linux/drivers/thunderbolt/switch.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Thunderbolt driver - switch/port utility functions
   4 *
   5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
   6 * Copyright (C) 2018, Intel Corporation
   7 */
   8
   9#include <linux/delay.h>
  10#include <linux/idr.h>
  11#include <linux/nvmem-provider.h>
  12#include <linux/pm_runtime.h>
  13#include <linux/sched/signal.h>
  14#include <linux/sizes.h>
  15#include <linux/slab.h>
  16
  17#include "tb.h"
  18
  19/* Switch NVM support */
  20
  21#define NVM_CSS                 0x10
  22
  23struct nvm_auth_status {
  24        struct list_head list;
  25        uuid_t uuid;
  26        u32 status;
  27};
  28
  29enum nvm_write_ops {
  30        WRITE_AND_AUTHENTICATE = 1,
  31        WRITE_ONLY = 2,
  32};
  33
  34/*
  35 * Hold NVM authentication failure status per switch This information
  36 * needs to stay around even when the switch gets power cycled so we
  37 * keep it separately.
  38 */
  39static LIST_HEAD(nvm_auth_status_cache);
  40static DEFINE_MUTEX(nvm_auth_status_lock);
  41
  42static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
  43{
  44        struct nvm_auth_status *st;
  45
  46        list_for_each_entry(st, &nvm_auth_status_cache, list) {
  47                if (uuid_equal(&st->uuid, sw->uuid))
  48                        return st;
  49        }
  50
  51        return NULL;
  52}
  53
  54static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
  55{
  56        struct nvm_auth_status *st;
  57
  58        mutex_lock(&nvm_auth_status_lock);
  59        st = __nvm_get_auth_status(sw);
  60        mutex_unlock(&nvm_auth_status_lock);
  61
  62        *status = st ? st->status : 0;
  63}
  64
  65static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
  66{
  67        struct nvm_auth_status *st;
  68
  69        if (WARN_ON(!sw->uuid))
  70                return;
  71
  72        mutex_lock(&nvm_auth_status_lock);
  73        st = __nvm_get_auth_status(sw);
  74
  75        if (!st) {
  76                st = kzalloc(sizeof(*st), GFP_KERNEL);
  77                if (!st)
  78                        goto unlock;
  79
  80                memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
  81                INIT_LIST_HEAD(&st->list);
  82                list_add_tail(&st->list, &nvm_auth_status_cache);
  83        }
  84
  85        st->status = status;
  86unlock:
  87        mutex_unlock(&nvm_auth_status_lock);
  88}
  89
  90static void nvm_clear_auth_status(const struct tb_switch *sw)
  91{
  92        struct nvm_auth_status *st;
  93
  94        mutex_lock(&nvm_auth_status_lock);
  95        st = __nvm_get_auth_status(sw);
  96        if (st) {
  97                list_del(&st->list);
  98                kfree(st);
  99        }
 100        mutex_unlock(&nvm_auth_status_lock);
 101}
 102
 103static int nvm_validate_and_write(struct tb_switch *sw)
 104{
 105        unsigned int image_size, hdr_size;
 106        const u8 *buf = sw->nvm->buf;
 107        u16 ds_size;
 108        int ret;
 109
 110        if (!buf)
 111                return -EINVAL;
 112
 113        image_size = sw->nvm->buf_data_size;
 114        if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
 115                return -EINVAL;
 116
 117        /*
 118         * FARB pointer must point inside the image and must at least
 119         * contain parts of the digital section we will be reading here.
 120         */
 121        hdr_size = (*(u32 *)buf) & 0xffffff;
 122        if (hdr_size + NVM_DEVID + 2 >= image_size)
 123                return -EINVAL;
 124
 125        /* Digital section start should be aligned to 4k page */
 126        if (!IS_ALIGNED(hdr_size, SZ_4K))
 127                return -EINVAL;
 128
 129        /*
 130         * Read digital section size and check that it also fits inside
 131         * the image.
 132         */
 133        ds_size = *(u16 *)(buf + hdr_size);
 134        if (ds_size >= image_size)
 135                return -EINVAL;
 136
 137        if (!sw->safe_mode) {
 138                u16 device_id;
 139
 140                /*
 141                 * Make sure the device ID in the image matches the one
 142                 * we read from the switch config space.
 143                 */
 144                device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
 145                if (device_id != sw->config.device_id)
 146                        return -EINVAL;
 147
 148                if (sw->generation < 3) {
 149                        /* Write CSS headers first */
 150                        ret = dma_port_flash_write(sw->dma_port,
 151                                DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
 152                                DMA_PORT_CSS_MAX_SIZE);
 153                        if (ret)
 154                                return ret;
 155                }
 156
 157                /* Skip headers in the image */
 158                buf += hdr_size;
 159                image_size -= hdr_size;
 160        }
 161
 162        if (tb_switch_is_usb4(sw))
 163                ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
 164        else
 165                ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
 166        if (!ret)
 167                sw->nvm->flushed = true;
 168        return ret;
 169}
 170
 171static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
 172{
 173        int ret = 0;
 174
 175        /*
 176         * Root switch NVM upgrade requires that we disconnect the
 177         * existing paths first (in case it is not in safe mode
 178         * already).
 179         */
 180        if (!sw->safe_mode) {
 181                u32 status;
 182
 183                ret = tb_domain_disconnect_all_paths(sw->tb);
 184                if (ret)
 185                        return ret;
 186                /*
 187                 * The host controller goes away pretty soon after this if
 188                 * everything goes well so getting timeout is expected.
 189                 */
 190                ret = dma_port_flash_update_auth(sw->dma_port);
 191                if (!ret || ret == -ETIMEDOUT)
 192                        return 0;
 193
 194                /*
 195                 * Any error from update auth operation requires power
 196                 * cycling of the host router.
 197                 */
 198                tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
 199                if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
 200                        nvm_set_auth_status(sw, status);
 201        }
 202
 203        /*
 204         * From safe mode we can get out by just power cycling the
 205         * switch.
 206         */
 207        dma_port_power_cycle(sw->dma_port);
 208        return ret;
 209}
 210
 211static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
 212{
 213        int ret, retries = 10;
 214
 215        ret = dma_port_flash_update_auth(sw->dma_port);
 216        switch (ret) {
 217        case 0:
 218        case -ETIMEDOUT:
 219        case -EACCES:
 220        case -EINVAL:
 221                /* Power cycle is required */
 222                break;
 223        default:
 224                return ret;
 225        }
 226
 227        /*
 228         * Poll here for the authentication status. It takes some time
 229         * for the device to respond (we get timeout for a while). Once
 230         * we get response the device needs to be power cycled in order
 231         * to the new NVM to be taken into use.
 232         */
 233        do {
 234                u32 status;
 235
 236                ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
 237                if (ret < 0 && ret != -ETIMEDOUT)
 238                        return ret;
 239                if (ret > 0) {
 240                        if (status) {
 241                                tb_sw_warn(sw, "failed to authenticate NVM\n");
 242                                nvm_set_auth_status(sw, status);
 243                        }
 244
 245                        tb_sw_info(sw, "power cycling the switch now\n");
 246                        dma_port_power_cycle(sw->dma_port);
 247                        return 0;
 248                }
 249
 250                msleep(500);
 251        } while (--retries);
 252
 253        return -ETIMEDOUT;
 254}
 255
 256static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
 257{
 258        struct pci_dev *root_port;
 259
 260        /*
 261         * During host router NVM upgrade we should not allow root port to
 262         * go into D3cold because some root ports cannot trigger PME
 263         * itself. To be on the safe side keep the root port in D0 during
 264         * the whole upgrade process.
 265         */
 266        root_port = pcie_find_root_port(sw->tb->nhi->pdev);
 267        if (root_port)
 268                pm_runtime_get_noresume(&root_port->dev);
 269}
 270
 271static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
 272{
 273        struct pci_dev *root_port;
 274
 275        root_port = pcie_find_root_port(sw->tb->nhi->pdev);
 276        if (root_port)
 277                pm_runtime_put(&root_port->dev);
 278}
 279
 280static inline bool nvm_readable(struct tb_switch *sw)
 281{
 282        if (tb_switch_is_usb4(sw)) {
 283                /*
 284                 * USB4 devices must support NVM operations but it is
 285                 * optional for hosts. Therefore we query the NVM sector
 286                 * size here and if it is supported assume NVM
 287                 * operations are implemented.
 288                 */
 289                return usb4_switch_nvm_sector_size(sw) > 0;
 290        }
 291
 292        /* Thunderbolt 2 and 3 devices support NVM through DMA port */
 293        return !!sw->dma_port;
 294}
 295
 296static inline bool nvm_upgradeable(struct tb_switch *sw)
 297{
 298        if (sw->no_nvm_upgrade)
 299                return false;
 300        return nvm_readable(sw);
 301}
 302
 303static inline int nvm_read(struct tb_switch *sw, unsigned int address,
 304                           void *buf, size_t size)
 305{
 306        if (tb_switch_is_usb4(sw))
 307                return usb4_switch_nvm_read(sw, address, buf, size);
 308        return dma_port_flash_read(sw->dma_port, address, buf, size);
 309}
 310
 311static int nvm_authenticate(struct tb_switch *sw)
 312{
 313        int ret;
 314
 315        if (tb_switch_is_usb4(sw))
 316                return usb4_switch_nvm_authenticate(sw);
 317
 318        if (!tb_route(sw)) {
 319                nvm_authenticate_start_dma_port(sw);
 320                ret = nvm_authenticate_host_dma_port(sw);
 321        } else {
 322                ret = nvm_authenticate_device_dma_port(sw);
 323        }
 324
 325        return ret;
 326}
 327
 328static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
 329                              size_t bytes)
 330{
 331        struct tb_nvm *nvm = priv;
 332        struct tb_switch *sw = tb_to_switch(nvm->dev);
 333        int ret;
 334
 335        pm_runtime_get_sync(&sw->dev);
 336
 337        if (!mutex_trylock(&sw->tb->lock)) {
 338                ret = restart_syscall();
 339                goto out;
 340        }
 341
 342        ret = nvm_read(sw, offset, val, bytes);
 343        mutex_unlock(&sw->tb->lock);
 344
 345out:
 346        pm_runtime_mark_last_busy(&sw->dev);
 347        pm_runtime_put_autosuspend(&sw->dev);
 348
 349        return ret;
 350}
 351
 352static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
 353                               size_t bytes)
 354{
 355        struct tb_nvm *nvm = priv;
 356        struct tb_switch *sw = tb_to_switch(nvm->dev);
 357        int ret;
 358
 359        if (!mutex_trylock(&sw->tb->lock))
 360                return restart_syscall();
 361
 362        /*
 363         * Since writing the NVM image might require some special steps,
 364         * for example when CSS headers are written, we cache the image
 365         * locally here and handle the special cases when the user asks
 366         * us to authenticate the image.
