /*
 429         * If we can't find this device, let's assume that is because
 430         * it has not probed yet, so the driver trying to register this
 431         * range need to defer probing.
 432         */
 433        if (!pctldev) {
 434                return ERR_PTR(-EPROBE_DEFER);
 435        }
 436        pinctrl_add_gpio_range(pctldev, range);
 437
 438        return pctldev;
 439}
 440EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
 441
 442int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
 443                                const unsigned **pins, unsigned *num_pins)
 444{
 445        const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
 446        int gs;
 447
 448        if (!pctlops->get_group_pins)
 449                return -EINVAL;
 450
 451        gs = pinctrl_get_group_selector(pctldev, pin_group);
 452        if (gs < 0)
 453                return gs;
 454
 455        return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
 456}
 457EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
 458
 459struct pinctrl_gpio_range *
 460pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
 461                                        unsigned int pin)
 462{
 463        struct pinctrl_gpio_range *range;
 464
 465        /* Loop over the ranges */
 466        list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 467                /* Check if we're in the valid range */
 468                if (range->pins) {
 469                        int a;
 470                        for (a = 0; a < range->npins; a++) {
 471                                if (range->pins[a] == pin)
 472                                        return range;
 473                        }
 474                } else if (pin >= range->pin_base &&
 475                           pin < range->pin_base + range->npins)
 476                        return range;
 477        }
 478
 479        return NULL;
 480}
 481EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
 482
 483/**
 484 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
 485 * @pctldev: the pin controller device to look in
 486 * @pin: a controller-local number to find the range for
 487 */
 488struct pinctrl_gpio_range *
 489pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
 490                                 unsigned int pin)
 491{
 492        struct pinctrl_gpio_range *range;
 493
 494        mutex_lock(&pctldev->mutex);
 495        range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
 496        mutex_unlock(&pctldev->mutex);
 497
 498        return range;
 499}
 500EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
 501
 502/**
 503 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
 504 * @pctldev: pin controller device to remove the range from
 505 * @range: the GPIO range to remove
 506 */
 507void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
 508                               struct pinctrl_gpio_range *range)
 509{
 510        mutex_lock(&pctldev->mutex);
 511        list_del(&range->node);
 512        mutex_unlock(&pctldev->mutex);
 513}
 514EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
 515
 516#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
 517
 518/**
 519 * pinctrl_generic_get_group_count() - returns the number of pin groups
 520 * @pctldev: pin controller device
 521 */
 522int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
 523{
 524        return pctldev->num_groups;
 525}
 526EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
 527
 528/**
 529 * pinctrl_generic_get_group_name() - returns the name of a pin group
 530 * @pctldev: pin controller device
 531 * @selector: group number
 532 */
 533const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
 534                                           unsigned int selector)
 535{
 536        struct group_desc *group;
 537
 538        group = radix_tree_lookup(&pctldev->pin_group_tree,
 539                                  selector);
 540        if (!group)
 541                return NULL;
 542
 543        return group->name;
 544}
 545EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
 546
 547/**
 548 * pinctrl_generic_get_group_pins() - gets the pin group pins
 549 * @pctldev: pin controller device
 550 * @selector: group number
 551 * @pins: pins in the group
 552 * @num_pins: number of pins in the group
 553 */
 554int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
 555                                   unsigned int selector,
 556                                   const unsigned int **pins,
 557                                   unsigned int *num_pins)
 558{
 559        struct group_desc *group;
 560
 561        group = radix_tree_lookup(&pctldev->pin_group_tree,
 562                                  selector);
 563        if (!group) {
 564                dev_err(pctldev->dev, "%s could not find pingroup%i\n",
 565                        __func__, selector);
 566                return -EINVAL;
 567        }
 568
 569        *pins = group->pins;
 570        *num_pins = group->num_pins;
 571
 572        return 0;
 573}
 574EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
 575
 576/**
 577 * pinctrl_generic_get_group() - returns a pin group based on the number
 578 * @pctldev: pin controller device
 579 * @gselector: group number
 580 */
 581struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
 582                                             unsigned int selector)
 583{
 584        struct group_desc *group;
 585
 586        group = radix_tree_lookup(&pctldev->pin_group_tree,
 587                                  selector);
 588        if (!group)
 589                return NULL;
 590
 591        return group;
 592}
 593EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
 594
 595static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
 596                                                  const char *function)
 597{
 598        const struct pinctrl_ops *ops = pctldev->desc->pctlops;
 599        int ngroups = ops->get_groups_count(pctldev);
 600        int selector = 0;
 601
 602        /* See if this pctldev has this group */
 603        while (selector < ngroups) {
 604                const char *gname = ops->get_group_name(pctldev, selector);
 605
 606                if (gname && !strcmp(function, gname))
 607                        return selector;
 608
 609                selector++;
 610        }
 611
 612        return -EINVAL;
 613}
 614
 615/**
 616 * pinctrl_generic_add_group() - adds a new pin group
 617 * @pctldev: pin controller device
 618 * @name: name of the pin group
 619 * @pins: pins in the pin group
 620 * @num_pins: number of pins in the pin group
 621 * @data: pin controller driver specific data
 622 *
 623 * Note that the caller must take care of locking.
 624 */
 625int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
 626                              int *pins, int num_pins, void *data)
 627{
 628        struct group_desc *group;
 629        int selector;
 630
 631        if (!name)
 632                return -EINVAL;
 633
 634        selector = pinctrl_generic_group_name_to_selector(pctldev, name);
 635        if (selector >= 0)
 636                return selector;
 637
 638        selector = pctldev->num_groups;
 639
 640        group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
 641        if (!group)
 642                return -ENOMEM;
 643
 644        group->name = name;
 645        group->pins = pins;
 646        group->num_pins = num_pins;
 647        group->data = data;
 648
 649        radix_tree_insert(&pctldev->pin_group_tree, selector, group);
 650
 651        pctldev->num_groups++;
 652
 653        return selector;
 654}
 655EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
 656
 657/**
 658 * pinctrl_generic_remove_group() - removes a numbered pin group
 659 * @pctldev: pin controller device
 660 * @selector: group number
 661 *
 662 * Note that the caller must take care of locking.
 663 */
 664int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
 665                                 unsigned int selector)
 666{
 667        struct group_desc *group;
 668
 669        group = radix_tree_lookup(&pctldev->pin_group_tree,
 670                                  selector);
 671        if (!group)
 672                return -ENOENT;
 673
 674        radix_tree_delete(&pctldev->pin_group_tree, selector);
 675        devm_kfree(pctldev->dev, group);
 676
 677        pctldev->num_groups--;
 678
 679        return 0;
 680}
 681EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
 682
 683/**
 684 * pinctrl_generic_free_groups() - removes all pin groups
 685 * @pctldev: pin controller device
 686 *
 687 * Note that the caller must take care of locking. The pinctrl groups
 688 * are allocated with devm_kzalloc() so no need to free them here.