 367         */
 368        ret = tb_nvm_write_buf(nvm, offset, val, bytes);
 369        mutex_unlock(&sw->tb->lock);
 370
 371        return ret;
 372}
 373
 374static int tb_switch_nvm_add(struct tb_switch *sw)
 375{
 376        struct tb_nvm *nvm;
 377        u32 val;
 378        int ret;
 379
 380        if (!nvm_readable(sw))
 381                return 0;
 382
 383        /*
 384         * The NVM format of non-Intel hardware is not known so
 385         * currently restrict NVM upgrade for Intel hardware. We may
 386         * relax this in the future when we learn other NVM formats.
 387         */
 388        if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL &&
 389            sw->config.vendor_id != 0x8087) {
 390                dev_info(&sw->dev,
 391                         "NVM format of vendor %#x is not known, disabling NVM upgrade\n",
 392                         sw->config.vendor_id);
 393                return 0;
 394        }
 395
 396        nvm = tb_nvm_alloc(&sw->dev);
 397        if (IS_ERR(nvm))
 398                return PTR_ERR(nvm);
 399
 400        /*
 401         * If the switch is in safe-mode the only accessible portion of
 402         * the NVM is the non-active one where userspace is expected to
 403         * write new functional NVM.
 404         */
 405        if (!sw->safe_mode) {
 406                u32 nvm_size, hdr_size;
 407
 408                ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val));
 409                if (ret)
 410                        goto err_nvm;
 411
 412                hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
 413                nvm_size = (SZ_1M << (val & 7)) / 8;
 414                nvm_size = (nvm_size - hdr_size) / 2;
 415
 416                ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val));
 417                if (ret)
 418                        goto err_nvm;
 419
 420                nvm->major = val >> 16;
 421                nvm->minor = val >> 8;
 422
 423                ret = tb_nvm_add_active(nvm, nvm_size, tb_switch_nvm_read);
 424                if (ret)
 425                        goto err_nvm;
 426        }
 427
 428        if (!sw->no_nvm_upgrade) {
 429                ret = tb_nvm_add_non_active(nvm, NVM_MAX_SIZE,
 430                                            tb_switch_nvm_write);
 431                if (ret)
 432                        goto err_nvm;
 433        }
 434
 435        sw->nvm = nvm;
 436        return 0;
 437
 438err_nvm:
 439        tb_nvm_free(nvm);
 440        return ret;
 441}
 442
 443static void tb_switch_nvm_remove(struct tb_switch *sw)
 444{
 445        struct tb_nvm *nvm;
 446
 447        nvm = sw->nvm;
 448        sw->nvm = NULL;
 449
 450        if (!nvm)
 451                return;
 452
 453        /* Remove authentication status in case the switch is unplugged */
 454        if (!nvm->authenticating)
 455                nvm_clear_auth_status(sw);
 456
 457        tb_nvm_free(nvm);
 458}
 459
 460/* port utility functions */
 461
 462static const char *tb_port_type(struct tb_regs_port_header *port)
 463{
 464        switch (port->type >> 16) {
 465        case 0:
 466                switch ((u8) port->type) {
 467                case 0:
 468                        return "Inactive";
 469                case 1:
 470                        return "Port";
 471                case 2:
 472                        return "NHI";
 473                default:
 474                        return "unknown";
 475                }
 476        case 0x2:
 477                return "Ethernet";
 478        case 0x8:
 479                return "SATA";
 480        case 0xe:
 481                return "DP/HDMI";
 482        case 0x10:
 483                return "PCIe";
 484        case 0x20:
 485                return "USB";
 486        default:
 487                return "unknown";
 488        }
 489}
 490
 491static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
 492{
 493        tb_dbg(tb,
 494               " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
 495               port->port_number, port->vendor_id, port->device_id,
 496               port->revision, port->thunderbolt_version, tb_port_type(port),
 497               port->type);
 498        tb_dbg(tb, "  Max hop id (in/out): %d/%d\n",
 499               port->max_in_hop_id, port->max_out_hop_id);
 500        tb_dbg(tb, "  Max counters: %d\n", port->max_counters);
 501        tb_dbg(tb, "  NFC Credits: %#x\n", port->nfc_credits);
 502}
 503
 504/**
 505 * tb_port_state() - get connectedness state of a port
 506 * @port: the port to check
 507 *
 508 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
 509 *
 510 * Return: Returns an enum tb_port_state on success or an error code on failure.
 511 */
 512int tb_port_state(struct tb_port *port)
 513{
 514        struct tb_cap_phy phy;
 515        int res;
 516        if (port->cap_phy == 0) {
 517                tb_port_WARN(port, "does not have a PHY\n");
 518                return -EINVAL;
 519        }
 520        res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
 521        if (res)
 522                return res;
 523        return phy.state;
 524}
 525
 526/**
 527 * tb_wait_for_port() - wait for a port to become ready
 528 *
 529 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
 530 * wait_if_unplugged is set then we also wait if the port is in state
 531 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
 532 * switch resume). Otherwise we only wait if a device is registered but the link
 533 * has not yet been established.
 534 *
 535 * Return: Returns an error code on failure. Returns 0 if the port is not
 536 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
 537 * if the port is connected and in state TB_PORT_UP.
 538 */
 539int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
 540{
 541        int retries = 10;
 542        int state;
 543        if (!port->cap_phy) {
 544                tb_port_WARN(port, "does not have PHY\n");
 545                return -EINVAL;
 546        }
 547        if (tb_is_upstream_port(port)) {
 548                tb_port_WARN(port, "is the upstream port\n");
 549                return -EINVAL;
 550        }
 551
 552        while (retries--) {
 553                state = tb_port_state(port);
 554                if (state < 0)
 555                        return state;
 556                if (state == TB_PORT_DISABLED) {
 557                        tb_port_dbg(port, "is disabled (state: 0)\n");
 558                        return 0;
 559                }
 560                if (state == TB_PORT_UNPLUGGED) {
 561                        if (wait_if_unplugged) {
 562                                /* used during resume */
 563                                tb_port_dbg(port,
 564                                            "is unplugged (state: 7), retrying...\n");
 565                                msleep(100);
 566                                continue;
 567                        }
 568                        tb_port_dbg(port, "is unplugged (state: 7)\n");
 569                        return 0;
 570                }
 571                if (state == TB_PORT_UP) {
 572                        tb_port_dbg(port, "is connected, link is up (state: 2)\n");
 573                        return 1;
 574                }
 575
 576                /*
 577                 * After plug-in the state is TB_PORT_CONNECTING. Give it some
 578                 * time.
 579                 */
 580                tb_port_dbg(port,
 581                            "is connected, link is not up (state: %d), retrying...\n",
 582                            state);
 583                msleep(100);
 584        }
 585        tb_port_warn(port,
 586                     "failed to reach state TB_PORT_UP. Ignoring port...\n");
 587        return 0;
 588}
 589
 590/**
 591 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
 592 *
 593 * Change the number of NFC credits allocated to @port by @credits. To remove
 594 * NFC credits pass a negative amount of credits.
 595 *
 596 * Return: Returns 0 on success or an error code on failure.
 597 */
 598int tb_port_add_nfc_credits(struct tb_port *port, int credits)
 599{
 600        u32 nfc_credits;
 601
 602        if (credits == 0 || port->sw->is_unplugged)
 603                return 0;
 604
 605        /*
 606         * USB4 restricts programming NFC buffers to lane adapters only
 607         * so skip other ports.
 608         */
 609        if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
 610                return 0;
 611
 612        nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
 613        nfc_credits += credits;
 614
 615        tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
 616                    port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
 617
 618        port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
 619        port->config.nfc_credits |= nfc_credits;
 620
 621        return tb_port_write(port, &port->config.nfc_credits,
 622                             TB_CFG_PORT, ADP_CS_4, 1);
 623}
 624
 625/**
 626 * tb_port_set_initial_credits() - Set initial port link credits allocated
 627 * @port: Port to set the initial credits
 628 * @credits: Number of credits to to allocate
 629 *
 630 * Set initial credits value to be used for ingress shared buffering.
 631 */
 632int tb_port_set_initial_credits(struct tb_port *port, u32 credits)
 633{
 634        u32 data;
 635        int ret;
 636
 637        ret = tb_port_read(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
 638        if (ret)
 639                return ret;
 640
 641        data &= ~ADP_CS_5_LCA_MASK;
 642        data |= (credits << ADP_CS_5_LCA_SHIFT) & ADP_CS_5_LCA_MASK;
 643
 644        return tb_port_write(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
 645}
 646
 647/**
 648 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
 649 *
 650 * Return: Returns 0 on success or an error code on failure.
 651 */
 652int tb_port_clear_counter(struct tb_port *port, int counter)
 653{
 654        u32 zero[3] = { 0, 0, 0 };
 655        tb_port_dbg(port, "clearing counter %d\n", counter);
 656        return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
 657}
 658
 659/**
 660 * tb_port_unlock() - Unlock downstream port
 661 * @port: Port to unlock
 662 *
 663 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
 664 * downstream router accessible for CM.
 665 */
 666int tb_port_unlock(struct tb_port *port)
 667{
 668        if (tb_switch_is_icm(port->sw))
 669                return 0;
 670        if (!tb_port_is_null(port))
 671                return -EINVAL;
 672        if (tb_switch_is_usb4(port->sw))
 673                return usb4_port_unlock(port);
 674        return 0;
 675}
 676
 677static int __tb_port_enable(struct tb_port *port, bool enable)
 678{
 679        int ret;
 680        u32 phy;
 681
 682        if (!tb_port_is_null(port))
 683                return -EINVAL;
 684
 685        ret = tb_port_read(port, &phy, TB_CFG_PORT,
 686                           port->cap_phy + LANE_ADP_CS_1, 1);
 687        if (ret)
 688                return ret;
 689
 690        if (enable)
 691                phy &= ~LANE_ADP_CS_1_LD;
 692        else
 693                phy |= LANE_ADP_CS_1_LD;
 694
 695        return tb_port_write(port, &phy, TB_CFG_PORT,
 696                             port->cap_phy + LANE_ADP_CS_1, 1);
 697}
 698
 699/**
 700 * tb_port_enable() - Enable lane adapter
 701 * @port: Port to enable (can be %NULL)
 702 *
 703 * This is used for lane 0 and 1 adapters to enable it.
 704 */
 705int tb_port_enable(struct tb_port *port)
 706{
 707        return __tb_port_enable(port, true);
 708}
 709
 710/**
 711 * tb_port_disable() - Disable lane adapter
 712 * @port: Port to disable (can be %NULL)
 713 *
 714 * This is used for lane 0 and 1 adapters to disable it.
 715 */
 716int tb_port_disable(struct tb_port *port)
 717{
 718        return __tb_port_enable(port, false);
 719}
 720
 721/**
 722 * tb_init_port() - initialize a port
 723 *
 724 * This is a helper method for tb_switch_alloc. Does not check or initialize
 725 * any downstream switches.
 726 *
 727 * Return: Returns 0 on success or an error code on failure.
 728 */
 729static int tb_init_port(struct tb_port *port)
 730{
 731        int res;
 732        int cap;
 733
 734        res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
 735        if (res) {
 736                if (res == -ENODEV) {
 737                        tb_dbg(port->sw->tb, " Port %d: not implemented\n",
 738                               port->port);
 739                        port->disabled = true;
 740                        return 0;
 741                }
 742                return res;
 743        }
 744
 745        /* Port 0 is the switch itself and has no PHY. */
 746        if (port->config.type == TB_TYPE_PORT && port->port != 0) {
 747                cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
 748
 749                if (cap > 0)
 750                        port->cap_phy = cap;
 751                else
 752                        tb_port_WARN(port, "non switch port without a PHY\n");
 753
 754                cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
 755                if (cap > 0)
 756                        port->cap_usb4 = cap;
 757        } else if (port->port != 0) {
 758                cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
 759                if (cap > 0)
 760                        port->cap_adap = cap;
 761        }
 762
 763        tb_dump_port(port->sw->tb, &port->config);
 764
 765        /* Control port does not need HopID allocation */
 766        if (port->port) {
 767                ida_init(&port->in_hopids);
 768                ida_init(&port->out_hopids);
 769        }
 770
 771        INIT_LIST_HEAD(&port->list);
 772        return 0;
 773
 774}
 775
 776static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
 777                               int max_hopid)
 778{
 779        int port_max_hopid;
 780        struct ida *ida;
 781
 782        if (in) {
 783                port_max_hopid = port->config.max_in_hop_id;
 784                ida = &port->in_hopids;
 785        } else {
 786                port_max_hopid = port->config.max_out_hop_id;
 787                ida = &port->out_hopids;
 788        }
 789
 790        /*
 791         * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
 792         * reserved.
 793         */
 794        if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
 795                min_hopid = TB_PATH_MIN_HOPID;
 796
 797        if (max_hopid < 0 || max_hopid > port_max_hopid)
 798                max_hopid = port_max_hopid;
 799
 800        return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
 801}
 802
 803/**
 804 * tb_port_alloc_in_hopid() - Allocate input HopID from port
 805 * @port: Port to allocate HopID for
 806 * @min_hopid: Minimum acceptable input HopID
 807 * @max_hopid: Maximum acceptable input HopID
 808 *
 809 * Return: HopID between @min_hopid and @max_hopid or negative errno in
 810 * case of error.
 811 */
 812int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
 813{
 814        return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
 815}
 816
 817/**
 818 * tb_port_alloc_out_hopid() - Allocate output HopID from port
 819 * @port: Port to allocate HopID for
 820 * @min_hopid: Minimum acceptable output HopID
 821 * @max_hopid: Maximum acceptable output HopID
 822 *
 823 * Return: HopID between @min_hopid and @max_hopid or negative errno in
 824 * case of error.
 825 */
 826int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
 827{
 828        return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
 829}
 830
 831/**
 832 * tb_port_release_in_hopid() - Release allocated input HopID from port
 833 * @port: Port whose HopID to release
 834 * @hopid: HopID to release
 835 */
 836void tb_port_release_in_hopid(struct tb_port *port, int hopid)
 837{
 838        ida_simple_remove(&port->in_hopids, hopid);
 839}
 840
 841/**
 842 * tb_port_release_out_hopid() - Release allocated output HopID from port
 843 * @port: Port whose HopID to release
 844 * @hopid: HopID to release
 845 */
 846void tb_port_release_out_hopid(struct tb_port *port, int hopid)
 847{
 848        ida_simple_remove(&port->out_hopids, hopid);
 849}
 850
 851static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
 852                                          const struct tb_switch *sw)
 853{
 854        u64 mask = (1ULL << parent->config.depth * 8) - 1;
 855        return (tb_route(parent) & mask) == (tb_route(sw) & mask);
 856}
 857
 858/**
 859 * tb_next_port_on_path() - Return next port for given port on a path
 860 * @start: Start port of the walk
 861 * @end: End port of the walk
 862 * @prev: Previous port (%NULL if this is the first)
 863 *
 864 * This function can be used to walk from one port to another if they
 865 * are connected through zero or more switches. If the @prev is dual
 866 * link port, the function follows that link and returns another end on
 867 * that same link.
 868 *
 869 * If the @end port has been reached, return %NULL.
 870 *
 871 * Domain tb->lock must be held when this function is called.
 872 */
 873struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
 874                                     struct tb_port *prev)
 875{
 876        struct tb_port *next;
 877
 878        if (!prev)
 879                return start;
 880
 881        if (prev->sw == end->sw) {
 882                if (prev == end)
 883                        return NULL;
 884                return end;
 885        }
 886
 887        if (tb_switch_is_reachable(prev->sw, end->sw)) {
 888                next = tb_port_at(tb_route(end->sw), prev->sw);
 889                /* Walk down the topology if next == prev */
 890                if (prev->remote &&
 891                    (next == prev || next->dual_link_port == prev))
 892                        next = prev->remote;
 893        } else {
 894                if (tb_is_upstream_port(prev)) {
 895                        next = prev->remote;
 896                } else {
 897                        next = tb_upstream_port(prev->sw);
 898                        /*
 899                         * Keep the same link if prev and next are both
 900                         * dual link ports.
 901                         */
 902                        if (next->dual_link_port &&
 903                            next->link_nr != prev->link_nr) {
 904                                next = next->dual_link_port;
 905                        }
 906                }
 907        }
 908
 909        return next != prev ? next : NULL;
 910}
 911
 912/**
 913 * tb_port_get_link_speed() - Get current link speed
 914 * @port: Port to check (USB4 or CIO)
 915 *
 916 * Returns link speed in Gb/s or negative errno in case of failure.
 917 */
 918int tb_port_get_link_speed(struct tb_port *port)
 919{
 920        u32 val, speed;
 921        int ret;
 922
 923        if (!port->cap_phy)
 924                return -EINVAL;
 925
 926        ret = tb_port_read(port, &val, TB_CFG_PORT,
 927                           port->cap_phy + LANE_ADP_CS_1, 1);
 928        if (ret)
 929                return ret;
 930
 931        speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
 932                LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
 933        return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10;
 934}
 935
 936/**
 937 * tb_port_get_link_width() - Get current link width
 938 * @port: Port to check (USB4 or CIO)
 939 *
 940 * Returns link width. Return values can be 1 (Single-Lane), 2 (Dual-Lane)
 941 * or negative errno in case of failure.
 942 */
 943int tb_port_get_link_width(struct tb_port *port)
 944{
 945        u32 val;
 946        int ret;
 947
 948        if (!port->cap_phy)
 949                return -EINVAL;
 950
 951        ret = tb_port_read(port, &val, TB_CFG_PORT,
 952                           port->cap_phy + LANE_ADP_CS_1, 1);
 953        if (ret)
 954                return ret;
 955
 956        return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
 957                LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
 958}
 959
 960static bool tb_port_is_width_supported(struct tb_port *port, int width)
 961{
 962        u32 phy, widths;
 963        int ret;
 964
 965        if (!port->cap_phy)
 966                return false;
 967
 968        ret = tb_port_read(port, &phy, TB_CFG_PORT,
 969                           port->cap_phy + LANE_ADP_CS_0, 1);
 970        if (ret)
 971                return false;
 972
 973        widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
 974                LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
 975
 976        return !!(widths & width);
 977}
 978
 979static int tb_port_set_link_width(struct tb_port *port, unsigned int width)
 980{
 981        u32 val;
 982        int ret;
 983
 984        if (!port->cap_phy)
 985                return -EINVAL;
 986
 987        ret = tb_port_read(port, &val, TB_CFG_PORT,
 988                           port->cap_phy + LANE_ADP_CS_1, 1);
 989        if (ret)
 990                return ret;
 991
 992        val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
 993        switch (width) {
 994        case 1:
 995                val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
 996                        LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
 997                break;
 998        case 2:
 999                val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
1000                        LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1001                break;
1002        default:
1003                return -EINVAL;
1004        }
1005
1006        val |= LANE_ADP_CS_1_LB;
1007
1008        return tb_port_write(port, &val, TB_CFG_PORT,
1009                             port->cap_phy + LANE_ADP_CS_1, 1);
1010}
1011
1012/**
1013 * tb_port_lane_bonding_enable() - Enable bonding on port
1014 * @port: port to enable
1015 *
1016 * Enable bonding by setting the link width of the port and the
1017 * other port in case of dual link port.
1018 *
1019 * Return: %0 in case of success and negative errno in case of error
1020 */
1021int tb_port_lane_bonding_enable(struct tb_port *port)
1022{
1023        int ret;
1024
1025        /*
1026         * Enable lane bonding for both links if not already enabled by
1027         * for example the boot firmware.
1028         */
1029        ret = tb_port_get_link_width(port);
1030        if (ret == 1) {
1031                ret = tb_port_set_link_width(port, 2);
1032                if (ret)
1033                        return ret;
1034        }
1035
1036        ret = tb_port_get_link_width(port->dual_link_port);
1037        if (ret == 1) {
1038                ret = tb_port_set_link_width(port->dual_link_port, 2);
1039                if (ret) {
1040                        tb_port_set_link_width(port, 1);
1041                        return ret;
1042                }
1043        }
1044
1045        port->bonded = true;
1046        port->dual_link_port->bonded = true;
1047
1048        return 0;
1049}
1050
1051/**
1052 * tb_port_lane_bonding_disable() - Disable bonding on port
1053 * @port: port to disable
1054 *
1055 * Disable bonding by setting the link width of the port and the
1056 * other port in case of dual link port.
1057 *
1058 */
1059void tb_port_lane_bonding_disable(struct tb_port *port)
1060{
1061        port->dual_link_port->bonded = false;
1062        port->bonded = false;
1063
1064        tb_port_set_link_width(port->dual_link_port, 1);
1065        tb_port_set_link_width(port, 1);
1066}
1067
1068/**
1069 * tb_port_is_enabled() - Is the adapter port enabled
1070 * @port: Port to check
1071 */
1072bool tb_port_is_enabled(struct tb_port *port)
1073{
1074        switch (port->config.type) {
1075        case TB_TYPE_PCIE_UP:
1076        case TB_TYPE_PCIE_DOWN:
1077                return tb_pci_port_is_enabled(port);
1078
1079        case TB_TYPE_DP_HDMI_IN:
1080        case TB_TYPE_DP_HDMI_OUT:
1081                return tb_dp_port_is_enabled(port);
1082
1083        case TB_TYPE_USB3_UP:
1084        case TB_TYPE_USB3_DOWN:
1085                return tb_usb3_port_is_enabled(port);
1086
1087        default:
1088                return false;
1089        }
1090}
1091
1092/**
1093 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1094 * @port: USB3 adapter port to check
1095 */
1096bool tb_usb3_port_is_enabled(struct tb_port *port)
1097{
1098        u32 data;
1099
1100        if (tb_port_read(port, &data, TB_CFG_PORT,
1101                         port->cap_adap + ADP_USB3_CS_0, 1))
1102                return false;
1103
1104        return !!(data & ADP_USB3_CS_0_PE);
1105}
1106
1107/**
1108 * tb_usb3_port_enable() - Enable USB3 adapter port
1109 * @port: USB3 adapter port to enable
1110 * @enable: Enable/disable the USB3 adapter
1111 */
1112int tb_usb3_port_enable(struct tb_port *port, bool enable)
1113{
1114        u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1115                          : ADP_USB3_CS_0_V;
1116
1117        if (!port->cap_adap)
1118                return -ENXIO;
1119        return tb_port_write(port, &word, TB_CFG_PORT,
1120                             port->cap_adap + ADP_USB3_CS_0, 1);
1121}
1122
1123/**
1124 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1125 * @port: PCIe port to check
1126 */
1127bool tb_pci_port_is_enabled(struct tb_port *port)
1128{
1129        u32 data;
1130
1131        if (tb_port_read(port, &data, TB_CFG_PORT,
1132                         port->cap_adap + ADP_PCIE_CS_0, 1))
1133                return false;
1134
1135        return !!(data & ADP_PCIE_CS_0_PE);
1136}
1137
1138/**
1139 * tb_pci_port_enable() - Enable PCIe adapter port
1140 * @port: PCIe port to enable
1141 * @enable: Enable/disable the PCIe adapter
1142 */
1143int tb_pci_port_enable(struct tb_port *port, bool enable)
1144{
1145        u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1146        if (!port->cap_adap)
1147                return -ENXIO;
1148        return tb_port_write(port, &word, TB_CFG_PORT,
1149                             port->cap_adap + ADP_PCIE_CS_0, 1);
1150}
1151
1152/**
1153 * tb_dp_port_hpd_is_active() - Is HPD already active
1154 * @port: DP out port to check
1155 *
1156 * Checks if the DP OUT adapter port has HDP bit already set.