 689 */
 690static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
 691{
 692        struct radix_tree_iter iter;
 693        void __rcu **slot;
 694
 695        radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
 696                radix_tree_delete(&pctldev->pin_group_tree, iter.index);
 697
 698        pctldev->num_groups = 0;
 699}
 700
 701#else
 702static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
 703{
 704}
 705#endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
 706
 707/**
 708 * pinctrl_get_group_selector() - returns the group selector for a group
 709 * @pctldev: the pin controller handling the group
 710 * @pin_group: the pin group to look up
 711 */
 712int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
 713                               const char *pin_group)
 714{
 715        const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
 716        unsigned ngroups = pctlops->get_groups_count(pctldev);
 717        unsigned group_selector = 0;
 718
 719        while (group_selector < ngroups) {
 720                const char *gname = pctlops->get_group_name(pctldev,
 721                                                            group_selector);
 722                if (gname && !strcmp(gname, pin_group)) {
 723                        dev_dbg(pctldev->dev,
 724                                "found group selector %u for %s\n",
 725                                group_selector,
 726                                pin_group);
 727                        return group_selector;
 728                }
 729
 730                group_selector++;
 731        }
 732
 733        dev_err(pctldev->dev, "does not have pin group %s\n",
 734                pin_group);
 735
 736        return -EINVAL;
 737}
 738
 739bool pinctrl_gpio_can_use_line(unsigned gpio)
 740{
 741        struct pinctrl_dev *pctldev;
 742        struct pinctrl_gpio_range *range;
 743        bool result;
 744        int pin;
 745
 746        /*
 747         * Try to obtain GPIO range, if it fails
 748         * we're probably dealing with GPIO driver
 749         * without a backing pin controller - bail out.
 750         */
 751        if (pinctrl_get_device_gpio_range(gpio, &pctldev, &range))
 752                return true;
 753
 754        mutex_lock(&pctldev->mutex);
 755
 756        /* Convert to the pin controllers number space */
 757        pin = gpio_to_pin(range, gpio);
 758
 759        result = pinmux_can_be_used_for_gpio(pctldev, pin);
 760
 761        mutex_unlock(&pctldev->mutex);
 762
 763        return result;
 764}
 765EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line);
 766
 767/**
 768 * pinctrl_gpio_request() - request a single pin to be used as GPIO
 769 * @gpio: the GPIO pin number from the GPIO subsystem number space
 770 *
 771 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 772 * as part of their gpio_request() semantics, platforms and individual drivers
 773 * shall *NOT* request GPIO pins to be muxed in.
 774 */
 775int pinctrl_gpio_request(unsigned gpio)
 776{
 777        struct pinctrl_dev *pctldev;
 778        struct pinctrl_gpio_range *range;
 779        int ret;
 780        int pin;
 781
 782        ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 783        if (ret) {
 784                if (pinctrl_ready_for_gpio_range(gpio))
 785                        ret = 0;
 786                return ret;
 787        }
 788
 789        mutex_lock(&pctldev->mutex);
 790
 791        /* Convert to the pin controllers number space */
 792        pin = gpio_to_pin(range, gpio);
 793
 794        ret = pinmux_request_gpio(pctldev, range, pin, gpio);
 795
 796        mutex_unlock(&pctldev->mutex);
 797
 798        return ret;
 799}
 800EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
 801
 802/**
 803 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
 804 * @gpio: the GPIO pin number from the GPIO subsystem number space
 805 *
 806 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 807 * as part of their gpio_free() semantics, platforms and individual drivers
 808 * shall *NOT* request GPIO pins to be muxed out.
 809 */
 810void pinctrl_gpio_free(unsigned gpio)
 811{
 812        struct pinctrl_dev *pctldev;
 813        struct pinctrl_gpio_range *range;
 814        int ret;
 815        int pin;
 816
 817        ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 818        if (ret) {
 819                return;
 820        }
 821        mutex_lock(&pctldev->mutex);
 822
 823        /* Convert to the pin controllers number space */
 824        pin = gpio_to_pin(range, gpio);
 825
 826        pinmux_free_gpio(pctldev, pin, range);
 827
 828        mutex_unlock(&pctldev->mutex);
 829}
 830EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
 831
 832static int pinctrl_gpio_direction(unsigned gpio, bool input)
 833{
 834        struct pinctrl_dev *pctldev;
 835        struct pinctrl_gpio_range *range;
 836        int ret;
 837        int pin;
 838
 839        ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 840        if (ret) {
 841                return ret;
 842        }
 843
 844        mutex_lock(&pctldev->mutex);
 845
 846        /* Convert to the pin controllers number space */
 847        pin = gpio_to_pin(range, gpio);
 848        ret = pinmux_gpio_direction(pctldev, range, pin, input);
 849
 850        mutex_unlock(&pctldev->mutex);
 851
 852        return ret;
 853}
 854
 855/**
 856 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
 857 * @gpio: the GPIO pin number from the GPIO subsystem number space
 858 *
 859 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 860 * as part of their gpio_direction_input() semantics, platforms and individual
 861 * drivers shall *NOT* touch pin control GPIO calls.
 862 */
 863int pinctrl_gpio_direction_input(unsigned gpio)
 864{
 865        return pinctrl_gpio_direction(gpio, true);
 866}
 867EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
 868
 869/**
 870 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
 871 * @gpio: the GPIO pin number from the GPIO subsystem number space
 872 *
 873 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 874 * as part of their gpio_direction_output() semantics, platforms and individual
 875 * drivers shall *NOT* touch pin control GPIO calls.
 876 */
 877int pinctrl_gpio_direction_output(unsigned gpio)
 878{
 879        return pinctrl_gpio_direction(gpio, false);
 880}
 881EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
 882
 883/**
 884 * pinctrl_gpio_set_config() - Apply config to given GPIO pin
 885 * @gpio: the GPIO pin number from the GPIO subsystem number space
 886 * @config: the configuration to apply to the GPIO
 887 *
 888 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
 889 * they need to call the underlying pin controller to change GPIO config
 890 * (for example set debounce time).
 891 */
 892int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
 893{
 894        unsigned long configs[] = { config };
 895        struct pinctrl_gpio_range *range;
 896        struct pinctrl_dev *pctldev;
 897        int ret, pin;
 898
 899        ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 900        if (ret)
 901                return ret;
 902
 903        mutex_lock(&pctldev->mutex);
 904        pin = gpio_to_pin(range, gpio);
 905        ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
 906        mutex_unlock(&pctldev->mutex);
 907
 908        return ret;
 909}
 910EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
 911
 912static struct pinctrl_state *find_state(struct pinctrl *p,
 913                                        const char *name)
 914{
 915        struct pinctrl_state *state;
 916
 917        list_for_each_entry(state, &p->states, node)
 918                if (!strcmp(state->name, name))
 919                        return state;
 920
 921        return NULL;
 922}
 923
 924static struct pinctrl_state *create_state(struct pinctrl *p,
 925                                          const char *name)
 926{
 927        struct pinctrl_state *state;
 928
 929        state = kzalloc(sizeof(*state), GFP_KERNEL);
 930        if (!state)
 931                return ERR_PTR(-ENOMEM);
 932
 933        state->name = name;
 934        INIT_LIST_HEAD(&state->settings);
 935
 936        list_add_tail(&state->node, &p->states);
 937
 938        return state;
 939}
 940
 941static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
 942                       const struct pinctrl_map *map)
 943{
 944        struct pinctrl_state *state;
 945        struct pinctrl_setting *setting;
 946        int ret;
 947
 948        state = find_state(p, map->name);
 949        if (!state)
 950                state = create_state(p, map->name);
 951        if (IS_ERR(state))
 952                return PTR_ERR(state);
 953
 954        if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
 955                return 0;
 956
 957        setting = kzalloc(sizeof(*setting), GFP_KERNEL);
 958        if (!setting)
 959                return -ENOMEM;
 960
 961        setting->type = map->type;
 962
 963        if (pctldev)
 964                setting->pctldev = pctldev;
 965        else
 966                setting->pctldev =
 967                        get_pinctrl_dev_from_devname(map->ctrl_dev_name);
 968        if (!setting->pctldev) {
 969                kfree(setting);
 970                /* Do not defer probing of hogs (circular loop) */
 971                if (!strcmp(map->ctrl_dev_name, map->dev_name))
 972                        return -ENODEV;
 973                /*
 974                 * OK let us guess that the driver is not there yet, and
 975                 * let's defer obtaining this pinctrl handle to later...
 976                 */
 977                dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
 978                        map->ctrl_dev_name);
 979                return -EPROBE_DEFER;
 980        }
 981
 982        setting->dev_name = map->dev_name;
 983
 984        switch (map->type) {
 985        case PIN_MAP_TYPE_MUX_GROUP:
 986                ret = pinmux_map_to_setting(map, setting);
 987                break;
 988        case PIN_MAP_TYPE_CONFIGS_PIN:
 989        case PIN_MAP_TYPE_CONFIGS_GROUP:
 990                ret = pinconf_map_to_setting(map, setting);
 991                break;
 992        default:
 993                ret = -EINVAL;
 994                break;
 995        }
 996        if (ret < 0) {
 997                kfree(setting);
 998                return ret;
 999        }
1000
1001        list_add_tail(&setting->node, &state->settings);
1002
1003        return 0;
1004}
1005
1006static struct pinctrl *find_pinctrl(struct device *dev)
1007{
1008        struct pinctrl *p;
1009
1010        mutex_lock(&pinctrl_list_mutex);
1011        list_for_each_entry(p, &pinctrl_list, node)
1012                if (p->dev == dev) {
1013                        mutex_unlock(&pinctrl_list_mutex);
1014                        return p;
1015                }
1016
1017        mutex_unlock(&pinctrl_list_mutex);
1018        return NULL;
1019}
1020
1021static void pinctrl_free(struct pinctrl *p, bool inlist);
1022
1023static struct pinctrl *create_pinctrl(struct device *dev,
1024                                      struct pinctrl_dev *pctldev)
1025{
1026        struct pinctrl *p;
1027        const char *devname;
1028        struct pinctrl_maps *maps_node;
1029        int i;
1030        const struct pinctrl_map *map;
1031        int ret;
1032
1033        /*
1034         * create the state cookie holder struct pinctrl for each
1035         * mapping, this is what consumers will get when requesting
1036         * a pin control handle with pinctrl_get()
1037         */
1038        p = kzalloc(sizeof(*p), GFP_KERNEL);
1039        if (!p)
1040                return ERR_PTR(-ENOMEM);
1041        p->dev = dev;
1042        INIT_LIST_HEAD(&p->states);
1043        INIT_LIST_HEAD(&p->dt_maps);
1044
1045        ret = pinctrl_dt_to_map(p, pctldev);
1046        if (ret < 0) {
1047                kfree(p);
1048                return ERR_PTR(ret);
1049        }
1050
1051        devname = dev_name(dev);
1052
1053        mutex_lock(&pinctrl_maps_mutex);
1054        /* Iterate over the pin control maps to locate the right ones */
1055        for_each_maps(maps_node, i, map) {
1056                /* Map must be for this device */
1057                if (strcmp(map->dev_name, devname))
1058                        continue;
1059                /*
1060                 * If pctldev is not null, we are claiming hog for it,
1061                 * that means, setting that is served by pctldev by itself.
1062                 *
1063                 * Thus we must skip map that is for this device but is served
1064                 * by other device.
1065                 */
1066                if (pctldev &&
1067                    strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1068                        continue;
1069
1070                ret = add_setting(p, pctldev, map);
1071                /*
1072                 * At this point the adding of a setting may:
1073                 *
1074                 * - Defer, if the pinctrl device is not yet available
1075                 * - Fail, if the pinctrl device is not yet available,
1076                 *   AND the setting is a hog. We cannot defer that, since
1077                 *   the hog will kick in immediately after the device
1078                 *   is registered.
1079                 *
1080                 * If the error returned was not -EPROBE_DEFER then we
1081                 * accumulate the errors to see if we end up with
1082                 * an -EPROBE_DEFER later, as that is the worst case.
1083                 */
1084                if (ret == -EPROBE_DEFER) {
1085                        pinctrl_free(p, false);
1086                        mutex_unlock(&pinctrl_maps_mutex);
1087                        return ERR_PTR(ret);
1088                }
1089        }
1090        mutex_unlock(&pinctrl_maps_mutex);
1091
1092        if (ret < 0) {
1093                /* If some other error than deferral occurred, return here */
1094                pinctrl_free(p, false);
1095                return ERR_PTR(ret);
1096        }
1097
1098        kref_init(&p->users);
1099
1100        /* Add the pinctrl handle to the global list */
1101        mutex_lock(&pinctrl_list_mutex);
1102        list_add_tail(&p->node, &pinctrl_list);
1103        mutex_unlock(&pinctrl_list_mutex);
1104
1105        return p;
1106}
1107
1108/**
1109 * pinctrl_get() - retrieves the pinctrl handle for a device
1110 * @dev: the device to obtain the handle for
1111 */
1112struct pinctrl *pinctrl_get(struct device *dev)
1113{
1114        struct pinctrl *p;
1115
1116        if (WARN_ON(!dev))
1117                return ERR_PTR(-EINVAL);
1118
1119        /*
1120         * See if somebody else (such as the device core) has already
1121         * obtained a handle to the pinctrl for this device. In that case,
1122         * return another pointer to it.