1157 */
1158int tb_dp_port_hpd_is_active(struct tb_port *port)
1159{
1160        u32 data;
1161        int ret;
1162
1163        ret = tb_port_read(port, &data, TB_CFG_PORT,
1164                           port->cap_adap + ADP_DP_CS_2, 1);
1165        if (ret)
1166                return ret;
1167
1168        return !!(data & ADP_DP_CS_2_HDP);
1169}
1170
1171/**
1172 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1173 * @port: Port to clear HPD
1174 *
1175 * If the DP IN port has HDP set, this function can be used to clear it.
1176 */
1177int tb_dp_port_hpd_clear(struct tb_port *port)
1178{
1179        u32 data;
1180        int ret;
1181
1182        ret = tb_port_read(port, &data, TB_CFG_PORT,
1183                           port->cap_adap + ADP_DP_CS_3, 1);
1184        if (ret)
1185                return ret;
1186
1187        data |= ADP_DP_CS_3_HDPC;
1188        return tb_port_write(port, &data, TB_CFG_PORT,
1189                             port->cap_adap + ADP_DP_CS_3, 1);
1190}
1191
1192/**
1193 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1194 * @port: DP IN/OUT port to set hops
1195 * @video: Video Hop ID
1196 * @aux_tx: AUX TX Hop ID
1197 * @aux_rx: AUX RX Hop ID
1198 *
1199 * Programs specified Hop IDs for DP IN/OUT port.
1200 */
1201int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1202                        unsigned int aux_tx, unsigned int aux_rx)
1203{
1204        u32 data[2];
1205        int ret;
1206
1207        ret = tb_port_read(port, data, TB_CFG_PORT,
1208                           port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1209        if (ret)
1210                return ret;
1211
1212        data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1213        data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1214        data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1215
1216        data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1217                ADP_DP_CS_0_VIDEO_HOPID_MASK;
1218        data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1219        data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1220                ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1221
1222        return tb_port_write(port, data, TB_CFG_PORT,
1223                             port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1224}
1225
1226/**
1227 * tb_dp_port_is_enabled() - Is DP adapter port enabled
1228 * @port: DP adapter port to check
1229 */
1230bool tb_dp_port_is_enabled(struct tb_port *port)
1231{
1232        u32 data[2];
1233
1234        if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1235                         ARRAY_SIZE(data)))
1236                return false;
1237
1238        return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1239}
1240
1241/**
1242 * tb_dp_port_enable() - Enables/disables DP paths of a port
1243 * @port: DP IN/OUT port
1244 * @enable: Enable/disable DP path
1245 *
1246 * Once Hop IDs are programmed DP paths can be enabled or disabled by
1247 * calling this function.
1248 */
1249int tb_dp_port_enable(struct tb_port *port, bool enable)
1250{
1251        u32 data[2];
1252        int ret;
1253
1254        ret = tb_port_read(port, data, TB_CFG_PORT,
1255                          port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1256        if (ret)
1257                return ret;
1258
1259        if (enable)
1260                data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1261        else
1262                data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1263
1264        return tb_port_write(port, data, TB_CFG_PORT,
1265                             port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1266}
1267
1268/* switch utility functions */
1269
1270static const char *tb_switch_generation_name(const struct tb_switch *sw)
1271{
1272        switch (sw->generation) {
1273        case 1:
1274                return "Thunderbolt 1";
1275        case 2:
1276                return "Thunderbolt 2";
1277        case 3:
1278                return "Thunderbolt 3";
1279        case 4:
1280                return "USB4";
1281        default:
1282                return "Unknown";
1283        }
1284}
1285
1286static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1287{
1288        const struct tb_regs_switch_header *regs = &sw->config;
1289
1290        tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1291               tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1292               regs->revision, regs->thunderbolt_version);
1293        tb_dbg(tb, "  Max Port Number: %d\n", regs->max_port_number);
1294        tb_dbg(tb, "  Config:\n");
1295        tb_dbg(tb,
1296                "   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1297               regs->upstream_port_number, regs->depth,
1298               (((u64) regs->route_hi) << 32) | regs->route_lo,
1299               regs->enabled, regs->plug_events_delay);
1300        tb_dbg(tb, "   unknown1: %#x unknown4: %#x\n",
1301               regs->__unknown1, regs->__unknown4);
1302}
1303
1304/**
1305 * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
1306 * @sw: Switch to reset
1307 *
1308 * Return: Returns 0 on success or an error code on failure.
1309 */
1310int tb_switch_reset(struct tb_switch *sw)
1311{
1312        struct tb_cfg_result res;
1313
1314        if (sw->generation > 1)
1315                return 0;
1316
1317        tb_sw_dbg(sw, "resetting switch\n");
1318
1319        res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1320                              TB_CFG_SWITCH, 2, 2);
1321        if (res.err)
1322                return res.err;
1323        res = tb_cfg_reset(sw->tb->ctl, tb_route(sw), TB_CFG_DEFAULT_TIMEOUT);
1324        if (res.err > 0)
1325                return -EIO;
1326        return res.err;
1327}
1328
1329/**
1330 * tb_plug_events_active() - enable/disable plug events on a switch
1331 *
1332 * Also configures a sane plug_events_delay of 255ms.
1333 *
1334 * Return: Returns 0 on success or an error code on failure.
1335 */
1336static int tb_plug_events_active(struct tb_switch *sw, bool active)
1337{
1338        u32 data;
1339        int res;
1340
1341        if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
1342                return 0;
1343
1344        sw->config.plug_events_delay = 0xff;
1345        res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1346        if (res)
1347                return res;
1348
1349        res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1350        if (res)
1351                return res;
1352
1353        if (active) {
1354                data = data & 0xFFFFFF83;
1355                switch (sw->config.device_id) {
1356                case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1357                case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1358                case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1359                        break;
1360                default:
1361                        data |= 4;
1362                }
1363        } else {
1364                data = data | 0x7c;
1365        }
1366        return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1367                           sw->cap_plug_events + 1, 1);
1368}
1369
1370static ssize_t authorized_show(struct device *dev,
1371                               struct device_attribute *attr,
1372                               char *buf)
1373{
1374        struct tb_switch *sw = tb_to_switch(dev);
1375
1376        return sprintf(buf, "%u\n", sw->authorized);
1377}
1378
1379static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1380{
1381        int ret = -EINVAL;
1382
1383        if (!mutex_trylock(&sw->tb->lock))
1384                return restart_syscall();
1385
1386        if (sw->authorized)
1387                goto unlock;
1388
1389        switch (val) {
1390        /* Approve switch */
1391        case 1:
1392                if (sw->key)
1393                        ret = tb_domain_approve_switch_key(sw->tb, sw);
1394                else
1395                        ret = tb_domain_approve_switch(sw->tb, sw);
1396                break;
1397
1398        /* Challenge switch */
1399        case 2:
1400                if (sw->key)
1401                        ret = tb_domain_challenge_switch_key(sw->tb, sw);
1402                break;
1403
1404        default:
1405                break;
1406        }
1407
1408        if (!ret) {
1409                sw->authorized = val;
1410                /* Notify status change to the userspace */
1411                kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
1412        }
1413
1414unlock:
1415        mutex_unlock(&sw->tb->lock);
1416        return ret;
1417}
1418
1419static ssize_t authorized_store(struct device *dev,
1420                                struct device_attribute *attr,
1421                                const char *buf, size_t count)
1422{
1423        struct tb_switch *sw = tb_to_switch(dev);
1424        unsigned int val;
1425        ssize_t ret;
1426
1427        ret = kstrtouint(buf, 0, &val);
1428        if (ret)
1429                return ret;
1430        if (val > 2)
1431                return -EINVAL;
1432
1433        pm_runtime_get_sync(&sw->dev);
1434        ret = tb_switch_set_authorized(sw, val);
1435        pm_runtime_mark_last_busy(&sw->dev);
1436        pm_runtime_put_autosuspend(&sw->dev);
1437
1438        return ret ? ret : count;
1439}
1440static DEVICE_ATTR_RW(authorized);
1441
1442static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1443                         char *buf)
1444{
1445        struct tb_switch *sw = tb_to_switch(dev);
1446
1447        return sprintf(buf, "%u\n", sw->boot);
1448}
1449static DEVICE_ATTR_RO(boot);
1450
1451static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1452                           char *buf)
1453{
1454        struct tb_switch *sw = tb_to_switch(dev);
1455
1456        return sprintf(buf, "%#x\n", sw->device);
1457}
1458static DEVICE_ATTR_RO(device);
1459
1460static ssize_t
1461device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1462{
1463        struct tb_switch *sw = tb_to_switch(dev);
1464
1465        return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1466}
1467static DEVICE_ATTR_RO(device_name);
1468
1469static ssize_t
1470generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1471{
1472        struct tb_switch *sw = tb_to_switch(dev);
1473
1474        return sprintf(buf, "%u\n", sw->generation);
1475}
1476static DEVICE_ATTR_RO(generation);
1477
1478static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1479                        char *buf)
1480{
1481        struct tb_switch *sw = tb_to_switch(dev);
1482        ssize_t ret;
1483
1484        if (!mutex_trylock(&sw->tb->lock))
1485                return restart_syscall();
1486
1487        if (sw->key)
1488                ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1489        else
1490                ret = sprintf(buf, "\n");
1491
1492        mutex_unlock(&sw->tb->lock);
1493        return ret;
1494}
1495
1496static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1497                         const char *buf, size_t count)
1498{
1499        struct tb_switch *sw = tb_to_switch(dev);
1500        u8 key[TB_SWITCH_KEY_SIZE];
1501        ssize_t ret = count;
1502        bool clear = false;
1503
1504        if (!strcmp(buf, "\n"))
1505                clear = true;
1506        else if (hex2bin(key, buf, sizeof(key)))
1507                return -EINVAL;
1508
1509        if (!mutex_trylock(&sw->tb->lock))
1510                return restart_syscall();
1511
1512        if (sw->authorized) {
1513                ret = -EBUSY;
1514        } else {
1515                kfree(sw->key);
1516                if (clear) {
1517                        sw->key = NULL;
1518                } else {
1519                        sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1520                        if (!sw->key)
1521                                ret = -ENOMEM;
1522                }
1523        }
1524
1525        mutex_unlock(&sw->tb->lock);
1526        return ret;
1527}
1528static DEVICE_ATTR(key, 0600, key_show, key_store);
1529
1530static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1531                          char *buf)
1532{
1533        struct tb_switch *sw = tb_to_switch(dev);
1534
1535        return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed);
1536}
1537
1538/*
1539 * Currently all lanes must run at the same speed but we expose here
1540 * both directions to allow possible asymmetric links in the future.