1123         */
1124        p = find_pinctrl(dev);
1125        if (p) {
1126                dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1127                kref_get(&p->users);
1128                return p;
1129        }
1130
1131        return create_pinctrl(dev, NULL);
1132}
1133EXPORT_SYMBOL_GPL(pinctrl_get);
1134
1135static void pinctrl_free_setting(bool disable_setting,
1136                                 struct pinctrl_setting *setting)
1137{
1138        switch (setting->type) {
1139        case PIN_MAP_TYPE_MUX_GROUP:
1140                if (disable_setting)
1141                        pinmux_disable_setting(setting);
1142                pinmux_free_setting(setting);
1143                break;
1144        case PIN_MAP_TYPE_CONFIGS_PIN:
1145        case PIN_MAP_TYPE_CONFIGS_GROUP:
1146                pinconf_free_setting(setting);
1147                break;
1148        default:
1149                break;
1150        }
1151}
1152
1153static void pinctrl_free(struct pinctrl *p, bool inlist)
1154{
1155        struct pinctrl_state *state, *n1;
1156        struct pinctrl_setting *setting, *n2;
1157
1158        mutex_lock(&pinctrl_list_mutex);
1159        list_for_each_entry_safe(state, n1, &p->states, node) {
1160                list_for_each_entry_safe(setting, n2, &state->settings, node) {
1161                        pinctrl_free_setting(state == p->state, setting);
1162                        list_del(&setting->node);
1163                        kfree(setting);
1164                }
1165                list_del(&state->node);
1166                kfree(state);
1167        }
1168
1169        pinctrl_dt_free_maps(p);
1170
1171        if (inlist)
1172                list_del(&p->node);
1173        kfree(p);
1174        mutex_unlock(&pinctrl_list_mutex);
1175}
1176
1177/**
1178 * pinctrl_release() - release the pinctrl handle
1179 * @kref: the kref in the pinctrl being released
1180 */
1181static void pinctrl_release(struct kref *kref)
1182{
1183        struct pinctrl *p = container_of(kref, struct pinctrl, users);
1184
1185        pinctrl_free(p, true);
1186}
1187
1188/**
1189 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1190 * @p: the pinctrl handle to release
1191 */
1192void pinctrl_put(struct pinctrl *p)
1193{
1194        kref_put(&p->users, pinctrl_release);
1195}
1196EXPORT_SYMBOL_GPL(pinctrl_put);
1197
1198/**
1199 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1200 * @p: the pinctrl handle to retrieve the state from
1201 * @name: the state name to retrieve
1202 */
1203struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1204                                                 const char *name)
1205{
1206        struct pinctrl_state *state;
1207
1208        state = find_state(p, name);
1209        if (!state) {
1210                if (pinctrl_dummy_state) {
1211                        /* create dummy state */
1212                        dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1213                                name);
1214                        state = create_state(p, name);
1215                } else
1216                        state = ERR_PTR(-ENODEV);
1217        }
1218
1219        return state;
1220}
1221EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1222
1223static void pinctrl_link_add(struct pinctrl_dev *pctldev,
1224                             struct device *consumer)
1225{
1226        if (pctldev->desc->link_consumers)
1227                device_link_add(consumer, pctldev->dev,
1228                                DL_FLAG_PM_RUNTIME |
1229                                DL_FLAG_AUTOREMOVE_CONSUMER);
1230}
1231
1232/**
1233 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1234 * @p: the pinctrl handle for the device that requests configuration
1235 * @state: the state handle to select/activate/program
1236 */
1237static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1238{
1239        struct pinctrl_setting *setting, *setting2;
1240        struct pinctrl_state *old_state = p->state;
1241        int ret;
1242
1243        if (p->state) {
1244                /*
1245                 * For each pinmux setting in the old state, forget SW's record
1246                 * of mux owner for that pingroup. Any pingroups which are
1247                 * still owned by the new state will be re-acquired by the call
1248                 * to pinmux_enable_setting() in the loop below.
1249                 */
1250                list_for_each_entry(setting, &p->state->settings, node) {
1251                        if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1252                                continue;
1253                        pinmux_disable_setting(setting);
1254                }
1255        }
1256
1257        p->state = NULL;
1258
1259        /* Apply all the settings for the new state */
1260        list_for_each_entry(setting, &state->settings, node) {
1261                switch (setting->type) {
1262                case PIN_MAP_TYPE_MUX_GROUP:
1263                        ret = pinmux_enable_setting(setting);
1264                        break;
1265                case PIN_MAP_TYPE_CONFIGS_PIN:
1266                case PIN_MAP_TYPE_CONFIGS_GROUP:
1267                        ret = pinconf_apply_setting(setting);
1268                        break;
1269                default:
1270                        ret = -EINVAL;
1271                        break;
1272                }
1273
1274                if (ret < 0) {
1275                        goto unapply_new_state;
1276                }
1277
1278                /* Do not link hogs (circular dependency) */
1279                if (p != setting->pctldev->p)
1280                        pinctrl_link_add(setting->pctldev, p->dev);
1281        }
1282
1283        p->state = state;
1284
1285        return 0;
1286
1287unapply_new_state:
1288        dev_err(p->dev, "Error applying setting, reverse things back\n");
1289
1290        list_for_each_entry(setting2, &state->settings, node) {
1291                if (&setting2->node == &setting->node)
1292                        break;
1293                /*
1294                 * All we can do here is pinmux_disable_setting.
1295                 * That means that some pins are muxed differently now
1296                 * than they were before applying the setting (We can't
1297                 * "unmux a pin"!), but it's not a big deal since the pins
1298                 * are free to be muxed by another apply_setting.
1299                 */
1300                if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1301                        pinmux_disable_setting(setting2);
1302        }
1303
1304        /* There's no infinite recursive loop here because p->state is NULL */
1305        if (old_state)
1306                pinctrl_select_state(p, old_state);
1307
1308        return ret;
1309}
1310
1311/**
1312 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1313 * @p: the pinctrl handle for the device that requests configuration
1314 * @state: the state handle to select/activate/program
1315 */
1316int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1317{
1318        if (p->state == state)
1319                return 0;
1320
1321        return pinctrl_commit_state(p, state);
1322}
1323EXPORT_SYMBOL_GPL(pinctrl_select_state);
1324
1325static void devm_pinctrl_release(struct device *dev, void *res)
1326{
1327        pinctrl_put(*(struct pinctrl **)res);
1328}
1329
1330/**
1331 * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1332 * @dev: the device to obtain the handle for
1333 *
1334 * If there is a need to explicitly destroy the returned struct pinctrl,
1335 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1336 */
1337struct pinctrl *devm_pinctrl_get(struct device *dev)
1338{
1339        struct pinctrl **ptr, *p;
1340
1341        ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1342        if (!ptr)
1343                return ERR_PTR(-ENOMEM);
1344
1345        p = pinctrl_get(dev);
1346        if (!IS_ERR(p)) {
1347                *ptr = p;
1348                devres_add(dev, ptr);
1349        } else {
1350                devres_free(ptr);
1351        }
1352
1353        return p;
1354}
1355EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1356
1357static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1358{
1359        struct pinctrl **p = res;
1360
1361        return *p == data;
1362}
1363
1364/**
1365 * devm_pinctrl_put() - Resource managed pinctrl_put()
1366 * @p: the pinctrl handle to release
1367 *
1368 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1369 * this function will not need to be called and the resource management
1370 * code will ensure that the resource is freed.