1541 */
1542static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1543static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1544
1545static ssize_t lanes_show(struct device *dev, struct device_attribute *attr,
1546                          char *buf)
1547{
1548        struct tb_switch *sw = tb_to_switch(dev);
1549
1550        return sprintf(buf, "%u\n", sw->link_width);
1551}
1552
1553/*
1554 * Currently link has same amount of lanes both directions (1 or 2) but
1555 * expose them separately to allow possible asymmetric links in the future.
1556 */
1557static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL);
1558static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL);
1559
1560static ssize_t nvm_authenticate_show(struct device *dev,
1561        struct device_attribute *attr, char *buf)
1562{
1563        struct tb_switch *sw = tb_to_switch(dev);
1564        u32 status;
1565
1566        nvm_get_auth_status(sw, &status);
1567        return sprintf(buf, "%#x\n", status);
1568}
1569
1570static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
1571                                      bool disconnect)
1572{
1573        struct tb_switch *sw = tb_to_switch(dev);
1574        int val;
1575        int ret;
1576
1577        pm_runtime_get_sync(&sw->dev);
1578
1579        if (!mutex_trylock(&sw->tb->lock)) {
1580                ret = restart_syscall();
1581                goto exit_rpm;
1582        }
1583
1584        /* If NVMem devices are not yet added */
1585        if (!sw->nvm) {
1586                ret = -EAGAIN;
1587                goto exit_unlock;
1588        }
1589
1590        ret = kstrtoint(buf, 10, &val);
1591        if (ret)
1592                goto exit_unlock;
1593
1594        /* Always clear the authentication status */
1595        nvm_clear_auth_status(sw);
1596
1597        if (val > 0) {
1598                if (!sw->nvm->flushed) {
1599                        if (!sw->nvm->buf) {
1600                                ret = -EINVAL;
1601                                goto exit_unlock;
1602                        }
1603
1604                        ret = nvm_validate_and_write(sw);
1605                        if (ret || val == WRITE_ONLY)
1606                                goto exit_unlock;
1607                }
1608                if (val == WRITE_AND_AUTHENTICATE) {
1609                        if (disconnect) {
1610                                ret = tb_lc_force_power(sw);
1611                        } else {
1612                                sw->nvm->authenticating = true;
1613                                ret = nvm_authenticate(sw);
1614                        }
1615                }
1616        }
1617
1618exit_unlock:
1619        mutex_unlock(&sw->tb->lock);
1620exit_rpm:
1621        pm_runtime_mark_last_busy(&sw->dev);
1622        pm_runtime_put_autosuspend(&sw->dev);
1623
1624        return ret;
1625}
1626
1627static ssize_t nvm_authenticate_store(struct device *dev,
1628        struct device_attribute *attr, const char *buf, size_t count)
1629{
1630        int ret = nvm_authenticate_sysfs(dev, buf, false);
1631        if (ret)
1632                return ret;
1633        return count;
1634}
1635static DEVICE_ATTR_RW(nvm_authenticate);
1636
1637static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
1638        struct device_attribute *attr, char *buf)
1639{
1640        return nvm_authenticate_show(dev, attr, buf);
1641}
1642
1643static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
1644        struct device_attribute *attr, const char *buf, size_t count)
1645{
1646        int ret;
1647
1648        ret = nvm_authenticate_sysfs(dev, buf, true);
1649        return ret ? ret : count;
1650}
1651static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
1652
1653static ssize_t nvm_version_show(struct device *dev,
1654                                struct device_attribute *attr, char *buf)
1655{
1656        struct tb_switch *sw = tb_to_switch(dev);
1657        int ret;
1658
1659        if (!mutex_trylock(&sw->tb->lock))
1660                return restart_syscall();
1661
1662        if (sw->safe_mode)
1663                ret = -ENODATA;
1664        else if (!sw->nvm)
1665                ret = -EAGAIN;
1666        else
1667                ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1668
1669        mutex_unlock(&sw->tb->lock);
1670
1671        return ret;
1672}
1673static DEVICE_ATTR_RO(nvm_version);
1674
1675static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1676                           char *buf)
1677{
1678        struct tb_switch *sw = tb_to_switch(dev);
1679
1680        return sprintf(buf, "%#x\n", sw->vendor);
1681}
1682static DEVICE_ATTR_RO(vendor);
1683
1684static ssize_t
1685vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1686{
1687        struct tb_switch *sw = tb_to_switch(dev);
1688
1689        return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1690}
1691static DEVICE_ATTR_RO(vendor_name);
1692
1693static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1694                              char *buf)
1695{
1696        struct tb_switch *sw = tb_to_switch(dev);
1697
1698        return sprintf(buf, "%pUb\n", sw->uuid);
1699}
1700static DEVICE_ATTR_RO(unique_id);
1701
1702static struct attribute *switch_attrs[] = {
1703        &dev_attr_authorized.attr,
1704        &dev_attr_boot.attr,
1705        &dev_attr_device.attr,
1706        &dev_attr_device_name.attr,
1707        &dev_attr_generation.attr,
1708        &dev_attr_key.attr,
1709        &dev_attr_nvm_authenticate.attr,
1710        &dev_attr_nvm_authenticate_on_disconnect.attr,
1711        &dev_attr_nvm_version.attr,
1712        &dev_attr_rx_speed.attr,
1713        &dev_attr_rx_lanes.attr,
1714        &dev_attr_tx_speed.attr,
1715        &dev_attr_tx_lanes.attr,
1716        &dev_attr_vendor.attr,
1717        &dev_attr_vendor_name.attr,
1718        &dev_attr_unique_id.attr,
1719        NULL,
1720};
1721
1722static umode_t switch_attr_is_visible(struct kobject *kobj,
1723                                      struct attribute *attr, int n)
1724{
1725        struct device *dev = kobj_to_dev(kobj);
1726        struct tb_switch *sw = tb_to_switch(dev);
1727
1728        if (attr == &dev_attr_device.attr) {
1729                if (!sw->device)
1730                        return 0;
1731        } else if (attr == &dev_attr_device_name.attr) {
1732                if (!sw->device_name)
1733                        return 0;
1734        } else if (attr == &dev_attr_vendor.attr)  {
1735                if (!sw->vendor)
1736                        return 0;
1737        } else if (attr == &dev_attr_vendor_name.attr)  {
1738                if (!sw->vendor_name)
1739                        return 0;
1740        } else if (attr == &dev_attr_key.attr) {
1741                if (tb_route(sw) &&
1742                    sw->tb->security_level == TB_SECURITY_SECURE &&
1743                    sw->security_level == TB_SECURITY_SECURE)
1744                        return attr->mode;
1745                return 0;
1746        } else if (attr == &dev_attr_rx_speed.attr ||
1747                   attr == &dev_attr_rx_lanes.attr ||
1748                   attr == &dev_attr_tx_speed.attr ||
1749                   attr == &dev_attr_tx_lanes.attr) {
1750                if (tb_route(sw))
1751                        return attr->mode;
1752                return 0;
1753        } else if (attr == &dev_attr_nvm_authenticate.attr) {
1754                if (nvm_upgradeable(sw))
1755                        return attr->mode;
1756                return 0;
1757        } else if (attr == &dev_attr_nvm_version.attr) {
1758                if (nvm_readable(sw))
1759                        return attr->mode;
1760                return 0;
1761        } else if (attr == &dev_attr_boot.attr) {
1762                if (tb_route(sw))
1763                        return attr->mode;
1764                return 0;
1765        } else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
1766                if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
1767                        return attr->mode;
1768                return 0;
1769        }
1770
1771        return sw->safe_mode ? 0 : attr->mode;
1772}
1773
1774static struct attribute_group switch_group = {
1775        .is_visible = switch_attr_is_visible,
1776        .attrs = switch_attrs,
1777};
1778
1779static const struct attribute_group *switch_groups[] = {
1780        &switch_group,
1781        NULL,
1782};
1783
1784static void tb_switch_release(struct device *dev)
1785{
1786        struct tb_switch *sw = tb_to_switch(dev);
1787        struct tb_port *port;
1788
1789        dma_port_free(sw->dma_port);
1790
1791        tb_switch_for_each_port(sw, port) {
1792                if (!port->disabled) {
1793                        ida_destroy(&port->in_hopids);
1794                        ida_destroy(&port->out_hopids);
1795                }
1796        }
1797
1798        kfree(sw->uuid);
1799        kfree(sw->device_name);
1800        kfree(sw->vendor_name);
1801        kfree(sw->ports);
1802        kfree(sw->drom);
1803        kfree(sw->key);
1804        kfree(sw);
1805}
1806
1807/*
1808 * Currently only need to provide the callbacks. Everything else is handled
1809 * in the connection manager.
1810 */
1811static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
1812{
1813        struct tb_switch *sw = tb_to_switch(dev);
1814        const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1815
1816        if (cm_ops->runtime_suspend_switch)
1817                return cm_ops->runtime_suspend_switch(sw);
1818
1819        return 0;
1820}
1821
1822static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
1823{
1824        struct tb_switch *sw = tb_to_switch(dev);
1825        const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1826
1827        if (cm_ops->runtime_resume_switch)
1828                return cm_ops->runtime_resume_switch(sw);
1829        return 0;
1830}
1831
1832static const struct dev_pm_ops tb_switch_pm_ops = {
1833        SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
1834                           NULL)
1835};
1836
1837struct device_type tb_switch_type = {
1838        .name = "thunderbolt_device",
1839        .release = tb_switch_release,
1840        .pm = &tb_switch_pm_ops,
1841};
1842
1843static int tb_switch_get_generation(struct tb_switch *sw)
1844{
1845        switch (sw->config.device_id) {
1846        case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1847        case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1848        case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1849        case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1850        case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1851        case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1852        case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1853        case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1854                return 1;
1855
1856        case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1857        case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1858        case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1859                return 2;
1860
1861        case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1862        case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1863        case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1864        case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1865        case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1866        case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1867        case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1868        case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
1869        case PCI_DEVICE_ID_INTEL_ICL_NHI0:
1870        case PCI_DEVICE_ID_INTEL_ICL_NHI1:
1871                return 3;
1872
1873        default:
1874                if (tb_switch_is_usb4(sw))
1875                        return 4;
1876
1877                /*
1878                 * For unknown switches assume generation to be 1 to be
1879                 * on the safe side.
1880                 */
1881                tb_sw_warn(sw, "unsupported switch device id %#x\n",
1882                           sw->config.device_id);
1883                return 1;
1884        }
1885}
1886
1887static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
1888{
1889        int max_depth;
1890
1891        if (tb_switch_is_usb4(sw) ||
1892            (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
1893                max_depth = USB4_SWITCH_MAX_DEPTH;
1894        else
1895                max_depth = TB_SWITCH_MAX_DEPTH;
1896
1897        return depth > max_depth;
1898}
1899
1900/**
1901 * tb_switch_alloc() - allocate a switch
1902 * @tb: Pointer to the owning domain
1903 * @parent: Parent device for this switch
1904 * @route: Route string for this switch
1905 *
1906 * Allocates and initializes a switch. Will not upload configuration to
1907 * the switch. For that you need to call tb_switch_configure()
1908 * separately. The returned switch should be released by calling
1909 * tb_switch_put().
1910 *
1911 * Return: Pointer to the allocated switch or ERR_PTR() in case of
1912 * failure.
1913 */
1914struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1915                                  u64 route)
1916{
1917        struct tb_switch *sw;
1918        int upstream_port;
1919        int i, ret, depth;
1920
1921        /* Unlock the downstream port so we can access the switch below */
1922        if (route) {
1923                struct tb_switch *parent_sw = tb_to_switch(parent);
1924                struct tb_port *down;
1925
1926                down = tb_port_at(route, parent_sw);
1927                tb_port_unlock(down);
1928        }
1929
1930        depth = tb_route_length(route);
1931
1932        upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
1933        if (upstream_port < 0)
1934                return ERR_PTR(upstream_port);
1935
1936        sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1937        if (!sw)
1938                return ERR_PTR(-ENOMEM);
1939
1940        sw->tb = tb;
1941        ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
1942        if (ret)
1943                goto err_free_sw_ports;
1944
1945        sw->generation = tb_switch_get_generation(sw);
1946
1947        tb_dbg(tb, "current switch config:\n");
1948        tb_dump_switch(tb, sw);
1949
1950        /* configure switch */
1951        sw->config.upstream_port_number = upstream_port;
1952        sw->config.depth = depth;
1953        sw->config.route_hi = upper_32_bits(route);
1954        sw->config.route_lo = lower_32_bits(route);
1955        sw->config.enabled = 0;
1956
1957        /* Make sure we do not exceed maximum topology limit */
1958        if (tb_switch_exceeds_max_depth(sw, depth)) {
1959                ret = -EADDRNOTAVAIL;
1960                goto err_free_sw_ports;
1961        }
1962
1963        /* initialize ports */
1964        sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
1965                                GFP_KERNEL);
1966        if (!sw->ports) {
1967                ret = -ENOMEM;
1968                goto err_free_sw_ports;
1969        }
1970
1971        for (i = 0; i <= sw->config.max_port_number; i++) {
1972                /* minimum setup for tb_find_cap and tb_drom_read to work */
1973                sw->ports[i].sw = sw;
1974                sw->ports[i].port = i;
1975        }
1976
1977        ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
1978        if (ret > 0)
1979                sw->cap_plug_events = ret;
1980
1981        ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
1982        if (ret > 0)
1983                sw->cap_lc = ret;
1984
1985        /* Root switch is always authorized */
1986        if (!route)
1987                sw->authorized = true;
1988
1989        device_initialize(&sw->dev);
1990        sw->dev.parent = parent;
1991        sw->dev.bus = &tb_bus_type;
1992        sw->dev.type = &tb_switch_type;
1993        sw->dev.groups = switch_groups;
1994        dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1995
1996        return sw;
1997
1998err_free_sw_ports:
1999        kfree(sw->ports);
2000        kfree(sw);
2001
2002        return ERR_PTR(ret);
2003}
2004
2005/**
2006 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
2007 * @tb: Pointer to the owning domain
2008 * @parent: Parent device for this switch
2009 * @route: Route string for this switch
2010 *
2011 * This creates a switch in safe mode. This means the switch pretty much
2012 * lacks all capabilities except DMA configuration port before it is
2013 * flashed with a valid NVM firmware.
2014 *
2015 * The returned switch must be released by calling tb_switch_put().
2016 *
2017 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
2018 */
2019struct tb_switch *
2020tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
2021{
2022        struct tb_switch *sw;
2023
2024        sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2025        if (!sw)
2026                return ERR_PTR(-ENOMEM);
2027
2028        sw->tb = tb;
2029        sw->config.depth = tb_route_length(route);
2030        sw->config.route_hi = upper_32_bits(route);
2031        sw->config.route_lo = lower_32_bits(route);
2032        sw->safe_mode = true;
2033
2034        device_initialize(&sw->dev);
2035        sw->dev.parent = parent;
2036        sw->dev.bus = &tb_bus_type;
2037        sw->dev.type = &tb_switch_type;
2038        sw->dev.groups = switch_groups;
2039        dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2040
2041        return sw;
2042}
2043
2044/**
2045 * tb_switch_configure() - Uploads configuration to the switch
2046 * @sw: Switch to configure
2047 *
2048 * Call this function before the switch is added to the system. It will
2049 * upload configuration to the switch and makes it available for the
2050 * connection manager to use. Can be called to the switch again after
2051 * resume from low power states to re-initialize it.
2052 *
2053 * Return: %0 in case of success and negative errno in case of failure
2054 */
2055int tb_switch_configure(struct tb_switch *sw)
2056{
2057        struct tb *tb = sw->tb;
2058        u64 route;
2059        int ret;
2060
2061        route = tb_route(sw);
2062
2063        tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2064               sw->config.enabled ? "restoring" : "initializing", route,
2065               tb_route_length(route), sw->config.upstream_port_number);
2066
2067        sw->config.enabled = 1;
2068
2069        if (tb_switch_is_usb4(sw)) {
2070                /*
2071                 * For USB4 devices, we need to program the CM version
2072                 * accordingly so that it knows to expose all the
2073                 * additional capabilities.
2074                 */
2075                sw->config.cmuv = USB4_VERSION_1_0;
2076
2077                /* Enumerate the switch */
2078                ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2079                                  ROUTER_CS_1, 4);
2080                if (ret)
2081                        return ret;
2082
2083                ret = usb4_switch_setup(sw);
2084        } else {
2085                if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2086                        tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2087                                   sw->config.vendor_id);
2088
2089                if (!sw->cap_plug_events) {
2090                        tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2091                        return -ENODEV;
2092                }
2093
2094                /* Enumerate the switch */
2095                ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2096                                  ROUTER_CS_1, 3);
2097        }
2098        if (ret)
2099                return ret;
2100
2101        return tb_plug_events_active(sw, true);
2102}
2103
2104static int tb_switch_set_uuid(struct tb_switch *sw)
2105{
2106        bool uid = false;
2107        u32 uuid[4];
2108        int ret;
2109
2110        if (sw->uuid)
2111                return 0;
2112
2113        if (tb_switch_is_usb4(sw)) {
2114                ret = usb4_switch_read_uid(sw, &sw->uid);
2115                if (ret)
2116                        return ret;
2117                uid = true;
2118        } else {
2119                /*
2120                 * The newer controllers include fused UUID as part of
2121                 * link controller specific registers
2122                 */
2123                ret = tb_lc_read_uuid(sw, uuid);
2124                if (ret) {
2125                        if (ret != -EINVAL)
2126                                return ret;
2127                        uid = true;
2128                }
2129        }
2130
2131        if (uid) {
2132                /*
2133                 * ICM generates UUID based on UID and fills the upper
2134                 * two words with ones. This is not strictly following
2135                 * UUID format but we want to be compatible with it so
2136                 * we do the same here.
2137                 */
2138                uuid[0] = sw->uid & 0xffffffff;
2139                uuid[1] = (sw->uid >> 32) & 0xffffffff;
2140                uuid[2] = 0xffffffff;
2141                uuid[3] = 0xffffffff;
2142        }
2143
2144        sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2145        if (!sw->uuid)
2146                return -ENOMEM;
2147        return 0;
2148}
2149
2150static int tb_switch_add_dma_port(struct tb_switch *sw)
2151{
2152        u32 status;
2153        int ret;
2154
2155        switch (sw->generation) {
2156        case 2:
2157                /* Only root switch can be upgraded */
2158                if (tb_route(sw))
2159                        return 0;
2160
2161                /* fallthrough */
2162        case 3:
2163        case 4:
2164                ret = tb_switch_set_uuid(sw);
2165                if (ret)
2166                        return ret;
2167                break;
2168
2169        default:
2170                /*
2171                 * DMA port is the only thing available when the switch
2172                 * is in safe mode.
2173                 */
2174                if (!sw->safe_mode)
2175                        return 0;
2176                break;
2177        }
2178
2179        if (sw->no_nvm_upgrade)
2180                return 0;
2181
2182        if (tb_switch_is_usb4(sw)) {
2183                ret = usb4_switch_nvm_authenticate_status(sw, &status);
2184                if (ret)
2185                        return ret;
2186
2187                if (status) {
2188                        tb_sw_info(sw, "switch flash authentication failed\n");
2189                        nvm_set_auth_status(sw, status);
2190                }
2191
2192                return 0;
2193        }
2194
2195        /* Root switch DMA port requires running firmware */
2196        if (!tb_route(sw) && !tb_switch_is_icm(sw))
2197                return 0;
2198
2199        sw->dma_port = dma_port_alloc(sw);
2200        if (!sw->dma_port)
2201                return 0;
2202
2203        /*
2204         * If there is status already set then authentication failed
2205         * when the dma_port_flash_update_auth() returned. Power cycling
2206         * is not needed (it was done already) so only thing we do here
2207         * is to unblock runtime PM of the root port.
2208         */
2209        nvm_get_auth_status(sw, &status);
2210        if (status) {
2211                if (!tb_route(sw))
2212                        nvm_authenticate_complete_dma_port(sw);
2213                return 0;
2214        }
2215
2216        /*
2217         * Check status of the previous flash authentication. If there
2218         * is one we need to power cycle the switch in any case to make
2219         * it functional again.
2220         */
2221        ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2222        if (ret <= 0)
2223                return ret;
2224
2225        /* Now we can allow root port to suspend again */
2226        if (!tb_route(sw))
2227                nvm_authenticate_complete_dma_port(sw);
2228
2229        if (status) {
2230                tb_sw_info(sw, "switch flash authentication failed\n");
2231                nvm_set_auth_status(sw, status);
2232        }
2233
2234        tb_sw_info(sw, "power cycling the switch now\n");
2235        dma_port_power_cycle(sw->dma_port);
2236
2237        /*
2238         * We return error here which causes the switch adding failure.
2239         * It should appear back after power cycle is complete.