1371 */
1372void devm_pinctrl_put(struct pinctrl *p)
1373{
1374        WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1375                               devm_pinctrl_match, p));
1376}
1377EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1378
1379/**
1380 * pinctrl_register_mappings() - register a set of pin controller mappings
1381 * @maps: the pincontrol mappings table to register. Note the pinctrl-core
1382 *      keeps a reference to the passed in maps, so they should _not_ be
1383 *      marked with __initdata.
1384 * @num_maps: the number of maps in the mapping table
1385 */
1386int pinctrl_register_mappings(const struct pinctrl_map *maps,
1387                              unsigned num_maps)
1388{
1389        int i, ret;
1390        struct pinctrl_maps *maps_node;
1391
1392        pr_debug("add %u pinctrl maps\n", num_maps);
1393
1394        /* First sanity check the new mapping */
1395        for (i = 0; i < num_maps; i++) {
1396                if (!maps[i].dev_name) {
1397                        pr_err("failed to register map %s (%d): no device given\n",
1398                               maps[i].name, i);
1399                        return -EINVAL;
1400                }
1401
1402                if (!maps[i].name) {
1403                        pr_err("failed to register map %d: no map name given\n",
1404                               i);
1405                        return -EINVAL;
1406                }
1407
1408                if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1409                                !maps[i].ctrl_dev_name) {
1410                        pr_err("failed to register map %s (%d): no pin control device given\n",
1411                               maps[i].name, i);
1412                        return -EINVAL;
1413                }
1414
1415                switch (maps[i].type) {
1416                case PIN_MAP_TYPE_DUMMY_STATE:
1417                        break;
1418                case PIN_MAP_TYPE_MUX_GROUP:
1419                        ret = pinmux_validate_map(&maps[i], i);
1420                        if (ret < 0)
1421                                return ret;
1422                        break;
1423                case PIN_MAP_TYPE_CONFIGS_PIN:
1424                case PIN_MAP_TYPE_CONFIGS_GROUP:
1425                        ret = pinconf_validate_map(&maps[i], i);
1426                        if (ret < 0)
1427                                return ret;
1428                        break;
1429                default:
1430                        pr_err("failed to register map %s (%d): invalid type given\n",
1431                               maps[i].name, i);
1432                        return -EINVAL;
1433                }
1434        }
1435
1436        maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1437        if (!maps_node)
1438                return -ENOMEM;
1439
1440        maps_node->maps = maps;
1441        maps_node->num_maps = num_maps;
1442
1443        mutex_lock(&pinctrl_maps_mutex);
1444        list_add_tail(&maps_node->node, &pinctrl_maps);
1445        mutex_unlock(&pinctrl_maps_mutex);
1446
1447        return 0;
1448}
1449EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1450
1451/**
1452 * pinctrl_unregister_mappings() - unregister a set of pin controller mappings
1453 * @maps: the pincontrol mappings table passed to pinctrl_register_mappings()
1454 *      when registering the mappings.
1455 */
1456void pinctrl_unregister_mappings(const struct pinctrl_map *map)
1457{
1458        struct pinctrl_maps *maps_node;
1459
1460        mutex_lock(&pinctrl_maps_mutex);
1461        list_for_each_entry(maps_node, &pinctrl_maps, node) {
1462                if (maps_node->maps == map) {
1463                        list_del(&maps_node->node);
1464                        kfree(maps_node);
1465                        mutex_unlock(&pinctrl_maps_mutex);
1466                        return;
1467                }
1468        }
1469        mutex_unlock(&pinctrl_maps_mutex);
1470}
1471EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings);
1472
1473/**
1474 * pinctrl_force_sleep() - turn a given controller device into sleep state
1475 * @pctldev: pin controller device
1476 */
1477int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1478{
1479        if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1480                return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1481        return 0;
1482}
1483EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1484
1485/**
1486 * pinctrl_force_default() - turn a given controller device into default state
1487 * @pctldev: pin controller device
1488 */
1489int pinctrl_force_default(struct pinctrl_dev *pctldev)
1490{
1491        if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1492                return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1493        return 0;
1494}
1495EXPORT_SYMBOL_GPL(pinctrl_force_default);
1496
1497/**
1498 * pinctrl_init_done() - tell pinctrl probe is done
1499 *
1500 * We'll use this time to switch the pins from "init" to "default" unless the
1501 * driver selected some other state.
1502 *
1503 * @dev: device to that's done probing
1504 */
1505int pinctrl_init_done(struct device *dev)
1506{
1507        struct dev_pin_info *pins = dev->pins;
1508        int ret;
1509
1510        if (!pins)
1511                return 0;
1512
1513        if (IS_ERR(pins->init_state))
1514                return 0; /* No such state */
1515
1516        if (pins->p->state != pins->init_state)
1517                return 0; /* Not at init anyway */
1518
1519        if (IS_ERR(pins->default_state))
1520                return 0; /* No default state */
1521
1522        ret = pinctrl_select_state(pins->p, pins->default_state);
1523        if (ret)
1524                dev_err(dev, "failed to activate default pinctrl state\n");
1525
1526        return ret;
1527}
1528
1529#ifdef CONFIG_PM
1530
1531/**
1532 * pinctrl_pm_select_state() - select pinctrl state for PM
1533 * @dev: device to select default state for
1534 * @state: state to set
1535 */
1536static int pinctrl_pm_select_state(struct device *dev,
1537                                   struct pinctrl_state *state)
1538{
1539        struct dev_pin_info *pins = dev->pins;
1540        int ret;
1541
1542        if (IS_ERR(state))
1543                return 0; /* No such state */
1544        ret = pinctrl_select_state(pins->p, state);
1545        if (ret)
1546                dev_err(dev, "failed to activate pinctrl state %s\n",
1547                        state->name);
1548        return ret;
1549}
1550
1551/**
1552 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1553 * @dev: device to select default state for
1554 */
1555int pinctrl_pm_select_default_state(struct device *dev)
1556{
1557        if (!dev->pins)
1558                return 0;
1559
1560        return pinctrl_pm_select_state(dev, dev->pins->default_state);
1561}
1562EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1563
1564/**
1565 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1566 * @dev: device to select sleep state for
1567 */
1568int pinctrl_pm_select_sleep_state(struct device *dev)
1569{
1570        if (!dev->pins)
1571                return 0;
1572
1573        return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1574}
1575EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1576
1577/**
1578 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1579 * @dev: device to select idle state for
1580 */
1581int pinctrl_pm_select_idle_state(struct device *dev)
1582{
1583        if (!dev->pins)
1584                return 0;
1585
1586        return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1587}
1588EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1589#endif
1590
1591#ifdef CONFIG_DEBUG_FS
1592
1593static int pinctrl_pins_show(struct seq_file *s, void *what)
1594{
1595        struct pinctrl_dev *pctldev = s->private;
1596        const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1597        unsigned i, pin;
1598
1599        seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1600
1601        mutex_lock(&pctldev->mutex);
1602
1603        /* The pin number can be retrived from the pin controller descriptor */
1604        for (i = 0; i < pctldev->desc->npins; i++) {
1605                struct pin_desc *desc;
1606
1607                pin = pctldev->desc->pins[i].number;
1608                desc = pin_desc_get(pctldev, pin);
1609                /* Pin space may be sparse */
1610                if (!desc)
1611                        continue;
1612
1613                seq_printf(s, "pin %d (%s) ", pin, desc->name);
1614