2240         */
2241        return -ESHUTDOWN;
2242}
2243
2244static void tb_switch_default_link_ports(struct tb_switch *sw)
2245{
2246        int i;
2247
2248        for (i = 1; i <= sw->config.max_port_number; i += 2) {
2249                struct tb_port *port = &sw->ports[i];
2250                struct tb_port *subordinate;
2251
2252                if (!tb_port_is_null(port))
2253                        continue;
2254
2255                /* Check for the subordinate port */
2256                if (i == sw->config.max_port_number ||
2257                    !tb_port_is_null(&sw->ports[i + 1]))
2258                        continue;
2259
2260                /* Link them if not already done so (by DROM) */
2261                subordinate = &sw->ports[i + 1];
2262                if (!port->dual_link_port && !subordinate->dual_link_port) {
2263                        port->link_nr = 0;
2264                        port->dual_link_port = subordinate;
2265                        subordinate->link_nr = 1;
2266                        subordinate->dual_link_port = port;
2267
2268                        tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2269                                  port->port, subordinate->port);
2270                }
2271        }
2272}
2273
2274static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2275{
2276        const struct tb_port *up = tb_upstream_port(sw);
2277
2278        if (!up->dual_link_port || !up->dual_link_port->remote)
2279                return false;
2280
2281        if (tb_switch_is_usb4(sw))
2282                return usb4_switch_lane_bonding_possible(sw);
2283        return tb_lc_lane_bonding_possible(sw);
2284}
2285
2286static int tb_switch_update_link_attributes(struct tb_switch *sw)
2287{
2288        struct tb_port *up;
2289        bool change = false;
2290        int ret;
2291
2292        if (!tb_route(sw) || tb_switch_is_icm(sw))
2293                return 0;
2294
2295        up = tb_upstream_port(sw);
2296
2297        ret = tb_port_get_link_speed(up);
2298        if (ret < 0)
2299                return ret;
2300        if (sw->link_speed != ret)
2301                change = true;
2302        sw->link_speed = ret;
2303
2304        ret = tb_port_get_link_width(up);
2305        if (ret < 0)
2306                return ret;
2307        if (sw->link_width != ret)
2308                change = true;
2309        sw->link_width = ret;
2310
2311        /* Notify userspace that there is possible link attribute change */
2312        if (device_is_registered(&sw->dev) && change)
2313                kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2314
2315        return 0;
2316}
2317
2318/**
2319 * tb_switch_lane_bonding_enable() - Enable lane bonding
2320 * @sw: Switch to enable lane bonding
2321 *
2322 * Connection manager can call this function to enable lane bonding of a
2323 * switch. If conditions are correct and both switches support the feature,
2324 * lanes are bonded. It is safe to call this to any switch.
2325 */
2326int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2327{
2328        struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2329        struct tb_port *up, *down;
2330        u64 route = tb_route(sw);
2331        int ret;
2332
2333        if (!route)
2334                return 0;
2335
2336        if (!tb_switch_lane_bonding_possible(sw))
2337                return 0;
2338
2339        up = tb_upstream_port(sw);
2340        down = tb_port_at(route, parent);
2341
2342        if (!tb_port_is_width_supported(up, 2) ||
2343            !tb_port_is_width_supported(down, 2))
2344                return 0;
2345
2346        ret = tb_port_lane_bonding_enable(up);
2347        if (ret) {
2348                tb_port_warn(up, "failed to enable lane bonding\n");
2349                return ret;
2350        }
2351
2352        ret = tb_port_lane_bonding_enable(down);
2353        if (ret) {
2354                tb_port_warn(down, "failed to enable lane bonding\n");
2355                tb_port_lane_bonding_disable(up);
2356                return ret;
2357        }
2358
2359        tb_switch_update_link_attributes(sw);
2360
2361        tb_sw_dbg(sw, "lane bonding enabled\n");
2362        return ret;
2363}
2364
2365/**
2366 * tb_switch_lane_bonding_disable() - Disable lane bonding
2367 * @sw: Switch whose lane bonding to disable
2368 *
2369 * Disables lane bonding between @sw and parent. This can be called even
2370 * if lanes were not bonded originally.
2371 */
2372void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2373{
2374        struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2375        struct tb_port *up, *down;
2376
2377        if (!tb_route(sw))
2378                return;
2379
2380        up = tb_upstream_port(sw);
2381        if (!up->bonded)
2382                return;
2383
2384        down = tb_port_at(tb_route(sw), parent);
2385
2386        tb_port_lane_bonding_disable(up);
2387        tb_port_lane_bonding_disable(down);
2388
2389        tb_switch_update_link_attributes(sw);
2390        tb_sw_dbg(sw, "lane bonding disabled\n");
2391}
2392
2393/**
2394 * tb_switch_configure_link() - Set link configured
2395 * @sw: Switch whose link is configured
2396 *
2397 * Sets the link upstream from @sw configured (from both ends) so that
2398 * it will not be disconnected when the domain exits sleep. Can be
2399 * called for any switch.
2400 *
2401 * It is recommended that this is called after lane bonding is enabled.
2402 *
2403 * Returns %0 on success and negative errno in case of error.
2404 */
2405int tb_switch_configure_link(struct tb_switch *sw)
2406{
2407        struct tb_port *up, *down;
2408        int ret;
2409
2410        if (!tb_route(sw) || tb_switch_is_icm(sw))
2411                return 0;
2412
2413        up = tb_upstream_port(sw);
2414        if (tb_switch_is_usb4(up->sw))
2415                ret = usb4_port_configure(up);
2416        else
2417                ret = tb_lc_configure_port(up);
2418        if (ret)
2419                return ret;
2420
2421        down = up->remote;
2422        if (tb_switch_is_usb4(down->sw))
2423                return usb4_port_configure(down);
2424        return tb_lc_configure_port(down);
2425}
2426
2427/**
2428 * tb_switch_unconfigure_link() - Unconfigure link
2429 * @sw: Switch whose link is unconfigured
2430 *
2431 * Sets the link unconfigured so the @sw will be disconnected if the
2432 * domain exists sleep.
2433 */
2434void tb_switch_unconfigure_link(struct tb_switch *sw)
2435{
2436        struct tb_port *up, *down;
2437
2438        if (sw->is_unplugged)
2439                return;
2440        if (!tb_route(sw) || tb_switch_is_icm(sw))
2441                return;
2442
2443        up = tb_upstream_port(sw);
2444        if (tb_switch_is_usb4(up->sw))
2445                usb4_port_unconfigure(up);
2446        else
2447                tb_lc_unconfigure_port(up);
2448
2449        down = up->remote;
2450        if (tb_switch_is_usb4(down->sw))
2451                usb4_port_unconfigure(down);
2452        else
2453                tb_lc_unconfigure_port(down);
2454}
2455
2456/**
2457 * tb_switch_add() - Add a switch to the domain
2458 * @sw: Switch to add
2459 *
2460 * This is the last step in adding switch to the domain. It will read
2461 * identification information from DROM and initializes ports so that
2462 * they can be used to connect other switches. The switch will be
2463 * exposed to the userspace when this function successfully returns. To
2464 * remove and release the switch, call tb_switch_remove().
2465 *
2466 * Return: %0 in case of success and negative errno in case of failure
2467 */
2468int tb_switch_add(struct tb_switch *sw)
2469{
2470        int i, ret;
2471
2472        /*
2473         * Initialize DMA control port now before we read DROM. Recent
2474         * host controllers have more complete DROM on NVM that includes
2475         * vendor and model identification strings which we then expose
2476         * to the userspace. NVM can be accessed through DMA
2477         * configuration based mailbox.
2478         */
2479        ret = tb_switch_add_dma_port(sw);
2480        if (ret) {
2481                dev_err(&sw->dev, "failed to add DMA port\n");
2482                return ret;
2483        }
2484
2485        if (!sw->safe_mode) {
2486                /* read drom */
2487                ret = tb_drom_read(sw);
2488                if (ret) {
2489                        dev_err(&sw->dev, "reading DROM failed\n");
2490                        return ret;
2491                }
2492                tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
2493
2494                ret = tb_switch_set_uuid(sw);
2495                if (ret) {
2496                        dev_err(&sw->dev, "failed to set UUID\n");
2497                        return ret;
2498                }
2499
2500                for (i = 0; i <= sw->config.max_port_number; i++) {
2501                        if (sw->ports[i].disabled) {
2502                                tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
2503                                continue;
2504                        }
2505                        ret = tb_init_port(&sw->ports[i]);
2506                        if (ret) {
2507                                dev_err(&sw->dev, "failed to initialize port %d\n", i);
2508                                return ret;
2509                        }
2510                }
2511
2512                tb_switch_default_link_ports(sw);
2513
2514                ret = tb_switch_update_link_attributes(sw);
2515                if (ret)
2516                        return ret;
2517
2518                ret = tb_switch_tmu_init(sw);
2519                if (ret)
2520                        return ret;
2521        }
2522
2523        ret = device_add(&sw->dev);
2524        if (ret) {
2525                dev_err(&sw->dev, "failed to add device: %d\n", ret);
2526                return ret;
2527        }
2528
2529        if (tb_route(sw)) {
2530                dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
2531                         sw->vendor, sw->device);
2532                if (sw->vendor_name && sw->device_name)
2533                        dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
2534                                 sw->device_name);
2535        }
2536
2537        ret = tb_switch_nvm_add(sw);
2538        if (ret) {
2539                dev_err(&sw->dev, "failed to add NVM devices\n");
2540                device_del(&sw->dev);
2541                return ret;
2542        }
2543
2544        /*
2545         * Thunderbolt routers do not generate wakeups themselves but
2546         * they forward wakeups from tunneled protocols, so enable it
2547         * here.
2548         */
2549        device_init_wakeup(&sw->dev, true);
2550
2551        pm_runtime_set_active(&sw->dev);
2552        if (sw->rpm) {
2553                pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
2554                pm_runtime_use_autosuspend(&sw->dev);
2555                pm_runtime_mark_last_busy(&sw->dev);
2556                pm_runtime_enable(&sw->dev);
2557                pm_request_autosuspend(&sw->dev);
2558        }
2559
2560        tb_switch_debugfs_init(sw);
2561        return 0;
2562}
2563
2564/**
2565 * tb_switch_remove() - Remove and release a switch
2566 * @sw: Switch to remove
2567 *
2568 * This will remove the switch from the domain and release it after last
2569 * reference count drops to zero. If there are switches connected below
2570 * this switch, they will be removed as well.