1615                /* Driver-specific info per pin */
1616                if (ops->pin_dbg_show)
1617                        ops->pin_dbg_show(pctldev, s, pin);
1618
1619                seq_puts(s, "\n");
1620        }
1621
1622        mutex_unlock(&pctldev->mutex);
1623
1624        return 0;
1625}
1626DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1627
1628static int pinctrl_groups_show(struct seq_file *s, void *what)
1629{
1630        struct pinctrl_dev *pctldev = s->private;
1631        const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1632        unsigned ngroups, selector = 0;
1633
1634        mutex_lock(&pctldev->mutex);
1635
1636        ngroups = ops->get_groups_count(pctldev);
1637
1638        seq_puts(s, "registered pin groups:\n");
1639        while (selector < ngroups) {
1640                const unsigned *pins = NULL;
1641                unsigned num_pins = 0;
1642                const char *gname = ops->get_group_name(pctldev, selector);
1643                const char *pname;
1644                int ret = 0;
1645                int i;
1646
1647                if (ops->get_group_pins)
1648                        ret = ops->get_group_pins(pctldev, selector,
1649                                                  &pins, &num_pins);
1650                if (ret)
1651                        seq_printf(s, "%s [ERROR GETTING PINS]\n",
1652                                   gname);
1653                else {
1654                        seq_printf(s, "group: %s\n", gname);
1655                        for (i = 0; i < num_pins; i++) {
1656                                pname = pin_get_name(pctldev, pins[i]);
1657                                if (WARN_ON(!pname)) {
1658                                        mutex_unlock(&pctldev->mutex);
1659                                        return -EINVAL;
1660                                }
1661                                seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1662                        }
1663                        seq_puts(s, "\n");
1664                }
1665                selector++;
1666        }
1667
1668        mutex_unlock(&pctldev->mutex);
1669
1670        return 0;
1671}
1672DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1673
1674static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1675{
1676        struct pinctrl_dev *pctldev = s->private;
1677        struct pinctrl_gpio_range *range;
1678
1679        seq_puts(s, "GPIO ranges handled:\n");
1680
1681        mutex_lock(&pctldev->mutex);
1682
1683        /* Loop over the ranges */
1684        list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1685                if (range->pins) {
1686                        int a;
1687                        seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1688                                range->id, range->name,
1689                                range->base, (range->base + range->npins - 1));
1690                        for (a = 0; a < range->npins - 1; a++)
1691                                seq_printf(s, "%u, ", range->pins[a]);
1692                        seq_printf(s, "%u}\n", range->pins[a]);
1693                }
1694                else
1695                        seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1696                                range->id, range->name,
1697                                range->base, (range->base + range->npins - 1),
1698                                range->pin_base,
1699                                (range->pin_base + range->npins - 1));
1700        }
1701
1702        mutex_unlock(&pctldev->mutex);
1703
1704        return 0;
1705}
1706DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1707
1708static int pinctrl_devices_show(struct seq_file *s, void *what)
1709{
1710        struct pinctrl_dev *pctldev;
1711
1712        seq_puts(s, "name [pinmux] [pinconf]\n");
1713
1714        mutex_lock(&pinctrldev_list_mutex);
1715
1716        list_for_each_entry(pctldev, &pinctrldev_list, node) {
1717                seq_printf(s, "%s ", pctldev->desc->name);
1718                if (pctldev->desc->pmxops)
1719                        seq_puts(s, "yes ");
1720                else
1721                        seq_puts(s, "no ");
1722                if (pctldev->desc->confops)
1723                        seq_puts(s, "yes");
1724                else
1725                        seq_puts(s, "no");
1726                seq_puts(s, "\n");
1727        }
1728
1729        mutex_unlock(&pinctrldev_list_mutex);
1730
1731        return 0;
1732}
1733DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1734
1735static inline const char *map_type(enum pinctrl_map_type type)
1736{
1737        static const char * const names[] = {
1738                "INVALID",
1739                "DUMMY_STATE",
1740                "MUX_GROUP",
1741                "CONFIGS_PIN",
1742                "CONFIGS_GROUP",
1743        };
1744
1745        if (type >= ARRAY_SIZE(names))
1746                return "UNKNOWN";
1747
1748        return names[type];
1749}
1750
1751static int pinctrl_maps_show(struct seq_file *s, void *what)
1752{
1753        struct pinctrl_maps *maps_node;
1754        int i;
1755        const struct pinctrl_map *map;
1756
1757        seq_puts(s, "Pinctrl maps:\n");
1758
1759        mutex_lock(&pinctrl_maps_mutex);
1760        for_each_maps(maps_node, i, map) {
1761                seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1762                           map->dev_name, map->name, map_type(map->type),
1763                           map->type);
1764
1765                if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1766                        seq_printf(s, "controlling device %s\n",
1767                                   map->ctrl_dev_name);
1768
1769                switch (map->type) {
1770                case PIN_MAP_TYPE_MUX_GROUP:
1771                        pinmux_show_map(s, map);
1772                        break;
1773                case PIN_MAP_TYPE_CONFIGS_PIN:
1774                case PIN_MAP_TYPE_CONFIGS_GROUP:
1775                        pinconf_show_map(s, map);
1776                        break;
1777                default:
1778                        break;
1779                }
1780
1781                seq_putc(s, '\n');
1782        }
1783        mutex_unlock(&pinctrl_maps_mutex);
1784
1785        return 0;
1786}
1787DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1788
1789static int pinctrl_show(struct seq_file *s, void *what)
1790{
1791        struct pinctrl *p;
1792        struct pinctrl_state *state;
1793        struct pinctrl_setting *setting;
1794
1795        seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1796
1797        mutex_lock(&pinctrl_list_mutex);
1798
1799        list_for_each_entry(p, &pinctrl_list, node) {
1800                seq_printf(s, "device: %s current state: %s\n",
1801                           dev_name(p->dev),
1802                           p->state ? p->state->name : "none");
1803
1804                list_for_each_entry(state, &p->states, node) {
1805                        seq_printf(s, "  state: %s\n", state->name);
1806
1807                        list_for_each_entry(setting, &state->settings, node) {
1808                                struct pinctrl_dev *pctldev = setting->pctldev;
1809
1810                                seq_printf(s, "    type: %s controller %s ",
1811                                           map_type(setting->type),
1812                                           pinctrl_dev_get_name(pctldev));
1813
1814                                switch (setting->type) {
1815                                case PIN_MAP_TYPE_MUX_GROUP:
1816                                        pinmux_show_setting(s, setting);
1817                                        break;
1818                                case PIN_MAP_TYPE_CONFIGS_PIN:
1819                                case PIN_MAP_TYPE_CONFIGS_GROUP:
1820                                        pinconf_show_setting(s, setting);
1821                                        break;
1822                                default:
1823                                        break;
1824                                }
1825                        }
1826                }
1827        }
1828
1829        mutex_unlock(&pinctrl_list_mutex);
1830
1831        return 0;
1832}
1833DEFINE_SHOW_ATTRIBUTE(pinctrl);
1834
1835static struct dentry *debugfs_root;
1836
1837static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1838{
1839        struct dentry *device_root;
1840        const char *debugfs_name;
1841
1842        if (pctldev->desc->name &&
1843                        strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1844                debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1845                                "%s-%s", dev_name(pctldev->dev),
1846                                pctldev->desc->name);
1847                if (!debugfs_name) {
1848                        pr_warn("failed to determine debugfs dir name for %s\n",
1849                                dev_name(pctldev->dev));
1850                        return;
1851                }
1852        } else {
1853                debugfs_name = dev_name(pctldev->dev);
1854        }
1855
1856        device_root = debugfs_create_dir(debugfs_name, debugfs_root);
1857        pctldev->device_root = device_root;
1858
1859        if (IS_ERR(device_root) || !device_root) {
1860                pr_warn("failed to create debugfs directory for %s\n",
1861                        dev_name(pctldev->dev));
1862                return;
1863        }
1864        debugfs_create_file("pins", S_IFREG | S_IRUGO,
1865                            device_root, pctldev, &pinctrl_pins_fops);
1866        debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1867                            device_root, pctldev, &pinctrl_groups_fops);
1868        debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1869                            device_root, pctldev, &pinctrl_gpioranges_fops);
1870        if (pctldev->desc->pmxops)
1871                pinmux_init_device_debugfs(device_root, pctldev);
1872        if (pctldev->desc->confops)
1873                pinconf_init_device_debugfs(device_root, pctldev);
1874}
1875
1876static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1877{
1878        debugfs_remove_recursive(pctldev->device_root);
1879}
1880
1881static void pinctrl_init_debugfs(void)
1882{
1883        debugfs_root = debugfs_create_dir("pinctrl", NULL);
1884        if (IS_ERR(debugfs_root) || !debugfs_root) {
1885                pr_warn("failed to create debugfs directory\n");
1886                debugfs_root = NULL;
1887                return;
1888        }
1889
1890        debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1891                            debugfs_root, NULL, &pinctrl_devices_fops);
1892        debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1893                            debugfs_root, NULL, &pinctrl_maps_fops);
1894        debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1895                            debugfs_root, NULL, &pinctrl_fops);
1896}
1897
1898#else /* CONFIG_DEBUG_FS */
1899
1900static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1901{
1902}
1903
1904static void pinctrl_init_debugfs(void)
1905{
1906}
1907
1908static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1909{
1910}
1911
1912#endif
1913
1914static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1915{
1916        const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1917
1918        if (!ops ||
1919            !ops->get_groups_count ||
1920            !ops->get_group_name)
1921                return -EINVAL;
1922
1923        return 0;
1924}
1925
1926/**
1927 * pinctrl_init_controller() - init a pin controller device
1928 * @pctldesc: descriptor for this pin controller
1929 * @dev: parent device for this pin controller
1930 * @driver_data: private pin controller data for this pin controller
1931 */
1932static struct pinctrl_dev *
1933pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
1934                        void *driver_data)
1935{
1936        struct pinctrl_dev *pctldev;
1937        int ret;
1938
1939        if (!pctldesc)
1940                return ERR_PTR(-EINVAL);
1941        if (!pctldesc->name)
1942                return ERR_PTR(-EINVAL);
1943
1944        pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1945        if (!pctldev)
1946                return ERR_PTR(-ENOMEM);
1947
1948        /* Initialize pin control device struct */
1949        pctldev->owner = pctldesc->owner;
1950        pctldev->desc = pctldesc;
1951        pctldev->driver_data = driver_data;
1952        INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1953#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
1954        INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
1955#endif
1956#ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
1957        INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
1958#endif
1959        INIT_LIST_HEAD(&pctldev->gpio_ranges);
1960        INIT_LIST_HEAD(&pctldev->node);
1961        pctldev->dev = dev;
1962        mutex_init(&pctldev->mutex);
1963
1964        /* check core ops for sanity */
1965        ret = pinctrl_check_ops(pctldev);
1966        if (ret) {
1967                dev_err(dev, "pinctrl ops lacks necessary functions\n");
1968                goto out_err;
1969        }
1970
1971        /* If we're implementing pinmuxing, check the ops for sanity */
1972        if (pctldesc->pmxops) {
1973                ret = pinmux_check_ops(pctldev);
1974                if (ret)
1975                        goto out_err;
1976        }
1977
1978        /* If we're implementing pinconfig, check the ops for sanity */
1979        if (pctldesc->confops) {
1980                ret = pinconf_check_ops(pctldev);
1981                if (ret)
1982                        goto out_err;
1983        }
1984
1985        /* Register all the pins */
1986        dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
1987        ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1988        if (ret) {
1989                dev_err(dev, "error during pin registration\n");
1990                pinctrl_free_pindescs(pctldev, pctldesc->pins,
1991                                      pctldesc->npins);
1992                goto out_err;
1993        }
1994
1995        return pctldev;
1996
1997out_err:
1998        mutex_destroy(&pctldev->mutex);
1999        kfree(pctldev);
2000        return ERR_PTR(ret);
2001}
2002
2003static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2004{
2005        pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2006        if (PTR_ERR(pctldev->p) == -ENODEV) {
2007                dev_dbg(pctldev->dev, "no hogs found\n");
2008
2009                return 0;
2010        }
2011
2012        if (IS_ERR(pctldev->p)) {
2013                dev_err(pctldev->dev, "error claiming hogs: %li\n",
2014                        PTR_ERR(pctldev->p));
2015
2016                return PTR_ERR(pctldev->p);
2017        }
2018
2019        kref_get(&pctldev->p->users);
2020        pctldev->hog_default =
2021                pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2022        if (IS_ERR(pctldev->hog_default)) {
2023                dev_dbg(pctldev->dev,
2024                        "failed to lookup the default state\n");
2025        } else {
2026                if (pinctrl_select_state(pctldev->p,
2027                                         pctldev->hog_default))
2028                        dev_err(pctldev->dev,
2029                                "failed to select default state\n");
2030        }
2031
2032        pctldev->hog_sleep =
2033                pinctrl_lookup_state(pctldev->p,
2034                                     PINCTRL_STATE_SLEEP);
2035        if (IS_ERR(pctldev->hog_sleep))
2036                dev_dbg(pctldev->dev,
2037                        "failed to lookup the sleep state\n");
2038
2039        return 0;
2040}
2041
2042int pinctrl_enable(struct pinctrl_dev *pctldev)
2043{
2044        int error;
2045
2046        error = pinctrl_claim_hogs(pctldev);
2047        if (error) {
2048                dev_err(pctldev->dev, "could not claim hogs: %i\n",
2049                        error);
2050                mutex_destroy(&pctldev->mutex);
2051                kfree(pctldev);
2052
2053                return error;
2054        }
2055
2056        mutex_lock(&pinctrldev_list_mutex);
2057        list_add_tail(&pctldev->node, &pinctrldev_list);
2058        mutex_unlock(&pinctrldev_list_mutex);
2059
2060        pinctrl_init_device_debugfs(pctldev);
2061
2062        return 0;
2063}
2064EXPORT_SYMBOL_GPL(pinctrl_enable);
2065
2066/**
2067 * pinctrl_register() - register a pin controller device
2068 * @pctldesc: descriptor for this pin controller
2069 * @dev: parent device for this pin controller
2070 * @driver_data: private pin controller data for this pin controller
2071 *
2072 * Note that pinctrl_register() is known to have problems as the pin
2073 * controller driver functions are called before the driver has a
2074 * struct pinctrl_dev handle. To avoid issues later on, please use the
2075 * new pinctrl_register_and_init() below instead.