2571 */
2572void tb_switch_remove(struct tb_switch *sw)
2573{
2574        struct tb_port *port;
2575
2576        tb_switch_debugfs_remove(sw);
2577
2578        if (sw->rpm) {
2579                pm_runtime_get_sync(&sw->dev);
2580                pm_runtime_disable(&sw->dev);
2581        }
2582
2583        /* port 0 is the switch itself and never has a remote */
2584        tb_switch_for_each_port(sw, port) {
2585                if (tb_port_has_remote(port)) {
2586                        tb_switch_remove(port->remote->sw);
2587                        port->remote = NULL;
2588                } else if (port->xdomain) {
2589                        tb_xdomain_remove(port->xdomain);
2590                        port->xdomain = NULL;
2591                }
2592
2593                /* Remove any downstream retimers */
2594                tb_retimer_remove_all(port);
2595        }
2596
2597        if (!sw->is_unplugged)
2598                tb_plug_events_active(sw, false);
2599
2600        tb_switch_nvm_remove(sw);
2601
2602        if (tb_route(sw))
2603                dev_info(&sw->dev, "device disconnected\n");
2604        device_unregister(&sw->dev);
2605}
2606
2607/**
2608 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
2609 */
2610void tb_sw_set_unplugged(struct tb_switch *sw)
2611{
2612        struct tb_port *port;
2613
2614        if (sw == sw->tb->root_switch) {
2615                tb_sw_WARN(sw, "cannot unplug root switch\n");
2616                return;
2617        }
2618        if (sw->is_unplugged) {
2619                tb_sw_WARN(sw, "is_unplugged already set\n");
2620                return;
2621        }
2622        sw->is_unplugged = true;
2623        tb_switch_for_each_port(sw, port) {
2624                if (tb_port_has_remote(port))
2625                        tb_sw_set_unplugged(port->remote->sw);
2626                else if (port->xdomain)
2627                        port->xdomain->is_unplugged = true;
2628        }
2629}
2630
2631static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
2632{
2633        if (flags)
2634                tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
2635        else
2636                tb_sw_dbg(sw, "disabling wakeup\n");
2637
2638        if (tb_switch_is_usb4(sw))
2639                return usb4_switch_set_wake(sw, flags);
2640        return tb_lc_set_wake(sw, flags);
2641}
2642
2643int tb_switch_resume(struct tb_switch *sw)
2644{
2645        struct tb_port *port;
2646        int err;
2647
2648        tb_sw_dbg(sw, "resuming switch\n");
2649
2650        /*
2651         * Check for UID of the connected switches except for root
2652         * switch which we assume cannot be removed.
2653         */
2654        if (tb_route(sw)) {
2655                u64 uid;
2656
2657                /*
2658                 * Check first that we can still read the switch config
2659                 * space. It may be that there is now another domain
2660                 * connected.
2661                 */
2662                err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
2663                if (err < 0) {
2664                        tb_sw_info(sw, "switch not present anymore\n");
2665                        return err;
2666                }
2667
2668                if (tb_switch_is_usb4(sw))
2669                        err = usb4_switch_read_uid(sw, &uid);
2670                else
2671                        err = tb_drom_read_uid_only(sw, &uid);
2672                if (err) {
2673                        tb_sw_warn(sw, "uid read failed\n");
2674                        return err;
2675                }
2676                if (sw->uid != uid) {
2677                        tb_sw_info(sw,
2678                                "changed while suspended (uid %#llx -> %#llx)\n",
2679                                sw->uid, uid);
2680                        return -ENODEV;
2681                }
2682        }
2683
2684        err = tb_switch_configure(sw);
2685        if (err)
2686                return err;
2687
2688        /* Disable wakes */
2689        tb_switch_set_wake(sw, 0);
2690
2691        err = tb_switch_tmu_init(sw);
2692        if (err)
2693                return err;
2694
2695        /* check for surviving downstream switches */
2696        tb_switch_for_each_port(sw, port) {
2697                if (!tb_port_has_remote(port) && !port->xdomain)
2698                        continue;
2699
2700                if (tb_wait_for_port(port, true) <= 0) {
2701                        tb_port_warn(port,
2702                                     "lost during suspend, disconnecting\n");
2703                        if (tb_port_has_remote(port))
2704                                tb_sw_set_unplugged(port->remote->sw);
2705                        else if (port->xdomain)
2706                                port->xdomain->is_unplugged = true;
2707                } else if (tb_port_has_remote(port) || port->xdomain) {
2708                        /*
2709                         * Always unlock the port so the downstream
2710                         * switch/domain is accessible.
2711                         */
2712                        if (tb_port_unlock(port))
2713                                tb_port_warn(port, "failed to unlock port\n");
2714                        if (port->remote && tb_switch_resume(port->remote->sw)) {
2715                                tb_port_warn(port,
2716                                             "lost during suspend, disconnecting\n");
2717                                tb_sw_set_unplugged(port->remote->sw);
2718                        }
2719                }
2720        }
2721        return 0;
2722}
2723
2724/**
2725 * tb_switch_suspend() - Put a switch to sleep
2726 * @sw: Switch to suspend
2727 * @runtime: Is this runtime suspend or system sleep
2728 *
2729 * Suspends router and all its children. Enables wakes according to
2730 * value of @runtime and then sets sleep bit for the router. If @sw is
2731 * host router the domain is ready to go to sleep once this function
2732 * returns.
2733 */
2734void tb_switch_suspend(struct tb_switch *sw, bool runtime)
2735{
2736        unsigned int flags = 0;
2737        struct tb_port *port;
2738        int err;
2739
2740        tb_sw_dbg(sw, "suspending switch\n");
2741
2742        err = tb_plug_events_active(sw, false);
2743        if (err)
2744                return;
2745
2746        tb_switch_for_each_port(sw, port) {
2747                if (tb_port_has_remote(port))
2748                        tb_switch_suspend(port->remote->sw, runtime);
2749        }
2750
2751        if (runtime) {
2752                /* Trigger wake when something is plugged in/out */
2753                flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
2754                flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
2755        } else if (device_may_wakeup(&sw->dev)) {
2756                flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
2757        }
2758
2759        tb_switch_set_wake(sw, flags);
2760
2761        if (tb_switch_is_usb4(sw))
2762                usb4_switch_set_sleep(sw);
2763        else
2764                tb_lc_set_sleep(sw);
2765}
2766
2767/**
2768 * tb_switch_query_dp_resource() - Query availability of DP resource
2769 * @sw: Switch whose DP resource is queried
2770 * @in: DP IN port
2771 *
2772 * Queries availability of DP resource for DP tunneling using switch
2773 * specific means. Returns %true if resource is available.
2774 */
2775bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
2776{
2777        if (tb_switch_is_usb4(sw))
2778                return usb4_switch_query_dp_resource(sw, in);
2779        return tb_lc_dp_sink_query(sw, in);
2780}
2781
2782/**
2783 * tb_switch_alloc_dp_resource() - Allocate available DP resource
2784 * @sw: Switch whose DP resource is allocated
2785 * @in: DP IN port
2786 *
2787 * Allocates DP resource for DP tunneling. The resource must be
2788 * available for this to succeed (see tb_switch_query_dp_resource()).
2789 * Returns %0 in success and negative errno otherwise.
2790 */
2791int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2792{
2793        if (tb_switch_is_usb4(sw))
2794                return usb4_switch_alloc_dp_resource(sw, in);
2795        return tb_lc_dp_sink_alloc(sw, in);
2796}
2797
2798/**
2799 * tb_switch_dealloc_dp_resource() - De-allocate DP resource
2800 * @sw: Switch whose DP resource is de-allocated
2801 * @in: DP IN port
2802 *
2803 * De-allocates DP resource that was previously allocated for DP
2804 * tunneling.
2805 */
2806void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2807{
2808        int ret;
2809
2810        if (tb_switch_is_usb4(sw))
2811                ret = usb4_switch_dealloc_dp_resource(sw, in);
2812        else
2813                ret = tb_lc_dp_sink_dealloc(sw, in);
2814
2815        if (ret)
2816                tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
2817                           in->port);
2818}
2819
2820struct tb_sw_lookup {
2821        struct tb *tb;
2822        u8 link;
2823        u8 depth;
2824        const uuid_t *uuid;
2825        u64 route;
2826};
2827
2828static int tb_switch_match(struct device *dev, const void *data)
2829{
2830        struct tb_switch *sw = tb_to_switch(dev);
2831        const struct tb_sw_lookup *lookup = data;
2832
2833        if (!sw)
2834                return 0;
2835        if (sw->tb != lookup->tb)
2836                return 0;
2837
2838        if (lookup->uuid)
2839                return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
2840
2841        if (lookup->route) {
2842                return sw->config.route_lo == lower_32_bits(lookup->route) &&
2843                       sw->config.route_hi == upper_32_bits(lookup->route);
2844        }
2845
2846        /* Root switch is matched only by depth */
2847        if (!lookup->depth)
2848                return !sw->depth;
2849
2850        return sw->link == lookup->link && sw->depth == lookup->depth;
2851}
2852
2853/**
2854 * tb_switch_find_by_link_depth() - Find switch by link and depth
2855 * @tb: Domain the switch belongs
2856 * @link: Link number the switch is connected
2857 * @depth: Depth of the switch in link
2858 *
2859 * Returned switch has reference count increased so the caller needs to
2860 * call tb_switch_put() when done with the switch.
2861 */
2862struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
2863{
2864        struct tb_sw_lookup lookup;
2865        struct device *dev;
2866
2867        memset(&lookup, 0, sizeof(lookup));
2868        lookup.tb = tb;
2869        lookup.link = link;
2870        lookup.depth = depth;
2871
2872        dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2873        if (dev)
2874                return tb_to_switch(dev);
2875
2876        return NULL;
2877}
2878
2879/**
2880 * tb_switch_find_by_uuid() - Find switch by UUID
2881 * @tb: Domain the switch belongs
2882 * @uuid: UUID to look for
2883 *
2884 * Returned switch has reference count increased so the caller needs to
2885 * call tb_switch_put() when done with the switch.
2886 */
2887struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
2888{
2889        struct tb_sw_lookup lookup;
2890        struct device *dev;
2891
2892        memset(&lookup, 0, sizeof(lookup));
2893        lookup.tb = tb;
2894        lookup.uuid = uuid;
2895
2896        dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2897        if (dev)
2898                return tb_to_switch(dev);
2899
2900        return NULL;
2901}
2902
2903/**
2904 * tb_switch_find_by_route() - Find switch by route string
2905 * @tb: Domain the switch belongs
2906 * @route: Route string to look for
2907 *
2908 * Returned switch has reference count increased so the caller needs to
2909 * call tb_switch_put() when done with the switch.
2910 */
2911struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
2912{
2913        struct tb_sw_lookup lookup;
2914        struct device *dev;
2915
2916        if (!route)
2917                return tb_switch_get(tb->root_switch);
2918
2919        memset(&lookup, 0, sizeof(lookup));
2920        lookup.tb = tb;
2921        lookup.route = route;
2922
2923        dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2924        if (dev)
2925                return tb_to_switch(dev);
2926
2927        return NULL;
2928}
2929
2930/**
2931 * tb_switch_find_port() - return the first port of @type on @sw or NULL
2932 * @sw: Switch to find the port from
2933 * @type: Port type to look for
2934 */
2935struct tb_port *tb_switch_find_port(struct tb_switch *sw,
2936                                    enum tb_port_type type)
2937{
2938        struct tb_port *port;
2939
2940        tb_switch_for_each_port(sw, port) {
2941                if (port->config.type == type)
2942                        return port;
2943        }
2944
2945        return NULL;
2946}
2947