2076 */
2077struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2078                                    struct device *dev, void *driver_data)
2079{
2080        struct pinctrl_dev *pctldev;
2081        int error;
2082
2083        pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2084        if (IS_ERR(pctldev))
2085                return pctldev;
2086
2087        error = pinctrl_enable(pctldev);
2088        if (error)
2089                return ERR_PTR(error);
2090
2091        return pctldev;
2092
2093}
2094EXPORT_SYMBOL_GPL(pinctrl_register);
2095
2096/**
2097 * pinctrl_register_and_init() - register and init pin controller device
2098 * @pctldesc: descriptor for this pin controller
2099 * @dev: parent device for this pin controller
2100 * @driver_data: private pin controller data for this pin controller
2101 * @pctldev: pin controller device
2102 *
2103 * Note that pinctrl_enable() still needs to be manually called after
2104 * this once the driver is ready.
2105 */
2106int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2107                              struct device *dev, void *driver_data,
2108                              struct pinctrl_dev **pctldev)
2109{
2110        struct pinctrl_dev *p;
2111
2112        p = pinctrl_init_controller(pctldesc, dev, driver_data);
2113        if (IS_ERR(p))
2114                return PTR_ERR(p);
2115
2116        /*
2117         * We have pinctrl_start() call functions in the pin controller
2118         * driver with create_pinctrl() for at least dt_node_to_map(). So
2119         * let's make sure pctldev is properly initialized for the
2120         * pin controller driver before we do anything.
2121         */
2122        *pctldev = p;
2123
2124        return 0;
2125}
2126EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2127
2128/**
2129 * pinctrl_unregister() - unregister pinmux
2130 * @pctldev: pin controller to unregister
2131 *
2132 * Called by pinmux drivers to unregister a pinmux.
2133 */
2134void pinctrl_unregister(struct pinctrl_dev *pctldev)
2135{
2136        struct pinctrl_gpio_range *range, *n;
2137
2138        if (!pctldev)
2139                return;
2140
2141        mutex_lock(&pctldev->mutex);
2142        pinctrl_remove_device_debugfs(pctldev);
2143        mutex_unlock(&pctldev->mutex);
2144
2145        if (!IS_ERR_OR_NULL(pctldev->p))
2146                pinctrl_put(pctldev->p);
2147
2148        mutex_lock(&pinctrldev_list_mutex);
2149        mutex_lock(&pctldev->mutex);
2150        /* TODO: check that no pinmuxes are still active? */
2151        list_del(&pctldev->node);
2152        pinmux_generic_free_functions(pctldev);
2153        pinctrl_generic_free_groups(pctldev);
2154        /* Destroy descriptor tree */
2155        pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2156                              pctldev->desc->npins);
2157        /* remove gpio ranges map */
2158        list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2159                list_del(&range->node);
2160
2161        mutex_unlock(&pctldev->mutex);
2162        mutex_destroy(&pctldev->mutex);
2163        kfree(pctldev);
2164        mutex_unlock(&pinctrldev_list_mutex);
2165}
2166EXPORT_SYMBOL_GPL(pinctrl_unregister);
2167
2168static void devm_pinctrl_dev_release(struct device *dev, void *res)
2169{
2170        struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2171
2172        pinctrl_unregister(pctldev);
2173}
2174
2175static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2176{
2177        struct pctldev **r = res;
2178
2179        if (WARN_ON(!r || !*r))
2180                return 0;
2181
2182        return *r == data;
2183}
2184
2185/**
2186 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2187 * @dev: parent device for this pin controller
2188 * @pctldesc: descriptor for this pin controller
2189 * @driver_data: private pin controller data for this pin controller
2190 *
2191 * Returns an error pointer if pincontrol register failed. Otherwise
2192 * it returns valid pinctrl handle.
2193 *
2194 * The pinctrl device will be automatically released when the device is unbound.
2195 */
2196struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2197                                          struct pinctrl_desc *pctldesc,
2198                                          void *driver_data)
2199{
2200        struct pinctrl_dev **ptr, *pctldev;
2201
2202        ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2203        if (!ptr)
2204                return ERR_PTR(-ENOMEM);
2205
2206        pctldev = pinctrl_register(pctldesc, dev, driver_data);
2207        if (IS_ERR(pctldev)) {
2208                devres_free(ptr);
2209                return pctldev;
2210        }
2211
2212        *ptr = pctldev;
2213        devres_add(dev, ptr);
2214
2215        return pctldev;
2216}
2217EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2218
2219/**
2220 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2221 * @dev: parent device for this pin controller
2222 * @pctldesc: descriptor for this pin controller
2223 * @driver_data: private pin controller data for this pin controller
2224 *
2225 * Returns an error pointer if pincontrol register failed. Otherwise
2226 * it returns valid pinctrl handle.
2227 *
2228 * The pinctrl device will be automatically released when the device is unbound.
2229 */
2230int devm_pinctrl_register_and_init(struct device *dev,
2231                                   struct pinctrl_desc *pctldesc,
2232                                   void *driver_data,
2233                                   struct pinctrl_dev **pctldev)
2234{
2235        struct pinctrl_dev **ptr;
2236        int error;
2237
2238        ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2239        if (!ptr)
2240                return -ENOMEM;
2241
2242        error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2243        if (error) {
2244                devres_free(ptr);
2245                return error;
2246        }
2247
2248        *ptr = *pctldev;
2249        devres_add(dev, ptr);
2250
2251        return 0;
2252}
2253EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2254
2255/**
2256 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2257 * @dev: device for which which resource was allocated
2258 * @pctldev: the pinctrl device to unregister.
2259 */
2260void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2261{
2262        WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2263                               devm_pinctrl_dev_match, pctldev));
2264}
2265EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2266
2267static int __init pinctrl_init(void)
2268{
2269        pr_info("initialized pinctrl subsystem\n");
2270        pinctrl_init_debugfs();
2271        return 0;
2272}
2273
2274/* init early since many drivers really need to initialized pinmux early */
2275core_initcall(pinctrl_init);
2276